Tong Wang¹, Abdel-rahman Mohamed², Learning Lexical Embeddings and Graeme Hirst¹ 1. University of Toronto 2. Microsoft Research with Syntactic and Lexicographic Knowledge

1. Lexical Embeddings

- Real-valued vector representations of words
- Vectors geometrically positioned per *The* Distributional Hypothesis^[1]

Problem:

Window-based co-occurrence suffers from ...

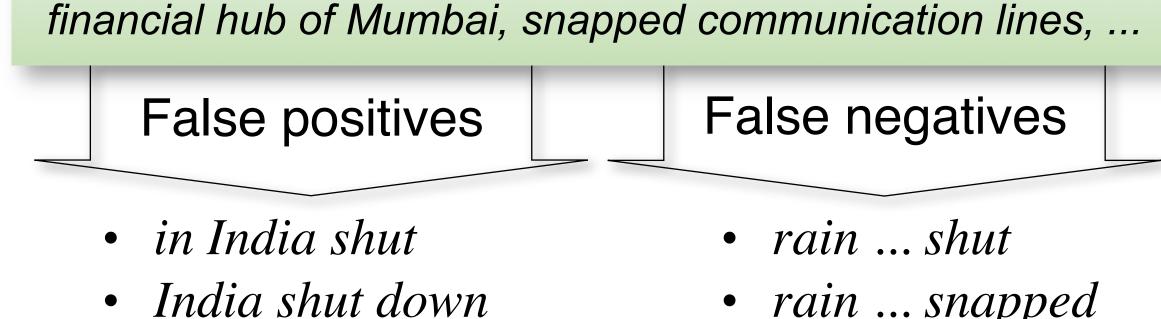
The strongest rain ever recorded in India shut down the

4. Evaluation

Lexical similarity

• Performance measured by correlation between: (a) human judgment of similarity...

car – automobile: 3.92 *gem – jewel:* 3.84 rooster – voyage: 0.08 noon – string: 0.08



- down the financial
- rain ... snapped

2. Proposed Solutions

Use syntactic association instead of window-based co-occurrence.

Use lexicographic resources (e.g., dictionary definitions) for lexical association.

- prep_in(recorded, India)
- nsubj(shut, rain)
- nsubj(snap, rain)

The defining relation: - $apple \leftarrow fruit$ - $apple \leftarrow rosaceous$ Or its inverse:

- ... and (b) system similarity score (i.e., *cosine* similarity between embeddings)
- Datasets:
 - $MC^{[2]}$, $RG^{[3]}$ nouns; semantic
 - *FG*^[4] (or *wordsim353*) nouns; distributional
 - $SL^{[5]}$ (or SimLex999) nouns (SL_n), adjectives (SL_a) , and verbs (SL_v) ; strictly semantic

5. Results and Conclusions

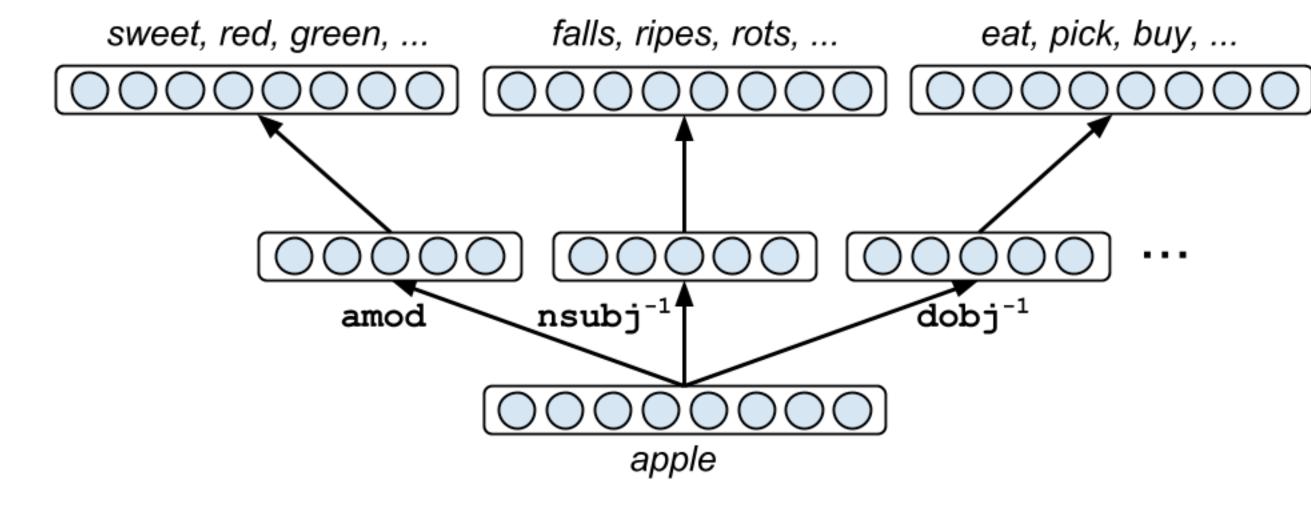
1. Factorizing syntactic relations notably improves lexical embedding learning.

	Datasets					
Model	MC	RG	FG	SL_n	SL_{v}	SL_a
amod	.766	.798	.572	.566	.154	.466
$amod^{-1}$.272	.296	.220	.218	.248	.602

- $apple \Rightarrow cider$ - $apple \Rightarrow pippin$

3. Factorizing Syntactic Relations

• Syntax-dependent model



• Syntax-independent Model

UNIVERSITY OF

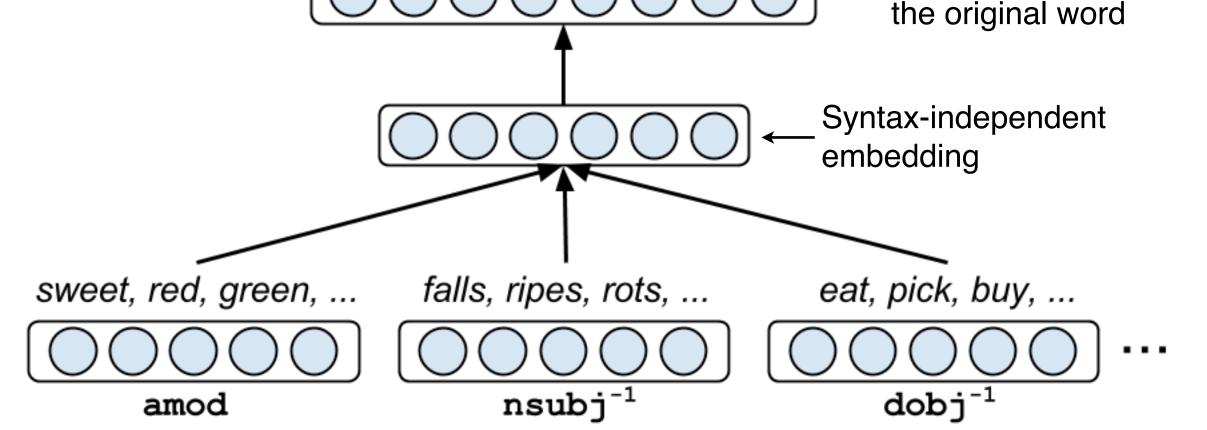
FORONTO

nsubj	.442	.350	.376	.388	.392	.464			
nn	.596	.620	.514	.486	.130	.068			
Baselines									
DEP	.640	.670	.510	.400	.240	.350			
w2v	.656	.618	.600	.382	.237	.560			
GloVe	.609	.629	.546	.346	.142	.517			

2. Combining pre-trained syntax-dependent embeddings alleviates sparsity issues on smaller dataset.

Rel. Dep. #1	.512	.486	.380	.354	.222	.394			
Rel. Dep. #2	.390	.380	.360	.304	.206	.236			
Rel. Indep.	.570	.550	.392	.360	.238	.338			
Baselines									
DEP	.530	.558	.506	.346	.138	.412			
w2v	.563	.491	.562	.287	.065	.379			
GloVe	.306	.368	.308	.132	007	.254			

3. Lexicographic knowledge from monolingual dictionaries helps produce high-quality lexical embeddings.



Presented at The 53rd Annual Meeting of the Association for Computational Linguistics, Beijing, China, July 2015

def	.640	.626	.378	.332	.320	.306
def^{-1}	.740	.626	.436	.366	.332	.376
Combined	.754	.722	.530	.410	.356	.412
w2v	.656	.618	.600	.382	.237	.560

References

[1] Zellig Harris. Distributional structure. Word, 10 (23):146–162, 1954.

- [2] George Miller and Walter Charles. Contextual correlates of semantic similarity. Language and Cognitive *Processes*, 6(1):1–28, 1991.
- [3] Herbert Rubenstein and John Goodenough. Contextual correlates of synonymy. *Communications of the* ACM, 8(10):627–633, 1965.
- [4] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan Ruppin. Placing search in context: The concept revisited. In Proceedings of the 10th International Conference on World Wide Web, pages 406-414. ACM, 2001.
- [5] Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic models with (genuine) similarity estimation. arXiv preprint arXiv:1408.3456, 2014.