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Abstract

Semantic deficit is a symptom of language
impairment in Alzheimer’s disease (AD).
We present a generalizable method for au-
tomatic generation of information content
units (ICUs) for a picture used in a stan-
dard clinical task, achieving high recall,
96.8%, of human-supplied ICUs. We use
the automatically generated topic model to
extract semantic features, and train a ran-
dom forest classifier to achieve an F-score
of 0.74 in binary classification of controls
versus people with AD using a set of only
12 features. This is comparable to re-
sults (0.72 F-score) with a set of 85 man-
ual features. Adding semantic informa-
tion to a set of standard lexicosyntactic and
acoustic features improves F-score to 0.80.
While control and dementia subjects dis-
cuss the same topics in the same contexts,
controls are more informative per second
of speech.

1 Introduction

Alzheimer’s disease (AD) is the most common
cause of neurodegenerative dementia, and affects
more than 24.3 million people worldwide (Bal-
lard et al., 2011). Importantly, early detection en-
ables some therapeutic intervention and disease-
modifying treatment (Sperling et al., 2011).
Longitudinal studies of people with autopsy-
confirmed AD indicate that linguistic changes are
detectable in the prodromal stages of the disease;
these include a decline in grammatical complexity,
word-finding difficulties, and semantic content de-
ficiencies, such as low idea density (i.e., the ratio
of semantic units to the total number of words in
a speech sample), and low efficiency (i.e., the rate
of semantic units over the duration of the speech

sample) (Bayles and Kaszniak, 1987; Snowdon et
al., 1996; Le et al., 2011; Ahmed et al., 2013b).
In the present study, we investigate methods of
automatically assessing the semantic content of
speech, and use it to distinguish people with AD
from healthy older adults.

A standard clinical task for eliciting sponta-
neous speech, with high sensitivity to language in
early AD, is picture description. In it, a participant
is asked to provide a free-form verbal description
of a visual stimulus (Goodglass and Kaplan, 1983;
Bayles and Kaszniak, 1987). The picture is asso-
ciated with a set of human-supplied information
content units (hsICUs) representing components
of the image, such as subjects, objects, locations,
and actions (Croisile et al., 1996). The semantic
content of the elicited speech can then be scored
by counting the hsICUs present in the descrip-
tion. Previous studies found that, even in the earli-
est stages, descriptions by those with AD are less
informative compared to those of healthy older
adults, producing fewer information units out of a
pre-defined list of units, and having less relevant
content and lower efficiency (Hier et al., 1985;
Croisile et al., 1996; Giles et al., 1996; Ahmed
et al., 2013a).

Using a pre-defined list of annotated hsICUs is
subject to several limitations: (i) it is subjective —
different authors use a different number of hsICUs
for the same picture (e.g., from 7 to 25 for Cookie
Theft in the Boston Diagnostic Aphasia Examina-
tion (BDAE)) (Hier et al., 1985; Croisile et al.,
1996; Forbes-McKay and Venneri, 2005; Lai et
al., 2009); (ii) it may not be optimal for detecting
linguistic impairment — the manually-annotated
hsICUs are neither exhaustive of all details present
in the picture, nor necessarily reflective of the con-
tent units which differ most across groups; (iii)
it is not generalizable — hsICUs are specific to
a particular picture, and new visual stimuli (e.g.,
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required for longitudinal assessments) need to be
annotated manually. In addition to requiring time
and effort, this may result in inconsistencies, since
the methodology for identifying hsICUs was never
clearly defined in previous work.

Automatic scoring of semantic content in
speech to detect cognitive impairment has so
far required manual hsICUs. Hakkani-Tür et
al. (2010) used unigram recall among hsICUs
in the Western Aphasia Battery’s Picnic picture
(Kertesz, 1982) and obtained a correlation of 0.93
with manual hsICU counts. Pakhomov et al.
(2010) counted N -grams (N = 1, 2, 3, 4) ex-
tracted from a list of hsICUs for the Cookie Theft
picture to assess semantic content in the speech of
patients with frontotemporal lobar degeneration.
Fraser et al. (2016) counted instances of lexical to-
kens extracted from a list of hsICUs, using depen-
dency parses of Cookie Theft picture descriptions,
and combined them with other lexicosyntactic and
acoustic features to obtain classification accuracy
of 81.9% in identifying people with AD from con-
trols. While those automated methods for scor-
ing the information content in speech used man-
ual hsICUs, we have found none that attempted to
produce ICUs automatically.

In this paper, we present a generalizable method
for automatically generating information content
units for any given picture (or spontaneous speech
task), using reference speech. Since clinical data
can be sparse, we present a method for building
word vector representations using a large general
corpus, then augment it with local context win-
dows from a smaller clinical corpus. We eval-
uate the generated ICUs by computing recall of
hsICUs and use the constructed topic models to
compare the speech of participants with and with-
out dementia, and compute topic alignment. Sec-
ond, we automatically score new picture descrip-
tions by learning semantic features extracted from
these generated ICU models, using a random for-
est classifier; we assess performance with recall,
precision, and F-score. Third, we propose a set
of clinically-relevant features for identifying AD
based on differences in topic, topic context, idea
density and idea efficiency.

2 Methodology

2.1 Data

DementiaBank is one of the largest public, lon-
gitudinal datasets of spontaneous speech from in-

dividuals with and without dementia. It was col-
lected at the University of Pittsburgh (Becker et
al., 1994) and contains verbal descriptions of the
standard Cookie Theft picture (Goodglass and Ka-
plan, 1983), along with manual transcriptions.

In our study, we use 255 speech samples from
participants diagnosed with probable or possible
AD (collectively referred to as the ‘AD’ class), and
241 samples from healthy controls (collectively
referred to as the ‘CT’ class), see Table 1. We
remove all CHAT-format annotations (MacWhin-
ney, 2015), filled pauses (e.g., ‘ah’ and ‘um’),
phonological fragments (e.g., ‘b b boy’ becomes
‘boy’), repairs (e.g., ‘in the in the kitchen’ be-
comes ‘in the kitchen’), non-standard forms (e.g.,
‘gonna’ becomes ‘going to’), and punctuation
(e.g., commas are removed). These corrections are
all provided in the database. We ignore transcripts
of the investigator’s speech, as irrelevant. Subject
data were randomly partitioned into training, vali-
dation, and test sets using a 60-20-20 split.

Table 1: Distribution of dataset transcriptions.

Class Subjects Samples Tokens

AD 168 255 24,753
CT 98 241 26,654
Total 266 496 51,407

2.2 Human-supplied ICUs (hsICUs)

We combine all hsICUs in previous work for the
Cookie Theft picture (Hier et al., 1985; Croisile et
al., 1996; Forbes-McKay and Venneri, 2005; Lai
et al., 2009) with hsICUs obtained from a speech
language pathologist (SLP) at the Toronto Reha-
bilitation Institute (TRI). The annotations of the
SLP overlap completely with previously identified
hsICUs, except for one (apron). The first three
columns of Table 2 summarize these manually-
produced hsICUs.

2.3 Automatic generation of ICUs

Our novel method of identifying ICUs is based
on simple topic modelling using clusters of global
word-vector representations from picture descrip-
tions. First, we train a word-vector model on a
large normative general-purpose corpus, allowing
us to avoid sparsity in the clinical data’s word-
word co-occurrence matrix. Then, we extract the
vector representations of words in the Dementia-
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Table 2: Information units above the double line are human-supplied ICUs (hsICUs) found in previous
work, except those marked with † which were annotated by an SLP for this study; those below are ad-
ditionally analyzed. Over 1,000 clustering configurations based on word vectors extracted from Control
and Dementia reference transcriptions, µ is the mean of the scaled distance (Eq. 1) of each hsICU to its
closest cluster centroid, σ is the standard deviation, and δ = (µdementia − µcontrol). Statistical signifi-
cance of δ was tested using an independent two-sample, two-tailed t-test; *** = p < .001, ** = p < .01,
* = p < .05, ns = not significant.

Control Dementia
Type ID hsICU µ σ µ σ δ p

Subject S1 boy -0.510 0.102 -0.860 0.204 -0.350 ***
Subject S2 girl -0.357 0.203 -0.545 0.284 -0.187 ***
Subject S3 woman 0.171 0.468 0.140 0.433 -0.031 ns
Subject S4 mother -0.533 0.206 -0.187 0.300 0.345 ***
Place P1 kitchen 0.667 0.650 0.901 0.710 0.234 ***
Place P2 exterior 1.985 0.601 1.947 0.530 -0.039 ns
Object O1 cookie -1.057 0.221 -0.943 0.230 0.114 ***
Object O2 jar 0.243 0.486 0.146 0.453 -0.097 ***
Object O3 stool -0.034 0.674 -0.162 0.623 -0.128 ***
Object O4 sink -0.839 0.433 -0.600 0.631 0.239 ***
Object O5 plate 0.564 0.593 0.639 0.608 0.076 **
Object O6 dishcloth 4.509 1.432 3.989 1.154 -0.521 ***
Object O7 water -0.418 0.582 -0.567 0.530 -0.149 ***
Object O8 cupboard 0.368 0.613 0.453 0.637 0.085 **
Object O9 window -0.809 0.425 -0.298 0.452 0.511 ***
Object O10 cabinet 2.118 0.556 2.154 0.496 0.036 ns
Object O11 dishes 0.037 0.503 -0.083 0.406 -0.120 ***
Object O12 curtains -0.596 0.594 0.121 0.707 0.717 ***
Object O13 faucet 1.147 0.567 1.016 0.547 -0.131 ***
Object O14 floor -0.466 0.384 -0.932 0.451 -0.466 ***
Object O15 counter 0.202 0.427 0.449 0.323 0.247 ***
Object O16 apron† -0.140 0.433 0.181 0.688 0.321 ***
Action A1 boy stealing cookies 1.219 0.373 0.746 0.462 -0.473 ***
Action A2 boy/stool falling over -0.064 0.465 -0.304 0.409 -0.240 ***
Action A3 woman washing dishes -0.058 0.539 0.009 0.611 0.068 **
Action A4 woman drying dishes -0.453 0.469 -0.385 0.541 0.068 **
Action A5 water overflowing in sink 0.147 0.804 0.282 0.791 0.135 ***
Action A6 girl’s actions towards boy, girl

asking for a cookie
0.800 0.555 0.620 0.861 -0.179 ***

Action A7 woman daydreaming, unaware
or unconcerned about overflow

0.049 0.774 0.092 0.561 0.043 ns

Action A8 dishes already washed sitting
on worktop

-0.224 0.535 -0.597 0.426 -0.373 ***

Action A9 woman being indifferent to the
children

0.781 0.795 0.881 0.585 0.100 **

Relation brother 2.297 0.510 1.916 0.344 -0.380 ***
Relation sister 0.862 0.273 0.737 0.349 -0.125 ***
Relation son 2.140 0.443 1.818 0.312 -0.322 ***
Relation daughter 0.916 0.356 0.904 0.421 -0.012 ns
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Bank corpus, and optionally augment them with
local context windows from the clinical dataset.

We use GloVe v1.2 (Pennington et al., 2014) to
obtain embedded word representations and train
on a combined corpus of Wikipedia 20141 +
Gigaword 52. The trained model consists of
400,000 word vectors, in 50 dimensions.

Transcriptions in DementiaBank are lowercased
and tokenized using NLTK v3.1, and each word
token is converted to its vector space representa-
tion using the trained GloVe model. There are a
total of 26,654 word vectors (1,087 unique vec-
tors) in the control data, and 24,753 (1,131 unique)
in the dementia data. Since we aim to con-
struct a model of semantic content, only nouns
and verbs are retained prior to clustering. The re-
sulting dataset consists of 9,330 word vectors (801
unique vectors) in the control data, and 8,021 (843
unique) in the dementia data.

We use k-means clustering with whitening, ini-
tialization with the Forgy method, and a distor-
tion threshold of 10−5 as the stopping condition,
where distortion is defined as the sum of the dis-
tances between each vector and its correspond-
ing centroid. We train a control cluster model on
the control training set (see Fig. 1 for a 2D pro-
jection of cluster vectors using principal compo-
nent analysis), and a dementia cluster model on
the dementia training set. Clusters represent top-
ics, or groups of semantically related word vec-
tors, discussed by the respective group of subjects.
While prior work is based on hsICUs that are ex-
pected to be discussed by healthy speakers, we
construct a separate cluster model for the control
and dementia groups since it is unclear whether
the topics discussed by both groups overlap. We
vary k (= 1, 5, 10, 15, 20, 30, 40, 50), complet-
ing 1,000 runs for each value, and use the Elbow
method to select the optimal number of clusters on
the respective validation set. The optimal setting,
k = 10, optimizes the tradeoff between the per-
centage of variance explained by the clusters, and
their total number. The resulting clusters represent
topics that can be compared against hsICUs.

3 Experiments

3.1 Recall of hsICUs
In order to assess (i) how well the automatically
generated clusters match clinical hsICUs for this

1http://dumps.wikimedia.org/enwiki/20140102/
2https://catalog.ldc.upenn.edu/LDC2011T07

Figure 1: Control cluster model. The word vectors
belonging to a given cluster are shown in the same
colour. The most frequent words in each cluster
are displayed.

image, and (ii) how much the two generated topic
models differ, we analyze the vector space dis-
tance between each hsICU and its closest cluster
centroid (dEuclidean) in each of the control and de-
mentia models. Since some clusters are more dis-
persed than others, we need to scale the distance
appropriately. To do so, for each cluster in each
model, we compute the mean distortion, µcl, of the
vectors in the cluster, and the associated standard
deviation σcl. For each hsICU vector, we com-
pute the scaled distance between the vector and its
closest cluster centroid in each generated model as
follows:

dscaled =
(dEuclidean − µcl)

σcl
(1)

The scaled distance is equivalent to the num-
ber of standard deviations above the mean — a
value below zero indicates hsICUs which are very
close to an automatically generated cluster cen-
troid, while a large positive value indicates hsICUs
that are far from a cluster centroid. To account for
the fact that k-means is a stochastic algorithm, we
perform clustering multiple times and average the
results. Table 2 shows the mean, µ, and standard
deviation, σ, of dscaled, for each hsICU, over 1,000
cluster configurations for each model.

To quantify the recall of hsICUs using each gen-
erated cluster model, we consider hsICUs with
µ ≤ 3.0 to be recalled (i.e., the distance to the
assigned cluster centroid is not greater than those
of 99.7% of the datapoints in the cluster, given a
Gaussian distribution of distortion). The recall of
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hsICUs, for both the control and dementia mod-
els, is 96.8%. Since the optimal number of gen-
erated clusters is k = 10, while the number of
hsICUs is 31, multiple hsICUs can be grouped in
related themes (e.g., one automatically generated
cluster corresponds to the description of animate
subjects in the picture, capturing four hsICUs: S1–
S4). Both the control and dementia models do not
recall hsICU O6, dishcloth, which suggests that it
is a topic that neither study group discusses. All
remaining hsICUs are recalled by both the control
and dementia models, indicating that the hsICU
topics are discussed by both groups.

However, to assess whether they are discussed
to the same extent, i.e. to evaluate whether the
two topic models differ, we conducted an indepen-
dent two-sample two-tailed t-test to compare the
mean scaled distance, µ, of each hsICU to its clos-
est cluster centroid, in each cluster model (see δ in
Table 2). As anticipated, since they involve infer-
ence of attention, the control model is better at ac-
counting for the topics of the overflowing sink and
the mother’s indifference: overflowing (t(1998) =
−3.78, p < .001); sink (t(1998) = −9.85, p <
.001); indifferent (t(1998) = −3.20, p < .01).
While there is no significant difference in the term
woman between the two groups, the control model
predicts the term mother better than the demen-
tia model (t(1998) = −30.05, p < .001). To
investigate whether healthy participants are more
likely to identify relations between the subjects
than participants with cognitive impairment, we
repeated the recall experiment with the following
new hsICUs: brother, sister, son, daughter. In-
terestingly, the dementia cluster model contains
a cluster which aligns significantly more closely,
than any in the control model, with all four of
these relation words: brother (t(1998) = 19.53,
p < .001); sister (t(1998) = 8.93, p < .001); son
(t(1998) = 18.78, p < .001). While the control
participants mention relation words as often as the
participants with dementia3, the generated clus-
ter models show that the ratio of relation words
to non-relation words is higher for the dementia
group4.

3An independent two-sample two-tailed t-test of the effect
of group on the number of occurrences of each relation word
shows no statistical significance: son (t(494) = 0.65, p >
.05), daughter (t(494) = 0.63, p > .05), brother (t(494) =
0.97, p > .05), sister (t(494) = 1.65, p > .05).

4An independent two-sample two-tailed t-test of the ef-
fect of group on this ratio shows a significant difference in
the ratio of sister to mother, with the control group having a

The new hsICU, apron, which was not identi-
fied in previous literature but was labelled by an
SLP for this study, is significantly more likely to
be discussed by the control population (t(1998) =
−12.46, p < .001), suggesting at the impor-
tance of details for distinguishing cognitively im-
paired individuals. In a similar vein, control par-
ticipants are significantly more likely to identify
objects in the background of the scene, such as
the window (t(1998) = −26.04, p < .001),
curtains (t(1998) = −24.54, p < .001), cup-
board (t(1998) = −3.03, p < .01), or counter
(t(1998) = −14.59, p < .001).

3.2 Cluster model alignment

While prior work counted the frequency with
which fixed topics are mentioned, our data-driven
cluster models allow greater exploration of dif-
ferences between the set of topics discussed by
each subject group, and the alignment between
them. Since prior work has found that subjects
with cognitive impairment produce more irrele-
vant content, we quantify the amount of dispersion
within each cluster through the standard deviation
of its distortion and its type-to-token ratio (TTR),
as shown in Table 3. Further, we compute direc-
tional alignment between pairs of clusters in each
model. For each cluster in one model, alignment is
determined by computing the closest cluster in the
other model for each vector, and taking the major-
ity assignment label (see a in Table 3). To quan-
tify the alignment, the Euclidean distance of each
vector to the assigned cluster in the other model
is computed, scaled by the mean and standard de-
viation of the cluster distortion; the mean of the
scaled distance, µa, is reported in Table 3.

To quantify the alignment of clusters in each
model, we consider clusters to be recalled if their
distance to the closest cluster in the other model
is µa ≤ 3. Notably, all control clusters (C0-C9)
are recalled by the dementia model, while one de-
mentia cluster, D7, is not recalled by the control
model. This exemplifies the fact that while the
dementia group mentions all topics discussed by
controls, they also mention a sufficient number of
extraneous terms which constitute a new heteroge-
neous topic cluster, having the highest TTR.

lower ratio (t(494) = −4.10, p < .001).
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Table 3: Cluster statistics for control (C*) and dementia (D*) models, with computed cluster alignment.
Cluster words are the 5 most frequently occurring words. fvec is the fraction of all vectors which belong
to the given cluster. µcl and σcl are the mean and standard deviation of the cluster distortion. fn is the
fraction of nouns among cluster vectors; (1− fn) is the fraction of verbs. TTR is the type-to-token ratio.
a is the ID of the aligned cluster, and µa is the mean scaled distance to the aligned cluster centroid.

ID Cluster words fvec µcl σcl fn TTR a µa

C
on

tr
ol

C0 window, floor, curtains, plate, kitchen 0.14 5.42 1.18 0.94 0.14 D4 0.69
C1 dishes, dish 0.04 1.62 1.11 1.00 0.01 D1 0.01
C2 running, standing, action, hand, counter 0.18 4.97 1.25 0.57 0.22 D8 0.16
C3 water, sink, drying, overflowing, washing 0.17 5.18 1.13 0.66 0.09 D6 0.04
C4 stool, legged 0.03 0.53 1.26 0.96 0.01 D4 -0.28
C5 mother, boy, girl, sister, children 0.11 3.49 1.08 1.00 0.04 D2 -0.08
C6 cookie, cookies, sakes, cream 0.06 2.00 1.15 1.00 0.01 D0 -0.08
C7 jar, cups, lid, dried, bowl 0.04 3.88 2.30 0.97 0.04 D5 0.63
C8 see, going, getting, looks, know 0.18 3.84 1.16 0.38 0.13 D3 0.18
C9 reaching, falling, fall, summer, growing 0.05 4.18 1.41 0.38 0.16 D8 0.21

D
em

en
tia

D0 cookie, cookies, cake, baking, apples 0.07 2.18 0.74 1.00 0.02 C6 0.09
D1 dishes, dish, eating, bowls, dinner 0.05 1.42 1.72 0.98 0.03 C1 0.05
D2 boy, girl, mother, sister, lady 0.11 3.63 1.25 0.99 0.05 C5 0.20
D3 going, see, getting, get, know 0.24 3.67 1.06 0.38 0.11 C8 -0.11
D4 stool, floor, window, chair, curtains 0.10 5.10 1.00 0.97 0.13 C0 0.08
D5 jar, cups, jars, dried, honey 0.04 2.00 2.26 0.98 0.03 C7 -0.44
D6 sink, drying, washing, spilling, overflowing 0.14 5.36 1.20 0.52 0.19 C3 0.36
D7 mama, huh, alright, johnny, ai 0.01 6.24 1.34 0.95 0.55 C8 4.13
D8 running, fall, falling, reaching, hand 0.18 4.97 1.29 0.47 0.25 C2 0.15
D9 water, dry, food 0.05 0.39 1.13 1.00 0.01 C3 -0.59

3.3 Local context weighted vectors
Since there is significant overlap in the topics dis-
cussed between the control and dementia groups,
we proceed by investigating whether the overlap-
ping topics are discussed in the same contexts. To
this end, we augment the word vector represen-
tations with local context windows from Demen-
tiaBank. Each word vector is constructed using
a linear combination of its global vector from the
trained GloVe model, and the vectors of the ±N
surrounding context words, where each context
word is weighted inversely to its distance from the
central word:

φw = vw +
−1∑

i=−N

αi × vi +
N∑

i=1

αi × vi (2)

Here, φw is the local-context-weighted vector
for word w, vw is the GloVe vector for word w, vi

is the GloVe vector for word iwithin the context of
w, and αi is the weighting of word i, inversely and
linearly proportional to the distance between con-
text and central word. Following previous work
(Fraser and Hirst, 2016), we use a context window
of size N = 3. We extract local-context-weighted
vectors for all control and dementia transcripts,
and construct two topic models as before.

To quantify whether the dementia contexts dif-

fer significantly from the control contexts for the
same word, we extract all word usages as local-
context-weighted vectors, and find the centroid of
the control usages, along with the mean and stan-
dard deviation of the control vectors from their
centroids. Then, we compute the average scaled
Euclidean distance, dscaled, of the dementia vec-
tors from the control centroid, as in Eq. 1. Words
with dscaled > 3 (i.e., where the dementia context
vectors are further from the control centroid than
the majority of control context vectors) are con-
sidered to have different context usage across the
control and dementia groups.

Interestingly, all of the control cluster words are
used in the same contexts by both healthy partici-
pants and those with dementia. However, the aver-
age number of times these words are used per tran-
script is significantly higher in the control group
(1.07, s.d. = 0.12) than in the dementia group
(0.77, s.d. = 0.14; t(18) = 1.87, p < .05).

While the two groups discuss the same topics
generally and use the same words in the same con-
texts, not all participants in the dementia group
identify all of the control topics or discuss them
with the same frequency. A contextual analy-
sis reveals that certain words are discussed in a
distinct number of limited contexts, while others
are discussed in more varied contexts. For in-
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Figure 2: All usages of the word cookie in Demen-
tiaBank. Control usages are represented with blue
circles; dementia with red crosses.

stance, while we identified a control cluster as-
sociated with the topic of the cookie in Section
3.2, there are two clearly distinct contexts in which
this word is used, by both groups, as illustrated in
Fig. 2. The two clusters in context space corre-
spond to: (i) the usage of cookie in the compound
noun phrase cookie jar, and (ii) referring to a sin-
gle cookie, e.g. reaching for a cookie, hand her a
cookie, getting a cookie.

3.4 Classification

To classify speakers as having AD or not, we
extract the following types of features from
our automatically-generated cluster models: (i)
distance-based metrics for each of the control
model clusters, C0–C9, (ii) distance-based metrics
for each of the dementia model clusters, D0–D9,
(iii) idea density, and (iv) idea efficiency. Given
the vectors associated with a transcript’s nouns
and verbs, feature Ci (and equivalently, Di) is
computed by finding the average scaled distance,
dscaled (Eq. 1), of all vectors assigned to cluster
Ci. A feature value below zero indicates that the
transcript words assigned to the cluster are very
well predicted by it (i.e., their distance from the
cluster centroid is less than the average cluster
distortion). Conversely, clusters which represent
topics not discussed in the transcript have large
positive feature values. We chose these distance-
based metrics to evaluate topic recall in the tran-
script since a continuous measure is more appro-
priate for modelling the non-discrete nature of lan-
guage and semantic similarity. We compute idea
density as the number of expected topics men-

tioned5 divided by the total number of words in
the transcript, and idea efficiency as the number
of expected topics mentioned divided by the total
duration of the recording (in seconds). The ex-
pected topics used for computation of idea den-
sity and idea efficiency are the ICUs from the
automatically-produced cluster models.

We perform classification using a random for-
est, whose parameters are optimized on the valida-
tion set, and performance reported on the test set.
We vary the following experimental settings: clus-
ter model (control; dementia; combined), feature
set (distance-based; distance-based + idea density
+ idea efficiency), and context (no context; context
with N = 3). A three-way ANOVA is conducted
to examine the effects of these settings on average
test F-score. There is a significant interaction be-
tween feature set and context, F (1, 110) = 9.07,
p < 0.01. Simple main effect analysis shows
that when using the extended feature set, vectors
constructed without local context windows from
the clinical dataset yield significantly better results
than those with context (p < 0.001), but there
is no effect when using only distance-based fea-
tures (p = 0.87). There is no main effect of clus-
ter model on test performance, F (2, 117) = 2.30,
p = 0.11, which is expected since cluster align-
ment revealed significant overlap between the top-
ics discussed by the control and dementia groups
(Section 3.2). Notably, there is a significant effect
of feature set on test performance, whereby adding
the idea density and idea efficiency features results
in significantly higher F-scores, both when using
local context for vector construction (p < 0.05),
and otherwise (p < 0.001).

As a baseline, we use a list of hsICUs extracted
by Fraser et al. (2016) in a state-of-the-art au-
tomated method for separating AD and control
speakers in DementiaBank. These features consist
of (i) counts of lexical tokens representing hsICUs
(e.g., boy, son, and brother are used to identify
whether hsICU S1 (Table 2) was discussed, and
(ii) Boolean values which indicate whether each
hsICU was mentioned or not. Overall, this consti-
tutes 85 features. Additionally, Fraser et al. (2016)
identified a list of lexicosyntactic and acoustic
(LS&A) features which are indicative of cogni-
tive impairment. We compute the performance of
each set of features independently, and then com-

5I.e., the number of word vectors in the transcript whose
scaled distance is within 3 s.d.’s from the mean cluster distor-
tion of at least one cluster.
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Table 4: Binary classification (AD:CT) using a random forest classifier, with 10-fold cross-validation.
All cluster models are trained on vectors with no local context. LS&A are lexicosyntactic and acoustic
features as described by Fraser et al. (2016). The reported precision, recall, and F-score are a weighted
average over the two classes.

Model Features Accuracy Precision Recall F-score

Baseline hsICUs 0.73 0.74 0.73 0.72
Baseline LS&A 0.76 0.77 0.76 0.76
Baseline hsICUs + LS&A 0.80 0.80 0.80 0.80

control distance-based 0.68 0.69 0.68 0.68
dementia distance-based 0.66 0.67 0.66 0.66
combined distance-based 0.68 0.69 0.68 0.68

control distance-based + idea density + idea efficiency 0.74 0.76 0.74 0.74
dementia distance-based + idea density + idea efficiency 0.74 0.75 0.74 0.74
combined distance-based + idea density + idea efficiency 0.74 0.75 0.74 0.74

control distance-based + idea density + idea efficiency + LS&A 0.79 0.79 0.79 0.79
dementia distance-based + idea density + idea efficiency + LS&A 0.77 0.78 0.77 0.77
combined distance-based + idea density + idea efficiency + LS&A 0.80 0.80 0.80 0.80

bine them. Table 4 summarizes the results; the
first column indicates the cluster model (e.g., con-
trol indicates a cluster model trained on the control
transcriptions), and the second column specifies
the feature set. Our 12 automatically generated
features (i.e., the combined set of distance-based
measures, idea density, and idea efficiency) re-
sult in higher F-scores (0.74) than using 85 manu-
ally generated hsICUs (0.72); a two-sample paired
t-test shows no difference (using control cluster
model: t(9) = 1.10, p = 0.30; using dementia
cluster model: t(9) = 0.74, p = 0.48) indicating
the similarity of our method to the manual gold
standard. Furthermore, we match state-of-the-art
results (F-score of 0.80) when we augment the set
of LS&A features with our automatically gener-
ated semantic features.

4 Discussion

We demonstrated a method for generating topic
models automatically within the context of clinical
assessment, and confirmed that low idea density
and low idea efficiency are salient indicators of
cognitive impairment. In our data, we also found
that speakers with and without Alzheimer’s dis-
ease generally discuss the same topics and in the
same contexts, although those with AD give more
spurious descriptions, as exemplified by the irrel-
evant topic cluster D7 (Table 3).

Using a fully automated topic generation and
feature extraction pipeline, we found a small set
of features which perform as well as a large set of
manually constructed hsICUs in binary classifica-

tion experiments, achieving an F-score of 0.80 in
10-fold cross-validation on DementiaBank. The
features which correlate most highly with class
include: idea efficiency (Pearson’s r = −0.41),
which means that healthy individuals discuss more
topics per unit time; distance from cluster C4
(r = 0.34), which indicates that speakers with AD
focus less on the topic of the three-legged stool;
and idea density (r = −0.26), which shows that
healthy speakers need fewer words to express the
same number of topics.

While we anticipated that combining a large
normative corpus with local context windows from
a clinical corpus would produce optimal vectors,
using the former exclusively actually performs
better. This phenomenon is being investigated.
This implies that word-vector representations do
not need to be adapted with context windows in
specific clinical data in order to be effective.

A limitation of the current work is its re-
quirement of high-quality transcriptions of speech,
since high word-error rates (WERs) could com-
promise semantic information. We are therefore
generating automatic transcriptions of the Demen-
tiaBank audio using the Kaldi speech recogni-
tion toolkit6. So far, a triphone model with the
standard insertion penalty (0) and language model
scale (20) on DementiaBank gives the best average
WER of 36.7±3.6% with 10-fold cross-validation.
Continued optimization is the subject of ongoing
research but preliminary experiments with these
transcriptions indicate significantly lower perfor-

6http://kaldi.sourceforge.net/
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mance of the baseline model (0.68 F-score; t(9) =
3.52, p < 0.01). While the eventual aim is a com-
pletely automatic system, our methodology over-
comes several major challenges in the manual se-
mantic annotation of clinical images for cogni-
tive assessment, even with manual transcriptions.
Specifically, our methodology is fully objective,
sensitive to differences between groups, and gen-
eralizable to new stimuli which is especially im-
portant if longitudinal analysis is to avoid the so-
called ‘practice effect’ by using multiple stimuli.

Across many domains, to extract useful seman-
tic features (such as idea density and idea effi-
ciency), one needs to first identify information
content units in speech or text. Our method can be
applied to any picture or contentful stimuli, given a
sufficient amount of normative data, with no mod-
ification. Although we apply this generalizable
method to a single (albeit important) image used
in clinical practice in this work, we note that we
obtain better accuracies with this completely auto-
mated method than a completely manual alterna-
tive.
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