arxiv:1203.1889v1 [cs.CL] 8 Mar 2012

Distributional Measures as Proxies for
Semantic Relatedness

Saif Mohammad{mm@cs.toronto.edu)

and Graeme Hirsigh@cs.toronto.edu)
University of Toronto, Toronto, ON M5S 3G4, Canada

Abstract. The automatic ranking of word pairs as per their semantatedhess and ability to

mimic human notions of semantic relatedness has widespgaitations. Measures that rely
on raw data (distributional measures) and those that usgl&dge-rich ontologies both exist.

Although extensive studies have been performed to compaioogical measures with human
judgment, the distributional measures have primarily bemeduated by indirect means. This
paper is a detailed study of some of the major distributiomedsures; it lists their respective
merits and limitations. New measures that overcome thessldcks, that are more in line

with the human notions of semantic relatedness, are swegjeShe paper concludes with
an exhaustive comparison of the distributional and ontgloased measures. Along the way,
significant research problems are identified. Work on thesbl@ms may lead to a better
understanding of how semantic relatedness is to be measured
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1. Introduction

Humans are inherently capable of determining whether ornd pair is more
semantically related than another. For example, given trel wairshoney-
beeand papercar, one can easily identify the former pair to be more se-
mantically related than the latter. This, however, is nogtfor machines. A
lot of work has been done in automating the process in thdifestn years.
While some approaches do better than others and have bd@ddpsolving
practical problems, none has matched human judgment.

Typically, automated systems assign a scorseofiantic relatednesso a
given pair of wordstarget words) calculated from aelatedness measure
The absolute score is usually irrelevant on its own. For @tana relatedness
score of 0.7 betweea andb, in a possible range of 0 to 1, does not imply
thata and b are more related than the average word pair. However, given
that the semantic relatednesscadndd is 0.6, the system can conclude that
a andb are more related thamandd. Thus even though the absolute score
given by a relatedness measure is not of much significanisagriportant that
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the measure give a higher score to word pairs which humank &ie more
related and comparatively lower scores to word pairs treliess related. This
ability to mimic human judgment of semantic relatednesslieen used in
numerous applications such as automated spelling careetiord sense dis-
ambiguation, thesaurus creation, information retriet@tt summarization,
and identifying discourse structure.

Existing measures of semantic relatedness rely either tragies and
semantic networks or just raw text. Budanitsky (1999), Butd&y and Hirst
(2001) and Patwardhan et al. (2003) do an extensive surnag@mnparison
of the various WordNet-based measures. Measures that siseaju text,
known as thedistributional measures have been described individually
(for example, in Schitze and Pedersen (1997), Hindle (1990 (1998a),
Pereira et al. (1993), etc) but have not been extensivelypeoad among
each other. This paper focuses on distributional measmeguaalyzes their
strengths and limitations. Particular attention is paithedifferent kinds of
distributional measures and their components. New measueesuggested
that overcome some of their drawbacks. Characteristics afdWet-based
and distributional measures are contrasted and finallyréutesearch direc-
tions are suggested which may determine a better undenstpatisemantic
relatedness.

2. Background

2.1. CO-OCCURRENCES

Words that occur within a certain window of a target word aaked theco-
occurrencesof the word. The window size may be a few words on either
side, the complete sentence, a paragraph or the entire @n¢cu@onsider the
sentence below:

the plane flew through a cloud

If we consider the window size to be the complete senteftew,co-occurs
with the, plane, through, @andcloud The set of words that co-occur with
a word constitute the context of the word. They are used ikstasich as
information retrieval, word sense disambiguation, andas#in relatedness.



Distributional Measures as Proxies for Semantic Relatesine 3

2.2. WWORD ASSOCIATION RATIO

Given two eventx andy with probabilitiesP(x) and P(y), their pointwise
mutual information (Fano, 1961, PMI for short, or justl, is defined as
follows:

P(x.y)
I (X7 y) IogZ P(X) P(y) (1)
P(x,y) is the joint probability ok andy. If 1 (x,y) evaluates to be close to zero,
ie, P(x,y) = P(x) x P(y), then it means that eventsandy occur together
just as often as is expected from their individual probéési If | (x,y) > 0,
it implies thatx andy occur together more often than would be expected from
their individual probabilities and hence have a strongedation.

Church and Hanks (1989)ntroduceword association ratio, which is
similar to pointwise mutual information. i andy are words with proba-
bilities P(x) andP(y) (estimated by corpus counts), their association ratio is
defined to be the same as in (1), except P&t y) stands for the probability
that x appears, within a certain window, befoye It should be noted that
P(x,y) is no longer symmetricR(x,y) # P(y, X)) asP(x,y) andP(y, x) repre-
sent two different events. If two words have a word assamiatatio close to
zero then they do not share an interesting relationshipfdutv , w,) > 0,
thenw, follows w; (within a certain window) more often than chance and
the wordsw; andw, are strong co-occurrences. Theoretically, word associ-
ation ratio may yield negative values (word pair occurs fesguently than
expected by random chance) but Church and Hanks (1989) diaiwit tis
hard to accurately predict negative word association satiith confidence.
Systems which use word association ratio may be adverdselgted by this.

A common approach to counter this is to equate the negatsecidion
values to 0 (for example, Lin (1998a)). This usually meara the system
will ignore such words.

A problem with PMI in general (which is inherited by word assdion
ratio) is that low frequency events get higher scores thaeeted. Pantel
and Lin (2002) try to overcome this by multiplying the PMI walwith a
correction factor. Although, Pantel and Lin give the cotimt factor for
word association ratio using syntactically related couogng words, a more
generic form applicable for pointwise mutual informatisras shown below:

- P(x,y) min(freq(x), freq(y))
lcorrected X, Y) = log, P(x)P(y)  min(freq(x),freq(y))+ 1

The correction factor is large (close to 1) if both the evemtsur a large
number of times and small (close to 0) if any of the two evertucs very
few times.

)
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2.3. RELATEDNESS VSSIMILARITY

A closely related concept to semantic relatednesseimantic similarity.
While there is some overlap in their meanings and they maysee inter-
changeably in certain contexts, it is important to be awétbeir distinction.
Budanitsky and Hirst (2001) and Budanitsky and Hirst (200di)nt out that
semantic similarity is used when similar entities suclagglesandbananas
or table andfurniture are compared. These entities are close to each other
in an is-a hierarchy. For examplapplesandbananasare hyponyms ofruit
andtableis a hyponym ofurniture. However, even dissimilar entities may be
semantically related, for examplgoor andknoh treeandshade or gymand
weights In this case the two entities are not similar per se, butelegdad by
some relationship. This relationship may be one of the idakeelationships
such as meronymy (is part of) asdoor—knobor a non-classical one as in
tree—shadeand gym-weights Thus two entities are semantically related if
they are semantically similar (close together in the isedichy) or share
any other classical or non-classical relationships. Asditdky and Hirst
(2004) point out, semantic similarity is a subset of sentamtiatedness.

The concept osemantic distancehas traditionally been used in the con-
text of both semantic relatedness and semantic simildnithe former con-
text, it represents the inverse of semantic relatedneste whthe latter, it
is the inverse of semantic similarity. In this paper as we#, shall continue
to use the term for both concepts with the confidence that dinéext will
disambiguate the intended meaning.

2.4. THE DISTRIBUTIONAL HYPOTHESIS

Given a text corpus, individual words have more or less diftg contexts
around them. The context of a word is composed of words cardog with

it within a certain window around it. Distributional meassaruse statistics
acquired from a large text corpora to determine how simiter ¢ontexts
of two words are. These measures are also used as proxiesaguieg of
semantic similarity as words found in similar contexts ténde semanti-
cally similar. This is known as thdistributional hypothesis (Firth (1957)

and Harris (1968)) and such measures have traditionally beferred to as
measures distributional similarity .

The hypothesis makes intuitive sense as Budanitsky antl(@084) point
out. If two words have many co-occurring words then simitémngs are being
said about both of them and so they are likely to be semalytisiahilar. Con-
versely, if two words are semantically similar then theyléely to be used in
a similar fashion in text and thus end up with many commona@mioences.
For example, the semantically similang andinsectare expected to have a
number of common co-occurring words suctceswl|, squash, small, woods
and so on, in a large enough text corpus.
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Like measures of distributional similarity there exist maa@s of what
we will call distributional relatedness (Schitze and Pedersen (1997) and
Yoshida et al. (2003)). These measures use raw text andatoreace in-
formation to determine semantic relatedness between twdswv®he distri-
butional hypothesis mentioned earlier is generic enoudbetthe basis for
both distributional similarity and distributional reldigess. We propose more
specific hypotheses that demarcate the two.

Hypothesis of distributional similarity:

Distributionally similar words tend to be semantically similar, where
two words (v; andws,, say) are said to be distributionally similar if they
have many common co-occurring words and these co-occumands are
each related tav; andw, by the same syntactic relation.

Hypothesis of distributional relatedness:

Distributionally related words tend to be semantically related, where
two words (v1 andws,, say) are said to distributionally related if they have
many common co-occurring words and this set of co-occuningds is
not restricted to only those that are relatedwpandw, by the same
syntactic relation.

The two hypotheses are based on the fact that semanticalilasivords
belong to the same broad part of speech (noun, verb, etc)rarttizs each
syntactically related to most common co-occurring wordshHgysame syn-
tactic relation. Further, the more two words are semaryicelated, the more
common co-occurring words they have. Consider the senalyticelated
word pairdoctor—operateln a large enough body of text, the two words are
likely to have the following common co-occurring wordsatient, scalpel,
surgery, recuperateand so on. All these words will be used by a measure of
distributional relatedness and the pair will be assigneidla$core. However,
a measure of distributional similarity will not use any oé#le co-occurring
words (and likely no other, for that matter) as they are nlateel to the target
words by the same syntactic relation. The wdattoris almost always used
as a noun whileperateis a verb. Thusloctor and operatewill get a very
low score of distributional similarity. The word pattfoctor—nurse on the
other hand, will get a high score of distributional relatestm and distributed
similarity. Thus an important characteristic of any dlattional measure is
whether it is a measure of distributional similarity or mgenerally that of
distributional relatedness.

It should be noted that a measure of distributional sintilawiill provide
a high score for certain closely related but dissimilar vedoelonging to the
same thematic role. For examplamelesainddrunkwhich refer to dissim-
ilar concepts but share a non-classical relationship acason homeless
anddrunktend to occur together in text) will likely get a high scoretlasy
belong to the same part of speech (adjective) and may havg coammon
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co-occurring words such dseggar, person, helpednd so on, related by
the same syntactic relation. This is a limitation of the entrmeasures of
distributional similarity and the impact of the limitatiam the ability of the
measures to mimic semantic similarity is worth determining

The relevant literature uses the tedistanceas inverse of distributional
similarity. In order to clearly distinguish between seniadistance, this pa-
per will refer to the inverse of distributional similarity distributional dis-
tance Like semantic distance, distributional distance willoalse used as
the inverse of distributional relatedness, and the corgbatild help disam-
biguate the intended meaning.

2.5. RELATEDNESS OFWORDS AND CONCEPTS

Measures of semantic relatedness and similarity are aptaliparticular con-
cepts (or particular senses of the words); for example, cmedatermine the
semantic relatedness bankin the financial institutionsense andnterest

in the interest ratesense. Distributional measures, on the other hand, usu-
ally assign scores to word pairs irrespective of the natfitbair polysemy
(how many senses they have) or the particular senses theylemn used

in. Distributional measures will need a much more knowledgk source

(for example large amounts of sense-tagged corpora) thatesd to assign
scores to word-sense pairs.

2.6. EVALUATION

The presence of a large number of relatedness measuresitegessa sulit-
able evaluation to determine which methods come closestettiiman no-
tions of relatedness and to determine how good they eaclilages exist two
modes of evaluation. The first involves the creation of twikeal lists of cer-
tain word pairs. One list is created using a relatednessumeasile the other
is ranked by humans. The correlation of the two rankingsdgative of how
closely the measure mimics human judgment of relatednesgserigtein and
Goodenough (1965) were the first to conduct quantitativeexgnts with
human subjects who were asked to rate 65 word pairs on a ddae t 4.0
as per their relatedness. The word pairs chosen ranged &oysimilar and
almost synonymous to unrelated. Miller and Charles (19%b eonducted a
similar study on 30 word pairs taken from the Rubensteind&oough pairs.
However, lack of large amounts of data from human subjectex@ntation
limits the quality of this mode of evaluation.

The second and a more indirect way of evaluating measuresnoérstic
relatedness is by the performance of natural language thsksise them,
for example, automatic spelling correction, word sensardisguation, es-
timation of unseen bigram (not found in training data) philiees, and so
on.
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3. Distributional Measures

3.1. SPATIAL METRICS

A popular technique to determine distributional relatesdrtgetween two words
is to map them to points in a multidimensional space suchttigtistance
between the two points is an indicator of distributional #mereby semantic
distance between them.

Large co-occurrence matrices pertaining to each word, lwhiore the
set of words that co-occur with it within a certain windowesiare created
from a text corpus. Consider a multidimensional space wtiereaumber of
dimensions is equal to size of vocabulary. A waevdcan be represented by
a point in this space such that the vec#yr from the origin to this point
has equal positive components in all dimensions correspgrid words that
co-occur withwy. Similarly, vectornw, can be created for wond,. This sec-
tion describes three distributional distance metrics thaintify the distance
betweenn; andws.

3.1.1. Cosine

Thecosinemethod (denoted bgog is one of the earliest distributional mea-
sures. Given two worda; andws, the cosine measure calculates the cosine
of the angle betweew; andws. If a large number of words co-occur with
bothw; andws,, Wy andw, will have a small angle between them, the cosine
will be large, and we get a large relatedness value betwesn.thhe cosine
measure gives scores in the range from 0 (unrelated) to lifmady related).

W1.Wo

R TARIY

®3)

A limitation of the cosine method in its original form is thelt co-occurring
words are treated the same, irrespective of how often theyccarred with
wy andws,. A popular variation (Yoshida et al. (2003), Lee (1999), Satilitze
and Pedersen (1997)) that incorporates this informatistated below:

S wecwyuc(wy) (P(Wiwg) x P(wjwz))

\/Xwec (wy) P(w|wy)? \/ZWEC (Wa) P(w|wy)?

COS(W]_,WQ

(4)

C(x) is the set of words that co-occur (within a certain windowjhathe
word x in a corpus.P(x]y) is the probability that a particular co-occurrence
is composed ok andy, given that wordy is one of the words in the co-
occurrence pair. It can be approximated by simple corpustso®@nce again,
the formula is the cosine of the angle between the word veatpandw, but
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the word vectors incorporate the strength of associatiaimefco-occurring
words with the target words. The componenXai a dimension (correspond-
ing to wordy, say) is equal to the strength of associatiory efith x. Thus
the vectors corresponding to two words are closer togedinerthereby get a
high distributional relatedness score, if they share mangacurring words
and the co-occurring words have more or less the same dtrefigissocia-
tion with the two target words. In the above formula condiéibprobability
of the co-occurring words given the target words is used asstrength of
association.

The cosine is used, among others, by Schiitze and Pede@en) @nd
Yoshida et al. (2003), who suggest methods of automaticgherating the-
sauri from text corpora. Schiitze and Pedersen (1997) asiybkter category
B corpus (Harman, 1993) (450,000 unique terms) and\ak Street Journal
to create a large but sparse co-occurrence matrix of 3,0@umefrequency
words (frequency rank between 2,000 and 5,000). Latent isieriadexing
and single-value decomposition (see Schiitze and Pedd@er)) for details)
are used to reduce the dimensionality of the matrix and getdoh term a
word vector of its 20 strongest co-occurrences. The codireword vector
(saywn) with each of the other word vectors is calculated and thestapes
along with the words whose vector generated the top scomstésl. These
words form the thesaurus entries for.

Yoshida et al. (2003) believe that words that are closelgteel for one
person may be distant for another. They use around 40,000lHIdduments
to generate personalized thesauri for six different pedpteuments used to
create the thesaurus for a person are retrieved from thedisbhome page
and a web crawler which accesses linked documents. Theraulsw sug-
gest a root-mean-squared method to determine the simitritvo different
thesaurus entries for the same word.

3.1.2. Manhattan and Euclidean Distances

Distance between two points (words) in multidimensionacgpcan be cal-
culated using théMlanhattan distance a.k.a.L; norm (denoted byl1) or
Euclidean distancea.k.a.L, norm (denoted byL,). In the Manhattan dis-
tance (5) (Dagan et al. (1997), Dagan et al. (1999), and L889(), the
disparity in strength of association of andw, with each word that they
co-occur with, is summed. The more the disparity in assotiathe more is
the distributional distance between the two words. TheiBeah distance (6)
(Lee (1999)) employs the root mean squared of the disparigsociation to
get the final distributional distance. Bothh norm andL, norm give values
in the range 0 (zero distance or maximally related) and iyfimaximally
distant or unrelated).
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Li(wi,wp) = > IP(wwy) — P(wjwy) | )
weC(wy)UC(Wy)

Lo(ws, W) =\/ S (Pww)—PWw))?  (6)
weC(wq)UC(wa)

The above formulae use conditional probability of the cousang words
given the target words as the strength of association. Tdighiitional relat-
edness of words may be found by taking the reciprocal of te&iliutional
distance or similar suitable method.

Lee (1999) compared the ability of all three spatial metticgletermine
the probability of an unseen (not found in training data)dvoair. The mea-
sures in order of their performance (from better to worse)ewke; norm,
cosine, and., norm. Weeds (2003) determined the correlation of word pair
ranking as per a handful of distributional measures with &mankings
(Miller and Charles word pairs Miller and Charles (1991)%it) verb-object
pairs from theBritish National Corpus (BNG)she found the correlation of
L1 norm with human rankings to be 0.39.

3.2. FET OPERATIONS

Distributional measures, as discussed earlier, aim taméie semantic sim-
ilarity (or relatedness) using words that co-occur with tduget words. The
problem can be transformed to finding the similarity of twtsgd4 andWs,

say), where each set has as its members the co-occurring wbtbe two
target words\{i; or wy), respectively. One can now use set operations such as
Jaccard andDice coefficientto determine the similarity of the two sets and
thereby, the semantic similarity of the target words.

Jaccardwi,wp) = % @)
: 2x Win
Dice(wi,Wo) = H (8)

Both measures give scores in the range from 0 (unrelated)(toakimally
related) and will rank word pairs identically.
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Theorem 1If the similarity of word pair one is less than the similaray
word pair two, as determined by the Jaccard coefficient, tiwesimilarity of
word pair one will be less than the similarity of word pair tves determined
by the Dice Coefficient.

Proof.

Let x be the number of co-occurrences common to word pair ong drel
number of words that co-occur with just one of the two wordsvord pair
one.

Let| andmbe the corresponding values for word pair two.
Therefore,

: X
Jaccardpairong) = —— 9
dpairone) = - ©)
2X
Dice(pair ong) = ——— 10
(P ) = 5 y (10)
: I
J t = — 11
accard pair two) m (12)
. : 2l
Dice(pair two) = m (12)
Given,
Jaccard pair one) < Jaccard pair two) (13)
I
< — (14)
X+Yy [ +m
= Xl+xm < xl+vyl (15)
= xm <yl (16)
To prove,
Dice(pair one) < Dice(pair two) 7
2X 2l
or, FYERY < T m (18)
or, 4l +4+2xm < 4xl+ 2yl (29)
or, xm <yl (20)
which is true (from (16)). O

Thus, in terms of measuring distributional similarity&tdness, Jaccard
and Dice coefficients are identical. Lee (1999) shows thetltitcard coeffi-
cient performs better thdny, norm in an unseen bigram probability estimation
task.
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3.2.1. Pseudo-Fuzzy Metrics
Simple set operations as stated above do not consider émg#irof associa-
tion of the co-occurring word with the target words. Thesgth of associa-
tion can be incorporated into the metrics by consideringcthw@ccurrence
sets to bepseudo-fuzzy The degree of membership of each word in the
pseudo-fuzzy set corresponding to a target word is its gtieof association
with the target word. We call the sets pseudo-fuzzy (and umzzy) because
the range of membership values is now dependent on the neeafsassocia-
tion used — conditional probability: 0 to 1, PMI (ignoringgagive value®):
0 to infinity. Even though conditional probability has a rarigpm 0 to 1 like
a standard fuzzy set membership function, the conditiora@abilities of all
the words with respect to a particular target word sum up fthis need not
be (and usually is not) true of the membership values for alaeduzzy set.
Use of conditional probability (denoted by CP) as the stilernd associa-
tion and application ofaccard andDice coefficienton the pseudo-fuzzy set
results in the following formulae. Similar to the case ofuleg sets, it can
easily be shown that the Dice and Jaccard coefficients ofdoskizzy sets
also rank word pairs identically.

min(P(w|wx ), P(w|ws))
Jaccard(wy,wy) = 2weCv)UC(w) (21)
) = i) MAXPWNEL), POWIW,))

2 min(P(w|wzq), P(w|w:
DiCGCP(Wl,Wz) _ X zweC(wl)UC(wz) ( ( | 1) ( | 2)) (22)
2 weC(wy) P(W|W1) + ¥ wecws) P(W|w2)
2 ZWEC(Wl)UC(Wz) min(P(W’W1)7 P(W‘WZ))
= (23)
1+1
= > min(P(w|wy), P(w|w,)) (24)

weC(wy)UC(Wz)

Observe that the special nature of the membership functime$ the Dice
coefficient to equate to simplified form (24) which is also tiheémerator
of the Jaccard coefficient. Since Dice and Jaccard are adenti terms of
ranking word pairs, use of this simplified form is computa#tly optimal if

one decides to use the Dice or Jaccard coefficient with donditprobability

as the strength of association.

Dagan et al. (1995) use a weighted version of the Jaccardicderft on
pseudo-fuzzy sets with PMI as the strength of associatibey To not pro-
vide quantitative comparison with other distributionalaseres and do not
derive their measure as shown above. Viewing co-occurrgricenation as
pseudo-fuzzy sets enabling the use of any of the numerouspseations
to determine distributional similarity is a novel approaBlart of our future
research is to determine how well such measures fare cothfzatiee others.
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3.3. MUTUAL INFORMATION—BASED MEASURES

Hindle (1990) was one of the first to factor the strength obeisdion of
co-occurring words into a distributional similarity measuThe hypothesis
is that the more similar the association of co-occurringdsowith the two
target words, the more semantically similar they are. Hfhdsed pointwise
mutual information (PMI) as the strength of associationn&ider the nouns
n; andny that exist as objects of venp in different instances within a text
corpus. Hindle used formula (25) to determine the distitmal similarity of
nj andng solely from their occurrences as objectwpf The minimum of the
two PMIs captures the similarity in the strength of assamiabdf v; with each
of the two nouns. Note that in case of negative PMI values nithgimum
function captures the PMI which is lower in absolute value.

min(l(Vi,nj),|(Vi,nk)),
if [(vi,n;) > 0andl(vi,ng) >0
Hinowj(vi, nj,n) = < [ max(l (v, nj), 1(vi,n)) |, (25)
if I(vi,nj) <O0andl(vi,n) <0
0, otherwise

I(n,v) stands for the PMI (word association ratio, to be more peddiee-
tween the words andv. Hindle used an analogous formula to calculate the
distributional similarity Hinsypj) using the subject-verb relation. The overall
distributional similarity between any two nouns is cal¢ethby the formula

(26).
N

Hin(ny,np) = %(Hinobj(Vi,nl, N2) + Hinsypj(Vi, N1, N2)) (26)
1=
The measure gives similarity scores from 0 (maximally disigir) to infinity
(maximally similar). Note that in Hindle’s measure, the s&to-occurring
words used is restricted to include only those words that¢ hlag same syn-
tactic relation with both target words (either verb-objectverb-subject).
This is therefore a measure of distributional similarityl arot distributional
relatedness. A form of Hindle’s measure where all co-o@egrwords are
used, making it a measure of distributional relatedness)ogvn below:

min(l(w,wy), [(w,w2)),
if 1(w,wq) > 0andl (w,wz) >0

Hineil(wi,we) = 5 ¢ [ max(l(w,wa), | (w,w2)) |, (27)
weC(w) if 1(w,w1) < 0andl(w,wz) <0
0, otherwise

C(x) is the set of words that co-occur with waxd
Lin (1998a) suggests a different measure derived from Hiwrimation
theoretic definition of similarity (Lin, 1998b). Furtherehuses a broad set
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of syntactic relations apart from subject-verb and verfectbrelations and
shows that using multiple relations is beneficial even bydtéls measure.
He first extracts triples of the fornx,r,y) from the partially parsed text,
where the wordx is related toy by the syntactic relatiom. If 1(x,r,y) is
the information contained in the proposition: the trigher,y) occurred a
constantc times, then Lin defines the distributional similarity beametwo
words,w; andws,, as follows:

Z(r,W)ET(Wl)ﬁT(Wz) (l (W17 r, W) +1 (W27 r, W))
S ) eTwy) WL LW+ 5w e T oug) | (W2, 1, W)

Lin(Wl,Wg) = (28)

T(x) is the set of all word pairér,y) such that the pointwise mutual infor-
mation | (x,r,y), is positive. Note that this is different from Hindle (1990)
where even the cases of negative PMI were also considerethefsoned
earlier, Church and Hanks (1989) show that it is hard to ately predict
negative word association ratios with confidence. Thusyamrence pairs
with negative PMI are ignored. The measure gives similesdgres from 0
(maximally dissimilar) to 1 (maximally similar).

Lin’s measure distinguishes itself from that of Hindle inotwespects.
Firstly, he normalizes the distributional similarity bet@n two words W1
andw,) determined by their PMI with common co-occurring words bg t
total PMI of w; andws, with the rest of the related words. This is a significant
improvement as now high PMI of the target words with shared@murring
words does not guarantee a high distributional similarityre. As an addi-
tional requirement, the target words must have low PMI witirdg they do
not both co-occur with. The second difference in the two fdae is that
Hindle uses a minimum of the PMI between each of the targetisvand the
shared co-occurring word, while Lin uses the sum. Takingsilia has the
drawback of not penalizing for a mismatch in strength of cowsrence, as
long asw; andw, both co-occur with a word. We suggest a new measure of
distributional similarity (denoted b$aif) which counters this but keeps the
normalizing factor of Lin’s measure:

25X Yt e T (wa) 1T (w) MINCTH (W, 1, W), 1(Wa, 1, W))

Sai W1,W2) =
f( ) Z(I’,W’)ET(Wl) I (Wla r,w’) + X(I‘,W")ET(WZ) I (W2> I, WH)

(29)

The multiplication by two is done to get scores in the rang@ tof 1 (note that
the sum in Lin’s formula was replaced by a min). The multiglion has no
effect on the relative ranking of word pairs by their simitias. Also notice
that like Hindle's measure, both Lin’s and mine are measofésstributional

similarity. Hindle (1990) used a portion of tifessociated Pressews stories
(6 million words) to classify the nouns into semanticalljated classes. Lin
(1998a) used his measure to generate a thesaurus from all@fwiord
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corpus of thewall Street Journal, San Jose Mercuapnd AP Newswire He
also provides a framework for evaluating automaticallyeyated thesauri by
comparing them with WordNet-based and Roget-based thesteishows
that the thesaurus created with his measure is closer to tiveNgt and
Roget-based thesauri than that of Hindle.

3.3.1. Mutual Information—Based Spatial and Fuzzy Metrics

Variations of the spatial metrics (equations (4), (5), ab)] that use point-
wise mutual information instead of conditional probakikis the strength of
association are possible. Following are the formulae fotualuinformation—

based spatial metrics.

CO§\M(W1,W2) _ 2 weC(wy)UC(ws) (I (wywy) < I (W, wsz)) (30)

\/zwec(wl) I (W, )2 % \/zWGC(Wz) I(w, wW2)2

LM (wy,wp) = > [T w,wy) — | (W, wa) | (31)
weC(wy)UC(Wy)

LY (wa. w) :\/ T () — T (wwy))? (32)
weC(wq)UC(wa)

Use of pointwise mutual information as the strength of assion in the
fuzzy metrics (see equations (22) and (21)) discussedeeadsults in the
following:

min(l(w,wq), I (w, w
Jaccard’” (W17W2) _ ZWEC(Wl)UC(Wz) ( ( 1) ( 2)) (33)
¥ weC(wy)uc(wy) Max(h (w,wa), (W, w2))
2% ZweC(wl)uC(wz) min(l (Wa W1)7 | (Wa WZ))
ZWGC(Wl) | (Wa Wl) + ZWEC(Wz) I (W7 W2)
Observe thaSaifiw,w,) (equation (29)) equates Dicey (w1, W) if the
restriction to use only positive pointwise mutual inforioat is lifted.

DiceM (wy,wy) =

(34)

3.4. RELATIVE ENTROPY-BASED MEASURES

3.4.1. Kullback-Leibler divergence
Given two probability mass functions(x) andq(x), their relative entropy

(D(pllg)) is:

D(plla) = ; p(x)log % for q(x) # 0 (35)

Intuitively, if p(x) is the accurate probability mass function corresponding to
a random variabl&, D(p||g) is the information lost on approximatingyx)



Distributional Measures as Proxies for Semantic Relatesine 15

by q(x). In other wordsP(p||q) is indicative of how different the two distri-
butions are. Relative entropy is also called ikhélback-Leibler divergence
or theKullback-Leibler distance (denoted byKLD).

Pereira et al. (1993) and Dagan et al. (1994) point out thatisvbave
probabilistic distributions with respect to neighboringntactically related
words. For example, there exists a certain probabilisstridution ¢ (P(v|ny)),
say) of a particular noum being the object of any verb. This distribution can
be estimated by corpus counts of parsed or chunked text,L(@(v|n,)) be
the corresponding distribution for noum. These distributionsdq and d)
define the contexts of the two nounms @ndn,, respectively). As per the dis-
tributional hypothesis (Harris, 1968), the more these existare similar, the
more aren; andn, semantically similar. Thus the Kullback-Leibler distance
between the two distributions is indicative of the semadtitance between
the nouna; andns,.

KLD(nl,ng) = D(ledg)
= Yvevb P(V/m)log EEX}ES for P(vinz) # 0 (36)

= Yvevb (m)uvb (np) P(VIN1) log 58}23 for P(v|nz) # 0

whereVbis the set of all verbs andb’(x) is the set of verbs that haxeas the
object. The distributional similarity is determined by itak the reciprocal of
the Kullback-Leibler distance or similar suitable methNdte that the set of
co-occurring words used is restricted to include only vénlas each have the
same syntactic relation (verb-object) with both targetmsod his is therefore
a measure of distributional similarity and not distributb relatedness.

It should be noted that the verb-object relationship is nberent to the
measure and that one or more of any other syntactic relati@sbe used.
The distributional relatedness may even be determinedywinvords co-
occurring with the target words. Thus a more generic expess the Kullback-
Leibler divergence is as follows:

KLD(W]_,Wz) = D(dl”dz)

= Ywev P(Wwy)log ﬁgmwg for P(w|wy) #£ 0
= ¥ weC(w)uC(ws) P(W|W1)log ﬁﬁmi for P(w|w,) # 0

(37)
V is the vocabulary (all the words found in a corp@3)x), as mentioned ear-
lier, is the set of words occurring (within a certain windomigh word x. The
inverse of the distributional distance calculated aboeédgithe distributional
relatedness ofy; andws.
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It should be noted that the Kullback-Leibler distance issyshmetric, that
is, the distance frorwvy to w, is not necessarily, and even not likely, the same
as the distance fromv, to wy. This asymmetry is counter-intuitive to the
general notion of semantic similarity of words, althoughéd (2003) has
argued in favor of asymmetric measures. Further, it is viksiyl that there
be instances such thBfw;|v) is greater than O for a particular vevbwhile
due to data sparseness or grammatical and semantic catsstthi training
data has no sentence wherkas the objectv,. This maked(w-|v) equal to
0 and the ratio of the two probabilities infinite. Kullbacleibler divergence
is not defined in such cases but approximations may be madensjdering
smoothed values for the denominator.

Pereira et al. (1993) use relative entropy to create clistenouns from
verb-object pairs corresponding to a thousand most fregoeumns in the
Grolier's EncyclopediaJune 1991 version (10 million words). Dagan et al.
(1994) use Kullback-Leibler distance to estimate the podities of bigrams
that were not seen in a text corpus. They point out that afigigni number
of possible bigrams are not seen in any given text corpus. prokabili-
ties of such bigrams may be determined by taking a weightedage of
the probabilities of bigrams composed of distributionalignilar words. Use
of Kullback-Leibler distance as the semantic distance imgtelded a 20%
improvement in perplexity on thé/all Street Journaknd dictation corpora
provided by ARPAs HLT program (Paul, 1991).

The use of distributionally similar words to estimate umsbgram prob-
abilities will likely lead to erroneous results in case ofdepreferred and
strongly-preferred collocations (word pairs). Inkpen st (2002) point
out that even though words likaskandjob are semantically very similar,
the collocations they form with other words may have varyilegrees of
usage. Whiledaunting tasks a strongly-preferred collocatiodaunting job
is rarely used. Thus using the probability of one bigram torese that of
another will not be beneficial in such cases.

3.4.2. a Skew Divergence

a skew divergence(ASD is a slight modification of the Kullback-Leibler
divergence, that obviates the need for smoothed prohaebilitt has the fol-
lowing formula:

P(wiw,)
Wiwz) + (1 —a)P(w|wy)
(38)
o is a parameter that may be varied but is usually set.8®.0Note that
the denominator within the logarithm is never zero with a-mero numera-
tor. Also, the measure retains the asymmetric nature of thb&ck-Leibler
divergence.

ASDwi,Wp) = Z P(w|w;)log ap(

weC(wq)UC(wa)
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Lee (2001) shows that skew divergence performs better than Kullback-
Leibler divergence in estimating word co-occurrence pbiligs. Weeds
(2003) achieves a correlation of48 and 026 with human judgment on the
Miller and Charles word pairs usinrgSD(w1,w») and ASD(w,, w1 ), respec-
tively.

3.4.3. Jensen-Shannon Divergence

A relative entropy—based measure that overcomes the dchvdbasymme-
try in Kullback-Leibler divergence is théensen-Shannon divergenca.k.a.
total divergence to the averagea.k.a.information radius. It is denoted by
JSDand has the following formula:

350w we) = D (a3 +e0) ) D (i) @9
B P(wjw)
- weC(wy )UC(Wo) (P(W|Wl) Iog :_2L (P(W|Wl) + P(W|W2))
P(wiwp)
P10 1 6w -+ P(wrw»)) “o

The Jensen-Shannon divergence is the sum of KullbackrediVergence
between each of the individual distributiodsandd, with the average distri-
bution @5%). Further, it can be shown that the Jensen-Shannon diveggen
avoids the problem of zero denominator as in Kullback-lagildivergence.
The Jensen-Shannon divergence is therefore always wetlediefind, likex
skew divergence obviates the need for smoothed estimates.

The Kullback-Leibler divergence, Skew Divergence, and Jensen-Shannon
divergence all give distributional distance scores frommaximally simi-
lar/related) to infinity (completely dissimilar/unreldje

3.5. CO-OCCURRENCERETRIEVAL MODELS

The distributional measures suggested by Weeds (2003)aaedbon the
notion of substitutability. The more appropriate it is tdostitute wordw;

in place of wordws in a suitable natural language task, the more semantically
similar they are. The natural language task she focuses @magcurrence
retrieval (the retrieval of words that co-occur with a target word frient)

and depending on the definition appropriate she suggests six different
distributional measures called the-occurrence retrieval models (CRMs)

Let N; be the set of co-occurrences wi retrieved from a text corpus
andN, that of wy. In order to determine how appropriate it is to substitute
wq in place ofw, we have to decide how important it is to get as many co-
occurrences as possible listed\ip (recall, denoted byR) and how important
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it is to not get co-occurrences not listed W3 (precision, denoted byP).
Thus Weeds'’ distributional measures have a precision casmgand a recall
component. The final score is a weighted sum of the precisagall and
standardF measure (see equation (4)1)The weights determine the impor-
tance of precision and recall and are determined empyidalprecision and
recall are equally important, then we get a symmetric measinich gives
the same scores to the distributional similaritynafwith w, andw, with w;.
Otherwise, we get an asymmetric measure which assignsatiffeimilarities
to the two cases. As substitutability is defined as a meadutistoibutional
similarity, metrics such as precision and recall which difiatnow good the
substitution is, are used to calculate the distributioirailarity.

2xPxR

CRM(W]_,WZ) - y ﬁ

+(1-y) B[P]Jr(l—B)[R]] (41)

y andp are tuned parameters that lie between 0 and 1.

Weeds argues that the asymmetry in substitutability istiaeuas in many
cases it may be okay to substitute a word, dag with another, sayanimal
but the reverse is not likely to be acceptable as often. Ssubstitutabil-
ity is a measure of semantic similarity, she believes thsiridutional sim-
ilarity between two words should reflect this property aslwedénce, like
the Kullback-Leibler divergence, all her distribution@ingarity models are
inherently asymmetric.

A word’s co-occurrence information may be specified by theoeco-
occurring words alone, or by specifying the strength of cotorences, as
well. This strength may be captured by a suitable measureaf mssociation
such as conditional probability or pointwise mutual infation between the
co-occurring words and the target words. Also, the diffeesim the strength
of co-occurrence may or may not be used to penalize the tuthsility of
one word for another. Weeds (2003) provides six distinahidee for preci-
sion and recall, depending on the the strength of co-oaccerand penalty
for differences in strength of association.

The precision (or recall) can be considered as the produeicofe preci-
sion (or recall) formula (denoted mpre) and a penalty function (denoted by
penalty. The CRMs that use simple counts of the common co-occuggenc
in N; andN, and not the strength of associations as core precision aadl re
values are calletlype-based CRMs(denoted by the superscriptpe. The
CRMs that use conditional probabilities of the common couoences iriN;
and N, with the target words as core precision and recall valuesalted
token-based CRMs(denoted by the superscrifmiker). The CRMs that use
pointwise mutual information of the common co-occurrenicebl; and N,
with the target words as core precision and recall valuesalted mutual
information—based CRMs (denoted by the superscripti). The core preci-
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sion and recall formulae for type, token and mutual infororatbased CRMs
are listed below:

C(w1)NC(w
Corég/pe (Wl,WZ) _ | (’lC)(Wl)(’ 2)| (42)
C(w1)NC(w
Coré%/pe (Wl,WZ) _ | (’lc)(wz)(’ 2)| (43)
cordwy,wp) = Y P(wwa) (44)
weC(wy)NC(wa)
corgd®wy, wy) = S Pww) (45)
weC(wi)NC(Wz)
I (w, w
cored" ( ' (W1, Wp) = zWGC(Wl)mC(\;VZ) ( Y (46)
2 weC(wy) (W, wy)
W, W
coreﬂ" W17W2 _ zWEC(Wl) C(w2) ( 2) (47)

> weC(wg) | (W, W2)

The CRMs that do not penalize difference in strength of ccuoence are
calledadditive CRMs (denoted by the subscriptld). The CRMs that do pe-
nalize are calledifference-weighted CRMs(subscriptdw). The penalty is a
conditional probability—based function (48, 49) for thkdn- and type-based
CRMs, and a mutual information—-based function (50, 51) f& mutual
information—based CRM.

min(P(wjw1), P(w|w;))

penalty!™® = penalty?ke" — P wiW) (48)
penaltfP® = penaltydke" — min(P(W‘(le‘i\’;(W’WZ)) (49)
penaitgsl — TN (W(‘\j"vlzvl)( W) (s0)
penaltgi — mind (VI"(‘;"V?\)/VZ)(WWZ)) (51)

The precision and recall of additive and difference-weaghCRMs is listed
in the appendix.

Weeds (2003) extracted verb-object pairs of 2,000 noums the British
National Corpus (BNC)The verbs related to the target words by the verb-
object relation were used. Thus each of the co-occurringsvierrelated to the
target nouns by the same syntactic relation and thereferm#asures capture
distributional similarity, not relatedness. Correlatiaith human judgment
(Miller and Charles word pairs) showed that differenceghéd (0.61) and
additive mutual information—based measures (0.62) pmedrfar better than
the rest of the CRMs.
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4. Discussion and Analysis of Distributional Measures

The previous section described numerous distributionaswmes. Variations
of the measures are possible depending on certain geneparfies of a dis-
tributional measure. This section discusses a few of th@itapt properties
along with an analysis of their effect in assigning semarmiatedness.

4.1. SMPLE CO-OCCURRENCES VSSYNTACTICALLY RELATED WORDS

Harris (1968), one of the early proponents of the distrdmdl hypothesis,
used syntactically related words to represent the confextvmrd. However,
the strength of association of any word appearing in theestmf the target
words may be used to determine their distributional sintjlaDagan et al.
(2997), Lee (1999), and Weeds (2003) represent the contexhoun with
verbs whose object it is (single syntactic relation), HNEL990) represents
the context of a noun with verbs with which it shares the afect or
subject-verb relation, while Lin (1998a) uses words reldai® a noun by
any of the many pre-decided syntactic relations to deterrdistributional
similarity. Schitze and Pedersen (1997) and Yoshida €2@03) use all co-
occurring words in a pre-decided window size. Although Lifg8a) shows
that the use of multiple syntactic relations is more berafies compared to
just one, there exist no published results on whether usihgsyntactically
related words (as compared to all co-occurrences) improv@grsens the
guality of semantic similarity assignment.

Use of syntactically related words entails the requirenoérchunking or
parsing the data. Once the data is suitably parsed, the ¢atigmal cost of
such methods is lower as distributional similarity is detered with much
fewer words.

4.1.1. Use of Multiple Syntactic Relations

Lin (1998a) used a subset of words that co-occurred withaiget words to
determine their distributional similarity. Only those coeurrences that are
syntactically related (by any of the pre-decided list oatieins) to the target
words are chosen. Once this restricted set of co-occurseiscdetermined,
distributional similarity is determined by formula (28)astn earlier. Observe
that the formula does not distinguish between the co-oeoasas related by
different syntactic relations. An alternative is to caétel a distributional
similarity value using each of the syntactic relations wdlially and then
determine the overall distributional similarity from tlegesults. The over-
all distributional similarity may be as simple as the averagnilarity (see
(52)) or the maximum (see (53)) of individual similarity uéts. Distribu-
tional similarity so calculated is justified in the follovgntwo paragraphs,
respectively.
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. 1, .. .
SiMoveral Avg(W1,W2) = N(Sm}l(Wl,Wz)+S"T}2(W1,W2)+
...+ Simy (Wl,Wg)) (52)
SimoverallMax(W1, W2) = max(Sim (Wi, Wz), Sim2(Wy, W),
oo, Simy (W, W2)) (53)

whereN is the total number of syntactic relations considered and,

3 (riw) T (w) AT (wo) (1 (W, 1T, W) 41 (W, i w) )
> (riw)eT (wy) b (W, ri,w') + Y (riw)eT(wy) ! (Wo,ri, W)

whereri is a particular syntactic relation.

Consider the scenario where wond has a strong word association ra-
tio (large MI value) withwy but does not co-occur wittwv,. The large Ml
value is added to the denominator as per Lin's measure (28%. rEsults
in a low distributional similarity value. However, a humbef words are
considered semantically related even though there existsMexclusive co-
occurrences say) that have strong word association ratios with one @r th
other target word but not both. A mark of semantically relawords is the
presence of a number of common co-occurring words with whoey aire
both strongly associated. One or few strong co-occurreatagarget word
that do not co-occur with the other target word do not implgttthe target
words are semantically unrelated. For example, consideradther similar
pair of nounsbananasand mangoesThe adjectivguicy is likely to have a
large association ratio wittmangoesut not so withbananas The large Ml
value ofmangoesndjuicy may lead to an excessively low distributional sim-
ilarity value as per Lin’s measure (28). Averaging the dfe distributional
similarity values (as in (52)) calculated from individuaingactic relations
instead of Lin’s original method moderates the stronglyatieg effect of
such exclusive co-occurrences by restricting it to a paldicsyntactic rela-
tion (in this case, adjective-noun). It should be noted thatdisparity in the
strength of association ehangoesndjuicy versusbananaandjuicy, is use-
ful in bringing out the differences betweemngoandbananawhich may be
used to determine thatangoandorangeare more semantically related than
mangoandbanana However, as pointed out earlier, we do not want a strong
co-occurrence to have an adverse affect on the estimatiaiisibutional
similarity in all other cases.

Taking the maximum of individual distributional similaritvalues (53)
takes the aforementioned idea one step ahead and is grorttiedollowing
hypothesis:

Different syntactic relations are accurate predictorsiefdgemantic simi-
larity for different pairs of words.

Sim; (Wg, W) = (54)
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For example, fruits tend to have strong word associatiorib adjectives
like sweet, bitter, ripeandjuicy, and low association values with verbs that
they are related to by the subject-verb relation. For examgbnsider the
sentences:

the ripe mango fell to the ground
the ripe plum fell to the ground

The wordsripe andmangoare related by the adjective-noun relation and are
likely to have a large value of association. On the other harahgoandfell
which are the subject and verb, respectively, are likelyaweha low measure
of association because almost anything can fall. The adgenbun relation
is thus expected to yield a higher distributional simijantalue than the
subject-verb relation. Employing equation (53) in thisecadll mean that co-
occurrences related to the target words by the adjectivernelation will be
used to determine the distributional similarity while ather co-occurrences
will be ignored. Thus only the relation that has the strohgssociated co-
occurrences is used to determine the distributional siityilas these co-
occurrences are expected to be the best predictors of dersaniiarity. A
measure where other sets of co-occurrences, which are wedictors of
semantic similarity, are allowed to influence the result roayse more harm
than benefit. Flipping the argument on its head, target wpredicted to be
strongly distributionally similar by two or more syntactiglations should be
assigned higher distributional similarity values thanhe tase of just one.
Using the maximum method will loose out on this information.

Part of our future work will be to determine if calculatingdigidual sim-
ilarity values from different syntactic relations and themiving at the final
similarity is closer to human judgment or not. Also, as pethbut, both the
average or maximum approaches have their advantages auValisages.
It will be interesting to determine which method gives setitasimilarity
values closer to the human notion of semantic similarity.

4.2. COMPOSITIONALITY

The various measures of distributional similarity may bed#d into two
kinds as per their composition. In certain measures eaasccorring word
contributes to somknite calculabledistributional distance between the target
words. The final score of distributional distance is the sunthese con-
tributions. We will call such measureompositional measures The rel-
ative entropy—based measurés, norm andL, norm fall in this category.
On the other hand, the cosine measure along with Hindle’d_arisl mutual
information—based measures belong to the category of wkatal non-
compositionalmeasures. Each co-occurring word shared by both targetsword
contributes a score to the numerator and the denominateddftioat co-occur
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with just one of the two target words contribute scores onlyhe denom-
inator. The ratio is calculated once all co-occurring woatds considered.
Thus the distributional distance contributed by individoe-occurrences is
not calculable and the final semantic distance cannot beshrdkwn into
compositional distances contributed by each of the co+oenaes.

It must be noted that it is not clear as to which of the two kinfismea-
sures (compositional or non-compositional) resemblesamiodgment more
closely and how much they differ in their ranking of word gai©ur future
work aims to determine this.

4.2.1. Primary Compositional Measures

The compositional measures of distributional similariy relatedness) cap-
ture the contribution to distance between the target wargg0dw,) due to

a co-occurring word by three primary mathematical manipuia of the co-
occurrence distributiongl{ andd,): the difference, denoted byDif (as inL;
norm), division, denoted byDiv (as in the relative entropy—based measures)
and product, denoted byPdt (as in the conditional probability or mutual
information—based cosine method). We will call the thrgeety of compo-
sitional measureprimary compositional measures (PCM) Their form is
depicted below:

Dif = S IP(W|wy) — P(W|wy)| (55)
weC(wy)UC(Wy)

ov= Y D) (56)
weC(wy )UC(wy) P(W|W2)

Pdt — Z P(wjwa) x P(w|w) (57)

WeCWATC(w) Scaling Factor
Observe that by taking absolute values in expressions (Eb}%6), the varia-

tion in the distributions for different co-occurring worldas an additive affect
and not one of cancellation. This corresponds to our digidhal hypothesis
— the more the disparity in distributions, the more is the @etic distance

between the target words. The product form (57) also achkidvis and is

based on the theorem:

The product of any two numbers will always be less than or leiguine
square of their average.

In other words, the more two numbers are close to each othalire, the

higher is the ratio of their product to a suitable scalingdaffor example, the
square of their average). Note that the difference andidivimieasures give
higher values when there is large disparity between thagtineof association
of co-occurring words with the target words. They are thmeefmeasures of
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distributional distance and not distributional similgriThe product method
gives higher values when the strengths of association aseiland is a
measure of distributional relatedness.

Although all three methods seem intuitive, each producisrdit distri-
butional similarity values and more importantly, given & seword pairs,
each is likely to rank them differently. For example, coesithe division
and difference expressions applied to word paivg (v») and (v, wa). For
simplicity, let there be just one wowsd in the context of all the words. Given:

P(W|wy) = 0.91
P(W|w,) = 0.80
P(W |ws) = 0.60
P(W |[ws) = 0.50

The distributional distance between word pairs as per tifierdhce PCM:

Dif (W]_,Wz) = |0.91—O.8| =0.11
Dif (ws,ws4) = |0.6— 0.5/ =0.1

The distributional distance between word pairs as per tisidh PCM:

Div(wi,w2) = |log 091 _ 0.056
0.8
0.6
Di = |log=—| =0.079
IV(W3, Wa) °955 ‘

Observe that for the same set of co-occurrence probabijlitie difference-
based measure ranks th&s(w,) pair more distributionally similar (lower
distributional distance), while the division-based meagives lower distri-
butional similarity values for word pairs having large cozorrence proba-
bilities. This behavior is not intuitive and it remains to deen, by exper-
imentation, as to which of the three, difference, divisiornpooduct, yields
distributional similarity measures closest to human msiof semantic simi-
larity.
Thel norm is a basic implementation of the difference method rapée

product-based measure of distributional similarity is exppsed below:

P(w|wz) x P(w|ws)
weC(wy ) UC(Wy) (%(P(W|Wl) + P(W|W2)))2

The scaling factor used is the square of the average prayaliilcan be
proved that if the sum of two variables is equal to a constiansdy). Their

Pd?V9(wy, Wy) =

(58)
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values must be equal 9’2 in order to get the largest product. Now, kebe
equal to the sum d?(w|wy)/(P(w|wq) 4+ P(w|w.)) andP(w|ws) /(P(w|wq ) +
P(w|ws)). This sum will always be equal to 1 and hence the proddgt (
will be largest only when the two numbers are equal B@v|w) is equal

to P(w|w,). In other words, the farthe?(w|w;) andP(w|w,) are from their
average, the smaller is the proddctTherefore, the measure gives high scores
for low disparity in strengths of co-occurrence and low ssootherwise.
The incorporation of 2 in the scaling factor results in a meashat ranges
between 0 and 1.

The relative entropy—based methods use a weighted divis&thod. Ob-
serve that both Kullback-Leibler divergence (formula apee here for con-
venience — equation (59)) and Jensen-Shannon divergennetdake ab-
solute values of the division of co-occurrence probabitiThis will mean
that if P(w|w;) > P(w|wy), the logarithm of their ratio will be positive and
if P(wjwz) < P(w|wy), the logarithm will be a negative number. Therefore,
there will be a cancellation of contributions to distritmutal distance by words
that have higher co-occurrence probability with respectvioand words
that have a higher co-occurrence probability with respecivi. Observe
however that the weighH®(w|w;) multiplied to the logarithm means that in
general the positive logarithm values receive higher wetiggn the negative
ones, resulting in a net positive score. Therefore, with lbeoklute value of
the logarithm, as in the KLD, the weight plays a crucial rddemodified
Kullback-Leibler divergencel¥*S which incorporates the absolute value is
suggested in equation (60):

P(w|w:
KLD(wi,wo) =D(df|dp) =y P(wjwy)log P( W1) g
weC(wy )UC(Wo) ( | 2)
KLDAbS(W]_,Wz) _ DAbS(d:LHdZ) _ Z P(W’Wl) IOg P(W‘Wl)
weC(wy )UC(w2) P(W‘WZ)
(60)

The updated Jensen-Shannon divergence measure will réineasame as in
equation (39), except that it is a manipulation@f®s and not the original
Kullback-Leibler divergence (relative entropy).

JSDMOS(wy, wy) = DAPS(dy || %(dl +dp)) + DAbS(d2||%(d1 +dy))  (61)

Note that once the absolute value of the logarithm is takem longer makes
much sense to use an asymmetric weidghtw(w;)) as in the KLD or as
necessary to use a weight at all. Equation (62) shows a sitpgon-based
meaigre. It is an unweighted form KE.DA®S(wy,w») and so we will call it
KLD{2S

Unw-
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P(w|wi)

9 Pwiws)

Experimental evaluation of these suggested modificatibKsiitback-Leibler
divergence and informations radius is part of future work.

KLD{ES (wp,Wa) = Div(wy, Wy) =
weC(wy)UC(Wz)

(62)

4.2.2. Weighting the PCMs

The performance of the primary compositional measures reaiyniproved

by adding suitable weights to the distributional distangetidbuted by each
co-occurrence. The idea is that some co-occurrences masttee Indicators
of semantic distance than others. Usually, a formulatiotheftrength of as-
sociation of the co-occurring word with the target wordssedias weight, the
hypothesis being that a strong co-occurrence is likely tstbeng indicator

of semantic distance.

Weighting the primary compositional measures results mesof the ex-
isting measures. For example, as pointed out earlier, tHib&ak-Leibler
divergence is a weighted form of the division measure (nosictering the
absolute value). Here, the conditional probability of eocourring word with
respect to the first word®(w|w;)) is used as the weight. Since the weight
is dependent on the first word and not the other, we have asymmie
more symmetric weight could be the average of the conditipnababil-
ities between the co-occurring word and each of the two tangeds. A
symmetrically weighted division PCIBalifxy(is shown below:

. 1 P 0
SaIPA\llngI(WLWZ) - . (WIE>U ) = (P(W‘Wl) + (W’WZ)) I g pga}az;
C (63)

We can have corresponding, symmetric weighted Jensem8hativergence
anda skew divergencel, norm is a weighted version of tHe, norm, the
weight beingP(w|w; ) — P(w|wz). A simple product measure with weights is
shown below:

w 1 P(w|wy) x P(w|wy)
Pdlﬁvgwt = Wec(wguc(wz) 2(F’(W]W1) + P(w|w,)) (%(P(W|W1) +P(Wwy)))2
_ 5 P(w|wy) x P(w|ws,)
3 (P(W]wy) + P(W]wy))

weC(wq)UC(wa)

(64)

A better weight (which is also symmetric) may be chosen gienfol-
lowing hypothesis:

The stronger the association of a co-occurring word withrgetaword,

the better indicator of semantic properties of the targethitas.
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The co-occurring word is likely to have different strengtifsassociations
with the two target words. Taking the maximum of the two as wheght

(Dagan et al. (1995)) will mean that more weight is given taaoccurring

word if it has high strength of association with any of the tiaget words.
As Dagan et al. (1995) point out, there is strong evidencealfesimilarity

if the strength of association with the other target word iscmlower than
the maximum, and strong evidence of similarity if the sttbraf association
with both target words is more or less the same. Equationigéd)weighted
division PCM that captures this intuition.

Saifd Wi, W)

_ max(P(wjwy), P(w|ws)) ‘Iog P(wwy)
(65)

Similarly weighted product and difference measures mayrbated. Both
Saifyw andSaifye, give distributional distance scores from 0 (maximally
similar/related) to infinity (completely dissimilar/unaged).

It would be interesting to note the effect of weighting onstheneasures
and also to determine which weight factor is more suitable.

4.3. MEASURE OFASSOCIATION

As mentioned earlier, distributional measures use theaditgpn association
of the target words with their co-occurring words to deterenielatedness.
Lin (1998a) and Hindle (1990) use pointwise mutual inforiorats the mea-
sure of association. The mutual information—based CRMs e¢d¥ (2003)
also use the same. All other measures studied in this papaimgle condi-
tional probability of the co-occurring words, given thegitr word. It should
be noted that replacing the strength of association in a uneasgith an-

other can result in a different distributional measure.@@mple, the mutual
information—based spatial and fuzzy metrics discussdikedrin’s measure
(28) using conditional probability (CP) is shown below:

3 (rw) € T (wy) T (wy) (P(W[W1) 4 P(W|w2))
Z(r.v\/) €T (wy) P(W/|Wl) + X(I’,W') €T (wy) P(W|W2)

Lin®P(wy, wy) = (66)

Of course, in case of certain measures, for example theiativizased
primary compositional measures, use of pointwise mutualrmation and
conditional probability is equivalent.
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_Plww)

DivM (wy,wp) = > '09% (67)
weC(wy)UC(wz) P(w)P(w)

_ Z log P(w|ws) (68)
WeC(W1)UC(Wa) Pwlwz)

= Div(wy,w,) (69)

Weeds (2003) shows that her mutual information—based CRifiibie
higher correlation with human judgment on the Miller and dwword pairs
compared to the ones that use conditional probability.ntai@s to be seen if
other measures follow the same pattern.

4.4. FREDICTORS OFSEMANTIC RELATEDNESS

Given a pair of target words, the vocabulary may be divided ihree sets:
(1) the set of words that co-occur with both target words (cam); (2) words
that co-occur with exactly one of the two target words (esivig); (3) words
that do not co-occur with either of the two target words. HEn@d990) uses
evidence only from words that co-occur with both target gaimdetermine
the distributional similarity. All the other measures dissed in this paper so
far, use words that co-occur with just one target word, as wel

One can argue that the more there are common co-occurreptesen
two words, the more they are related. For examghink and sip may be
considered related as they have a number of common co-eocces such
aswater, teaand so on. Similarlydrink andchesscan be deemed unrelated
as words that co-occur with one, do not with the other. Forgta, water
andteado not usually co-occur witlichess while castleand moveare not
found close todrink. Measures that use all co-occurrences (common and
exclusive) tap into this intuitive notion. However, centairong exclusive co-
occurrences can adversely effect the measure. Considelagcstrong tea
vs powerful teaexample (Halliday (1966)). The wordsrongand powerful
are semantically very related. However, the wooffeeis likely to co-occur
with strongbut not withpowerful Further,strongandcoffeecan be expected
to have a large value of association as given by a suitablsuneasay PMI.
This large PMI value, if used in the distributional relateds formula, can
greatly reduce the final value. Thus it is not clear if the ¢ using all
co-occurrences is outweighed by the drawback pointed out.

A further advantage of using only common co-occurrencesas the
Kullback-Leibler divergence can now be used without thednefesmoothed
probabilities.
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P(w|wi)

KLDcom(Wi, W) = Z P(wlw,)log P(w|ws)

weC(wy)NC(wa)
Observe that we are taking the intersection of the set ofccowoing words
instead of union as in the original formula (37).

(70)

4.5. CAPITALIZING ON ASYMMETRY

Given a hypernym-hyponym paiagtomobile-cay say) asymmetric distribu-
tional measures such as the Kullback-Leibler divergeacgkew divergence
and the CRMs generate different values as the distributsinalarity of w;
with w, as compared tan, with wq. Usually, ifw; is a more generic concept
thanws, the measures findy to be more distributionally similar te, than
the other way round. Weeds (2003) argues that this behaviotuitive as it
is more often okay to substitute a generic concept in place sgecific one
than vice versa, and substitutability is a indicator of setcasimilarity. On
the other hand, in most cases the notion of asymmetric sersamilarity is
counter-intuitive, and possibly detrimental. FurtheGase two words share a
hypernym-hyponym relation, they are likely to be highly setically similar.
Thus given two words, it may make sense to always choose giehof the
two distributional similarity values suggested by an asyetrin measure as
the final distributional similarity between the two. Thiswan asymmetric
measure $imsyn) can easily be converted into a symmetric 0B&Tsyn),
while still capitalizing on the asymmetry to generate mandable distri-
butional similarity values for hypernym-hyponym word aiEquation (71)
states the formula for the proposed conversion. A specifiiémentation on
the KL divergence formula is given in equation (72)

SimMyiax(W1,W2) = max(Simasym{ W1, Wa), SiMasym(Wo,W1))  (71)
KLDmax(w1,W2) = max KLD(wz,wz), KLD(wz,ws)) (72)

Another method to convert an asymmetric measure of disioibal sim-
ilarity (or relatedness) into a symmetric one is by taking #verage (for-
mula 73) of the two possible similarity values. A specific lerpentation on
the KL divergence formula is given in equation (74)

Simavg(Wi,Wp) = %(Siﬁhsyn{wl,W2) + SiMasyn{ W2, W1)) (73)
KLD/_\Vg(W]_,Wz) = %(KLD(Wl,Wz) + KLD(Wz,Wl)) (74)
_1 P(w|wy) P(w|ws)
=5 WGC(WEUC(WZ) <P(W|W1) log Pwiw) + P(w|w,) log Pwiwy) >(75)
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_1 P(wlwa) P(wlw)
=5 o o (P(w]wl) log PWiW,) P(w|w,) log PWIW,) >(76)
-3 (Plwiwy) — Pllw)log 7 77)

weC(wy)UC(Wz)

Determining the effectiveness of such conversions of iegjsisymmetric
measures is part of our future work.

4.6. How CRMsFIT

The CRMs suggested by Weeds (2003) are the first distrilaltimeasures to
be evaluated by comparing ranked word pairs with those dhblgehumans
(Miller and Charles word pairs). At first glance the CRMs magH quite
distinct from the rest of the distributional measures stddso far, owing to
their rather complex formulae and multiple optimizing paeters. However,
setting the parameters to certain standard values equétesa the CRMs
to other measures. The difference-weighted token-based §iiggested by
Weeds has identical values for precision and recall. Sheeprthat the pre-
cision (or recall) is inversely related to the norm measure. This seemingly
odd result of equating a distributional distance measutk sprecision (or
recall) value makes sense due to the following — as sulwbility is de-
fined as a measure of distributional similarity, metricshsas precision and
recall which quantify how good the substitution is, refldet distributional
similarity and are inversely related to distributionaltdisce. Thus setting
y=0andp =1 or 0, causes the CRM to behave like thenorm. Further,
as shown below, setting= 1 (in other words, taking thE measure) makes
the difference-weighted mutual information—based CRMiaal to the mu-
tual information—based Dice coefficient (34). Following a proof of the
same. The precision and recall of the difference-weightdéb&éed CRMs
are repeated here (equations (78) and (79)) for convenience

zweC (wy)NC(W2) mm(l (W Wl)> I (\Nv WZ))
> weC(wy) | (W, wy)

2 weC(wy)NC(we) ymin(l (w,wy), (W, w2))
2 weC(w,) | (W, wy)

P(li\/lv\ll (W17W2)

(78)

Riw(Wa, W) = (79)
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Theorem 2.The difference-weighted mutual information—based CRVagegs!
to the mutual information—based Dice coefficient if its paedery is set to 1.

Proof.

2xPxR

Simffy (Wi, Wo) =y IR

+(1-y)

BIPI+(1— B)[R]]

2xPxR

1-1
prr | T Y

BIPI+(1— B)[R]]

2xPxR
P+R

On substituting values fd? andR from equations (78) and (79):

SII’T‘M,{,(W]_, Wz)

2% (ngC(wl)mqwz) mi”('(W~W1)~|(W~W2))> % (ZweC(wl)mqwz) mi”('(W~W1)~|(W~W2))>
o 2 weC(wy) [(ww) 2 weC(wy) I(wwz)
(ZweC(wl)mC(wz) min(l (wwy),| (WWZ))) I (ZweC(wl)mC(wz) min(l (w,wy),| (V\LW2)))
> weC(wy) [(w,wa) > weC(wy) I(wwz)

2 (> wectwy)nciw) Min(l (wwy) | (WW2)))2
(ZWEC(W;L) |(WW1)) (ZWEC(Wz) I (W7W2))

(S weciwy)rcimy) MIn(H(Wwn), 1 (Ww2))) (Fwecmy) | (WW1)+S wecqw,) | (Wn2))
(ZWEC(W]_) |(W7W1)) (ZweC(wz) I (W»W2>)
_ 2 ZWEC(Wl)ﬂC(Wz) min(l (W> Wl)a I (W> W2)
Swecwy) (W W) + 3 wecws) (W, W2)

— DiceM (wy, w,)

4.7. HT AND Miss CO-OCCURRENCES

Lastly, we examine two kinds of co-occurrences that posealierige to ex-
isting distributional measures: (1) Word pairs that ocogether less number
of times than what would be expected by chance. Measure®Ndecannot
predict their association values with confidence and agg@wiout earlier this
is countered by ignoring them completely. This means thasystem misses
out on evidence from this set of co-occurrence pairs. (2pEmsrrence pairs
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formed by a word with target words that are near synonymspédnkand
Hirst (2002) point out that near synonyms (for exampleldenand con-
cealed may form strong and anti-collocations, respectively,hvilie same
co-occurring word (for exampleagendd. All distributional measures that
use strength of association to determine semantic relessdwill consider
the large discrepancy in strength of association as evidehanrelatedness.
Therefore, these co-occurrence pairs, which are not igh@nelike the pre-
vious ones), will negatively impact the ability of distriimnal measures to
predict semantic relatedness of near synonyms. It shouldoted that we
cannot eliminate such co-occurrences in a straightforwaahner simply
because we are not aware apriori if the target words are rymngms.
It would be interesting to determine the precise quanigaéffect of such
co-occurrences on the performance of distributional nreasu

4.8. SUMMARIZING THE DISTRIBUTIONAL MEASURES

In the last two sections we have seen numerous distributrorasures. Ta-
bles I, II, lll, and IV listed in the appendix summarize theioperties.

5. Semantic Network and Ontology-Based Measures

Creation of electronically available ontologies and seticametworks like
WordNet has allowed their use to help solve numerous ndamglage prob-
lems including the measurement of semantic distance bativee words.
Budanitsky (1999), Budanitsky and Hirst (2001) and Patiancet al. (2003)
have done an extensive survey of the various WordNet-basegumes, their
comparisons with human judgment on selected word pairstteidefficacy
in applications such as spelling correction and word semssabiguation.
Hence, this paper provides just a brief summary of the majomdiet-based
measures of similarity and focuses on their comparison digkributional
ones.

One of the earliest and simplest measures is the Rada e98B)@dge
counting method. The shortest path in the network between the twettarg
words farget path) is determined. The more edges there are between two
words, the more distant they are. Elegant as it may be, thesuneaelies
on the unlikely assumption that all the network edges cpoed to identical
semantic distance between the nodes they connect. Nodeseiwark may
be connected by numerous relations such as hyponymy, nresoand so
on. Edge counts apart, Hirst and St-Onge (1998) take intousxtdhe fact
that if the target path consists of edges that belong to a rurabsuch
relations, the target words are likely more distant. Thaidehat if we start
from a particular nodeb@se word and take a path via a particular relation
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(say, hyponymy), to a certain extent the words reached wilijbite related
to the base word. However, if during the way we take edgesnigeig to

different relations (other than hyponymy), very soon we megch words
that are unrelated. Hirst and St-Onge’s measure of semegititedness is
listed below:

HS(c1,c;) = C— path length-k x d (80)

wherec; andc; are the target concepts/words. Ads the number of times
an edge corresponding to a different relation than thateftieceding edge
is takenC andk are empirically determined constants.

Leacock and Chodrow (1998) used just one relation (hypohamg mod-
ified the path length formula to reflect the fact that edgeslogdown in the
is-a hierarchy correspond to smaller semantic distance thaortes higher
up. For examplesports carand car (low in the hierarchy) are much more
similar thantransportandinstrumentation(higher up in the hierarchy) even
though both pairs of words are separated by exactly one eddjeciis-a
hierarchy of WordNet.

Ien(cl, Cz)

LC(ey,c2) = —log—

(81)

whereD is the depth in the taxonomy.

Resnik (1995) suggested a measure that used corpus ssadilstng with
the knowledge obtained from a semantic network. The measurased on
the notion that the semantic similarity of two words may btedained from
the word that represents their similarity (ttmvest common subsumenr
lowest super-ordinate (Iso). The more the information contained in this
node, the more similar the two words are. Observe that usfognation con-
tent (IC) has the effect of inherently scaling the semairitiglarity measure
by depth of the taxonomy. Usually, the lower the lowest supdmate, the
lower is the probability of occurrence of the Iso and the emts subsumed
by it, and hence, the higher is its information content.

Regci,c2) = —logp(lso(cy, Cz)) (82)

As per the formula, given a particular lowest super-or@in#tte exact posi-
tions of the target words below it in the hierarchy do not hamg effect on
the semantic similarity. Intuitively, we would expect thabrd pairs closer

to the Iso are more similar than those that are distant. JsanagConrath
(1997) and Lin (1997) incorporate this notion into their @&s which are
arithmetic variations of the same terms. The Jiang and @oit®97) mea-
sure (denoted byC) determines how dissimilar each target concept is from
the Iso (C(c1) — IC(Iso) andIC(c,) — IC(Is0)). The final semantic distance
between the two concepts is then taken to be the sum of thésesdces
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(see Budanitsky (1999) for more details). Lin (1997) pomis that the Iso

is what is common between the two target concepts and thafasnation
content is the common information between the two concéjnés formula
(denoted byLin) can thus be thought of as taking the Dice coefficient of the
information in the two concepts.

JC(c1,¢2) = 2logp(lso(cy, cz)) — (log(p(ca)) + (log(p(cz)))  (83)
: 2 x logp(Iso(cy, c2))
Lin(cy,c2) = 84
(©:%2) = Tog(p(es)) + (log(p(cz)) (&4
Budanitsky and Hirst (2001) show that the Jiang-Conrathsmeahas the
highest correlation (0.850) with the Miller and Charles dvgairs and per-
forms better than all other measures considered in a spabrrection task.
Patwardhan et al. (2003) get similar results using the nmedsuword sense
disambiguation (especially of nouns).

6. Comparison of Distributional and Ontology-Based Measues

Distributional and ontology-based measures use distimgtces of knowl-
edge to achieve the same goal — the ability to mimic humanmedd of
semantic relatedness. Owing to the difference in meth@yplmany inter-
esting comparisons may be made. The next few subsectionatdinnging
them to light.

6.1. KNOWLEDGE SOURCE VERSUSSIMILARITY MEASURE

Ontologies are much more expensive resources than ravwedaitd is freely
available. Creating an ontology requires human expert§jms intensive
and rather brittle to changes in language. Once createditingdan ontol-
ogy is again expensive and there is usually a lag betweenutnent state
of language usage/comprehension and the semantic netedésenting it.
Further, the complexity of human languages makes creafi@ven a near
perfect semantic network of its concepts impossible. Tihushany ways
the ontology-based measures are as good as the networksicntivey are
based. On the other hand, large corpora, trillions of wardsze, may now be
collected by a simple web crawler. Large corpora of more &mwriting are
also available (for example, th&all Street Journabr the American Print-
ing House for the Blind (APHBgorpus). Therefore, using an appropriate
distributional measure that best captures the semantitasiyrpredicting
information, plays a much more vital role in case of disttidmal measures.
As ontologies are a rich source of information where theotericoncepts
are linked together by powerful relations such as hyponynd/rmeronymy,
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the ontological measures likely correctly identify targebrds related by
edges that belong to just one relation as very similar. Hewalata sparse-
ness may force distributional measures to assign low giityil®alues to
clearly related word pairs. Assigning appropriate sengasithilarity values
when target words are connected by different relationaésggpses a major
challenge to ontological measures.

6.2. DOMAIN-SPECIFIC SEMANTIC SIMILARITY

So far, this paper has talked abaurtiversal similarity measures Given a

word pair, the measures each give just one similarity vatmvever, two

words may be very semantically similar in a certain domainnai so much
in another. For example, the word papaceandtime are closely related in
the domain of quantum mechanics but not so much in most oter®Ilo-

gies have been made for specific domains, which may be usestdamine

semantic similarity specific to these domains. Howeverntlmmber of such
ontologies is very limited. On the other hand, large amoohtsorpora spe-
cific to particular domains are much easier to collect, atgwa widespread
use of distributionatlomain-specifisimilarity.

6.3. ASSOCIATEDWORDS

Certain word pairs have a special relation with each other. g&xample,
strawberryand cream doctor and scalpe) and so on. These words are not
similar physically or in properties, btrawberriesare usually eaten with
creamand adoctor uses ascalpelto make an incision. An ontology-based
measure will correctly identify the amount of semantic tedimess only if
such relations are inherent in the ontology. For examptaeifigent-instrument
relation does not link concepts in a semantic network (as andiNet), the
ontology-based measures will not identifgctor andscalpelas related.

Of the various distributional measures discussed, the tha¢sise simple
co-occurrences capture such semantic relatedness, astivatdend to occur
together are likely to have large set of common co-occumingls. Measures
(e.g., Lin (1998a), Hindle (1990)) that consider a wardo be a shared co-
occurrence only ifw is related to both target words by the same syntactic
relation, will not find such words related, simply becausehswords that
tend to occur in the same sentence are likely to have diffehematic roles
and thus different syntactic relations with common co-ogog words.

6.4. MULTI-FACETED CONCEPTS

The various senses of a word represent distinct concepté. @dhese con-
cepts can usually be described by a number of attributesaturies. These
attributes may be physical descriptions like color, shapk@mposition or
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Figure 1. Hierarchy Variations.

[ conceptYJ [ concept Z

function, purpose and role. Two words are adjudged similéigy share a
number of such attributes and if the strength of the shareithuetes is high.

By strength we mean how strongly an attribute helps definevtirels. The
more prominent a shared feature, the more similar the twdsvare. Further,

it is possible that wordgv; andw, are related as they share a certain set of
attributes, whilew, andws; are related because they share a different set of
attributes. Thusv; andws are likely not as related ag andws,, orw, andws.

For example, the physicékyis closely related to the abstrgeassword as
they are bothmeans of getting accedasswords closely related tencryp-

tion as they both pertain tdata security However, the physicaddeyhas little

to do with encryptionand the two are not so much related. Thus semantic
relatedness is not necessarily transitive and may be aidunot a subset of
relevant attributes, not necessarily all.

Hierarchies in an ontology are built by repetitive divisiohconcepts as
per their attributes. The order in which these attributesused to create the
tree structure can result in dramatically different hiehags. For example,
consider a scenario depicted in figure 1, where the attsbagtenda, are
used in different orders to create different hierarchiethefwordsw;, w», w3
andw;,. Notice that whilew; andw, are closer to each other than andws
in hierarchy-1, it is the other way round in hierarchy-2. $hariations in the
order of use of attributes for creating the hierarchy caoltes different sets
of words being close to each other.

It should be noted that real-world semantic hierarchieceeated by well
formed methodologies and hence the order of attributes tsedeate the
hierarchy is not arbitrary. That said, there is room for a@on and further,
once a particular hierarchy is chosen, it captures cer@imastic relations in
its structure, while others are lost.

In general, ontology-based measures of similarity capéadn the prop-
erty that words that occur close to each other in a hierartlayesa lot of
attributes and are therefore similar. However, they ugualy on a fixed
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hierarchy. Word pairs that would be closer in variationshaf hierarchy are
not considered. Thus ontology-based measures are likelydigly assign a
low semantic similarity value to such word pairs. For exampbnsidekey
andpassword They are botthmeans to gain accedsit the is-a hierarchy in
WordNet lists them in completely different branches of teework (figure 2).
The attribute determining whether the word refers to a ay®ntity or an
abstraction is used first to classify the words and héegandpasswordall
into different branches at the top of the hierarchy itseiu3 an ontology-
based measure is likely to find them unrelated. Distribationeasures are
not bound by a fixed hierarchy and have a better chance at @mtedy
identifying the semantic similarity of such word pairs. lowd be worth
determining the extent to which this is true.

Relation Object, physical object

Social relation

Artifact, artefact

[ Instrumentality, instrumemation}

Device

7

Positive Identification

Key

Figure 2. keyandpasswordn the ‘is-a’ hierarchy of WordNet

6.5. EVALUATION AND COMPLEMENTARITY

Ontology-based and distributional measures of simildréye each been in-
dividually shown to be reasonable quantifiers of semantidaiity. WordNet-
based measures have been used for applications such asgspelrection
and word sense disambiguation, while distributional messhave primarily
been used for estimating probabilities of unseen bigramxisa&stive compar-
isons of WordNet-based measures with each other (e.g.,r8ska (1999),
Budanitsky and Hirst (2001) and Patwardhan et al. (2003)¢ iaund that
the Jiang-Conrath measure performs better than the rest.

Dagan et al. (1994) perform experiments with a few relatineapy—
based measures and find that Jensen-Shannon divergenaghily $letter
than Kullback-Leibler divergence arid norm in estimating bigram prob-
abilities of unseen words and in a pseudo—word sense digaatinn ex-
periment. However, the various distributional measure& et been used
to rank the Miller-Charles or Rubenstein-Goodenough waidspfor which
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estimates of human judgment of semantic relatedness aitatdgaExperi-
ments to this end will also enable a comparison of the diginobal measures
with the ontology-based measures for which this data isadirevailable.
Similar to the case of various ontological measures, it istlwdetermining
which distributional measure is closest to human notioreofantic similarity
and how well the distributional measures, which rely justraw data, fare
against, the more expensive and knowledge rich, ontol@gpgedh measures.
Since the two kinds of measures rely on different knowledgerces,
there is a likelihood that distributional measures moreieately identify the
semantic similarity of a certain subset of word pairs, wliile ontological
methods do so for a different subset. One of the more impopesblems
in the field is to quantify this complementarity. It should teted that since
a similarity measure is evaluated by comparison of rankedvpairs and
not by the similarity values alone, capitalizing on the ctenpentarity by
creating a combined semantic similarity predictor is a muatder problem.

7. Conclusions

The paper has provided a detailed analysis of various cdrpsed distri-
butional measures and compared them with measures basedtaogies
and semantic networks. Merits and limitations of the vasimeasures were
listed. New measures that are likely to overcome the drak#at present
distributional measures were suggested. Specificallystilalitional mea-
sure that keeps the best of Hindle (1990) and Lin (1998aY),coming their
respective drawbacks, was proposed. Variations of Kukhagibler diver-
gence and Jensen-Shannon divergence that better captucdistrarity in
co-occurrence probabilities were suggested. A simplenigole to convert
asymmetric measures into symmetric ones was suggested! ajgwoaches
are described to determine distributional similarity bytéeutilization of
co-occurring words related by different syntactic relasio

The paper identified significant research problems that nedse an-
swered through experimentation. This will help better ustdsd how statis-
tics from raw data may be manipulated to determine apprigpsemnilarity
values between two words. For example, whether the use dadycally
related, rather than plain co-occurrences, significantlyroves the measure?
Or, are simple co-occurrences just as useful? What kinde-afccurrences
(common, or exclusive, as well) should be used to determsiglaitional re-
latedness? Is pointwise mutual information or conditigmabability a more
suitable measure of association to be used in the variotrghdigonal mea-
sures? Do compositional or non-compositional distritnglomeasures pro-
duce more intuitive semantic similarity values? Which neatlatical opera-
tion (difference, division, or product) of the co-occureerdistributions yields
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values that are closest to human judgment, in case of cotgpwdi mea-
sures? A direct evaluation of the distributional measuodsef thar_, norm,

o skew divergence and the CRMs for which these results exystdir cor-

relation with the Miller-Charles and Rubenstein-Goodeagtoword pairs will

provide better insight into their relative abilities andlvenable a compari-
son with WordNet-based measures for which the correlata@fficients are
already available.

Lastly, the paper pointed out that even though ontologicehsures are
likely to perform better as they rely on a much richer knowledource,
distributional measures have certain distinct advantalgesexample, they
can easily provide domain-specific similarity values foraegé number of
domains, their ability to determine similarity of conteatiy associated word
pairs more appropriately, and the flexibility to identify ltiniaceted concepts
as related from appropriate commonalities that may not Ipbicitky en-
coded in a semantic network. Thus it is very likely that cogital measures
are better at predicting semantic similarity for certainrdvpairs, while the
distributional measures do so for others. To identify thiemixof this comple-
mentarity and a suitable combined methodology to assigmasgosimilarity,
remain significant problems in the field. A significant chiagje in achieving
this is how to reconcile the nature of the two kinds of measure while
ontological measures predict the semantic similarity @f tencepts (or word
senses), distributional measures do so for two words. Otfegiroblems we
intend to pursue is the development of a methodology thdilesdhe use of
distributional measures to predict semantic similaritgafcepts, with no or
little sense-tagged data.

Appendix

.1. CO-OCCURRENCERETRIEVAL MODELS

The precision and recall of additive and difference-weaghCRMs (Weeds,
2003).

C(wy) NC(w;
Pot (Wi, Wp) = = IC)(Wl)(I . (85)
C(wy) NC(w:
() = . | g(wz)(l = (86)
Z\C(W )NC(W2)| min(P(\g‘Wl)P(Wle))
1 2
e |C(w) | - (87)
RE min(P(wjws),P(w|w;))
i (W1, Wa) = 2 [C(ws)"Clve)| — Plwiv] (88)

| C(wy) |
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Paoir (W, wp) = P(wlwa) (89)
weC(wy )NC(wo)
R ) — P(oive) ©0
weC(wy ) NC(Wy)
PiokeN Wy, wp) = min(P(w|wy), P(w|w;)) (91)
weC(wy ) NC(Wy)
REA T, wp) = min(P(wwz), P(wwa)) - (92)
weC(wy )NC(wo)
2 WeC(w)NC(ws) | (v, w)
P (W1, Wo) = ©3)
add( 1,Wz) ZWEC(Wl)I(WW]-)
. ZWEC(W )NC(w2) (v, wa)
mi Wi, W) = 1 (94)
Radd(Wa, W) 3 weciw) | (W W)
_ min(l (w,wq), I (w,w:
Py, wy) — ZveCtmCluy MR (W), (W) = o
ZweC (wy) I(W Wl)
mviv(WLWZ) _ 2 wWeC(wy)NC(w) mm(l(w wa), | (ww)) (96)

~—

ZWEC (wy) I (W7 W2

whereC(x) is the set of all co-occurrences of woxdNote that in case of
the difference-weighted token and mutual informationelagrecision and
recall formulae, there is a cancellation of a pair of termwivied from the
core formulae and the penalty.

.2. SUMMARIZING TABLES

Tables | and Il list the measures of distributional distawtde tables 111 and
IV list the measures of distributional relatedness/siritilalf a measure is
placed in a distributional distance table, it means thatrthétion behind the
measure lead to its original conception as a distance measut similarly
for a relatedness measure. It should be noted however tlistback measure
may be converted into a relatedness measure by taking tees@or other
such mathematical manipulation, and vice versa. Apart fittarformula, the
tables show whether the measure is compositional (Commdtprand if so
then the kind of primary compositional measure (PCM) it isiva@l from.
The last column (Str.) indicates the particular strengtfasgociation used
(most commonly) in the measure — conditional probabilitfP©r pointwise
mutual information (PMI).



Table I. Measures of distributional distance.

Measure Comp. PCM Formula Sym. St
Dif or Ly v diff.  Swecwyicw) | PWWL) —P(wiwy) | / CP
L2 7o it/ Swecmcin (PWw) —P(wiws)? v CP
KLD v div.  Swecw)ucw,) P(Wiws)log mm; X CP
KLDcom v div.  Swecw)ncw,) P(Wiws)log mm; X CP
KLDAbs v div. S wec(wr)uciw,) PWIW1) ‘Iog mm; X CP
Div or KLDAPS, v/ dv.  Swec(w)icw |00 b / CP
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Table Il. Measures of distributional distanamftinued).

| Measure Comp. PCM Formula Sym. St
Saiflw VOV Suecuicw 3 (PWW) +Piwe) Jogpiis| v/ cP
-Di . max(P(w|wy),P(w|ws))
Salﬁlg‘/XWt v div. 2WeC(wy)UC(w,) 3w C(wy)UC(wy) max(lP(W|w1)2,P(W\w2)) * / cp
P(w|wy)
o pigi
; P
KLDvg v dV. 3 Twecm)uciw (PWiwe) — P(wiws))log i) / CP
KLDmax v div. max KLD (w1, W), KLD(wz,w1)) v CP
; P(w|wy)
ASD v div. 3 wec(ws)uciw,) P(WIWL) 109 G +(1—1(1)P(w\w1) X CP
; P(wlwy)
JSD v div. ZWGC(Wl)UC(Wz) (P(W‘W]_) logé(r(\;\l\\/\ll)m—i_ v CP
P(w|w,
POWIW2) 100 o +pwina))

A%
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Table Ill. Measures of distributional relatedness/sinitja

| Measure Comp. PCM Formula Sym. St
vg P(w|wy) < P(w|wy)
Pth v pdt ZW€C<W1)UC(W2) (%(P(W|W1)+P(W|W2)))2 v CP
vg P(w|wy) x P(w|w,)
Pdtaygwi v pdt. 3 wecw)uc(ws) WM v cP
cos X na. T weC(wy)uC(up) (P(WWy) X P(W|w2)) cP
/Zuweciny POVW2 /S weciug) POWIW2)?
P T weC(wy )UC(wp) MIN(P(WIW1),P(wlws))
Jaccard X n.a. Xwec(wi)mc((wzz) max(P(w|wy),P(wjwz)) 4 cP
DiceCP X na. 2X 3 wec(wy)C(wp) MIN(P(Ww ), P(w|ws)) v cP

> weC(wy) P<W‘Wl)+2wec(w2) P(w|wy)

Note ‘n.a.’ stands for ‘not applicable’. For example, the cosas@e is not a composi-

tional measure and therefore the type of PCM is not applkécabl
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Table IV. Measures of distributional relatedness/sintiaicontinued).

Measure Comp. PCM Formula Sym. Str.
min(l (w,wi), 1 (w,w2)),
if 1(w,wy) > 0andl(w,wp) >0
, | max(l (w,wa), 1 (w,w2)) |,
Hinyep (W, w; X n.a. v PMI
rel (W1, W) 2wec(w) if 1 (w,wy) < 0 andl (w,ws) <0
0,
otherwise
i 3 (rw) € T(wy ) 1 T(wg) (1 (W1 W) +1 (W2, W)
Lin X n.a. ey eTwg) TWLEW) 3 ey 7 wy) T (W2, W) v PMI
. 2X 3 (rw) € T(wy) 1 T(wp) MIN(H (W1, r W), 1 (Wa,r,w))
Saif X n.a. z(r‘w')eT(wl) I (W1~r~W)+z(r‘\A/’)eT(wz) I(wa,rw") v PMI
CRMs X n.a. V{ZEEXRR} +(1-y) {B[P] +(1—B)[R]} X both?

2 The MI-based CRMs use pointwise mutual information, wHile type- and token-based
CRMs use conditional probability as the strength of assiotia
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Notes

1 In their respective papers, Robert Fano as well as Ken ClamdtPatrick Hanks refer to
pointwise mutual information as mutual information.

2t is hard to accurately predict negative word associatatios with confidence (Church
and Hanks (1989)).

3 In their respective papers, Donald Hindle and Dekang Lirrréd pointwise mutual
information as mutual information.

4 Pis short forP(wy,ws), while R is short forR(wy,w»). The abbreviations are made due
to space constraints and to improve readability.
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