PAGE
165

<CN> 3</CN>
<CT>Using i* in Requirements Projects:</CT> <CS>Some Experiences and Lessons</CS>
<CA>Neil Maiden, Sara Jones, Cornelius Ncube, and James Lockerbie</CA>
<1>3.1 Introduction</1>
The i* framework has been available in research communities for more than ten years, but it has not been applied widely in industrial requirements projects. This is despite undoubted strengths, which include a simple but formal and stable semantics, a graphical modeling notation that is simple to use, models that are amenable to computational analysis, and applicability in both agent-oriented and goal-oriented requirements methods. Furthermore, i*’s capabilities to bridge the gap between organizational, sociotechnical, and software systems, by modeling goal-based dependencies between organization, work role, and software actors, make it increasingly important in a world in which we depend on computers in many aspects of our everyday lives. Based on these strengths, we sought to integrate the i* framework into new requirements processes rolled out as part of our transfer of requirements knowledge from research to practice.

This chapter reports three major industrial projects in which we have applied the i* approach to specify complex sociotechnical systems. It outlines the rationale for using i* in these projects, how i* was integrated with other requirements modeling and specification techniques, and what happened as a result of applying i*. The chapter ends with ten lessons that we learned about using i* effectively in industrial projects, and the benefits that can be gained from its effective use. We believe that these lessons have broader implications for the uptake of requirements modeling techniques.

The remainder of the chapter is in four sections. Section 3.2 describes how we integrated i* into our broader RESCUE requirements process. Section 3.3 describes three European air traffic management projects that i* and RESCUE were applied to, the i* models that were produced, and the benefits of these models to the requirements specifications produced in each project. Section 3.4 reports ten lessons we learned that readers can apply to their own requirements processes and projects. The chapter ends with a description of how these lessons have influenced our own research agenda.

<H1>3.2 i* in the RESCUE Process</H1>
The RESCUE process was developed in response to a request from Eurocontrol, the organization overseeing European airspace, to deliver new and more effective processes for discovering and specifying requirements for new air traffic management systems (Maiden, Jones, & Flynn, 2003). Such systems are sociotechnical systems that introduce new technologies to support the redesign of human work—typically that of air traffic controllers. As such RESCUE needed to acquire, describe, model, and analyze requirements on organizations, on work undertaken by individuals who fulfill roles in these organizations, and on software systems that will bring about changes in the work. This need to model and specify sociotechnical systems was the principal reason for selecting i* to be an important component of RESCUE.

RESCUE supports a concurrent engineering process in which different modeling and analysis processes take place in parallel. The concurrent processes are structured into four streams, as shown in figure 3.1.

[Figure 3.1 Here]

Each stream has a unique and specific purpose in the specification of a sociotechnical system:

<NL>
1. Human activity modeling provides an understanding of how people work, in order to baseline possible changes to it (Vicente, 1999).
2. System modeling enables a project team to model the future system boundaries, actor dependencies, and, most important, system goals using the i* framework (Yu & Mylopoulos, 1994).
3. Use-case modeling and scenario-driven walk-throughs enable the team to communicate more effectively with stakeholders and acquire complete, precise, and testable requirements from them (Maiden, 2004).
4. Managing requirements enables the team to handle the outcomes of the other three streams effectively, as well as to impose quality checks on all aspects of the requirements document (Robertson & Robertson, 1999).</NL>
Subprocesses of these four streams are coordinated using five synchronization stages that provide the project team with different perspectives from which to analyze system boundaries, goals, and scenarios. The five key synchronization points occur at the ends of RESCUE’s five stages, and are implemented as one or more workshops with deliverables to be signed off by stakeholder representatives:

<NL>
1. The boundaries point, where the team establishes first-cut system boundaries and undertakes creative thinking to investigate these boundaries.
2. The work allocation point, where the team allocates functions among actors according to boundaries, and describes interactions and dependencies between these actors.
3. The generation point, where required actor goals, tasks, and resources are elaborated and modeled, and scenarios are generated.
4. The coverage point, where stakeholders have walked through scenarios to discover and express all requirements so that they are testable.
5. The consequences point, where stakeholders undertake walk-throughs of the scenarios and system models to explore impacts of implementing the system as specified on its environment.</NL>
The synchronization checks applied at these five points were designed using a RESCUE metamodel of human activity, as well as use-case and i* modeling concepts constructed specifically to design the synchronization checks. Maiden, Jones, Manning, Greenwood, and Renou (2004)
 present more information about these synchronization stages and their effectiveness.

The next section describes how we applied RESCUE and the i* framework in three different air traffic management projects.

<H1>3.3 Three RESCUE Projects</H1>
This section reports three previous air traffic management projects in which i* was applied to model and analyze requirements for new sociotechnical systems: CORA-2, EASM, and DMAN. Each project is described, the use of i* modeling is reported, and example i* models from each project are described and reviewed as a basis for the lessons learned in the remainder of the chapter.

<H2>3.3.1 i* Modeling in the CORA-2 Project</H2>
In 2001 we worked with Eurocontrol to design and implement RESCUE to discover stakeholder requirements for CORA-2 (Conflict Resolution Assistant), a system to provide computerized assistance to air traffic controllers to resolve potential conflicts between en route aircraft. The project team used three creativity workshops to discover new concepts and requirements for CORA-2 (Maiden, Manning, Robertson, & Greenwood, 2004b), ART-SCENE scenario walk-throughs to discover missing requirements for the system (Mavin & Maiden, 2003), and i* modeling to understand the relationships between the CORA-2 system and other systems and human actors in the air traffic control tower.

CORA-2 was the first project to which RESCUE was applied, and the five synchronization stages described in the previous section were not implemented. Instead, the i* models were used to discover important requirements on the entire CORA-2 system, and to review system boundaries. One analyst produced both an SD and an SR model without explicit guidelines from RESCUE, using published material on i* (e.g., Yu & Mylopoulos, 1994) to develop each model.

A slightly revised SD model is shown in figure 3.2. It specifies nine actors and twenty-four dependencies between the actors. It specifies the CORA-2 software system (in the center), adjacent software systems such as the Flight Data Processing System and Conflict Detector, and human roles that are redesigned, such as Controllers who are using the CORA-2 software. The original SD model had some interesting properties. All of the dependencies were expressed as either goal-type or resource-type dependencies, such as Controller depends upon CORA-2 to achieve the goal Chosen resolution implemented, and CORA-2 depends on Conflict Detector to have the resource Detected Conflicts. During retrospective questioning the analyst who created the SD model revealed that the resource-type dependencies were derived from direct translation of data flows from an informal context diagram of the CORA-2 system into actor dependencies. The presence of goal dependencies was indicative of the strong focus on functional rather than nonfunctional requirements during that phase of CORA-2 requirements modeling. This explained the absence of softgoals in the model, although the ambiguous specification of some of the goals led us to express a couple of them as softgoals in our revised model.

[Figure 3.2 Here]

The second feature of the SD model was its centralizing structure. All but two of the twenty-four dependencies include the new CORA-2 software system as either a depender or a dependee. No dependencies between other software-based systems upon which CORA-2 depended were modeled as we might have expected when specifying a sociotechnical system. One reason for this was the narrow view of CORA-2 held by some members of the project team. CORA-2 had originally been conceived as a software component without consideration of the wider sociotechnical redesign of controller work. The introduction of i* modeling challenged this view in the project, but a change in this view did not manifest itself in the resulting models. The third feature of the SD model was the failure to separate out the different human roles of controllers who would work with the CORA-2 software into distinct and separate actors on the model. The analysts designed the CORA-2 software system to be used in different ways by pairs of controllers—planning controllers and tactical controllers—who work together to control the air traffic in a sector. Clearly these two controller roles depend upon on one another to resolve aircraft conflicts safely and efficiently; however, these important dependencies were not modeled explicitly in i* for the CORA-2 system. Again, one reason for this was that the narrow, software-oriented view of CORA-2 at the beginning of the project. i* provided important constructs for directly challenging this view, but once again changes to the view were not manifest in the models that resulted.

Although the model was accepted by the project team and proved to be useful during the CORA-2 requirements development process, it had properties that suggested potential extensions to RESCUE that improve i* system modeling. These included guidance to separate out human roles into different actors in a system model, and to model dependencies as softgoal and goal dependencies rather than as resource dependencies that approximate data flows between actors. These guidelines were included in subsequent versions of RESCUE and are explored later in the lessons learned.
<H2>3.3.2 i* Modeling in the EASM Project</H2>
In 2004 we worked with the UK’s National Air Traffic Services (NATS) to apply the latest version of RESCUE to the specification of the UK’s Enhanced Air Space Management system (EASM). EASM was a new sociotechnical system that was, in essence, a scheduling system that would enable more effective, longer-term planning of UK airspace use. The project team used one creativity workshop to discover new concepts and requirements for EASM, ART-SCENE scenario walk-throughs to discover missing requirements for the system, and context and i* modeling of the new EASM system to understand its actors and boundaries. of the EASM system. A later version of RESCUE provided more concrete guidance for discovering actors, modeling goal and softgoal dependencies, and specifying dependencies more precisely.

One analyst produced the first version of the SD model using RESCUE guidelines, shown in figure 3.3. The model was developed in two phases. In the first, a workshop was held with key stakeholders to discover actor dependencies that were listed in a dependency table described in section 4.3. In the second phase, one analyst used the table to construct a graphical i* SD model that was analyzed and presented to stakeholders for validation and analysis. Analysis of this graphical model revealed, to the team’s surprise and for the first time, that EASM had been modeled as three separate systems that had no dependencies between them. The first system was associated to the AMC actor and is shown in the upper left-hand side of figure 3.3. The first system had five inter-dependent actors and no strategic dependencies on other modeled actors. The second system, shown in the upper right-hand side of the figure, showed two dependencies between the ATC and FDP system actors, but again no strategic dependencies on other EASM system actors. The third system, in the lower portion of the figure, related to dependencies based on use of the new ASM Support System.

[Figure 3.3 Here]

These emergent model features were explored through further analysis, in particular to discover whether EASM was indeed three independent, separate strategic systems. The answer was no, and further development of the model took place. The final version of the EASM SD model incorporated several enhancements. In response to missing strategic dependencies, five new goal dependencies between ASM Function (an actor changed from the first version of the model) and ASM Support System were added to reflect new relationships identified in other EASM system models. Similarly, new dependencies were added between FDP Systems, the ASM Support System and EAD, and between CFMU Systems and the ASM Function. Elsewhere in the model, actor roles were clarified—for example, ATC evolved into Civilian and Military ATC, which was important—civil and military controllers had different goals and softgoals on the EASM system. Other dependencies were changed to reflect a refined understanding of actor roles and the relationships between them. The final model is shown in figure 3.4.

[Figure 3.4 Here]

To conclude, analyzing and reviewing the first version of the EASM SD model identified incorrect and missing dependencies that were not detected from the initial dependency tables. The SD model was evolved in several iterations from the first to the final version. The simple i* SD notation facilitated evolution and change of the model.

<H2>3.3.3 i* Modeling in the DMAN Project</H2>
In 2003 we worked with NATS to apply a version of RESCUE to the specification of DMAN, a sociotechnical system for scheduling and managing the departure of aircraft from major European airports such as Heathrow and Charles de Gaulle. A requirements team that included engineers from UK and French air traffic service providers modeled the DMAN system and requirements. The project team applied human activity modeling to understand the current system context, one creativity workshop to discover new concepts and requirements (Maiden, Manning, Robertson, & Greenwood, 2004), ART-SCENE scenario walk-throughs to discover missing requirements for the system (Maiden & Robertson, 2005), and context and i* modeling to understand the actors and boundaries of the DMAN system (Maiden, Jones, Manning, et al., 2004).
 Once again, a later version of RESCUE provided more concrete guidance for discovering actors, modeling goal and softgoal dependencies, and specifying the dependencies more precisely. The team developed one SD model and one complex SR model of the future DMAN system.

Figure 3.5 shows the SD model for the DMAN system. The SD model specified sixteen actors with fifty-five dependencies between the actors. It specifies other systems that either depend on or are depended on by DMAN (e.g., the TACT and A-SMGCS systems that are not elaborated on in this chapter), as well as human roles that depend on DMAN to do their work (e.g., Runway ATCo and Departure Clearance ATCo). For example, the SD model specifies that DMAN depends on TACT to achieve the goal CTOT and slot messages updated, and A-SMGCS depends on DMAN to undertake the task Update taxi time estimates. Likewise, DMAN depends on the Tower Departure Sequencer ATCo to have the Departure sequence manual update, and the Departure Clearance ATCo depends on DMAN to achieve the softgoal Workload not increased.

[Figure 3.5 Here]

The DMAN SD model warrants some comparison with the earlier CORA-2 SD model. First, the DMAN SD model includes more goal and fewer resource dependencies, reflecting an increased goal modeling effort. Second, in spite of the RESCUE guidelines, the SD model includes only one dependent softgoal: Workload not increased. This inclusion reflected a concern that new departure scheduling technologies should not increase the workload overall. This is not to say that other softgoals, such as performance and reliability, were not important. However, the analysts did not consider these softgoals to be as important to decision-making about the design of DMAN as Workload not increased, and hence they were not included in the model. Third, the model reflects the specification of a sociotechnical rather than a software system, through the inclusion of more human actor roles than the CORA-2 system has, and more work-related dependencies between these human actor roles.

Figure 3.6 shows part of the DMAN SR model for the Runway ATCo actor. This actor undertakes one major task—Control flight around the runway—that is decomposed into other tasks such as Issue lineup clearance and Issue takeoff clearance. The former task can be further decomposed into subtasks and subgoals that, if undertaken and achieved, contribute negatively to the achievement of the most important softgoal: that Workload should not be increased. Furthermore, to do the Issue lineup clearance task, Runway ATCo depends on the resource Flight information from the Electronic Flight Strip. This demonstrates how the SR model was used to refine one important softgoal—Workload not increased—to explore in more detail contributions of different new work tasks to the achievement or otherwise of that softgoal.

[Figure 3.6 Here]

To conclude, i* modeling of DMAN was instrumental in specification of DMAN as a sociotechnical rather than a software system, in contrast to earlier experiences with CORA-2. The SD model identified different types of actors and adjacent systems upon which requirements were specified in the DMAN requirements specification. SR models were important for modeling actor behavior and exploring important contributions to the satisfaction of important softgoals. Later in the project, the DMAN team used the DMAN SD model to generate candidate requirements statements directly, as we report in one of following lessons.

<H2>3.3.4 i* Modeling Experiences: Conclusions</H2>
i* models were successfully developed and applied in the CORA-2, EASM, and DMAN projects. We also successfully applied i* in GOMOSCE (Ncube & Maiden, 2006), a project funded by the Defence Science and Technology Laboratory, to explore how to make goal-based trade-offs regarding architectures for network-enabled capabilities in military domains. This and the air traffic management projects led us to draw ten lessons that were applied successively in these projects. The remainder of this chapter summarizes these lessons and reports them to be learned and applied by others.

<H1>3.4 Lessons Learned</H1>
i* modeling in the three reported air traffic management system projects led the RESCUE process team to draw important lessons that have led to revisions of RESCUE. We divide these lessons into two types: lessons that describe how to apply i* modeling in real-world requirements projects, and lessons that report the benefits that can accrue from i* system modeling. First, we report lessons about how to apply i*, and in particular how to get started and produce some first-cut i* models, which in our experience is more difficult than it might at first appear.

<H2>3.4.1 Kick-Start i* Modeling with Context Modeling</H2>
One problem that the published i* framework does not address directly is where to start i* modeling. System goal modeling can be undertaken in many different contexts: to explore incremental work change, to drive product innovations, or to inform architectural trade-offs. i* models developed for each type of analysis will be different. Hence, it is difficult to say, a priori, where to start i* modeling. Furthermore, the focus on modeling rigor imposed by i* semantics often makes it difficult to find the most important actors and dependencies from which to produce a first-cut SD model. Our solution is to produce a context model beforehand, then use it to guide the development of the first-cut SD model.

A context diagram is, in essence, a data flow diagram. In its simplest form the system that is to be designed and developed is represented by a circle, with the name of that system written in the circle. Actors, which can be human roles, other systems, or organizations with which the new system will interact, are specified outside the circle. An interaction is represented by an arrow as a flow of data or information, either between an actor and the new system, or between actors. An arrowhead indicates the direction of the flow of information, and arrows are labeled to describe the information that is flowing.

In RESCUE we have extended the context diagram by defining different types of system boundaries. The reason is simple. When you design a complex system, some things are clearly within your design remit and others are clearly outside it.
 For example, in a simple automatic teller system, the design of the system is within the design remit of the bank’s IT department—that is, the IT department can redesign the teller system. It also has the remit to design how a bank teller, its employee, refills the machine every morning. Other things are clearly beyond its design remit—for example, the design of banknotes—and these things the bank’s IT department must treat as domain assumptions during the redesign. However, in sociotechnical systems there is a gray area of things that you cannot directly redesign, but you can seek to influence the behavior of using your design. The obvious example in this domain is the client. Although a bank cannot make a client behave in a certain way (at least not without breaking the law), it can seek to influence how a client uses an automatic teller machine through the design of the machine by, for example, including additional services, improving accessibility, or reducing charges.

In RESCUE we explore this gray area by defining four types of systems:

<NL>
1. Technological systems, expressed in terms of software and hardware actors
2. The redesigned work system, expressed primarily in terms of human actors
3. Other hardware, software, and people systems that are directly influenced by the redesign of the new system

4. External systems beyond the boundaries of the sociotechnical system.</NL>
What you get by producing the context diagram first is a clearer understanding of the system itself prior to producing the more complex SD model. In short, the context diagram is a prototype SD model.

Figure 3.7 shows a context model developed retrospectively for the CORA-2 system shown in figure 3.2. In the center circle is the new CORA-2 software system. At the next level are two human roles—Planner Controller and Tactical Controller—the work of which was to be explicitly and deliberately redesigned by the project team to keep in line with the new CORA-2 software system. At the third level are other software systems that, although beyond the design remit of the CORA-2 team, the team sought to influence their design. These systems included CORA-1 (the system that detected en route conflicts that the CORA-2 system resolved) and TED (the trajectory editor). The CORA-2 team realized that CORA-2 would be able to compute possible conflict resolutions if the CORA-1 system detected the conflicts in certain ways and provided certain information. Therefore, it sought to influence the design or redesign of CORA-1. It did this during the requirements process by generating and specifying requirements on CORA-1 upon which CORA-2 requirements were dependent. At the fourth level are the systems and other actors that are beyond the design remit and influence of the current project.

[Figure 3.7 Here]
<H2>3.4.2 Think About Adjacent Systems</H2>
Neither context diagramming nor the i* framework offers strong advice for discovering actors. Therefore, to supplement the use of context diagrams for getting started, we draw on the notion of adjacent systems from Robertson and Robertson (1999). An adjacent system is one upon which the system or product being specified might be dependent, either for information or for services. Adjacent systems are typically one class of dependent actors in an SD model. However, Robertson and Robertson go one step farther and characterize three different types of adjacent systems that are useful for discovering and modeling actors in SD models. These types are active, autonomous, and cooperative adjacent systems, and each type has implications for i* SD modeling. Each is described in turn.

An active adjacent system behaves dynamically, and interacts with or participates in the new system. Active adjacent systems are usually roles that are fulfilled by humans. They initiate events, and when they do, have some objective in mind. They can work with the system or product being specified by exchanging data and other signals until their objective is satisfied. We can predict the behavior of an active adjacent system within reason, and expect it to respond to signals from the system or product being specified. As long as there is some perceived benefit to the adjacent system, it will obey (more or less) instructions from the system or product being specified. Furthermore, an active adjacent system is likely to respond in a suitably short time, not to delay the transaction any more than necessary. This has implications for types of i* dependencies that will exist between actors. Active adjacent actors in SD models often fulfill depender roles and have goal and softgoal dependencies on other actors.

An autonomous adjacent system is some external body, such as another company, a department, or a customer who is not directly interacting with the sytem or product being specified. It acts independently of the system or product being studied. Autonomous adjacent systems communicate through one-way data flows. Again this has implications for types of i* dependencies that will exist between actors. Given the relatively weak coupling with an autonomous adjacent system, actors will depend on such systems for resources that might contribute to the achievement of a goal or softgoal, but will not depend directly on such systems for goal or softgoal achievement. Hence, expect to model resource-type dependencies when an autonomous adjacent system is the dependee.

A cooperative adjacent system can be relied on to behave predictably when called upon. In other words, it cooperates with the product or system being specified to bring about some desired outcome. This is almost always done by means of a simple request-response dialogue. It is unlikely that you will need, or want, to change the interfaces with a cooperative system. As cooperative systems are black boxes, their services are stable, and there is rarely much to be gained from trying to change them. Again, this informs the types of dependencies that might be modeled for a cooperative adjacent system. Expect such systems to fulfill dependee roles that enable depender actors to achieve softgoals and attain goals, as well as to undertake tasks and obtain resources.

We can return to the example CORA-2 system shown in figures 3.2 and 3.7 to demonstrate different types of adjacent systems. Active systems adjacent to the CORA-2 software system are the Planner and Tactical controller roles, undertaken by human beings and initiating behavior to resolve conflicts through the use of the CORA-2 software system. The Flight Data Processing System is an autonomous adjacent system. Its behavior is independent of the CORA-2 software system, and dependencies between these two systems are expressed as resource dependencies, such as for information about trajectories. Finally, the CORA-1 software system is a cooperative adjacent system, because CORA-2 relies on it to behave predictably when called upon to detect potential conflicts. Our assumption when specifying the wider CORA-2 system was that the CORA-1 system would provide CORA-2 with a stable service.

<H2>3.4.3 Use Dependency Lists to Discover Dependencies</H2>
Another problem when developing an i* SD model is how to establish all of the possible dependencies. Analysts in our projects found it difficult to know how to ensure that all possible dependencies had been considered. Our solution, implemented in RESCUE, is very simple. Before attempting to draw a first-cut graphical SD model, list the possible dependencies between actor pairs in a tabular notation. We were surprised at how effective this proved to be.

An SD model dependency link is a link between two actors and indicates that one actor depends on another for something that is essential to the former. As mentioned in section 3.1.4, the depending actor is called the depender and the actor who is depended upon is the dependee, with the dependency being the process element around which the relationship centers. Although i* provides a useful graphical notation, it is perhaps less effective for discovering and expressing actor dependencies in the first place. This is where the tabular notation comes in.

Prior to producing an SD model, RESCUE analysts run workshops with stakeholders that seek to complete a table like table 3.1. An analyst encourages the stakeholders to consider each possible pair of actors, often identified with the context diagrams reported in lesson 1, to discover possible dependencies between them. The tabular representation affords discovery of dependencies in several ways. First, the sequential order of the table encourages a systematic approach, leading to a more complete specification of dependencies. Contrast this with difficulties that often arise when trying to graph-walk an i* model to consider all possible dependencies. Second, the row-at-a-time structure of the list encourages all stakeholders to consider one dependency at a time, thus improving the accuracy of the specification and obtaining more agreement among stakeholders about dependencies. Third, and perhaps most important, the column structure of the table is, we believe, more cognitively natural to stakeholders when reasoning about and expressing dependencies. Whereas the graphical notation of an SD model places the dependency between the two actors, the RESCUE table places the dependency at the end, thus facilitating communication of and experimentation with dependencies. To see what we mean, try reading out loud the first dependency from the table: TACT depends on DMAN to have REA messages sent. This format is easy to recall and reason about.

[Table 3.1 Here]

In conclusion, our experiences have shown that one effective way to produce i* SD models is to, well, hide the i* SD model. Modeling syntax and semantics is often a distraction for most stakeholders who have not been trained in system modeling approaches, even in highly technical domains such as air traffic management. The goal of SD modeling is to model strategic dependencies between strategic actors. Simple tables implemented in familiar technologies such as Microsoft (MS) Word concentrate stakeholders on these dependencies and avoid possible distractions associated with graphical i* models.

<H2>3.4.4 Get Your Training in First</H2>
This lesson might seem very obvious, but is important for some less obvious reasons. One of our principal findings from the reported projects is that it is easy to use i* badly, but harder to use it effectively. There are two main reasons for this. First, the i* approach is substantially different from most other modeling approaches that analysts and stakeholders have been exposed to. The focus in SD models on actors and dependencies in a sociotechnical system contrasts with existing methods such as the Unified Modeling Language (UML) and its simple notations, such as use-case and class diagrams, to model a system that is primarily software-oriented. Whereas UML specifications describe what a system shall do, i* models also specify why it shall do this with cross-references to goals and soft goals. Second, although i* has only five process elements (actors, goals, softgoals, tasks, and resources), these elements can be used in combination in many different ways in SD and SR models, and this gives rise to modeling problems that emerge only through the application of i*. Although some of the other lessons in this chapter are in direct response to problems that we have observed, others need to be experienced by analysts and stakeholders to be understood and avoided in the future. In short, you need to let people learn from their i* modeling mistakes.

To minimize the effect of these mistakes on real projects, allow a substantial period of training for relevant staff before a RESCUE or i* project starts. On most RESCUE projects we schedule three full days of i* training for all analysts, composed in part of short lectures with notes, but mostly of group modeling and critiquing exercises of examples related to the project domain.

<H2>3.4.5 Heuristics to Choose Process Elements</H2>
Choosing the process element to include in an SD actor dependency can be more difficult than it first appears. Should the analyst model a dependency between A and B as a resource for which A depends on B, as a task-type dependency describing the task for which A needs the resource from B, or as a goal-type or softgoal-type dependency to depict the goal that is attained or the softgoal that is achieved by undertaking the task with the resource? To try to answer these questions in RESCUE, we developed the following three heuristics that our analysts and stakeholders have applied successfully to avoid difficulties when choosing to model dependencies and the type of dependency to be modeled.

<NL>
1. Discover the real dependency. It can be difficult to choose between several associated, apparently valid dependencies. Often process elements in a model are associated. Resources are consumed in tasks that are completed to attain goals and achieve softgoals. So is the dependency a resource, task, goal, or softgoal dependency? This has proved to be a difficult analysis problem to solve in many of the i* modeling projects that we have supported. To overcome this problem we apply a simple test based on the exclusivity of the dependency. If the depender actor depends on a dependee only to obtain a resource, but can still undertake the associated task without the dependee actor (e.g., through other sources of the resource), then the dependency is a resource-type dependency. If, however, the depender actor cannot undertake the task but can still attain the associated goal or achieve the associated softgoal without the dependee actor (e.g., by undertaking the task onhis or her own), then the dependency is a task-type dependency. Otherwise, only if the depender cannot attain the goal or achieve the softgoal without the dependee actor do we model a goal- or softgoal-type dependency.

2. Task dependencies. Task dependencies can be difficult to specify. Therefore assume that, in a task-type dependency, it is the depender who initiates the task. One option is to avoid task-type dependencies in SD models. If you have task-type dependencies, ask why the actors want to undertake these tasks, in order to turn them into goal-type and softgoal-type dependencies. Note that this will not always be possible, but be prepared to challenge dependencies.

3. Naming dependencies. It is very important to be careful when naming goals and softgoals, in order to ensure that the notion of the goal or softgoal will be understood by other people. Use the following guidelines. The description of a goal should describe a desirable state <desirable state>, such as ticket purchased or car repaired. The wording of a softgoal should describe some properties or constraints on that state <desirable state> <adjective | adverb>, such as ticket purchased quickly or car repaired cheaply. Tasks should be specified using active verbs describing how something is done <do task>, such as purchase tickets online. Finally, resources are described using a noun <resource>, such as conflict information or ticket.

<H2>3.4.6 Cost-Effective Use of SR Modeling</H2>
So far our lessons have said very little about how to develop and apply i* SR models. One reason for this is the considerable effort needed to produce a complete SR model for even a moderately complex system, as indicated by the scale of the SR models that were produced by one analyst for the DMAN project (see figure 3.6). As well as the intellectual effort needed to develop each actor model, the resulting SR models were large and somewhat difficult to manage, especially given the rudimentary tool support available. Furthermore, the benefits obtained from SR modeling within RESCUE were limited, due primarily to the parallel development of use-case specifications that represented concepts similar to those found in SR models. Our experiences suggest that SR modeling should be used selectively in future projects.

One important role of SR models is to describe how actors will behave to achieve softgoals and to attain goals, both their own and collective. This behavior is normally expressed as tasks and subtasks that consume and produce resources and are means to attain goals and achieve softgoals. However, these softgoal/goal, task, and resource structures are also specified, if perhaps less explicitly, in use-case normal course scenarios. Moreover, use cases expressed in structured English are often easier to produce, read, and manage than SR models, even though they lack some of the expressive power of SR models. Therefore, in RESCUE, we recommend using use-case specifications for modeling most actor behavior.

But SR modeling can still fulfill the following roles in RESCUE projects. First, it can be used prior to use-case specification, alongside the use-case diagram, to explore important system actors, goals, and tasks that can be used to discover and structure use-case specifications. The Rational Unified Process (RUP) still offers limited advice in the area of use-case discovery, whereas UML use-case diagramming notations are open to misinterpretation. Focused use of SR models can complement use- case diagrams and discover goals that behavior specified in use cases should attain, as well as coarse-grain tasks undertaken by actors to attain the goals.

Second, SR modeling should be used to model important semantics that are not represented in use-case specifications. In particular, use cases have no explicit representation for task/action contributions to softgoals. Modeling such contributions is important if analysts are to understand how behavior specified in use cases achieves different softgoals, in order to inform trade-off analysis and other forms of goal-related decision-making. Therefore, construct SR models that are related to single use cases to investigate goal attainment and softgoal achievement, and explore different possible use-case specifications through different modeled tasks.

Third, use SR models to explore dependencies that may exist between use cases. The behavior specified in use cases, which are treated in UML as stove-piped partial behavior specifications, can often depend on behavior in other use cases, and SR models can be used to explore these task- and resource-type dependencies. Consider the following example that emerged from the DMAN project (Maiden, Jones, et al., 2004). The i* models specified that the TMA Departure ATCo depends on the Runway ATCo to do the task Control flight after takeoff (this task is referred to hereafter as T1), which in turn depends on the Runway ATCo doing the task Transfer flight to TMA Departure ATCo (this task is referred to hereafter as T2). In the use cases, task T1 maps to action-7 in use case UC7, and task T2 maps to action-6 in use case UC13. This reveals an implied dependency between UC7 and UC13, and that action-6 in UC13 shall happen before action-7 in UC7. From this and five other similar dependencies, we produced a simple model showing previously unstated dependencies between DMAN use cases that have important implications for the timing and order of actor behavior in the future DMAN system.

<H2>3.4.7 Provide Simple-to-Use Tools</H2>
Our experiences reveal that i* modeling can be challenging. Therefore even simple forms of support can make the difference between the success and failure of i* in a requirements project. One obvious area where we can provide assistance is tool support for i* graphical modeling. In RESCUE we have provided the REDEPEND modeling tool, which provides systems engineers with i* modeling and analysis functions, coupled with additional functionality and the reliability of Microsoft’s Visio product. The tool has been successfully used and developed during a number of industrial projects, such as the three air traffic management projects featured in this chapter.

REDEPEND is delivered as a drawing template and two drawing stencils for the MS Visio 2003 application. All an analyst needs to do to work with REDEPEND is to load these files, as the program code behind REDEPEND is contained within the template’s VBA project, meaning there are no specific installation requirements for REDEPEND. Once loaded, REDEPEND includes two graphical palettes containing key i* modeling constructs for producing SD and SR models. The user is able to drag-and-drop the required process elements onto the REDEPEND drawing page and then use the predefined links—such as dependencies, task decompositions, and means-ends links—to provide the associations between the different elements within the model.

Part of the DMAN SD model drawn in REDEPEND is shown in figure 3.8. REDEPEND provides two palettes on the left-hand side, the top one for SD modeling and the bottom one for SR modeling. Other diagramming advances include color coding of process elements to improve diagram readability, and a simple process element check feature to highlight and shade-out model elements using layers, which enables analysts to partition and mark up models during walk-throughs and model review tasks.

[Figure 3.8 Here]

Figures 3.9a and 3.9b show two other important features of REDEPEND’s graphical modeling support. Figure 3.9a shows how simple right-hand mouse click menus enable the analyst to change dependency types in the same SD model at the click of a button. This is important to encourage exploration and revision of i* models in the early stages of a project. Figure 3.9b shows a simple feature added to type each actor as either within the system boundaries and a new software actor (New System Actor on the menu in the figure), or within the boundaries and a redesigned stakeholder (Stakeholder Actor); or an adjacent system outside the system boundaries (Adjacent System Actor), a feature that is used for automatic requirements generation in lesson 9. Further details of REDEPEND’s features are summarized in Lockerbie and Maiden (2006).

[Figure 3.9a here]

[Figure 3.9b here]

So far we have reported lessons that are intended to kick-start the use of i* modeling in requirements projects. The remaining three lessons take a different perspective: What benefits can a project derive from using i* models in requirements processes?
<H2>3.4.8 i* SD Models for Exploring System Boundaries</H2>
In our projects, SD models have proven to be very useful for thinking about and exploring system boundaries. Although context models described in lesson 1 provide an important first view of a system from which to construct an i* SD model, in context models, boundaries are expressed in terms of data flows between actors on either side of a boundary. SD models refine these boundaries and allow analysts to explore them in terms of goals and softgoals.

In simple terms, an SD model replaces data flows expressed in the context model with goal and softgoal dependencies that actors want to achieve. This provides an important test of a system boundary. If the depender actor in a dependency relationship wants to attain a goal or achieve a softgoal, and the project will test to determine whether the depender actor attains the goal or achieves the softgoal, then the depender actor is part of the sociotechnical system. Conversely, if the project is not interested in whether the depender actor attains the goal or achieves the softgoal, then the actor is not part of the system.

On the surface, this boundary test is stating the obvious to many requirements practitioners, but i* provides them with several important advantages. First, the focus of SD models on the strategic dependencies between actors means that the SD model identifies, by default, the actor goals and softgoals that form the boundary test. Second, the model expresses the tests in the right form: desirable properties that an actor is seeking to attain or achieve. Alternative modeling representations, from context models to UML use-case models and class models, do not provide this explicit first-class representation of goal and softgoal. Third, the boundary test is simple to apply, and can be applied recursively to actors in the model that are farther and farther from the new software system that is being introduced. Thus, the test provides a simple-to-use stopping point for i* SD modeling. Try it—it really works!

<H2>3.4.9 i* SD Models to Generate Textual Requirements Statements</H2>
There are many model-based specification and analysis approaches reported in the literature to specify requirements (e.g., De Landtsheer, Letier, & van Lamsweerde, 2003). In contrast, most organizations continue to represent requirements textually, both to enable requirements to be reviewed by stakeholders, and to deliver requirements documents that are legally binding on the contractor. Unfortunately, most modeling approaches have not been designed to support the derivation of requirements statements from models or to be used alongside textual requirements descriptions. Therefore, in RESCUE, we have extended the REDEPEND software tool to generate candidate requirements automatically from i* SD models, using simple patterns. This approach is reported at length in Maiden, Manning, Jones, and Greenwood (2006).

In RESCUE we designed simple patterns—recurring syntactic and semantic structures in the i* models—that are applied automatically to any SD model expressed in REDEPEND to generate textual requirements statements. Our patterns are not traditional in the design sense: a solution to a problem in context. Rather, each pattern defines one or more desired properties (requirements) of the future system that must be satisfied for the SD model dependency to hold for the future system. Thus, the SD model, which has been signed off on as complete and correct, informs further discovery and specification of requirements statements.

Following the DMAN project, REDEPEND was extended to implement nineteen different patterns, divided into two types. The first sixteen patterns were specific to the i* model dependency, defined in terms of the dependency’s process elements (goal, task, resource, and softgoal), and of the types of depender and dependee actors (new system, adjacent system, stakeholder), based on the different boundaries identified during context modeling. Consider the example of pattern P3. REDEPEND applies pattern P3 to generate candidate requirements statements related to each instance of an SD dependency in which a new software actor (e.g., the CORA-2 or DMAN software system) depends on an adjacent system actor to achieve a goal. The pattern specifies the need for functional requirements statements on the new system to attain a goal G, on the adjacent system to enable the new system to attain G, and four types of nonfunctional requirements statements on the new and adjacent systems to provide resources that enable the attainment of G on time, reliably, accurately, and with up-to-date resources. An important domain assumption underpins this pattern—that the goal dependency can be achieved only by the exchange of some resource, normally information—between the new and adjacent systems. Domain assumptions also underpin the types of nonfunctional requirement specified in the pattern. Safety-critical air traffic management systems necessitate timely and up-to-date resources and goal satisfaction, whereas other nonfunctional requirements types, such as usability and security, are less important and are not defined in the patterns implemented in the reported projects.

The remaining three patterns were specified to handle composite process elements in i* model dependencies. Whereas RESCUE mandates atomic requirements statements that cannot be further decomposed, the systems engineers had developed the i* SD model to include compound dependencies, such as DMAN depends on ATC tower supervisor for current and foreseen runway status, primarily to simplify the development and management of the complex i* models. Therefore we introduced three patterns to detect and decompose composite dependencies.

Pattern matching and automatic requirements generation were implemented in REDEPEND version 4.1. The nineteen patterns are represented in an MS Excel file, so that new patterns can be added without requiring any changes to REDEPEND software. Full details of REDEPEND v4.1 are available in Lockerbie (2005).

Figure 3.10 describes how REDEPEND generates requirements from an analyst’s perspective. The upper image shows how an analyst accesses the requirements generation function from the REDEPEND top-line pull-down menu. The analyst is then presented with the option to generate requirements from all the dependencies in the SD model or just the checked (preselected) ones. The middle image shows how REDEPEND delivers the candidate requirement statements into MS Excel for the analyst to select and deselect, as explained further in lesson 10. The lower image shows how the selected requirements are automatically generated into an MS Word document, as this is the most common storage mechanism for requirements, even when using requirements management tools such as DOORS (Dynamic Object-Oriented Requirements System) and Requisite Pro. Each requirement in the document is structured using
 and expressed with a partially complete VOLERE shell (Robertson & Robertson, 1999). For each requirement, the shell specifies a unique identifier for the requirement in the generation run; the requirement type; the requirement description; a rationale of canned text describing how the requirement was generated; and the source dependency in the SD model from which the requirement was generated.

[Figure 3.10 here]

In the original DMAN project we prototyped pattern-based requirements generation manually with the DMAN SD model containing sixteen actors with fifty-five dependencies between the actors. One systems engineer, an experienced member of the RESCUE team assigned to the DMAN project, took a total of three working days to apply the nineteen patterns to all fifty-five dependencies modeled in the SD model. The result was 214 new DMAN requirement statements, almost 25 percent of the total number of requirements statements in the final DMAN requirements specification. Given the DMAN requirements project’s duration—ten months—this represents a major advance of the DMAN specification in a short period of time, notwithstanding the time spent to produce the SD model in the first place. The majority of these requirements statements were retained in the final DMAN specification (Maiden et al., 2006).

In contrast, a recent trial of REDEPEND v4.1, running on a standard laptop PC, took 12 seconds to generate 287 requirements automatically from the same DMAN SD model. A larger number of requirements was generated due to refinements in the nineteen patterns that led to more requirements of different types being generated. This result would suggest that automatic generation of requirements is potentially cost-effective, if the patterns generated are what analysts and stakeholders want. This question is explored in the last lesson.

<H2>3.4.10 Use i* Models to Explore Candidate Requirements</H2>
REDEPEND provides new capabilities for generating candidate requirements statements from i* models that, in turn, can change how we use i* models in requirements. In particular, by automatically generating these candidate requirements statements, we aim to exploit evidence that people are better at identifying errors of commission rather than of omission (Baddeley, 1990), which means they are better at recognizing incorrect rather than missing requirements statements. We have already exploited this general tendency in human cognition for recall to be weaker than recognition when designing the ART-SCENE scenario walk-through tool (Maiden, 2004). Generated requirements statements are delivered to systems engineers so that they can be modified or rejected easily, using macros that we implement in REDEPEND. Figure 3.11 shows how REDEPEND delivers candidate requirements that the pattern generation algorithm has generated to an analyst, to select or reject, prior to generation in the structured VOLERE shells in MS Word discussed in the previous lesson. All of the requirements shown were generated from one dependency, D1, in the SD model. The analyst can tick and untick selected requirements statements using the simple feature. The list also shows dependencies for which REDEPEND did not generate requirements statements.

[Figure 3.11 Here]

How does REDEPEND do this? In simple terms, all generated requirements are outputted into tailored MS Excel sheets that provide an autofilter for reviewing the requirements. This autofilter provides the analyst with the capability to order all generated requirements in ascending and descending order of different requirement attributes, and to restrict the list to requirements of certain selected types, such as performance, reliability, and availability. Finer-grain selection of individual requirements is possible using the tick box filter.

Initial evaluation feedback from NATS analysts on this REDEPEND feature was positive, and we look to gather and report evaluation data in the future. With these new features, REDEPEND provides analysts with capabilities to construct i* SD models during a workshop, automatically generate candidate requirements statements from this model in real time, then walk through these generated requirements to select and reject them. We believe that such tangible and immediate benefits from i* will have implications for its future uptake.

<H1>3.5 Conclusions</H1>
This chapter reports our experiences in applying i* in industrial requirements projects, and ten lessons that we learned and share with readers of this book. Some lessons are simple for readers to apply—for example, getting the training in early. Others, in particular those that relate to REDEPEND, need our software to implement. Readers are encouraged to take inspiration from these lessons. Most have been implemented by us with relatively few resources and no external funding. The availability of adaptable graphical modeling technologies made this possible. So, if readers do not want to use REDEPEND, we encourage you to develop and experiment with your own tools. You’ll be surprised how quickly you will perceive benefits from i*.

The work reported in this chapter has informed part of our own requirements research agenda. At the time of writing (April 2006), we are exploring the following extensions to REDEPEND:
<BL>
· Supporting the development and management of large-scale i* models. In particular, SR models are large, difficult to develop, and as a result hard to manage. New diagramming capabilities are needed to support development of integrated SR models.

· Developing context models and transforming them automatically into i* SD models. Analysts can use REDEPEND to develop context models using standard Visio diagramming palettes, but REDEPEND cannot interpret these diagrams. REDEPEND will be extended with a new context-diagramming palette, and new capabilities to generate first-version i* SD diagrams from these context diagrams.

· Related to this, dependency tables will be added to REDEPEND, to allow analysts to complete these tables and generate first-version i* SD diagrams from such a table.

· Working with NATS to extend REDEPEND with new capabilities for safety analyses of systems modeled with i*. In particular, REDEPEND will be required to parse-process elements such as goal, softgoal, and task descriptions.

· Extend REDEPEND with scenario walk-through capabilities to discover missing contributions to softgoal links, based on scenario generation techniques from ART-SCENE (Maiden, 2004). Scenarios are partial specifications of behavior that contribute positively or negatively to softgoals modeled in i* SR models. Walking through these scenarios can help analysts to discover all important links that contribute to softgoals, especially if we tailor ART-SCENE’s scenario generation to generate relevant prompts.

· Further development of REDEPEND’s automatic requirements generation capabilities. Through applying the RESCUE process to a UK Department of Trade and Industry-funded project on regional airport operations, we aim to revise and extend REDEPEND’s patterns library. We also plan to develop a process for generating, distributing, and reviewing the requirements from i* SD models, involving the use of further tool-based options in REDEPEND.</BL>
Finally, we will continue our transfer of requirements knowledge through RESCUE and i*, and in particular to evaluate the new versions of REDEPEND reported in the lessons, and future work outlined. We look forward to the challenge, and to reporting it in the future.

<REF>
References</REF>
Baddeley, A.D. (1990). Human Memory: Theory and Practice. Hillsdale, Mahwah, NJ: Lawrence Erlbaum.

De Landtsheer, R., Letier E., & van Lamsweerde, A. (2003). Deriving tabular event-based specifications from goal-oriented requirements models. In Proceedings of the 11th IEEE Joint International Requirements Engineering Conference (pp. 200–210). Los Alamitos, CA: IEEE Computer Society Press.

Lockerbie, J.A. (2005). Automating the pattern-based generation of requirements from i* system models. Master's thesis, City University, London.

Lockerbie, J.A., & Maiden, N.A.M. (2006). REDEPEND: Extending i* modelling into requirements processes. In Proceedings of the 14th IEEE International Conference on Requirements Engineering (pp. 361–362). Los Alamitos, CA: IEEE Computer Society Press.

Maiden, N.A.M. (2004). Systematic scenario walkthroughs with ART-SCENE. In I. Alexander and N.A.M. Maiden (eds.), Scenarios, Stories and Use Cases (pp. 166–178). New York: John Wiley.

Maiden, N.A.M., Jones, S.V., & Flynn, M. (2003). Innovative requirements engineering applied to ATM. In Proceedings of the 5th ATM R&D Seminar. http://atm2003.eurocontrol.fr/.

Maiden, N.A.M., Jones, S.V., Manning, S., Greenwood, J., & Renou, L. (2004).
 Model-driven requirements engineering: Synchronising models in an air traffic management case study. In A. Persson and J. Stirna (eds.), Proceedings of the 16th International Conference on Advanced Information Systems Engineering [CAiSE’04] (pp. 368–383). Lecture Notes in Computer Science 3084. Berlin: Springer.

Maiden, N.A.M., Manning, S., Jones, S., & Greenwood, J. (2006). Generating requirements from systems models using patterns: A case study. Requirements Engineering, 10(4), 276–288.

Maiden, N.A.M., Manning, S., Robertson, S., & Greenwood, J. (2004). Integrating creativity workshops into structured requirements processes. In D. Benyon, P. Moody, D. Gruen, and I. McAra-McWilliam (eds.), Proceedings of the 5th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques (pp. 113–122). New York: ACM Press.

Maiden, N.A.M., & Robertson, S. (2005). Integrating creativity into requirements processes: Experiences with an air traffic management system. In Proceedings of the 13th IEEE International Conference on Requirements Engineering (pp. 105–114). Los Alamitos, CA: IEEE Computer Society Press.

Mavin, A., & Maiden, N.A.M. (2003). Determining socio-technical systems requirements: Experiences with generating and walking through scenarios. In Proceedings of the 11th International Conference on Requirements Engineering (pp. 213–222). Los Alamitos, CA: IEEE Computer Society Press.

Ncube, C., & Maiden, N.A.M. (2006). GOMOSCE: Scenario-driven goal modelling for complex systems. In V. Gervasi, P. Sawyer, and B. Paech (eds.), Proceedings of the 12th International Working Conference on Requirements Engineering: Foundation for Software Quality [REFSQ’06] (pp. 209–223). Essen, Germany: Essener Informatik Beitrage.
Robertson, S., & Robertson, J. (1999). Mastering the Requirements Process. Reading, MA: Addison-Wesley.
Vicente, K.J. (1999). Cognitive Work Analysis. Mahwah, NJ: Lawrence Erlbaum.

Yu, E., & Mylopoulos, J. (1994). Understanding “why” in software process modelling, analysis and design. In Proceedings of the 16th International Conference on Software Engineering [ICSE 1994] (pp. 159–168). Los Alamitos, CA: IEEE Computer Society Press.

<figure captions>
Figure 3.1 The RESCUE process structure: Activity modeling ends after the synchronization stage at stage 2, system modeling after the synchronization stage at stage 3, and scenario-driven walk-throughs and modeling requirements after synchronization checks at stage 5. i* modeling is part of the system goal modeling stream.

Figure 3.2 The CORA-2 SD model, showing the new i* software actor in the middle of the diagram, the controller actor whose work was to be redesigned in the CORA-2 project, and adjacent systems. For a key to i* diagrams in this chapter, see figure A.1.

Figure 3.3 The first-cut EASM SD model, showing three separate systems with no strategic dependencies between them.

Figure 3.4 The revised EASM SD model, extended to model important but missing dependencies identified from graphical modeling of actor dependencies.

Figure 3.5 The SD model for DMAN, showing the DMAN actors and actor dependencies.

Figure 3.6 Part of a draft SR model for DMAN, showing elements for the Runway ATCo actor and its dependency links with other actors.

Figure 3.7 Context model developed retrospectively for the CORA-2 system, showing the new software system; actors whose work is redesigned as part of the project; actors whose behavior is not within the authority of the project to redesign, but is influenced by the new software and redesigned work; and external systems.

Figure 3.8 REDEPEND’s standard graphical modeling view, showing part of the SD model from the DMAN project, marked up and highlighted using REDEPEND’s process element check and layering features.

Figure 3.9 (a) Another REDEPEND graphical modeling feature, showing how to change process element types in a dependency relationship. (b) REDEPEND’s feature for allocating actor types to actors.

Figure 3.10 Automatic requirements generation in REDEPEND, showing how generation is called, and one possible outcome of the requirements generation process.

Figure 3.11 Requirements browsing in REDEPEND, showing lists of candidate generated requirements that an analyst can accept or reject using simple tick boxes.
Table 3.1 A RESCUE dependency table, partially completed from dependencies shown in the DMAN SD model depicted in figure 3.5

	ID
	Depender
	
	Dependee
	
	Dependency

	1
	TACT
	depends on
	DMAN
	to have
	REA messages sent

	2
	TMA Departure ATCo
	depends on
	Runway ATCo
	to have
	Departure flow smoothed for 1st ACC sector

	3
	Airport CDMS
	depends on
	DMAN
	to have
	Status forwarded

	4
	….
	depends on
	
	to have
	

�Author: a has been deleted from the year because the other Maiden et al. 1994 doesn’t have the same authors.

�Author: The a following 2004 has been deleted because the authors are not exactly the same as in what was 2004b.

�Author: The meaning of “remit” is unclear throughout this section. “mandate”? “purview”?

�Author: Is something missing? Please clarify the sentence.

�Author: Should the book title be Scenarios in Practice?

�Author: The a was deleted after 2004 because the authors were not exactly the same. The same is true for b in Maiden…& Greenwood 2004, below.

�Author: Should the journal title be Engineering Journal?

