PAGE
709

<CN>11</CN>
<CT>The Tropos Methodology and Software Development Environment</CT>
<CA>Paolo Giorgini, John Mylopoulos, Anna Perini, and Angelo Susi</CA>
<H1>11.1 Introduction</H1>
Organizational software systems have traditionally suffered from an impedance mismatch between their outer and inner environments: their operational environment is understood in terms of actors, responsibilities, objectives, tasks, and resources, whereas their inner environment is conceived as a collection of (software) modules, entities (e.g., objects, components), data structures, and interfaces. This mismatch contributes greatly to poor software quality, and also to frequent failures of software system development projects.

One reason for this mismatch is that development methodologies have traditionally been inspired and driven by the programming paradigm of the day. Thus, during the era of structured programming, structured analysis and design techniques were proposed (DeMarco, 1978; Yourdon & Constantine, 1979), whereas object-oriented programming has given rise more recently to object-oriented design and analysis (Booch, Rumbaugh, & Jacobson, 1999
; Wirfs-Brock, Wilkerson, & Wiener, 1990). For structured development techniques this meant that throughout software development, the developer could conceptualize the system in terms of functions and processes, inputs and outputs. For object-oriented development, on the other hand, conceptualizations consist of objects, classes, methods, inheritance, and the like throughout.

Using the same concepts to align requirements analysis with system design and implementation makes perfect sense. For one thing, such an alignment reduces impedance mismatches between different development phases. Moreover, such an alignment can lead to coherent tool sets and techniques for developing software. As well, it can streamline the development process itself. But why base such an alignment on implementation concepts? Requirements analysis is arguably the most important stage of software development. This is the phase in which technical considerations have to be balanced against social and organizational ones. This is also the phase in which the operational environment of the system is modeled and analyzed. Not surprisingly, this is also the phase in which the most and the costliest errors are introduced, compared to other development phases. Even if (or rather, when) the importance of design and implementation phases wanes sometime in the future, requirements analysis will remain a critical phase for the development of any software system, answering the most fundamental of all design questions: What is the system intended for?
Software systems of the future, such as enterprise resource planning (ERP), groupware, knowledge management, and e-business systems, should be designed to match their operational environment. For instance, ERP systems have to implement a process view of the enterprise to meet business goals, tightly integrating all relevant functions of their operational environment. To reduce this impedance mismatch between the system and its environment, we have been working on a software development methodology named Tropos. The methodology is requirements-driven in the sense that it is founded on concepts used during early requirements analysis, specifically i* (Yu, 1995). Early versions of the Tropos methodology are reported in Castro, Kolp, and Mylopoulos (2002) and Bresciani, Giorgini, Giunchiglia, Mylopoulos, and Perini (2004).

The objective of this chapter is to introduce the Tropos
 methodology, supported by a detailed process, as well as a software development environment. The environment assists a designer in constructing a variety of models capturing requirements and design information. It also supports various formal analysis techniques derived from the semantics of Tropos models. To better manage these models, the environment includes a repository where models can be interrelated for purposes of documentation and traceability. In the tradition of method engineering techniques, the repository is founded on a Tropos metamodel.
Section 11.2 of the chapter sketches the Tropos methodology, and section 11.3 presents the metamodel, first described in Susi, Perini, Mylopoulos, and Giorgini (2005), and explains its features. Section 11.4 presents the Tropos development process and sketches the goal analysis techniques it is based on. In section 11.5 we sketch the Tropos modeling environment and goal reasoning tool. Section 11.6 relates Tropos to other methodologies for building agent-oriented software, and section 11.7 concludes the chapter.

<H1>11.2 The Tropos Methodology</H1>
The Tropos methodology (Bresciani et al., 2004) pays particular attention to the analysis of the environment within which the system-to-be will eventually operate, as a preliminary step before analyzing system requirements. Like most other software development methodologies, Tropos adopts a model-driven approach. This means that the methodology guides the software engineer in building a conceptual model, which is incrementally refined and extended, to support different development tasks from early requirements to detailed system design and implementation.

The methodology is founded on the i* modeling framework (Yu, 1995; reprinted as chapter 2 of this book) and uses the notion of agent and related notions, such as goals and plans, during all software development phases. Specifically, the methodology adopts the concepts of social actor, goal, plan (the task in i*), resource, and social dependency to model both the system-to-be and its organizational operating environment. In particular, an actor models an entity that has strategic goals and intentionality (human or organizational agent, software agent, role, or position). A goal models a strategic interest for an actor. A plan represents an algorithmic (as opposed to heuristic) process for satisfying a goal. A resource is a physical or informational entity. Finally, a (social) dependency between two actors indicates that one actor depends on another in order to attain a goal, execute a plan, or deliver a resource. Dependencies may also involve softgoals (such as “having a good quality meeting”) that represent goals with no clear-cut criteria for their fulfillment. The concepts mentioned in this paragraph are all present in i*, with the exception that the concept plan replaces the i* task in Tropos.

The Tropos methodology includes the actor diagram (derived from the Strategic Dependency diagram in i*) for describing the network of interdependencies among actors, as well as the goal diagram (derived from the Strategic Rationale diagram in i*) for describing and supporting the means-ends analysis conducted by each actor as it attempts to ensure that—through delegations to other actors—its goals will eventually be fulfilled.

An actor diagram is a graph whose nodes represent actors (agents, positions, or roles), and edges represent dependencies among them. A goal diagram is also a graph in which nodes represent goals or plans, and edges represent goal/plan relationships, such as AND/OR decomposition; that is, a goal (respectively, plan) can be decomposed into a set of other goals (plans). Goals, softgoals, plans, and resources can also be related to other goals and softgoals through contributions, which indicate that a goal, softgoal, plan, or reource contributes positively or negatively to the fulfillment of a goal or softgoal. Goal diagrams appear within a balloon representing the perspective or viewpoint of a single actor. This is the actor whose goals and plans are being analyzed to determine how they can be fulfilled or executed.

The software development process in Tropos is organized in five phases: early requirements (ER) analysis, late requirements (LR) analysis, architectural design, detailed design, and implementation, as shown in figure 11.1. Each one of these phases is characterized by specific objectives:

[figure 11.1 here]

Early requirements is concerned with understanding the organizational context within which the system-to-be will eventually operate. During early requirements analysis, the requirements engineer identifies the domain stakeholders (who have a stake in the system-to-be) and models them as social actors who have goals and depend on each other for goals to be fulfilled, plans to be performed, and resources to be furnished.

Late requirements, on the other hand, is concerned with a definition of the functional and nonfunctional requirements of the system-to-be. This is accomplished by treating the system as another actor, or a small number of actors, who are related through dependencies with external actors. The shift from early to late requirements occurs when the system actor is introduced and it participates in delegations from/to other actors.

Architectural design is concerned with the global structure of the system-to-be. Also, subsystems and system components are represented here as actors, and their dependencies to other system components are social, rather than procedural/structural. This means that system components need to have the ability to monitor dependencies to other actors to make sure they will be fulfilled. In addition, system components need to be able to cancel dependencies that seem ineffective and replace them with new ones through planning, negotiation, and so on. As with conventional software architectures, architectural styles constitute critical support for the software developer. Since the fundamental concepts of Tropos architectures are intentional and social, we have turned to theories that study social structures to define architectural styles: organizational theory and strategic alliances.

Detailed design focuses on the specification of actor communication, behavior, and capabilities. To support this phase, Tropos adopts existing agent communication languages—such as FIPA-ACL (Foundation for Intelligent Physical Agents-Agent Communication Language) described by Labrou, Finin, and Peng (1999) or KQML (Knowledge Query and Manipulation Language) described by Finin, Labrou, and Mayfield (1997)—as well as message transportation mechanisms and related concepts and tools. To accommodate these within UML, we have defined a set of stereotypes, tagged values, and constraints (Booch et al., 1999).

Implementation. During this phase, code is produced on the basis of the artifacts produced during the detailed design phase. At this stage agent platforms, such as JADE (Java Agent Development framework) (Bergenti & Poggi, 2001) or JACK (Coburn, 2000)
, can be used to implement the system-to-be.

Through the models constructed during these phases, one can answer “why” questions, in addition to “what” and “how” ones, regarding system functionality. For example, one can ask, “Why does this component of the system need to notify library users when a book becomes available?” Answers to “why” questions ultimately link system functionality to stakeholder needs, preferences, and objectives. Such answers serve as ultimate justifications for all elements of a proposed design.

In the following sections we describe the concepts of the language and the design process for the specification of Tropos models, focusing on the first three phases of the development process: early requirements, late requirements, and architectural design.

<H1>11.3 The Metamodel</H1>
The Tropos metamodel defines the conceptual elements of the methodology we defined in section 11.2. In this section, we give a UML class representation of the metamodel that has been specified considering the Object Management Group (OMG) Model-Driven Architecture (MDA) Meta Object Facility (MOF) directives; in particular, the Tropos metamodel is located at the M2 layer of the MOF four-layer metadata architecture. The description of the metamodel is followed by some examples of possible diagrams that can be specified that instantiate the classes and the relationships of the metamodel.
 The diagrams have been produced by using the Dia diagram drawing tool (Dia, n.d.),
 exploiting a drawing profile for the specification of UML and Tropos diagrams.

[figure 11.2 here]
Figure 11.2 shows the portion of the Tropos metamodel specifying the entities and relationships related to a Tropos actor diagram; in the representation we have omitted the attribute name characterizing all the classes of the metamodel. Here Agent, Role, and Position are specializations of the concept of Actor. A position can cover 1...n roles,
 whereas an agent can play 0…n roles and can occupy 0…n positions. An actor can have 0…n goals, which can be both hard goals and softgoals and are wanted by one actor. An actor Dependency is a relationship that relates a depender, a dependee, and a dependum (which is a goal, a plan, or a resource). It is also possible to specify a reason for the dependency (labeled why), which can be either a goal or a plan that may be part of a goal/plan decomposition; a reason for a dependency may also be a resource. A model is an instance of the metamodel and can have a graphical representation in terms of an actor diagram and a goal diagram. Figure 11.3 depicts an example of an actor diagram for a conference review process. This diagram is to be understood as an instantiation of the metamodel shown in figure 11.2. Three actors are involved here: the Program Committee Chair (PC Chair), the Program Committee Member (PC Member), and the Reviewer. Dependencies between the actors include a goal delegation (review papers is delegated by the PC Chair to the PC Member), and a resource dependency in which the PC Chair expects to have information on possible conflicts between a PC Member and the authors of a paper; on the other hand, the PC Member depends on the PC Chair to supply papers for review, and review forms.
 Many goal and resource dependencies hold between the actors PC Member and Reviewer. In particular, the PC Member depends on the Reviewer to review the papers and obtain information about possible conflicts on assigned papers. The Reviewer depends on the PC Member for assigned papers as well as review forms. Finally, the PC Member wants to be fair in reviews assignment, and this is represented as a softgoal desired by the PC Member.

 [figure 11.3 here]
The concepts that are typically related to Tropos goal diagrams are depicted in figure 11.4. (As in figure 11.2, goals can be softgoals or hard goals.) Central among them is the concept of goal, represented by the class Goal. Goals can be analyzed from the point of view of an actor through Means-End relationships, Contribution relationships, and Boolean Decompositions (in particular AND/OR decomposition relationships). Means-end is a relationship defined with an actor, whose point of view is represented in the analysis, a goal (the end), and a plan, resource, or goal (the means). Contribution is a relationship between a goal and another goal, or a plan, or a resource of an actor or of different actors. The Contribution relationship represents situations in which, for example, the fulfillment of a goal contributes positively or negatively toward the fulfillment of another goal. A contribution can be annotated with a qualitative metric, as proposed in Chung, Nixon, Yu, and Mylopoulos (2000), denoted by one of the symbols --, -, +, and ++. In particular, if the goal g1 contributes positively to the goal g2, with metric ++, then if g1 is satisfied, so is g2. Analogously, if the plan p contributes positively to the goal g, with metric ++, this says that p fulfills g. A + label for a goal or plan contribution represents a partial, positive contribution to the goal being analyzed. With labels we have the dual situation representing a sufficient or partial negative contribution toward the fulfillment of a goal. A decomposition relationship defines a generic decomposition of a root goal into subgoals. The type of the decomposition (AND/OR) is specified through the attribute Type in the class Boolean Decomposition. The concept of plan in Tropos is modeled in figures 11.2 and 11.4. Means-end analysis and AND/OR decompositions can also be applied to plans. In particular, AND/OR decompositions allow one to capture basic plan structure. Figure 11.5 gives a sketch of the goal diagram for the actor PC Member, for the goal review papers, and for the softgoal be fair in reviews assignment. The goal review papers has been AND-decomposed into two subgoals, assign papers to reviewers and collect the reviews. The latter subgoal represents the “why” for the goal dependency review the papers between PC Member and Reviewer, shown in the actor diagram of figure 11.3.

[figure 11.4 here]

[figure 11.5 here]
The goal assign papers to reviewers is AND-decomposed into two subgoals: send the papers, which is then operationalized as send papers by e-mail, and select reviewers decomposed,
 which is in turn decomposed into verify competences and verify conflicts. This latter subgoal represents the “why” for the resource dependency conflicts between the PC Member and the Reviewer. Moreover, the fulfillment of the subgoals verify competences and verify conflicts can contribute positively to the fulfillment of the softgoal be fair in reviews assignment, as described by the positive contribution relationships in the diagram.

The representation of the metamodel we have described so far does not contain certain integrity constraints that a designer has to consider when specifying a Tropos model. Two examples of such constraints relate to dependency and decomposition relationships. In particular for dependency relationships, it is not possible to specify a dependency having the roles of depender and of dependee covered by the same actor, and in a decomposition hierarchy it is not possible to decompose a goal into a set of subgoals containing its father or one of its ancestors in the same hierarchy.

<H1>11.4 The Tropos Design Process</H1>
Previous sections have sketched the Tropos methodology, its development process (covering five phases), and the Tropos metamodel. We now focus on the Tropos design process, which provides detailed guidance to the software designer in the first three phases of the development process (early and late requirements and architectural design) in which the same set of concepts is used. An early version of this process, in the form of an algorithm that the analyst should perform, is presented in Bresciani et al. (2004). This section presents a refined version with respect to goal and plan modeling and analysis. The resulting process is depicted in figure 11.6.

[figure 11.6 here]
The process starts with the discovery of a set of stakeholders and their respective goals (hard or soft), (known) plans, and (available) resources. Goals (and plans generated in later stages of the design process) are concurrently analyzed from the point of view of the actor that owns them. Analysis determines whether a goal has to be further decomposed into subgoals, delegated to other actors, or assigned to the actor who owns it (meaning that this actor has a plan to fulfill it). A new step has been added to the algorithm in order to deal with plans. Like goals, plans are refined into subplans, composed into superplans, or delegated to other actors. During the design process, new actors may be introduced to whom goals and plans can be delegated.

The process guides the designer through a set of decisions related to the modeling of the actor’s internal goal structure and of the actor’s social setting. The Goal_Modeling procedure, in fact, proposes possible actions that the designer can take, given a goal:

<BL>
· Delegate: The goal can be delegated via a dependency relationship to another actor already existing in the domain, or to a new actor; in this second case a new actor will be added to the model and the goal is delegated to that actor. The decision to delegate should take into account available plans and resources that could be used to fulfill the goal.

· Expand: The goal is decomposed via AND/OR relationships into a set of subgoals; this action constitutes internal analysis with respect to the actor who owns the goal. The new subgoals are added to a list containing the goals that are to be further analyzed. This will result in a hierarchy of goals that allows abstract goals to be refined into more specific ones.

· Contribute: The goal can contribute to other goals of the same actor or of other actors in the domain; contributions can describe partial overlap or conflict among goals.

· Solve: This action allows associating to a given goal one or more plans owned by the actor that can solve it via a means-end relationship.</BL>
 Notice that the model.add procedure abstracts possible modeling updates the analyst will undertake. Moreover, in the description of the process we omitted some model management actions, such as the removal of entities, in order to simplify the schema of the process.

The Goal_Modeling procedure follows a top-down approach determined by the Expand step during modeling activities that allows for a passage from more abstract goals to more specific ones.

The procedure Plan_Modeling is carried out in parallel with Goal_Modeling. As with Goal_Modeling, possible decisions include expanding a plan into subplans, delegating the plan to another actor, or determining that a plan can contribute to the fulfillment of a goal. In the case of plan modeling, one possible decision can be to compose a given plan in an AND/OR fashion with other plans, thereby building higher-level plans.

After the introduction of the new Plan_Modeling activity, the analysis of the domain can proceed in two directions, in parallel: top-down modeling refines goals/plans, whereas bottom-up modeling introduces plan compositions in order to find higher-level plans that become means for solving goals.

While doing goal and plan analysis, the designer may use the Goal_Analysis procedure to automatically analyze the goal model that has been constructed so far. The output of this step consists of useful information that allows the designer to annotate the model with indications of critical relationships between entities (such as conflicts). The information can be exploited during the decision phase, for example, in order to avoid delegations between actors having conflicting goals or to assess the model in order to solve these conflicts. Goal analysis techniques have been described by Giorgini, Mylopoulos, and Sebastiani (2005), Giorgini, Nicchiarelli, Mylopoulos, and Sebastiani (2002), Giorgini, Nicchiarelli, Mylopoulos, and Sebastiani, (2003),
 and Sebastiani, Giorgini, and Mylopoulos (2004), and is also discussed in chapter 19 of this book. Goal modeling supports both qualitative and quantitative relationships between goals, and can be used to perform two types of analysis. The first type (forward reasoning) answers questions of the form “Given a goal model, and assuming that certain leaf goals are fulfilled, are all root goals fulfilled as well?” For example, suppose the goal g is AND-decomposed into g1 and g2, and that g2 contributes negatively to the satisfaction of g3.
 Forward reasoning can answer the question “What happens if goals g1 and g2 are satisfied?” (In this case, g

 will be satisfied and g3 will be denied.) The second type of analysis (backward reasoning) solves problems of the form “Given a goal model, find a set of leaf goals that together fulfill all root goals.” For instance, considering the above example, backward reasoning can answer the question “What are the subgoals that we need to satisfy in order to satisfy g and g3?” (In this case there are no subgoals that can satisfy both g and g3—g1 and g2 satisfy g, but g2 denies g3).

<H1>11.5 The Tropos Development Environment</H1>
The software development process described in section 11.4 is supported by a suite of modeling and reasoning tools and by automated model-to-model transformations techniques, which has been designed according to MDA (Model-Driven Architecture) framework ideas and standards. In this section, we give details of the TAOM4E environment,2 a tool for agent-oriented software development based on Eclipse,3 and on the GR-Tool (Giorgini, Mylopoulos, et al., 2005), a tool that supports forward and backward reasoning on the goal model structures described in the previous sections.

TAOM4E supports the designer during Tropos visual modeling, in order to cope with Tropos modeling activities. In particular TAOM4E can cover all the modeling activities in the early and late requirements and architectural design phases, making available the representation and management functionalities of the Tropos model and different views on it, such as the set of actor and goal diagrams. Moreover, the TAOM4E environment, which is based on an implementation of the Tropos metamodel, allows the representation of new entities to be included in the Tropos metamodel, as well as language variants, such as those related to trust presented by Susi, Perini, Mylopoulos, and Giorgini (2005). In addition, its use can be restricted to a subset of entities of the modeling language. The tool supports the specification of model entity properties allowing the annotation of visual models with model properties such as the invariants and creation or fulfillment conditions from the Formal Tropos (Fuxman, Pistore, Mylopoulos, & Traverso, 2001) language specification. The modeling environment manages the persistence of the model by storing it in a standard format (e.g., XML and XMI), and provides automatic model transformation into different specification languages (such as UML), enabling a model-to-model transformation approach compliant with Query/View/Transformation (QVT) requirements (Gardner, Griffin, Koehler, & Hauser, 2003), as discussed by Susi et al. (2005) and Perini and Susi (2006).

Extensibility and flexibility of the architecture, easy component integration, and the adoption of standards have been some of the main requirements of the modeling environment. An effective solution to cope with these requirements is offered by the Eclipse development platform. Indeed, this platform supports the integration of new tools through plug-ins that provide the environment with new functionalities. A plug-in is the smallest functional unit in Eclipse, and the Eclipse platform itself is organized as a set of subsystems, implemented in one or more plug-ins, built on top of a small run-time engine. The TAOM4E architecture, depicted in figure 11.7, adopts the Model-View-Controller (MVC) pattern and has been devised as an extension of two existing plug-ins. The Eclipse Modeling Framework (EMF) plug-in offers modeling and code generation facility for building tools and other applications based on a structured data model. Given an XMI model specification, EMF provides functions and run-time support to produce a set of Java classes for the model. Most important, EMF provides the foundation for interoperability with other EMF-based tools and applications. The resulting plug-in, called the TAOM4E model, implements the Tropos metamodel. It represents the model component of the MVC architecture. Second, the Graphical Editing Framework (GEF) plug-in allows developers to create a rich graphical editor around an existing metamodel. The functionality of the GEF plug-in includes standard functions (such as drag-and-drop, undo-redo, and copy-and-paste). The resulting plug-in, called the TAOM4E Platform, covers both the Controller and the Viewer components of TAOM4E. Figure 11.8 shows a snapshot of the graphical user interface, in which the diagram editor window is in the center, the project and model browsers are on the left, the entity properties window is at the bottom, and the development process is in the window on the right.

[figure 11.7 here]

[figure 11.8 here]
The goal-reasoning tool, GR-Tool4 (Giorgini, Mylopoulos, et al., 2005), supports the goal analysis step in the Tropos process, and in particular forward and backward reasoning on Tropos goal models. GR-Tool is a graphical tool that lets an analyst create and revise goal models and run the algorithms for forward and backward reasoning, in parallel with the design activities carried on in TAOM4E. The algorithms for forward reasoning have been fully developed in Java and are embedded in the GR-Tool. Backward reasoning is supported by a software component called GOALSOLVE, which takes as input a goal model, a list of desired goal labels, and, optionally, a list of user desiderata and constraints. It outputs a combination of satisfiability/deniability labels for goals that together lead to the desired goal labels.

<H1>11.6 Related Work</H1>
Over the last few years, many agent-oriented software engineering methodologies have been proposed and compared (e.g., Henderson-Sellers & Giorgini, 2005; Sturm & Shehory, 2003). An analysis of three of these methodologies—GAIA (Zambonelli, Jennings, & Wooldridge, 2003), ADELFE (Bernon, Gleizes, Peyruqueou, & Picard, 2002), and PASSI (Chella, Cossentino, & Sabatucci, 2004)—has been presented in Bernon, Cossentino, Gleizes, Turci, and Zambonelli (2004). This analysis also considers interoperability issues between different methodologies. In this section we extend this analysis to include Tropos, while focusing on four dimensions: agent structure, agent interaction, agent organization, and agent development. (An example of the last dimension is CASE tools in support of the development process.) Table 11.1 gives an overview of the comparison.

In GAIA, an agent (Agent Type) is specified as a composition of roles. Each role is responsible for a specific set of activities associated with the role. Goals cannot be explicitly modeled, but they are implicitly used to characterize a role. In ADELFE the concept of agent (Cooperative Agent) is defined as the composition of aptitudes, skills, characteristics, communications, and representations. The framework does not explicitly support the concept of role. Goals are implicitly used to identify agent skills, but are not representable. Likewise, plans are not representable because they are run-time, rather than design-time, artifacts. In PASSI, an agent (Agent) is defined as the composition of roles, and each role is defined as the manifestation of agent activity in some scenario. Goals are implicitly considered when specifying nonfunctional requirements attached to agent duties. In Tropos, the concept of Actor generalizes the concepts of agent and role (or set of roles); an actor can have individual goals and is able to execute plans to satisfy goals. Goal modeling in Tropos drives the modeling process, as discussed in section 11.4, and allows us to represent goal decomposition, means to satisfy a goal, or contributions toward goal satisfaction.

ADELFE, GAIA, and PASSI use similar concepts to specify the interactions between agents, or between an actor and the environment.
 Basically, they use the concepts of communication, role, and protocol. Tropos adopts the Agent Unified Modeling Language (AUML) for this. Specifically, Tropos adopts agent interaction diagrams, described by Bauer, Müller, and Odell (2001) and by Odell, Van Dyke Parunak, and Bauer (2000)—proposed by FIPA (2001) and the OMG Agent Work Group
 —in which agent communicative acts are represented as messages in UML sequence diagrams.

In PASSI, agent organization aspects are modeled implicitly in terms of services that can be accessed by agents in a given scenario. GAIA treats the concept of organization as primary, and organization rules specify constraints that an organization should observe. In ADELFE, agent organizations and societies emerge from evolving interactions between agents that are compliant with cooperation rules. In Tropos the strategic dependencies between actors in a domain make explicit the organizational dimension and provide basic entities to model organizational patterns (Kolp, Giorgini, & Mylopoulos, 2001). Moreover, the Tropos metamodel has been extended to include concepts of business processes and security.

Both ADELFE and PASSI provide CASE tools to support modeling and analysis. Tropos provides a range of modeling and analysis tools,5 as well as code generation tools (Do, Kolp, Faulkner, & Pirotte, 2004). This comparison suggests that different methodologies may allow us to model different properties of a software system (e.g., organizational aspects, communications, and protocols). On the other hand, the comparison demonstrates that even though their metamodels overlap, shared concepts are treated differently by the four methodologies.

Finally, other related work on i* and Tropos metamodels is worth mentioning in the context of this comparison. The i* metamodel (Yu, 1995) is the basis for the Tropos metamodel discussed here. Several extensions of the i* metamodel have been proposed in the literature. For instance, Ayala, Cares, Carvallo, Grau, Haya, Salazar, Franch, Mayol, and Quer
 (2005) propose an i* metamodel extension supporting the task of COTS selection, and in Franch (2005) a methodology for COTS selection is specified that addresses the selection problem as a process of matching among an organizational model represented in terms of goal models, market segment models that provide a shared view to all the packages available in a given market segment, and software package models.

<H1>11.7 Conclusions and Future Work</H1>
We have presented an overview of the Tropos methodology, design process, and supporting environment, focusing on the definition of the metamodel and on the design process that supports the analyst while building a Tropos model. Like other software development methodologies, Tropos supports a variety of models that need to be analyzed for syntactic and semantic consistency. The Tropos metamodel serves as a basis for enforcing syntactic consistency. A set of tools has been developed for checking various forms of semantic consistency, such as the GR-Tool, the T-Tool, the SR-Tool, and others. The Tropos design process is intended to guide the designer throughout the design process, from early requirements analysis to implementation.

Our current work extends the Tropos environment described here along several dimensions. We are refining the metamodel in order to include new concepts, such as those related to security and trust (Giorgini, Massacci, Mylopoulos, & Zannone, 2004, 2005). At the same time, we are refining and extending the Tropos design process in order to better support different design decisions. Moreover, we are currently improving the traceability of the model entities along the whole development process via the refinement of the concept of system capabilities as described by Penserini, Perini, Susi, and Mylopoulos (2006); in parallel, we are extending the Tropos development environment to support the new concepts and analysis tools.

<NOTES>
<REF>
References</REF>
Ayala, C.P., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol, E., & Quer, C. (2005).
 A comparative analysis of i*-based agent-oriented modeling languages. In W.C. Chu, N. Juristo Juzgado, and W.E. Wong (eds.), Proceedings of the 17th International Conference on Software Engineering and Knowledge Engineering [SEKE ’05] (pp. 43–50). Skokie, IL: KSI Press.

Bauer, B., Müller, J.P., & Odell, J. (2001). Agent UML: A formalism for specifying multiagent interaction. In P. Ciancarini and M. Wooldridge (eds.), Agent-Oriented Software Engineering: First International Workshop [AOSE’00] Revised Papers (pp. 109–120).
Lecture Notes in Computer Science 1957. Berlin: Springer.

Bergenti, F., & Poggi, A. (2001). A development toolkit to realize autonomous and interoperable agents. In Proceedings of the 5th International Conference on Autonomous Agents (pp. 632–639). New York: ACM Press.
Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., & Zambonelli, F. (2004). A study of some multi-agent meta-models. In J. Odell, P. Giorgini, and J.P. Müller (eds.), Agent-Oriented Software Engineering V: 5th International Workshop, Revised Selected Papers (pp. 62–77). Lecture Notes in Computer Science 3382. Berlin: Springer.

Bernon, C., Gleizes, M.-P., Peyruqueou, S., & Picard, G. (2002). ADELFE, a methodology for adaptive multi-agent systems engineering. In 3rd International Workshop: Engineering Societies in the Agents World [ESAW’02] Revised Papers (pp. 70–81).
 Lecture Notes in Computer Science 2577. Berlin: Springer.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999).
 The Unified Modeling Language User Guide. Reading, MA: Addison-Wesley.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004). Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.

Castro, J., Kolp, M., & Mylopoulos, J. (2002). Towards requirements-driven software development methodology: The Tropos project. Information Systems, 27(2), 365–389.

Chella Massimo, A., Cossentino, M., & Sabatucci, L.
 (2004). Tools and patterns in designing multi-agent systems with PASSI. World Scientific and Engineering Academy and Society (WSEAS) Transactions on Communications, 3(1), 352–358.

Chung, L.K., Nixon, B.A., Yu, E., & Mylopoulos, J. (2000). Non-functional Requirements in Software Engineering. Norwell, MA: Kluwer Academic.

Coburn, M. (2000).
 JACK Intelligent Agents User Guide. AOS Technical Report. Carlton, South Australia:
 Agent Oriented Software.

DeMarco, T. (1978). Structured Analysis and System Specification. New York: Yourdon Press.

Do, T.T., Kolp, M., Faulkner, S., & Pirotte, A. (2004). Agent oriented design patterns. In I. Seruca, J. Filipe, S. Hammoudi, and J. Cordeiro (eds.), Proceedings of the 6th International Conference on Enterprise Information Systems [ICEIS 2004] (vol. 3, pp. 48–53). Setúbal, Portugal: INSTICC Press.

Finin, T., Labrou, Y., & Mayfield, J. (1997). KQML as an agent communication language. In J.M. Bradshaw (ed.), Software Agents (pp. 291–316). Menlo Park, CA: AAAI Press.

The Foundation for Intelligent Physical Agents (FIPA). (2001). The Foundation for Intelligent Physical Agents. Retrieved July 9, 2001, from the FIPA Web site: http://www.fipa.org.
Franch, X. (2005). On the lightweight use of goal-oriented models for software package selection. In O. Pastor and J.F. e Cunha (eds.), Proceedings of the 17th International Conference on Advanced Information Systems Engineering [CAiSE 2005] (pp. 551–566). Lecture Notes in Computer Science3520. Berlin: Springer.

Fuxman, A., Pistore, M., Mylopoulos, J., & Traverso, P. (2001). Model checking early requirements specification in Tropos. In Proceedings of the 5th IEEE International Symposium on Requirements Engineering [RE’01] (pp. 174–181). Los Alamitos, CA: IEEE Computer Society Press.

Gardner, T., Griffin, C., Koehler, J., & Hauser, R. (2003). A review of OMG MOF 2.0 query/views/transformations submissions and recommendations towards the final standard. In A. Evans, P. Sammut, and J.S. Willans (eds.), Proccedings of the Firs tInternational Workshop on Metamodelling for MDA (pp. 178–197). http://www.cs.york.ac.uk/metamodel4mda/onlineProceedingsFinal. pdf.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2004). Requirements engineering meets trust management: Model, methodology, and reasoning. In Proceedings of iTrust’04 (pp. 176–190). Lecture Notes in Comptuer Science 2995. Berlin: Springer.
Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2005). Modeling security requirements through ownership, permission and delegation. In Proceedings of the 13th IEEE Requirements Engineering Conference [RE’05] (pp. 167–176). Los Alamitos, CA: IEEE Computer Society Press.
Giorgini, P., Mylopoulos, J., & Sebastiani, R. (2005). Goal-oriented requirements analysis and reasoning in the Tropos methodology. Engineering Applications of Artificial Intelligence, 18(2), 159–171.

Giorgini, P., Nicchiarelli, E., Mylopoulos, J., & Sebastiani, R. (2002). Reasoning with goal models. In Proceedings of the 21st International Conference on Conceptual Modeling [ER’02] (pp. 167–181). Lecture Notes in Computer Science 2503. Berlin: Springer.
Giorgini, P., Nicchiarelli, E., Mylopoulos, J., & Sebastiani, R. (2003).
 Formal reasoning techniques for goal models. Journal of Data Semantics, 1, Lecture Notes in Computer Science 2800, 1–20.

Henderson-Sellers, B., & Giorgini, P. (eds.). (2005). Agent-Oriented Methodologies. Hershey, PA: Idea Group.

Kolp, M., Giorgini, P., & Mylopoulos, J. (2001). A goal-based organizational perspective on multi-agents architectures. InJ.-J.C. Meyer and M. Tambe (eds.), Intelligent Agents VIII: 8th International Workshop [ATAL’01] Revised Papers (pp. 128–140). Lecture Notes in Computer Science 2333. Berlin: Springer.

Labrou, Y., Finin, T., & Peng, Y. (1999). The current landscape of agent communication languages. Intelligent Systems, 14(2), 45–52.

Mellor, S.J., Scott, K., Uhl, A., & Weise, D. (2004). MDA Distilled. Reading, MA: Addison-Wesley.

Odell, J., Van Dyke Parunak, H., & Bauer, B. (2000). Extending UML for agents. In G. Wagner, Y. Lespérance, and E. Yu (eds.), Agent-Oriented Information Systems at the 17th National Conference on Artificial Intelligence. Proceedings of AOIS 2000 at CAiSE’00 (pp. 3–17). Berlin: iCue.
 Penserini, L., Perini, A., Susi, A., & Mylopoulos, J. (2006). From stakeholder intentions to software agent implementations. In E. Dubois and K. Pohl (eds.), Advanced Information Systems Engineering: Proceedings of the 18th International Conference [CAiSE’06] (pp. 465–479). Lecture Notes in Computer Science 4001. Berlin: Springer.
Perini, A., & Susi, A. (2006). Automating model transformations in agent-oriented modelling. In J.P. Müller and F. Zambonelli (eds.), Agent-Oriented Software Engineering VI: Proceedings of the 6th International Workshop [AOSE 2005], Revised and Invited Papers (pp. 167–178
). Lecture Notes in Computer Science 3950. Berlin: Springer.

Sebastiani, R., Giorgini, P., & Mylopoulos, J. (2004). Simple and minimum-cost satisfiability for goal models. In A. Persson and J. Stirna (eds.), Proceedings of the 16th International Conference on Advanced Information Systems Engineering [CAISE’04] (pp. 20–33).
 Lecture Notes in Computer Science 3084. Berlin: Springer.
Sturm, A., & Shehory, O. (2003). A framework for evaluating agent-oriented methodologies. In P. Giorgini, B. Henderson-Sellers, and M. Winikoff (eds.),
 Proceedings of the 5th International Workshop on Agent- Oriented Information Systems [AOIS’03], Revised Selected Papers (pp. 94–109). Lecture Notes in Computer Science 3030. Berlin: Springer.

Susi, A., Perini, A., Mylopoulos, J., & Giorgini, P. (2005). The Tropos metamodel and its use. Informatica, 29(4), 401–408.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing Object-Oriented Software. Upper Saddle River, NJ: Prentice Hall.

Yourdon, E., & Constantine, L. (1979). Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design. Upper Saddle River,
 NJ: Prentice Hall.

Yu, E. (1995). Modelling strategic relationships for process reengineering. Ph.D. thesis, Department of Computer Science, University of Toronto.
Zambonelli, F., Jennings, N.R., & Wooldridge, M.J. (2003). Developing multiagent systems: The Gaia methodology. ACM Transactions on Software Engineering and Methodology, 12(3), 317–370.

	Agent Structure
	ADELFE
	GAIA
	PASSI
	Tropos

	Agent
	Cooperative Agent
	Agent Type
	Agent
	Actor

	Role
	Not explicit
	Role in a organization
	Role in a scenario
	Specialization of Actor

	Goal
	Not explicit
	Not explicit
	Not explicit
	Goal and goal relationships

	Plan
	Not explicit
	Activity of a Role
	Ontology of Action
	Plan and plan relationships

	Agent Interaction
	
	
	
	

	Communication & Protocols

	Agent Communication, Agent Interaction Protocols associated with communication
	Communication associated to a role, protocols associated with a communication
	Communication associated with a role, Messages as components of communication
	Not in the current metamodel. AUML interaction diagram UML sequence diagram messages for communication acts

	Agent Organization
	
	
	
	

	Structure & Rules

	Cooperation rules

	OrganizationStructure, Organization, OrganizationalRule

	Not explicit
	Strategic Dependency Ownership, Delegation, and Trust Organizational patterns

	Agent Development
	
	
	
	

	Modeler
	Open-Tool
	—
	PASSI tool kit
	TAOM4E, OME,

DW-Tool, ST-Tool

	Analysis tools
	Open-Tool
	—
	PASSI tool kit
	GR-Tool, DW-Tool,

ST-Tool,T-Tool

	Code Generation
	—
	—
	PASSI tool kit
	TAOM4E add-ons

Table 11.1 Comparison of the characteristics of four agent-oriented methodologies

<figure captions>

Figure 11.1 The Tropos five-phases process: Activities and artifacts characterizing every phase.

Figure 11.2 Tropos metamodel: Actor diagram entities and relationships.

Figure 11.3 A Tropos actor diagram.

Figure 11.4 Tropos metamodel: Goal diagram entities and relationships.

Figure 11.5 Goal diagram for the actor PC Member.

Figure 11.6 The Tropos design process.

Figure 11.7 TAOM4E Tropos modeling tool architecture.

Figure 11.8 The graphical user interface of TAOM4E.

�Author: Should the year be 1998?

�Author: Should the year be 1998?

�Author: Should the year be 1999?

�Author : Is “that instantiate” correct?

�Author: Please add Dia to the References, or delete it here.

�No comment

�Author: Does the PC Chair supply papers for review and the forms for the review, or does he supply the papers and review the forms? Please clarify.

�Author: Should “decomposed” be deleted? It doesn’t seem to belong here.

�Author: Should the year be 2004?

�Author: Should 1, 2, and 3 be subscripts? See p. 683. See also the rest of this paragraph.

�No query

�Author: Should this be either g1 or g2? See also end of paragraph.

�Author: Is “between…environment” correct as edited?

�Author: Is there an item relatd to OMG that should be added to the References?

�Author: Is the order of authors correct? Franch has been moved.

�Author: Is the moving of Franch to follow Salazar correct?

�Author: Should the pages be 91-103?

�Author: Should the pages be 156-169?

�Author: Should the year be 1998?

�Author: Is the name Chella Massimo correct?

�Author: Should the city be Boston?

�Author: Should the year be 1999?

�Author: Is it correct that Carlton is in the state of South Australia?

�Author: This item is also available at � HYPERLINK "http://www.omg.org/docs/ad/03-08/02.pdf" ��http://www.omg.org/docs/ad/03-08/02.pdf�. Should that be included?

�Author: Should the year be 2004?

�Author: Please clarify: Is the journal also LNCS 2800?

�Author: Should the concluding page be 35?

�Author: Is it correct that Winikoff is the last editor ?

�Author: Is the shortened journal title ok?

�No comment

�Author: Should the city be Englewood Cliffs, NJ?

�Author: Should the pages be 417-470?

�. Tropos is derived from the Greek ((oπo(, which means “way of doing things”; also (((((, which means “turn” or “change.”

2. See also � HYPERLINK "http://sra.itc.it/tools/taom4e" ��http://sra.itc.it/tools/taom4e�.

3. See also � HYPERLINK "http://www.eclipse.org" ��http://www.eclipse.org�.

4. See also � HYPERLINK "http://sesa.dit.unitn.it/goaleditor/" ��http://sesa.dit.unitn.it/goaleditor/�.

5. Details can be found at � HYPERLINK "http://www.troposproject.org" ��http://www.troposproject.org�.

”.

�. See also http://sra.itc.it/tools/taom4e

�. See also http://www.eclipse.org

�. See also http://sesa.dit.unitn.it/goaleditor/

�. Details can be found at http://www.troposproject.org

