
482

<CN>8</CN>
<CT>Using i* to Model Access Policies:</CT> <ST> Relating Actors to Their Organizational Context</ST>
<CA>Robert Crook, Darrel Ince, and Bashar Nuseibeh</CA>
<1>8.1 Introduction</1>
Security incidents can be costly; Nick Leeson’s trading resulted in losses of over £800 million, thus causing the bankruptcy of Barings Bank (Brown & Steenbeek, 2001), and John Rusnak defrauded the Allied Irish Bank of a similar amount in 2002. They both exploited weaknesses in the computer systems used to control their trading activities. Thus, while there is a need to keep outsiders from breaking in, there is also a need to prevent users with legitimate access rights from abusing their privileges. Many organizations have procedural controls, defined as policies, to prevent such abuse. The procedures are often enforced by computer systems, which restrict access. We believe that early understanding and specification of access policies are key to effective access control.

Access policies are rules that specify which users can carry out which actions to enforce principles of management control (Moffett & Sloman, 1988). In this chapter we focus on access policies that enforce one of these principles, that of minimum privileges (Anderson, 2001). This principle states that users can access only the functions and resources that they require to carry out their duties.

Many requirements models represent users as actors or agents that are assigned to actions. These assignments can be used to represent access policies (Crook, Ince, & Nuseibeh, 2003, 2005; Liu, Yu, & Mylopoulos, 2003). An actor definition usually represents a role rather than a specific person. However, the use of the notion of a role can vary from the assignment of a task, as proposed by Yu (1995), to a position within an organiztional hierarchy (Sandhu, Coyne, Feinstein, & Youman, 1996). Existing approaches to modeling requirements are inadequate for representing complex relationships between actors in large organizations, such as the lines of authority, the organizational structure, and the basis by which work is delegated (Strens & Dobson, 1994;
 Loucopoulos & Kavakli, 1995). This can lead to misunderstandings about the precise meaning of actors and their roles and, consequently, their access rights and privileges. For example, if a doctor is defined as an actor who can read medical records, then the constraint that a doctor has that role only with respect to his or her own patients cannot generally be represented in existing models.

This missing link between actor definitions and the wider organizational context is the focus of this chapter. A key contribution is to demonstrate, through a case study of a large organiation, how access policies satisfying the minimum privileges principle can be specified precisely, using an extended version of Formal Tropos (Fuxman, Pistore, Mylopoulos, & Traverso, 2001). In this chapter we also show how such policies can be verified to ensure that, when enforced, they allow users to carry out pnly the expected activities that fulfill their duties.

This chapter is structured as follows. In section 8.2 we review the literature on security requirements. In section 8.3 we examine the security literature concerned with management control and access policies, in particular highlighting recent work on using the i* framework to define policies. In section 8.4 we introduce a case study, which we use to illustrate our approach. In section 8.5 we introduce our extensions to the i* framework in order to define the organizational context and relate it to actor definitions, and to define access policies. We show how these extensions could be represented in the Formal Tropos language and also in i* Strategic Dependency diagrams. In section 8.6 we introduce Alloy, a lightweight formal specification language supported by a tool, and demonstrate how Formal Tropos translates into Alloy and how automated analysis can be carried out. The chapter concludes with a discussion and a summary.

<H1>8.2 Modeling of Security Requirements</H1>
Security requirements are those requirements concerned with the protection of valuable assets. They arise from top-level security objectives such as maintaining confidentiality, integrity, and availability (British Standards Institute, 1999).

To determine security requirements, an important step is the analysis of threats. Researchers have explored threats analysis and the evaluation of countermeasures by extending use cases (Sindre & Opdahl, 2000, 2001; Alexander, 2002),
 by deriving obstacles to goals (van Lamsweerde, Brohez, de Landtsheer, & Janssens, 2003; van Lamsweerde, 2004), by bounding the scope of security problems (Lin, Nuseibeh, & Ince, 2004),
 and by analyzing the social context (Yu & Liu, 2001;
 Liu et al., 2003). All these approaches are systematic in the identification of possible attacks and the definition of countermeasures. None, however. addresses access policies, which constrain how authority can be exercised and the freedom with which individuals can act.

Fontaine (2001) proposes that the assignment
 of actions to agents maps onto access policies, and presents a formal systematic approach to defining access policies based on KAOS (Dardenne, van Lamsweerde, & Fickas, 1993). However, his definition of an agent is ambiguous: it can be a level of authority, a qualification, or a physical individual.

He and Antón (2003) propose a systematic approach to deriving roles from scenarios for defining restrictions to satisfy the privacy and security requirements. Their approach identifies tasks that require access to resources that are to be protected, and consequent roles. However, these roles are derived only from tasks, and are not the roles
 that represent other aspects of the organizational context, such as position or level of authority.

 Liu et al. (2003) demonstrate, using the i* framework (Yu, 1995), how the actor boundary in a Strategic Rationale model provides a basis for deriving an access control restriction. An actor boundary encompasses the tasks that an actor carries out and the resources to which that actor has access. i* differentiates between agent definitions (representing physical people) and roles, allowing the modeling of a user adopting multiple roles. As with the above approaches, however, what a role denotes is not explicit, so misunderstandings about exactly what a role means are possible.

<H1>8.3 The Principles of Management Control and Access Policies</H1>
Access policies provide a means to enforce management controls, controls that may have been in existence long before computer systems. Control principles include clearance levels (Bell & LaPadula, 1973),
 the separation of duties (Clark & Wilson, 1987), Chinese walls in the financial services industry (Brewer & Nash, 1989), supervision and review (Moffett & Lupu, 1999), accounting principles (Anderson, 2001), and minimum privileges (Anderson, 2001). Access policies are important components of an overall security policy defined by an organization to enforce these principles, which ultimately translate into access control mechanisms.

Access policies arise from organizational requirements (Thomas & Sandhu, 1994). The organizational context has been the basis of policy specification languages such as OASIS (Bacon, Lloyd, & Moody, 2001), ASL (Jajodia, Samarati, & Sabrahmanian, 1997), and Ponder (Dulay, Lupu, Sloman, & Damianou, 2001), all of which have the notion of roles. The use of roles for defining policies became a focus of research on role-based access control (RBAC) in the 1930s. In RBAC, a role is a set of permissions, and can be used to define policies that represent the assignment of tasks in an organization (Sandhu et al., 1996). Sandhu et al. propose that a role inheritance hierarchy can be used to map onto an organizational hierarchy, whereby senior roles inherit the permissions of junior roles within the hierarchy. However, as Moffett (1998) observes, a manager does not necessarily inherit the roles of his juniors. Moffett and Lupu (1999) address this problem by proposing separate hierarchies to capture different aspects of the organization, such as functional specialization using an inheritance hierarchy, division of tasks using an aggregation hierarchy, and a supervisory hierarchy to model the seniority of roles with respect to each other.

Contextual factors associated with roles have also been examined. Bertino, Bonatti, and Ferrari (2000) describe how temporal constraints can be defined for roles, and Georgiadis, Mavridis, Pangalos, and Thomas (2001) combine contextual information with team-based access control. Team-based roles (Thomas, 1997) are useful for collaborative working environments, in which users are assigned to teams and get access to the team’s resources.

Researchers have also explored techniques for deriving roles. Role engineering, as outlined by Coyne (1996),
 is a systematic process of identifying the activities of a single user and defining these activities as a role. Fernandez and Hawkins (1997) propose deriving roles from use case actor definitions, and Neumann and Strembeck (2002) propose deriving roles from scenarios of the work process. This is a bottom-up approach to deriving roles from tasks, and largely ignores the wider organizational context.

Research into organizational structures also gives insights into the way in which groups are formed. The organizational structure, which is fundamental to management control, includes the allocation of formal responsibilities to interrelated groups and roles. The two key dimensions are lines of authority, referred to as vertical differentiation, and division of work, referred to as horizontal differentiation (Handy, 1985). Mintzberg (1992) describes two fundamental characteristics by which horizontal differentiation is achieved: functional characteristics and market characteristics. Functional characteristics include the division of work on the basis of function, qualification, and work process. Market characteristics include organizational division based on customers, service, product, location, or time; functions are replicated, but the market for which the organizational division or unit is responsible differs. In large organizations, several of these characteristics are often used. The National Health Service in the United Kingdom, for example, is divided into regional health authorities that, in turn, are composed of hospitals to serve the different population centers, so that the authorities and hospitals are organized on a geographical basis. A hospital, however, is organized on a functional basis. Similarly, retail banks have autonomous branches dispersed to serve local markets, with an identical functional structure in each branch.

The mid-1990s saw requirements engineering (RE) research relating goals to the organizational context. For example, ORDIT (Dobson & Strens, 1994)
 focused on the delegation of responsibilities to agencies, rather than the structural organizational relationships. In contrast, the teleological approach of Loucopoulos and Kavakli (1995) focused on deriving goals from the organizational activities, but did not clarify the lines of authority and delegation.

Research into modeling policies using i*, which we touched on in the previous section 8.2, has demonstrated how the social context can be used. Liu et al. (2003) propose the use of i* Strategic Rationale (SR) models for defining policies, and suggest using the actor boundary as the basis for a policy.
 From this, a constraint can be defined in an RBAC access control system, such that the role is derived from the actor definition and the permissions are derived from the tasks within the boundary. An SR model that illustrates this is figure 8.1. The actor in the diagram is a Family Doctor. The goal of this actor is to provide a regular clinical service. In order to achieve this goal, the actor needs to open new medical records. Open a New Medical Record is therefore related by a means-end link to the goal, and a task dependency relates this task to the resource Medical Record. Family Doctor is defined as an agent, which is a type of actor. Liu et al. (1993) also give an example of an instantiation of this SR diagram, in which an instantiation of an agent Dr. Jones can access the medical record of Mr. Smith. Resources within an actor boundary that represent an instantiation are also themselves instantiations. The medical record of Mr. Smith is an instantiation of Medical Record. This provides a useful means of verifying a policy. In effect, this instantiation is a scenario, and since stakeholders can relate more easily to scenarios than to abstract definitions, scenarios can be used to elicit and validate requirements (van Lamsweerde, 2000).

[Figure 8.1 here]

An actor in i* can be an agent, role, or position. An agent is a physical entity such as a human, a role is an abstract actor that can be adopted by a physical agent (such as conducting a task), and a position represents a set of roles that can be assigned to an agent.

However, there is an important aspect associated with the least privileges principle that cannot be easily represented in i*: the family doctor should access only medical records associated with his own patients; otherwise, he could access records associated with patients not assigned to him, thus violating the least privileges principle. Defining this aspect of the policy requires the organizational context, in this particular case the practice in which the family doctor works.
<H1>8.4 Case Study Background</H1>
In this section we introduce a case study taken from the literature (Schaad, 2003) that we use to illustrate our approach to defining policies in i*. It explores several principles of management control, including minimum privileges, delegation, and separation of duties, making it particularly well suited to exploring access policies. Here we continue to focus on the minimum privileges principle.

The case study is based on an access control system of a European bank. The bank has fifty thousand employees and over a thousand branches, and provides banking services for local communities. Schaad (2003) reviews the bank’s access control system and how it satisfies organizational control principles. Although the focus is on the access control system, many of the requirements can be inferred from it. We consider the requirements of a system for a branch, as well as a few requirements identified by Schaad.

One of the key services is that of providing credit, for example, extending an overdraft, providing a mortgage, or offering a sum of money. Each of these involves different actors and different information assets. The controls to be applied to these services also differ. We focus on requirements of one of these services: the provision of a fixed sum of money. The flow diagram in figure 8.2 shows some of the steps involved.

[Figure 8.2 here]
The provision of a fixed sum of money is carried out by the group customer advisory services. The initial consultation and the evaluation of credit are carried out by the customer advisory clerks. The approval of credit is done by the clerks’ manager. There are functions, such as customer advisory services and share trading, that are carried out within a branch; within each branch are several hierarchies of authority for each of the specialized functions. The head of a branch is responsible for general banking services and has a personnel function—dealing with disciplinary matters, for example—but management of specialized functions, such as customer advisory services, is achieved through its own hierarchy; thus a customer advisory services clerk would take instructions from a manager in the same function, to whom he or she is assigned, rather than from the branch manager.

<H1>8.5 Modeling Policies in the i* Framework</H1>

<H2>8.5.1
Extensions to Formal Tropos</H2>
We now present our approach to modeling access policies in Formal Tropos. In order to model policies, we have extended Formal Tropos to enable us to define the organizational context and relate it to actor definitions. The extensions to Formal Tropos are actually based on a framework for defining policies (Crook et al., 2005) that is independent of the i* framework and Formal Tropos. The relationships between the actors that we introduce are based on strategic dependency (SD) diagrams in i*, but the policy definitions are based on strategic rationale (SR) diagrams in the i* framework. This is consistent with the approach taken by Liu et al. reviewed previously. SR diagrams are focused on individual actors, and the dependencies are binary between the actors,
associating goals and tasks, as opposed to the ternary relationships present in SD diagrams. The current version of Formal Tropos does not support relationships defined within SR diagrams, so we have extended the syntax to represent them. The representation of an SR diagram is illustrated below, using an indentation to represent the means-end to a goal, and the resource dependency relationship to the actor. We have added a type attribute to actor to enable us to differentiate between agents, positions, and roles.

<DIS>Actor Customer Advisor

 Type Role

 Goal Provide Credit

 Mode Achieve

 Task Evaluate Credit

 Resource Credit Conditions

 Resource Credit Application

 Resource Credit History</DIS>
The main objective of introducing extensions into Formal Tropos is to enable the definition of actors that are linked to their wider organizational context with respect to the two key dimensions by which work is differentiated within organizations: the lines of authority (vertical differentiation) and the division of work (horizontal differentiation). We can capture this through three new Formal Tropos elements:
<DIS>Organizational Function represents a functional grouping within an organization. Members of a functional grouping will be expected to carry out tasks that will be delegated to this group.

Organizational Domain represents a “market-based” grouping (i.e., a grouping that is delegated a market to serve, such as a set of clients in a specific geographic location). An example of this would be a branch of a bank that serves customers in its locality.

 Authority represents the seniority of an actor.</DIS>
We can illustrate this through the case study that we introduced in section 8.4. In order to derive these definitions, we need to identify the groupings within the organization. The groupings form a composite structure. For the bank in the case study, this is represented figure 8.3. We can then identify whether a grouping represents a domain, in that it exists to serve a specific market, or whether it is purely functional. From these groupings we can then derive the organizational domains and organizational functions as follows:

<DIS>Organizational Function Customer Advisory Services ISA Bank Operations

Organizational Function Share Trading ISA Bank Operations</DIS>
The domains are the regional domain and, for each branch:

<DIS>Organizational Domain Region

Organizational Domain Branch PART Region</DIS>
In our organizational domain definition we relate Branch and Region through the relation PART. Organizational domains can be modeled as an aggregation hierarchy through this relation in order to capture the subdivision of markets (Mintzberg, 1992). In this case the bank’s regions are subdivided into local branches.

[Figure 8.3 here]
In our organizational function definitions we relate Customer Advisory Services and Share Trading through the relation ISA to Bank Operations. The ISA relation is in fact an inheritance relationship between two organizational functions. In the organizational hierarchy this represents the characteristic that both Customer Advisory Services and Share Trading are specializations of Bank Operations.

Within each grouping there is a hierarchical structure. Focusing on the function Customer Advisory Services, there are the following levels of authority. In decreasing order of authority they are:

<DIS>Authority Head of Branch

Authority Manager SENIOR Head of Branch
Authority Clerk SENIOR Manager</DIS>
The definition of seniority levels is necessary to distinguish actors within the same domain and organizational function. For defining minimum privileges policies it is not necessary to know which actor is senior. However, if we were to define delegation policies, then it would become useful. We can now define positions within these groups, in which an actor definition is created for each level of authority. For example, the following definition shows the Customer Advisory Services Manager position:

<DIS>Actor Customer Advisory Services Manager

 Type Role
 Organizational Function Customer Advisory Services

 Organizational Domain Branch

 Authority Manager</DIS>
A similar definition can be given for a Clerk and a Head of Branch.

Minimum privileges policies relate actors to the tasks they need to carry out to satisfy their delegated responsibilities. The elements Task and Resource already exist in Formal Tropos. In the case study we have identified three tasks for which we need to define access policies. The following Formal Tropos statements are used to model these tasks and their resource dependencies.

<DIS>Task Initial Consultation
 Resource Credit Contract

Task Evaluate Credit

 Resource Credit Contract

 Resource Credit Conditions

 Resource Credit History

Task Approve Credit Contract

 Resource Credit Contract </DIS>
Policies are defined as the extended actor definitions above with task assignments. As mentioned above, these are analogous to SR diagrams in the i* framework. Since Formal Tropos does not currently contain a language construct analogous to SR diagrams, we have extended the syntax. Using this extended syntax, the minimum privileges policies associated with the Customer Advisory Services Manager and Clerk are:
<DIS>Actor Customer Advisory Services Manager

 Type Role
 Organizational Function Customer Advisory Services

 Organizational Domain Branch

 Authority Manager

 Task Approve Credit

Actor Customer Advisory Services Clerk

 Type Role
 Organizational Function Customer Advisory Services

 Organizational Domain Branch

 Authority Clerk

 Task Initial Consultation

 Task Evaluate Credit </DIS>
The authority levels of Manager and Clerk are applicable to different functional groupings. For example, there are clerks assigned to Customer Advisory Services, other clerks assigned to Business Advisory Services, Share Trading, and so on. A Manager is distinguished from a Clerk in that he has the authority to delegate tasks to Clerks. In order for a Clerk or Manager to be able to execute a function, he or she needs to be assigned to a functional grouping in a specific branch. Hence the actor definition is a composition of the level of authority, organizational function, and organizational domain.

Instantiation is used to verify the policies. Through instantiation we can define scenarios that can be verified. In the i* framework there exists an INS relation between actor definitions; this is currently not supported in Formal Tropos. We have therefore added this for actors and other domain concepts. In creating a scenario, not all domain concepts can be instantiated. The level of authority and the organizational function are constants. For example, if we define an organizational function for Customer Advisory Services, then this function will not change for the instantiation, nor for the level of authority. Instantiations are required for organizational domains, resources, and actors.

An organizational domain instantiation will represent a specific organizational unit. For example, if a bank has branches, then Branch is a domain description of an organization unit, and the Frankfurt Branch is an instantiation.
In the following instantiation, we check that a Customer Advisory Services Clerk can carry out an initial consultation for a customer of the branch to which he is assigned. First, we define two domain instantiations for the Frankfurt and Dortmund branches:

<DIS>Organizational Domain Frankfurt Branch INS Branch

Organizational Domain Dortmund Branch INS Branch</DIS>
Then, we can define an instantiation of a Customer Advisory Services Clerk in the Frankfurt Branch:

<DIS>Actor Customer Advisory Services Clerk Frankfurt INS Customer Advisory Services Clerk

 Type Role

 Organizational Domain Frankfurt Branch</DIS>
We represent a physical person who occupies this specific role in the Frankfurt Branch as an agent. We use the relation OCCUPIES to represent the relation between the agent and the role.

<DIS>Actor Jim Smith OCCUPIES Customer Advisory Services Clerk Frankfurt

 Type Agent </DIS>
The agent could potentially occupy several roles, and the instantiated role itself could be occupied by different agents, which is why we separate the role from the agent.
We also need to define the instantiation of resources, so we define the instantiated resources Credit Application and Credit History of the customer Philip Stokes. We assign these resources to the Frankfurt Branch:

<DIS>Resource Credit Application of Philip Stokes INS Credit Application

 Organizational Domain Frankfurt Branch
Resource Credit History of Philip Stokes INS Credit History

 Organizational Domain Frankfurt Branch

Resource Credit Conditions of Philip Stokes INS Credit Conditions

 Organizational Domain Frankfurt Branch</DIS>
We can now complete the actor instantiation above to define a scenario in which the actor Jim Smith carries out the task Initial Consultation for the Credit Application of Philip Stokes.
<DIS>Actor Jim Smith OCCUPIES Customer Advisory Services Clerk Frankfurt

 Type Agent

 Task Initial Consultation

 Resource Credit Application of Philip Stokes</DIS>
<H2>8.5.2
Representing the Organizational Context in i* Framework Diagrams</H2>
In this subsection, we propose how the Formal Tropos extensions we introduced in subsection
 8.5.1 could be represented in i* SD diagrams. In fact, we need to introduce only one new symbol, for the purpose of representing the organizational domain.

In figure 8.4 we introduce a new symbol, a dashed circle that represents an organizational domain. The seniority relation is represented by an arrow with the key word SENIOR. The other relations and symbols already exist in the i* framework and have been reused. We have represented only those aspects that are relevant to relating actors to the organizational context. Other aspects of an SD diagram would be modeled as before.

[Figure 8.4 here]
<H1>8.6 Automated Analysis Using Alloy</H1>
In this section, we demonstrate the use of automated analysis of our descriptions using Alloy. We first justify the use of Alloy for this purpose, then introduce the Alloy modeling language, illustrating how we can translate the Formal Tropos constructs introduced above into Alloy. Finally, we demonstrate how to verify access policies. Our investigation is based on Alloy version 3 (Jackson, 2004).
<H2>8.6.1
Verification Alternatives</H2>
In order to verify the model, tools that can check formal specifications were evaluated. There are essentially tools that enable a specification to be animated, such as IFAD (Agerhold & Larsen, 1998), and tools that perform exhaustive checks to determine whether assertions are adhered to, such as Alloy (Jackson, 2002) or NuSMV (Cimatti et al., 2002). The checker tools are much more rigorous than the animation tools, since through an animation only limited scenarios can be tested, whereas in the case of an exhaustive checker, assertions can be proven. The NuSMV tool has already been applied in the case of Formal Tropos (Fuxman et al., 2001). An advantage that Alloy has over NuSMV in our own research context is that it is based on the Z language (Spivy, 1992). That is because the Formal Tropos extensions that we have proposed are based on a framework that was developed independently of the i* framework and Formal Tropos (Crook et al., 2005). Since this framework was developed in Z, translating the policies and scenarios into Alloy was straightforward. An advantage of NuSMV is that it can evaluate some temporal constraints, though not all; for using NuSMV for evaluating Formal Tropos, Fuxman et al. (2001) extended the tool to handle additional forms of temporal constraints and also to be able to generate instances automatically. Since the security constraints that we are exploring are always to be maintained, the temporal constraints are not interesting and were therefore not a decisive factor in selecting a tool for validation. Due to the similarities of Z to Alloy and the ease of translation, Alloy was chosen.

<H2>8.6.2 Translating Formal Tropos into Alloy</H2>

The Alloy language is supported by an Alloy analyzer. Alloy is a declarative language that enables the structural properties and functions of a system to be modeled. Assertions representing properties of the system that must be adhered to can be defined. The tool enables us to execute functions, and thus to animate a model and also check assertions hold by searching for counterexamples.

<H2>8.6.3 Representing the Metamodel in Alloy</H2>

We now demonstrate how our approach of defining policies in Formal Tropos can be translated into Alloy. Metaconcepts in Formal Tropos can be translated into signatures in Alloy, using the key word sig. A signature in Alloy represents a type of atom—so, for example, the metaconcept Organizational Domain translates into the following signature:

<DIS>sig Org_Domain {}.</DIS>

A similar translation applies to the other metaconcepts Resource, Task, Organizational Function, and Authority. The Actor definition of type Role translates into the signature type Role, and the Actor definition of type Agent that we use to represent a physical person translates into the signature type Agent in Alloy.

Inheritance and aggregation hierarchies that we represented in Formal Tropos as modeled as relations, are also represented as relations in Alloy. Relations in Alloy must be defined within signatures; thus in order, for example, to represent the relation PART that we defined to model the aggregation of organizational domains, the signature is extended with the relation partOf (part is a key word in Alloy) as follows:

<DIS>sig Org_Domain {

partOf : set Org_Domain

} </DIS>
The inheritance hierarchy for organization functions that we represented as an ISA relation in Formal Tropos can be represented as an isa relation within the organizational function signature in Alloy as follows.

<DIS>sig Org_Function {

isa : set Org_Function

}</DIS>
To represents the lines of authority that we modeled using the SENIOR relation, we extend the authority signature as follows:

<DIS>sig Authority {

senior : set Authority

}</DIS>
To model task aggregation and task resource dependencies, the task signature is extended as follows:

<DIS>sig Task {

task : set Task

resource : set Resource

}</DIS>
Roles and policies are composite metaconcepts, and include other metaconcepts as members. So, for example, the role is defined as follows:
<DIS>sig Role {

authority : Authority,

org_function : Org_Function,

org_domain : Org_Domain,

isa : set Role,

}</DIS>
We define a policy as a composite object of assignment of roles and tasks as follows:

<DIS>sig Authorization_Policy {

role : Role,

task : Task

}</DIS>
As we see here, there are three members of type Authority, Org_Function, and Org_Domain, and in addition there is the role inheritance hierarchy, defined using the relation isa reflecting the ISA relation in Formal Tropos.

In order to represent the INS relation in Formal Tropos, we define instantiation relations in Alloy. So, for example, the Org_Domain signature includes an instantiation relation for this purpose, as follows:

<DIS>sig Org_Domain {

..

ins : set Org_Domain

}</DIS>

This form of instantiation also follows for resources and roles. Agents are themselves instantiations, but are assigned to instantiated roles through the relation occupies. For this purpose we define the signature Agent as follows:

<DIS>sig Agent {

occupies : set Role

}</DIS>
Invariants are defined as facts in Alloy. These are used in order to ensure that models are consistent. For example, the following fact has been defined to prevent organizational domains from being aggregations of themselves:

<DIS>fact {all od : Org_Domain | od !in od.^partOf }</DIS>

It prevents an organizational domain from being a member of the transitive closure of the relation partOf.

A diagram of the Alloy metamodel showing the metaconcepts and their relations is shown in figure 8.5.

[Figure 8.5 here]
<H2>8.6.4
Policy Domain Definitions</H2>
Domain definitions can be made for a specific application by creating unique atoms as subsets of the metaconcepts. Creating subsets of atoms is done using an extends relation between the domain definition signature and the metaconcept definitions, and to define relations between domain definitions we use facts. For example, the definition of the authority of Clerk is mapped as shown in table 8.1.

[table 8.1 here]

The mappings of organizational functions, organizational domains, tasks, and resources are similar. The actor of type role definitions in Tropos, with task dependencies maps onto role and policy definitions, as demonstrated in table 8.2.

[table 8.2 here]
<H2>8.6.5
Policy Framework Domain Instantiations</H2>
In order to instantiate domain concepts, we need to use the instantiation relations that we introduced above. Table 8.3 shows the mapping between the organization domain instance of Frankfurt Branch and the resource instance of Credit Application of Philip Stokes into the Alloy framework.

[table 8.3 here]
The mapping of the actor instantiation Jim Smith carrying out the task Initial Consultation on the resource Credit Application of Philip Stokes is a scenario mapped onto the Alloy framework as follows:

The role Customer Advisory Services Clerk Frankfurt is defined, instantiating the role Customer Advisory Clerk, which is assigned the instantiated organizational domain Frankfurt Branch; next we define the agent Jim Smith, to whom we assign the role Customer Advisory Clerk Frankfurt through the OCCUPIES relation. A task execution Initial Consultation of Philip Stokes is then defined as
 an Initial Consultation on the resource Credit Application of Philip Stokes. The mapping is shown in table 8.4.

[table 8.4 here]
<H2>8.6.6
Policy Verification</H2>
In order to verify policies in our framework, we have defined the following invariant as a fact:

<DIS>fact {

all user : Agent, user_task : Task_Execution | user_task in user.performs (

(some policy: Authorization_Policy | some user_role: user.occupies |

 policy.role in user_role.ins.*isa

 && user_task.task in policy.task.*task

 && (all resource: user_task.resource | some orgdom :resource.org_domain | orgdom =

 user_role.org_domain && policy.role.org_domain in orgdom.*ins))

}</DIS>
The symbols used in this invariant have the following meanings:

<DIS>=

equivalence

in

set membership
&&

conjunction operator, whereby A && B is A and B
(
the arrow implies operator, whereby A => B means if A is true, then B is also true
All A: B | C

is the universal quantifier; for all A in B, C is true.
Some E: D | F

is the existential quantifier; for some E in D, F is true
*
is the reflexive closure operator that contains the transitive closure plus the relationship of an element to itself.</DIS>
This invariant is defined in the form P (Q. P is the assertion that an agent has executed a task (though P can be a set of mappings between agents and task executions), and Q is the logical condition that there is a policy (or set of policies) that permits P. In order for Q to be satisfied, a policy must exist for which three conditions must be satisfied. First, there is some role assigned to the user that is compatible with a policy. The user role is an instantiation of an abstract role, and if this role is equivalent to or inherited from a role defined in a policy, then the role is compatible with the policy. Second, the task in the task execution must be equivalent to the task in the policy or one of its subtasks. Third, the resources being accessed through the task execution must be in the same organizational domain as the user.

In order to check the model, we can define assertions. An assertion is a property of the system that we expect to be true. For analyzing our framework we use assertions to verify that policies adhere to scenarios. In checking assertions the Alloy analyzer can either generate instantiations or use the instantiations that we define in the model. In order to check an assertion, a check command can be executed in Alloy. The check command has a parameter for the number of instances to be generated for the check. In order for the model to be checked for the instances that we generated, it needs to be set to exactly the same number of instances that we define. When a check command is executed, Alloy searches for a counterexample that breaks the assertion, and then will display the state by which the solution is arrived at. Otherwise, the tool simply states that no solution was found. For the purposes of demonstrating an Alloy check, a false assertion is therefore more informative.

For example, the following assertion states that the agent Jim Smith cannot carry out the task execution Initial Consultation of Philip Stokes:

<DIS>assert Initial_Consultation_Jim_Smith

{all te : Initial_Consultation_of_Philip_Stokes, ag : Jim_Smith | !te in ag.performs}</DIS>
The following check command is then defined and executed:

<DIS>check Initial_Consultation_Jim_Smith for 4 but 1 Authorization_Policy, 2 Org_Function, 2 Authority, 3 Resource, 1 Task_Execution, 1 Agent</DIS>
In fact, because Jim Smith is a Customer Advisory Services Clerk in Frankfurt, the authorization policy we defined is satisfied and Jim Smith can carry out the task execution Initial Consultation of Philip Stokes. The diagram in figure 8.6, produced by the Alloy tool checker, demonstrates this.

[Figure 8.6 here]
<H1>8.7 Summary and Conclusions</H1>
This chapter has addressed the problem of modeling access policies to ensure that security goals can be achieved and that operational requirements are consistent with access policies. We first identified the importance of a macro-organizational analysis before specifying actor or role definitions in the context of modeling access policies. The lack of this
 in current modeling approaches makes it difficult to unambiguously express access policies and to refine them into operational constraints. We proposed a novel way of deriving roles from the macro-organizational context. We demonstrated how to identify the groupings, the levels of authority, and the management domains from which roles can be defined. It is relating roles to identifiable phenomena of the organizational context, that is, the levels of authority and groupings, that gives us a more precise definition.

A key contribution of our work is that we have now included the organizational context in the i* framework. This addresses a key problem in defining access policies that we outlined in section 8.3 with regard to defining the access policy for accessing medical records, in that a family doctor should access only the records of his or her patients. Including the general practice as an organizational domain, for example, would enable us to more accurately define the minimum privileges policy.

However, there are other principles that remain to be investigated. Accounting principles, for example, can lead to complex procedures, whereby workflows need to be modeled and financial constraints such as credit ratings need to be included in the policies.

In addition to extending the i* framework, there are other avenues worth investigating. In particular we need to combine our approach with the other approaches identified in section 8.2 with regard to threats and countermeasures analysis.

<H1>Acknowledgments</H1>
Thanks to Jonathan Moffett and Qingfeng He for their helpful comments on an earlier draft of this chapter. Nuseibeh was supported by grants from the Leverhulme Trust and the Royal Academy of Engineering.

<REF>References

Agerhold, S., & Larsen, P.G. (1998). The IFAD VDM tools: Lightweight formal methods. In Proceedings of the International Workshop on Current Trends in Applied Formal Methods, FM-Trends 98 (pp.326–329). Lecture Notes in Computer Science 1641. Berlin: Springer.

Alexander, I. (2002).
 Modelling the interplay of conflicting goals with use and misuse cases. In C. Salinesi, B. Regnell, and K. Pohl (eds.), Proceedings of the 8th International Workshop on Requirements Engineering: Foundations for Software Quality [REFSQ’02] (pp. 145–152). Essen,Germany: Essener Informatik Beiträge.

Anderson, R.J. (2001). Security Engineering: A Guide to Building Dependable Distributed Systems. New York: John Wiley.

Bacon, J., Lloyd, M., & Moody, K. (2001). Translating role-based access control within context. In M. Sloman, J. Lobo, and E.C. Lupu (eds.), Proceedings of the2nd International Workshop on Policies for Distributed Systems and Networks [POLICY’01] (pp. 107–119). Lecture Notes in Computer Science 1995. Berlin: Springer.

Bell, D.E., & LaPadula, L. J.
 (1973). Secure Computer Systems: A Mathematical Model. MITRE Technical Report 2547, rev. 2. Bedford, MA: MITRE.

Bertino, E., Bonatti, P.A., & Ferrari, E. (2000). TRBAC: Temporal role-based access control model. In Proceedings of the 5th ACM Workshop on Role-Based Access Control (pp. 21–30). New York: ACM Press.

Brewer, D.F.C., & Nash, M.J. (1989). The Chinese Wall Security Policy. In Proceedings of the IEEE Symposium on Research Security and Privacy
 (pp. 206–214). Los Alamitos, CA: IEEE Computer Society Press.

Brown, S.J., & Steenbeek, O.W. (2001). Doubling: Nick Leeson’s trading strategy. Pacific Basin Finance Journal, 9(2), 83–99.

British Standards Institute (BSI). (1999). Information SecurityTechnology— Part 1: Code of Practice for Information Security Management.
 BS799-1:1999. London: British Standards Institute.

Cimatti, A., Clark, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., & Tachella, A. (2002). NUSMV 2: An open source tool for symbolic model checking. In E. Brinksma and K. Guldstrand Larsen (eds.), Proceedings of the 14th International Conference on Computer Aided Verification [CAV’02] (pp. 359–364). Lecture Notes in Computer Science 2404. Berlin: Springer.

Clark, D.D., & Wilson, D.R. (1987). A comparison of commercial and military computer security policies. In Proceedings of the 1987 IEEE Symposium on Security and Privacy (pp. 184–194).
 Los Alamitos, CA: IEEE Computer Society Press.

Coyne, E.J. (1996).
 Role engineering. In the Proceedings of the First ACM Workshop on Role-Based Access Control (pp. 115–116). New York: ACM Press.

Crook, R., Ince, D., & Nuseibeh, B. (2003). Modelling access policies using roles in requirements engineering. Information and Software Technology, 45(14), 971–991.

 Crook, R., Ince, D., & Nuseibeh, B. (2005). On modelling access policies: Relating roles to the organisational context. In Proceedings of the 13th IEEE International Requirements Engineering Conference [RE’05] (pp. 157–166). Los Alamitos, CA: IEEE Computer Society Press.

Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science of Computer Programming (20), 3–50.

Dobson, J.E., & Strens, M.R. (1994).
 Organisational requirements definition for information technology systems. In Proceedings of the First IEEE International Conference on Requirements Engineering [ICRE’94] (pp. 158–165). Los Alamitos, CA: IEEE Computer Society Press.

Dulay, N., Lupu, E., Sloman, M., & Damianou, N. (2001). A policy deployment model for the Ponder language. In Proceedings of the 7th IEEE/IFIP International Symposium on Integrated Network Management [IM’01] (pp. 529–543). Los Alamitos, CA: IEEE Computer Society Press.

Fernandez, E.B., & Hawkins, J.C. (1997). Determining role rights from use cases. In Proceedings of the 2nd ACM Workshop on Role-Based Access Control (pp. 121–125). New York: ACM Press.

Fontaine, P.-J.
 (2001). Goal-oriented elaboration of security requirements. Master’s project, Université Catholique de Louvain, Belgium.

Fuxman, A., Pistore, M., Mylopoulos, J., & Traverso, P. (2001). Model checking early requirements specifications in Tropos. In Proceedings of the 5th IEEE International Symposium on Requirements Engineering
 [RE’01] (pp. 174–181). Los Alamitos, CA: IEEE Computer Society Press.

Georgiadis, C.K., Mavridis, I., Pangalos, G., & Thomas, R.K. (2001). Flexible team-based access control using contexts. In Proceedings of the 6th ACM Symposium on Access Control Models and Technologies (pp. 21–27). New York: ACM Press.

Handy, C. (1985). Understanding Organisations. Harmondsworth, UK: Penguin.

He, Q., & Antón, A.I. (2003). A framework for modeling privacy requirements in role engineering. In Proceedings of the9th International Workshop on Requirements Engineering: Foundations for Software Quality [REFSQ’03] (pp. 137–146). Essen, Germany: Essener Informatik Beiträge. http://crinfo.univ-paris1.fr/REFSQ/03/papers/REFSQ03-PreProceedings.pdf
.
Jackson, D. (2002). Micromodels for software: Lightweight modelling and analysis with Alloy software. Retrieved December 12, 2007, from the Alloy Analyzer Web site, Software Design Group, Computer Science and Artificial Intelligence Laboratory, MIT: http://alloy.mit.edu/alloy2website/reference-manual.pdf
.
Jackson, D. (2004). Alloy 3.0 reference manual. Retrieved December 2, 2007, from the Alloy Analyzer Web site, Software Design Group, Computer Science and Artificial Intelligence Laboratory, MIT: http://alloy.mit.edu/reference-manual.pdf
.
Jajodia, S., Samarati, P., & Sabrahmanian, V.S. (1997). A logical language for expressing authorizations. In Proceedings of the IEEE Symposium on Research in Security and Privacy (pp. 31–42). Los Alamitos, CA: IEEE Computer Society Press.

Lin, L.L., Nuseibeh, B., & Ince, D.
 (2004). Using abuse frames to bound the scope of security problems. In Proceedings of the 3rd International Workshop on Requirements for High Assurance Systems [RHAS’04] (pp. 29–34). http://www.sei.cmu.edu/community/rhas-workshop/2004/rhas04-proceedings.pdf
.
Liu, L., Yu, E., & Mylopoulos, J. (2002). Analyzing security requirements as relationships among strategic actors. In Proceedings of the 2nd Symposium on Requirements Engineering for Information Systems [SREIS’02] (paper 5). http://www.sreis.org/old/2002/
.
Liu, L., Yu, E., & Mylopoulos, J. (2003). Security and privacy requirements analysis within a social setting. In Proceedings of the 11th IEEE International Conference on Requirements Engineering [RE’03] (pp. 151–161). Los Alamitos, CA: IEEE Computer Society Press.

Loucopoulos
, P., & Kavakli, E. (1995). Enterprise modelling and the teological approach to requirements engineering.
 International Journal of Intelligent and Cooperative Information Systems, 4(1), 45–79.

Mintzberg, H. (1992). Structure in Fives: Designing Effective Organizations. Upper Saddle River, NJ: Prentice Hall.

Moffett, J.D. (1998). Control principles and role hierarchies. In Proceedings of the 3rd ACM Workshop on Role-Based Access Control (pp. 63–69). New York: ACM Press.

Moffett, J.D., & Lupu, E.C. (1999). The uses of role hierarchies in access control. In Proceedings of the 4th ACM Workshop on Role-Based Access Control (pp. 153–160). New York: ACM Press.

Moffett, J.D., & Sloman, M.S. (1988). The source of authority for commercial access control. IEEE Computer, 21(2), 56–69.

Neumann, G., & Strembeck, M. (2002). Scenario driven role engineering process for functional RBAC roles. In Proceedings of the7th ACM Symposium on Access Control Models and Technologies (pp. 33–42). New York: ACM Press.

Sandhu, R., Coyne, E.J., Feinstein, H.L., & Youman, C.E.
 (1996). Role based access control models. IEEE Computer, 29(2), 38–47.

Schaad, A. (2003). A framework for organisational control principles. Ph.D. thesis, Department of Computer Science, University of York, UK.

Sindre, G., & Opdahl, A.L. (2000). Eliciting security requirements by misuse cases. In Proceedings of TOOLS Pacific 2000: 37th International Conference on Technology of Object-Oriented Languages and Systems (pp. 120–131). Los Alamitos, CA: IEEE Computer Society Press.

Sindre, G., & Opdahl, A.L. (2001). Templates for misuse case description. In Proceedings of the 7th International Workshop on Requirements Engineering: Foundations for Software Quality
 [REFSQ’01] (pp. 125–137). Essen, Germany: Essener Informatik Beiträge.

Spivy, J. (1992). Z-Notation: AReference Manual. 2nd ed. Upper Saddle River, NJ: Prentice Hall.

Strens, M.R., & Dobson, J.E.
 (1994). Responsibility modelling as a technique for requirements definition. IEEE Intelligent Systems Engineering, 3(1), 20–26.

Thomas, R.K. (1997). Team-based access control: A primitive for applying role-based access controls in collaborative environments. In Proceedings of the 2nd ACM Workshop on Role-Based Access Control (pp. 13–19). New York: ACM Press.

Thomas, R.K., & Sandhu, R.S. (1994). Conceptual foundations for a model of task-based authorizations. In Proceedings of the 7th IEEE Computer Security Foundations Workshop
 (pp. 66–79). Los Alamitos, CA: IEEE Computer Society Press.

Van Lamsweerde, A. (2000). Requirements engineering in the year 00: A research perspective. In A. Finkelstein (ed.), Proceedings of the 22nd International Conference on Software Engineering [ICSE’00] (pp. 5–9). New York: ACM Press.

Van Lamsweerde, A. (2004). Elaborating security requirements by construction of intentional anti-models. In Proceedings of the 26th International Conference on Software Engineering [ICSE’04] (pp. 148–157). New York: ACM Press.

Van Lamsweerde, A., Brohez, S., de Landtsheer, R., & Janssens, D. (2003). From system goals to intruder anti-goals: Attack generation and resolution for security requirements engineering. In C. Heitmeyer and N. Mead (eds.), Proceedings of the 2nd International Workshop on Requirements for High Assurance Systems [RHAS’03] (pp. 49–56). http://www.sei.cmu.edu/community/rhas-workshop/2003/rhas03-proceedings.pdf
.

Yu, E. (1995). Modeling strategic relationships for process engineering. Ph.D. thesis, Department of Computer Science, University of Toronto.

Yu, E., & Liu, L. (2001).
 Modelling trust for system design using the i* strategic actors framework. In R. Falcone, M. Singh, & Y.-H. Tan (eds.), Trust in Cyber-Societies: Integrating the Human and Artificial Perspectives (pp. 175–194). Lecture Notes in Computer Science 2246. Berlin: Springer.

<figure captions>

Figure 8.1 Strategic Rationale diagram (adapted from Liu et al., 2003). See figure A.1 for a key.

Figure 8.2 Basic credit application process.

Figure 8.3 Organizational structure of the Dresdener Bank.
Figure 8.4 i* Strategic Dependency diagram showing actors in a bank branch.

Figure 8.5 Alloy metamodel.

Figure 8.6 Counterexample for assertion of initial consultation executed by Jim Smith.
Table 8.1 Authority level mapping between Formal Tropos and Alloy

	Authority level mapping

	Authority Clerk SENIOR Manager

	one sig Clerk extends Authority {}

fact {Clerk.senior = Manager}

Table 8.2 Role and policy mapping between Formal Tropos and Alloy
	Actor and Task Assignment Mapping to Role and Policy Definitions

	Actor Customer Advisory Services Clerk

 Type Role
 Organizational Function Customer Advisory Services

 Organizational Domain Branch

 Authority Clerk

 Task Initial Consultation

	one sig Customer_Advisory_Services_Clerk extends Role{}

fact{Customer_Advisory_Services_Clerk.org_function=Customer_Advisory_Services}

fact{Customer_Advisory_Services_Clerk.org_domain=Branch}

fact{Customer_Advisory_Services_Clerk.authority=Clerk}

one sig Approve_Credit_Policy extends Authorization_Policy {}

fact {Approve_Credit_Policy.task = Initial_Consultation}

fact {Approve_Credit_Policy.role = Customer_Advisory_Services_Clerk}

	Organizational Domain Instance Mapping

	Organizational Domain Frankfurt Branch INS Branch

	one sig Frankfurt_Branch extends Org_Domain {}

fact {Frankfurt_Branch.ins = Branch}

	Resource Instance Mapping

	Resource Credit Application of Philip Stokes INS CreditApplication

 Organizational Domain Frankfurt Branch

	one sig Philip_Stokes_Credit_Application extends Resource {}

fact{Philip_Stokes_Credit_Application.ins=Credit_Application}

fact{Philip_Stokes_Credit_Application.org_domain=Frankfurt_Branch}

Table 8.3 Instance mappings from Formal Tropos to Alloy

Table 8.4 Actor instantiation mapping between Formal Tropos and Alloy
	Actor Instantiation and Task Assignment Mapping

	Actor Customer Advisory Services Clerk Frankfurt INS Customer Advisory Services Clerk

 Type Role

 Organizational Domain Frankfurt Branch

	one sig Customer_Advisory_Services_Clerk_Frankfurt extends Role
fact{Customer_Advisory_Services_Clerk_Frankfurt.ins=

Customer_Advisory_Services_Clerk}
fact{Customer_Advisory_Services_Clerk_Frankfurt.org_domain=Frankfurt_Branch}

	Agent and Task Execution Mapping

	Actor Jim Smith OCCUPIES Customer Advisory Services Clerk Frankfurt

 Task Initial Consultation

 Resource Credit Application of Philip Stokes

	one sig Jim_Smith extends Agent {}

one sig Initial_Consultation_of_Philip_Stokes extends Task_Execution {}

fact{Initial_Consultation_of_Philip_Stokes.resource=Credit_Application_of_Philip_Stokes}

fact{Initial_Consultation_of_Philip_Stokes.task = Initial_Consultation}
fact{Jim_Smith.occupies = Customer_Advisory_Services_Clerk_Frankfurt }
fact{Jim_Smith.performs = Initial_Consultation_of_Philip_Stokes }

�Author: Should the authors be Dobson & Strens? If so, this citation would be 1994b (here and in References).

�Author: Should the year for Alexander be 1992?

�Author: Is M. Jackson also a coauthor?

�Author: Should the year of Yu and Liu be 2000?

�Author: Is “proposes that the assignment” correct?

�Author: Is “are not the roles” correct?

�Author: Should the authors be LaPadula & Bell?

�Author: Is the sentence correct as edited?

�Author: Should the year be 1995?

�Author: If Strens and Dobson 1994 (see p. 483) is changed to Dobson and Strens, the year here should be 1994a.

�Author: Is “as the basis for a policy” correct?

�Author: Is “between the actors” correct?

�Author: Is “subsection 8.5.1” correct?

�Author: Is it ok to delete “hold”? If not, please clarify its meaning.

�Author: Is “metamodel,” rather than “metal-model,” correct?

�Author: Is it correct to have no extra space in this signature?

�Author: Is the change to “as” correct? If not, please clarify the text.

�Author: To what does “this” refer? Please clarify.

�Author: Is the book title correct as edited? Also, please check the number of LNCS; we find that 1641 was published in 2008.

�Author: Should the year be 1992?

�Author: Should the order of authors’ names be reversed?

�Author: Should the subtitle be Mathematical Models?

�Author: Is the addition of Research to the title correct?

�Author: Are the article title and the journal title correct as edited?

�Author: Is the title correct as edited?

�Author: Should the concluding page be 193?

�Author: Should the year be 1995?

�Author: If Strens & Dobson 1994 should Dobson & Strens 1994, then the year here should be 1994a.

�Author: Is the reversal of the initials to P.-J. correct?

�Author: Are the changes in the book title, from 9th to 5th, and the addition of Requirements, correct?

�Author: Is 1985 the 2nd edition?

�No query

�No query

�No query

�Author: Is M. Jackson also an author?

�No query

�No query

�Author: Should “teological” be “teleological”?

�Author: Are E.J. Coyne and H.L. Feinstein correct?

�Author: Is the book title correct as edited?

�Author: Should the order of the authors’ names be reversed? If so, the item must be moved to follow Dobson & Strens, 1994a (as 1994b).

�Author Is the addition of 7th IEEE to the book title correct?

�No query

�Author: Should the year be 2000?

PAGE
482

