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Abstract

The trigram-based noisy-channel model
of real-word spelling-error correction that
was presented by Mays, Damerau, and
Mercer in 1991 has never been adequately
evaluated or compared with other meth-
ods. We analyze the advantages and
limitations of the method, and present a
new evaluation that enables a meaning-
ful comparison with the WordNet-based
method of Hirst and Budanitsky. The tri-
gram method is found to be superior, even
on content words. We then improve the
method further and experiment with a new
variation that optimizes over fixed-length
windows instead of over sentences.

1 Introduction

Real-word spelling errors are words in a text that,
although correctly spelled words in the dictio-
nary, are not the words that the writer intended.
Such errors may be caused by typing mistakes or
by the writer’s ignorance of the correct spelling
of the intended word. Ironically, such errors
are also caused by spelling checkers in the cor-
rection of non-word spelling errors: the “auto-
correct” feature in popular word-processing soft-
ware will sometimes silently change a non-word to
the wrong real word (Hirst and Budanitsky, 2005),
and sometimes when correcting a flagged error,
the user will inadvertently make the wrong selec-
tion from the list of alternatives that the software
offers. The problem that we address in this paper
is the automatic detection and correction of real-
word errors.
Methods developed in previous research on this

topic fall into two basic categories: those based on
human-made lexical or other resources and those
based on machine-learning or statistical methods.
An example of a resource-based method is that

of Hirst and Budanitsky (2005), who use seman-
tic distance measures in WordNet to detect words
that are potentially anomalous in context — that is,
semantically distant from nearby words; if a varia-
tion in spelling1 results in a word that was seman-
tically closer to the context, it is hypothesized that
the original word is an error (a “malapropism”)
and the closer word is its correction. An example
of a machine-learning method is that of Golding
and Roth (1999), who combined the Winnow algo-
rithm with weighted-majority voting, using nearby
and adjacent words as features. (An extensive re-
view of the prior research is given by Hirst and Bu-
danitsky (2005), so we do not revisit it here. The
problem of spelling correction more generally is
reviewed by Kukich (1992).)
Typically, the machine learning and statistical

approaches rely on pre-defined confusion sets,
which are sets (usually pairs) of commonly con-
founded words, such as {their, there, they’re} and
{principle, principal}. The methods learn the
characteristics of typical context for each mem-
ber of the set and detect situations in which one
member occurs in context that is more typical of
another. Such methods, therefore, are inherently
limited to a set of common, predefined errors, but
such errors can include both content and function
words. By contrast, the resource-based methods
are not limited in this way, and can potentially
detect a confounding of any two words listed in
the resource that are spelling variations of one an-
other, but these methods can operate only on errors
in which both the error and the intended word are
content words. In practice, then, the two methods
are complementary; a complete system could well
use confusion sets to find common errors, such as

1In this method, as in the trigram method that we dis-
cuss later, any consistent definition, narrow or broad, of what
counts as the spelling variations of a word may be used. Typ-
ically it would be based on edit distance, and might also take
phonetic similarity into account.



those just shown, and an “open-ended” resource-
based method to look for other errors.
However, there is one method that is statisti-

cal and yet does not require predefined confusion
sets: using word-trigram probabilities, which were
first proposed for detecting and correcting real-
word errors many years ago by Mays, Damerau,
and Mercer (1991) (hereafter, MDM). Conceptu-
ally, the method is simple: if the trigram-derived
probability of an observed sentence is lower than
that of any sentence obtained by replacing one of
the words with a spelling variation, then hypothe-
size that the original is an error and the variation
is what the user intended. In other words, rela-
tively low probability of a sentence is taken as a
proxy for semantic anomaly. However, despite its
apparent simplicity, the method has never, as far
as we are aware, been applied in practice nor even
used as a baseline in the evaluation of other meth-
ods. In this paper, we explain this. We show why
MDM’s algorithm is more problematic than it at
first seems, and why their published results cannot
be used as a baseline. We present a new evalua-
tion of the algorithm, designed so that the results
can be compared with those of other methods, and
then construct and evaluate some variations of the
algorithm that use fixed-length windows.

2 The MDM method

In this section, we review MDM’s real-word
spelling correction method, highlighting some of
its advantages and limitations.

2.1 The method

MDM frame real-word spelling correction as an
instance of the noisy-channel problem: correcting
the signal S (the observed sentence), which has
passed through a noisy channel (the typist) that
might have introduced errors into it, by finding the
most likely original signal S′ (the intended sen-
tence, generated by a language model). The prob-
ability that the typist types a word correctly is a pa-
rameter !, which is the same for all words.2 A typ-
ical value for ! could be .99. For each word, the
remaining probability mass (1−!), the probabil-
ity that the word is mistyped as another real word,
is distributed equally among all its spelling varia-

2No mention is made of words mistyped as non-words;
but we can regard ! as the probability that the word is either
typed correctly or is typed as a non-word and then correctly
amended.

tions.3 So the probability that an intended word w
is typed as x is given by

P(x |w) =






! if x= w
(1−!)/|SV (w)| if x ∈ SV (w)
0 otherwise

(1)

where SV (w) is the set of spelling variations of
word w (not including w itself). So by Bayes’s the-
orem and an independence assumption, the proba-
bility that the intended word was w when x is ob-
served is given by P(w |x) = P(w) ·P(x |w).
The language model uses trigram probabilities;

that is, the probability of an intended word wi is
given by P(wi |wi−1wi−2), where w0 = w−1 = BoS
(the beginning-of-sentence marker) and wn+1 =
wn+2 = EoS (the end-of-sentence marker). Thus
the probability of an intended sentence S′ =
w1 . . .wn is given by

P(S ′) =
n+2

"
i=1

P(wi |wi−1wi−2). (2)

So given an observed sentence S, the corrected
sentence S ′ is the one in the search space C (S)∪
{S} that maximizes the probability P(S′ |S) =
P(S ′) · P(S |S ′), where P(S |S ′) is given by the
model of the noisy channel, i.e., the typist, and
the set C (S) of candidate corrections is the set of
all sentences in which exactly one word in S has
been replaced by one of its real-word spelling vari-
ations.

2.2 Discussion of the method

MDM’s method has an advantage over the
resource-based “open-ended” methods in being
able to detect errors in both content words and
function words. But it also has the complemen-
tary disadvantage that effort is spent on errors that
would also be found by a grammar checker (which
would presumably be included in any writer’s-aid
system of which the spelling checker were a part),
rather than concentrating on the errors that could
not be thus detected. Another disadvantage is the
size of the trigram model; a model covering a
usefully large vocabulary might be impractically
large. Data sparseness is also a serious problem:
many correct trigrams that are observed will not
occur in the model, even if it is built from a very
large corpus.

3MDM refer to this as the word’s confusion set; but un-
like the confusion sets of, e.g., Golding and Roth, it includes
all spelling variations, not just those selected by a human as
likely confounds.



An undesirable property of the method is that
the likelihood that a real-word error x will be cor-
rected depends on the number of spelling varia-
tions of the intended word w: the larger SV (w) is,
the smaller P(w |x) is and hence the smaller the
chance of correction is. This is a consequence
of the division of the constant probability mass
(1− !) among all members of SV (w) in equa-
tion 1.
Because each member of C (S) contains exactly

one changed word, the method is unable to cor-
rect more than one error per sentence. (Includ-
ing in C (S) sentences with more than one change
would be combinatorially explosive.) This lim-
itation would usually not be a problem; that is,
we expect that for most typists, ! is considerably
greater than the reciprocal of the mean sentence
length, and so sentences would only very rarely
contain more than one real-word error. Nonethe-
less, MDM seemingly violate their own assump-
tion by considering typists with ! values as low as
.9 (one word in every ten is a real-word error); see
section 3 below.

3 The limitations of MDM’s evaluation

MDM’s evaluation of their method used trigram
probabilities for a 20,000-word vocabulary; they
do not say what corpus the probabilities were
derived from,4 nor what smoothing method, if
any, was used.5 The test set was only 100 sen-
tences, containing no words outside the 20,000-
word vocabulary, chosen from newswire and En-
glish Canadian Hansard. For each sentence, a set
of erroneous sentences was generated by replacing
each word in turn with each of its possible spelling
variations in the vocabulary; that is, each erro-
neous sentence contained exactly one error. There
was an average of 86 erroneous sentences S for
each original sentence S′.
In each set of sentences, each erroneous sen-

tence was tested to determine whether, if it were
observed, some other sentence in the set would be
preferred, and if so whether that would be the orig-

4By a citation to Bahl, Jelinek, and Mercer (1983), MDM
imply that the corpus they used was the IBM Laser Patent
Corpus. But this cannot be so, as that corpus had a vocabu-
lary of only 12,000 words (Bahl et al, 1978); and in any case
trigram probabilities derived from such a corpus would be
completely inappropriate for use with newswire and Hansard
text.

5In their example data, MDM show the seemingly un-
likely trigram a submit that as having a much higher prob-
ability than the trigram what is happening.

inal sentence; in addition, each original sentence
was tested to see whether some erroneous varia-
tion would be preferred. The experiments were
carried out with four different values of !, from
.9 (an extremely error-prone typist) to .9999 (a ex-
traordinarily accurate typist).
MDM did not present their results in terms of

per-word accuracy or precision and recall, nor did
they give the data necessary to calculate these val-
ues (true and false positives), so it is not possible to
compare their results with other methods, such as
those of Golding and Roth (1999) or Hirst and Bu-
danitsky (2005), for which data are so presented.
They do not include data on sentence lengths, and
moreover, they classify their results according to
(a) whether an erroneous sentence was detected
as such and, if so, whether the appropriate correc-
tion was made, and (b) whether an actually correct
sentence was wrongly selected for change. Thus,
erroneous sentences in which the method incor-
rectly changes a true positive are conflated with
those in which it chooses a false positive and a
false negative. Hence only per-sentence accuracy,
precision, and recall, incommensurate with other
methods, can be derived from MDM’s data; but in
any case such measures are meaningless because
of the extreme artificiality and bias of the test set.
With the original sentences outnumbered by erro-
neous sentences 86 to 1, the number of false posi-
tives that are possible is extremely small compared
to the number of true positives, with the conse-
quence that per-sentence precision exceeds .99 in
all cases and per-sentence recall varies from .618
for a very high value of ! to .744 for a low value.
Moreover, a model that performs well for MDM’s
test data may actually be prone to overcorrection
in real data, which would translate into a loss of
precision. There may be additional unpredictable
effects of this bias too.

4 Re-evaluating the MDM method

Because of these problems, we re-implemented
and re-evaluated the MDM method in order to be
able to make direct comparisons with other meth-
ods. As the original MDM data are not available,
we followed Hirst and Budanitsky (2005) in using
the 1987–89 Wall Street Journal corpus (approx-
imately 30 million words), which we presume to
be essentially free of errors. We reserved 500 arti-
cles (approximately 300,000 words) to create test
data (see below). With the remainder of the cor-



pus, using the CMU–Cambridge Statistical Lan-
guage Modeling Toolkit (Clarkson and Rosenfeld,
1997), we created a trigram model whose vocab-
ulary was the 20,000 most frequent words in the
corpus; all other words were mapped to the token
OOV (“out of vocabulary”). We incorporated stan-
dard tokenization, and the Good–Turing smooth-
ing and Katz backoff techniques of the toolkit.
To create more-realistic test sets, we automati-

cally inserted real-word errors in the reserved ar-
ticles by replacing one word in approximately ev-
ery 200 with a random spelling variation — that
is, we modeled a typist whose ! value is .995; we
chose this value simply to match the density of er-
rors used by Hirst and Budanitsky (2005). And
like both those authors and MDM, we defined a
spelling variation to be a single-character inser-
tion, deletion, or replacement, or the transposition
of two characters that results in another real word.
We created three test sets, each containing 15,555
sentences, which varied according to which words
were candidates for replacement and for substitu-
tion:
T20: Any word in the 20,000-word vocabulary

of the trigram model could be replaced by a
spelling variation from the same vocabulary;
this replicates MDM’s style of test set.

T62: Any word in the 62,000 most frequent
words in the corpus could be replaced by a
spelling variation from the same vocabulary;
this reflects real typing errors much better
than T20.

Mal: Any content word listed as a noun in Word-
Net (but regardless of whether it was used
as a noun in the text; there was no syntactic
analysis) could be replaced by any spelling
variation found in the lexicon of the ispell
spelling checker; this replicates Hirst and Bu-
danitsky’s “malapropism” data.

Observe that in T62 and Mal, the errors (the re-
placement words) are not limited to the vocabulary
of the model. Thus one factor in our re-evaluation
of the method is the adequacy of a 20,000-word
vocabulary in the face of more-realistic data.
We ran our re-implementation of the MDM

method with this data. Only test-data words that
were in the 20,000-word vocabulary were candi-
dates for correction, and words outside the vocab-
ulary were mapped to OOV when determining tri-
gram probabilities. We used four values of !, from
.9 to .999, including the .995 value of the “typist”

Table 1: Results of our replication of the MDM
method on Wall Street Journal data with a 20,000-
word vocabulary on three different test sets (see
text for description), and the results of Hirst and
Budanitsky (2005) on similar data (last row).

Detection Correction
! P R F P R F

Test set T20:
.9 .334 .847 .479 .327 .818 .467
.99 .574 .768 .657 .567 .747 .645
.995 .646 .736 .688 .639 .716 .675
.999 .794 .658 .719 .790 .643 .709

Test set T62:
.9 .235 .537 .327 .229 .519 .318
.99 .447 .478 .462 .441 .466 .453
.995 .523 .460 .490 .517 .450 .481
.999 .693 .400 .508 .690 .395 .502

Test setMal:
.9 .145 .367 .208 .140 .352 .200
.99 .306 .320 .313 .299 .310 .304
.995 .371 .304 .334 .365 .296 .327
.999 .546 .261 .353 .543 .257 .349

Hirst and Budanitsky’s best results (onMal):
– .225 .306 .260 .207 .281 .238

of our test data. We computed results in terms of
per-word precision, recall, and F-measure, which
we show separately for detection of an error and
correction of an error; see Table 1.
The performance of the method is quite impres-

sive. On the T20 test set (all errors are in the vo-
cabulary of the model) at ! = .995, which is per-
haps the most realistic level, correction recall (the
fraction of errors correctly amended) is .695 and
correction precision (the fraction of amendments
that are correct) is .647 (F = .670). On the T62
test set (errors are not limited to the vocabulary of
the model), performance naturally drops, but cor-
rection recall and precision are .427 and .524, re-
spectively (F = .470), which is a level that would
still be helpful to a user. Some examples of suc-
cessful and unsuccessful corrections are shown in
Table 2.
On the malapropism test set (all errors are in

content words), the results are poorer; at != .995,
correction recall is .296 and correction precision is
.365 (F = .327). The difference between these re-
sults and those on T62 shows that MDM’s method
performs better on function-word errors than on
content-word errors. This is not surprising; intu-
itively, function-word errors are more likely to re-
sult in syntactic ill-formedness, and hence a much



lower probability sentence, than the content-word
errors. Nonetheless, these results are noticeably
better than the best results of Hirst and Budan-
itsky’s WordNet-based method, which achieved
F = .238 on very similar data (last row of Table 1);
in particular, the MDM method has superior cor-
rection precision.6

5 Variations and attempted
improvements on the MDM method

5.1 A better model
Although MDM’s method already does well com-
pared to Hirst and Budanitsky’s method, it is clear
that it can be improved further. One obvious im-
provement is to increase the size of the language
model. Table 3 shows that a 62,000-word model
results in a large improvement over the 20,000-
word model; for example, at ! = .995, correction
F increases by 43% on test set T62 and 45% on
Mal. (Results on T20 are roughly the same as
before, of course; the slight reduction in perfor-
mance is primarily due to the greater number of
spelling variations that many words now have in
the model.) The cost of the improvement is an in-
crease in the size of the model from 17.9 million
trigrams to 20.8 million. (Despite the exponential
increase in the space of trigrams, the number ac-
tually observed in the corpus grows quite mildly.)
Because of these results, we drop the 20,000-word
model (and the T20 test set) from further consid-
eration.

5.2 Permitting multiple corrections
As we noted in section 2.2, the MDM algorithm
can make at most one correction per sentence, be-
cause it would be combinatorially explosive to in-
clude sentences with more than one correction in
the set C (S) of possible corrections of sentence
S. We also noted that such an ability would, in
any case, be of use only to very unskilled typ-
ists. Nonetheless, for the benefit of such typists,
a possible method of making multiple corrections
in a sentence while avoiding a combinatorial ex-
plosion is this: Instead of choosing the single sen-
tence S′ ∈ C (S)∪S that maximizes the probability
P(S′ |S), choose all sentences that give a proba-
bility exceeding that given by S itself, and then
combine the corrections that each such sentence

6We are grateful to Alex Budanitsky of the University of
Toronto for providing us with the correction data, which were
not given in the published paper.

Table 2: Examples of successful and unsuccessful
corrections. Italics indicate observed word, arrow
indicates correction, square brackets indicate in-
tended word.

SUCCESSFUL CORRECTION:
Exxon has made a loot → lot [lot] of acqui-
sitions of smaller properties, though the pace
slowed last year after oil prices fell.

FALSE POSITIVE:
. . . Texaco’s creditors would→ could [would]
breathe a sigh of relief . . .
. . . the Conservative Party . . . has been last→
lost [last] in political polls.

FALSE NEGATIVE:
Like many schools, Lee’s prospective kinder-
garten uses a readiness teat [test], designed to
screen out children considered too immature.

TRUE POSITIVE DETECTION, FALSE POSITIVE
CORRECTION:

“I’m uncomfortable tacking → talking [tak-
ing] a lot of time off work,” he says.

Table 3: Results of our replication of the MDM
method on Wall Street Journal data with a 62,000-
word vocabulary on three different test sets.

Detection Correction
! P R F P R F
Test set T20:
.9 .318 .828 .460 .311 .801 .448
.99 .532 .742 .619 .525 .724 .609
.995 .592 .708 .645 .587 .691 .635
.999 .738 .627 .678 .734 .614 .669
Test set T62:
.9 .325 .846 .469 .318 .820 .458
.99 .544 .774 .639 .538 .758 .629
.995 .608 .750 .672 .603 .736 .663
.999 .756 .678 .715 .753 .667 .707

Test setMal:
.9 .212 .596 .313 .205 .571 .302
.99 .398 .536 .457 .390 .519 .445
.995 .459 .510 .483 .453 .497 .474
.999 .620 .444 .517 .616 .436 .510



Table 4: Results of the method permitting multiple
corrections in the same sentence.

Detection Correction
! P R F P R F

Test set T62:
.9 .270 .869 .411 .263 .840 .400
.99 .505 .783 .614 .499 .765 .604
.995 .578 .756 .655 .573 .740 .646
.999 .739 .680 .708 .736 .668 .701

Test setMal:
.9 .179 .614 .277 .172 .586 .266
.99 .372 .543 .442 .364 .525 .430
.995 .437 .515 .473 .431 .502 .464
.999 .610 .448 .516 .605 .440 .510

implies. (If conflicting corrections are implied
then the one with the highest probability is cho-
sen.) In other words, we apply all corrections that,
taken individually, would raise the probability of
the sentence as a whole, rather than only the sin-
gle most probable such correction.
It is important to note, however, the price that is

paid here for avoiding the complete search space:
The sentence that results from the combination of
corrections might have a lower probability than
others with fewer corrections — possibly even
lower than that of the original sentence.
We experimented with this method using the

62,000-word model of section 5.1. We expected
that the method would lead to improved correction
only in the poor-typist condition where != .9 (one
word in ten is mistyped). The results are shown
in Table 4. Contrary to our expectations, despite
an increase in recall compared to Table 3, F val-
ues were distinctly poorer for all values of !, es-
pecially the lower values, because the number of
false positives went up greatly and hence preci-
sion dropped markedly. The number of sentences
in which multiple corrections were hypothesized
far exceeded the number of sentences with multi-
ple errors; even for != .9 there were actually very
few such sentences in the test data.

5.3 Using fixed-length windows
The MDM method optimizes over sentences,
which are variable-length and potentially quite
long units. It is natural, therefore, to ask how per-
formance changes if shorter, fixed-length units are
used. In particular, what happens if we optimize a
single word at a time in its trigram context? In this
section, we consider a variation of the method that
optimizes over relatively short, fixed-length win-

dows instead of over a whole sentence (except in
the special case that the sentence is smaller than
the window), while respecting sentence bound-
aries as natural breakpoints. To check the spelling
of a span of d words requires a window of length
d+4 to accommodate all the trigrams that overlap
with the words in the span. The smallest possible
window is therefore 5 words long, which uses 3
trigrams to optimize only its middle word.
Assume as before that the sentence is bracketed

by two BoS and two EoS markers (to accommo-
date trigrams involving the first two and last two
words of the sentence). The window starts with
its left-hand edge at the first BoS marker, and the
MDM method is run on the words covered by the
trigrams that it contains; the window then moves
d words to the right and the process repeats until
all the words in the sentence have been checked.7
Observe that because the MDM algorithm is

run separately in each window, potentially chang-
ing a word in each, this method as a side-effect
also permits multiple corrections in a single sen-
tence. In contrast to the method of section 5.2
above, the combinatorial explosion is avoided here
by the segmentation of the sentence into smaller
windows and the remaining limitation of no more
than one correction per window. This limitation
evaporates when d = 1, and the method becomes
equivalent in its effect to that of section 5.2.
This, in turn, suggests a variation in which the

window slides across the sentence, moving one
word to the right at each iteration, overlapping its
previous position, and then checking the words it
contains in its new position. This would permit
unrestricted multiple corrections for values of d
larger than 1, but at the price of rather more com-
putation: If the sentence length is l words (plus
the BoS and EoSmarkers), then l−d+1 iterations
will be required to check the complete sentence in-
stead of just &l/d'.8

7If the number of words in the sentence is not an exact
multiple of d, and the final window would contain no more
than d/2 words, some preceding windows are enlarged to dis-
tribute these extra words; if the final window would contain
more than d/2 but fewer than d words, then some preceding
windows are reduced to distribute the extra space. For ex-
ample, if d = 5 and the sentence is 22 words long, then the
lengths of the windows are 6,6,5,5; if the sentence is 18 words
long, then they will be 5,5,4,4.

8Some additional complexities arise in this method from
the overlapping of the positions that the window takes. Ex-
cept for the case when d = 1 (where this method becomes
identical to the simple fixed-window method), words will be
candidates for change in more than one window, with possi-
bly conflicting results. We took a very simple approach: we



Table 5: Results of adapting the MDM method to
a fixed window of size d+4 that corrects d words.

Detection Correction
! P R F P R F

Test set T62, d = 3:
.9 .275 .867 .418 .269 .838 .407
.99 .507 .783 .615 .501 .765 .605
.995 .579 .756 .656 .574 .740 .646
.999 .740 .680 .709 .737 .668 .701

Test setMal, d = 3:
.9 .184 .614 .283 .177 .586 .272
.99 .373 .543 .442 .366 .525 .431
.995 .439 .515 .474 .432 .502 .465
.999 .611 .448 .517 .607 .440 .510
Test set T62, d = 6:

.9 .283 .864 .426 .276 .835 .415

.99 .512 .780 .618 .507 .762 .608

.995 .584 .755 .659 .579 .739 .649

.999 .743 .679 .710 .740 .668 .702
Test setMal, d = 6:

.9 .188 .610 .287 .181 .583 .276

.99 .377 .541 .445 .370 .523 .433

.995 .442 .513 .475 .436 .500 .466

.999 .612 .446 .516 .607 .438 .509
Test set T62, d = 10:

.9 .292 .860 .436 .285 .832 .425

.99 .521 .780 .625 .515 .762 .615

.995 .593 .755 .664 .588 .739 .655

.999 .747 .679 .711 .744 .667 .703
Test setMal, d = 10:

.9 .193 .609 .293 .186 .581 .282

.99 .384 .541 .449 .376 .524 .438

.995 .448 .514 .479 .442 .501 .470

.999 .614 .447 .518 .610 .439 .511

We experimented with these methods for d =
3, 6, and 10, with the 62,000-word model. (We
also tried d = 1, and verified that the results were
identical to those of Table 4.) The performance
of the simple fixed-window method is shown in
Table 5. We observe that in most conditions, as
with our first approach to multiple corrections, this
method increases recall somewhat compared to
the whole-sentence model (Table 3), but precision
drops markedly, especially for lower values of d
and !, resulting in F values that are mostly poorer
than, and at best about the same as, those of the
whole-sentence model. Results are not shown for
the sliding-window variation, whose performance
in all conditions was the same as, or poorer than,
the simpler method. We conclude that taking a

never changed words in the middle of the analysis, and the
opinion of the rightmost window always prevailed. For a dis-
cussion of the issues, see Wilcox-O’Hearn (2006).

unit of analysis smaller than the sentence is dele-
terious to the MDM method.

6 Related work

The only other trigram-based method that we are
aware of is that of Verberne (2002), who does
not use (explicit) probabilities nor even localize
the possible error to a specific word. Rather, her
method simply assumes that any word trigram in
the text that is attested in the British National Cor-
pus (without regard to sentence boundaries!) is
correct, and any unattested trigram is a likely er-
ror; when an unattested trigram is observed, the
method then tries the spelling variations of all
words in the trigram to find attested trigrams to
present to the user as possible corrections. Her
evaluation was carried out on only 7100 words of
the Wall Street Journal corpus, with 31 errors in-
troduced (i.e., a density of one error in every ap-
proximately 200 words, the same as used by Hirst
and Budanitsky and the present study); she ob-
tained a recall of .33 for correction and a preci-
sion of just .05 (F = .086). (Verberne also tested
her method on 5500 words of the BNC with 606
errors introduced (an average density of one word
in nine) by inserting all possible instances from a
pre-compiled list of 134 error types; this achieved
correction recall of .68 and precision of .98. But
this was a subset of her training data and the error
density is quite unrealistic, so the results are not
meaningful.)

7 Conclusion

We have shown that the trigram-based real-word
spelling-correction method of Mays, Damerau,
and Mercer is superior in performance to the
WordNet-based method of Hirst and Budanitsky,
even on content words (“malapropisms”) — es-
pecially when supplied with a realistically large
trigram model. In future work (Wilcox-O’Hearn,
2006), we will compare the MDM method with
confusion set–based methods such as that of Gold-
ing and Roth (1999) (see section 1 above) that
limit their error-correction to a predefined set of
frequent confounds.
Our attempts to improve the method with

smaller windows and with multiple corrections per
sentence were not successful. Rather, we found
that there is little need for multiple corrections; in-
deed, the constraint of allowing at most one cor-
rection per sentence is useful in preventing too



many false positives.
The MDM method still has room for improve-

ment of course. In particular, it would be improved
by a better channel model — a better model of the
typist — that distinguishes each possible kind of
typing error. For example, a substitution error in-
volving keys that are adjacent on the keyboard is
more likely than one involving two random keys.
Kernighan, Church, and Gale (1990) developed
just such a model for use in correction of non-word
typing errors; integrating it with MDM’s method
should be straightforward, and we expect to do this
in future work (Wilcox-O’Hearn, 2006).
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