=

Filtering Algorithms and Implementation for Very Fast
Publish/Subscribe Systems

Francoise Fabret*
Kenneth A. Rosst

ABSTRACT

Publish/Subscribe is the paradigm in which users express
long-term interests (“subscriptions”) and some agent “pub-
lishes” events (e.g., offers). The job of Publish/Subscribe
software is to send events to the owners of subscriptions
satisfied by those events. For example, a user subscription
may consist of an interest in an airplane of a certain type,
not to exceed a certain price. A published event may con-
sist of an offer of an airplane with certain properties in-
cluding price. Each subscription consists of a conjunction
of (attribute, comparison operator, value) predicates. A
subscription closely resembles a trigger in that it is a long-
lived conditional query associated with an action (usually,
informing the subscriber). However, it is less general than
a trigger so novel data structures and implementations may
enable the creation of more scalable, high performance pub-
lish /subscribe systems. This paper describes an attempt at
the construction of such algorithms and its implementation.
Using a combination of data structures, application-specific
caching policies, and application-specific query processing
our system can handle 600 events per second for a typical
workload containing 6 million subscriptions.

1. PROBLEM DESCRIPTION

Much of human information will be on the Web in ten
years. The Web is particularly well-suited to changing in-
formation — Yahoo is a better source of current world events

*INRIA Rocquencourt, email: {fabret,llirbat,pereira}@ca-
ravel.inria.fr. The work of J. Pereira was partly supported
by a JNICT fellowship of Program PRAXIS XXI (Portugal).
tUniversity of Toronto, email: jacobsen@eecg.toronto.edu.
{Columbia University, email: karQ@cs.columbia.edu. The
work of K. Ross was partly supported by grant 9812014 of
the United States National Science Foundation.

SCourant Institute of Mathematical Sciences/New York
University, email: shasha@cs.nyu.edu. The work of D.
Shasha was partly supported by grant 9988345 of the United
States National Science Foundation.

Permissionto male digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

ACM SSGMOD 2001 May 21-24,SantaBarbaraCalifornia, USA
Copyright 2001ACM 1-58113-332-4/01/05.$5.00.

115

H. Arno Jacobsent

Francois Llirbat* Joao Pereira*

Dennis Shashat

than printed newspapers. For this reason (and as pointed
out in [5]) there is a need for systems to capture this chang-
ing information by notifying users of interesting events. For
example, a bargain-hunter may search for something on the
web, but decide it’s too expensive. He may then want to be
alerted when the item becomes cheaper. A food lover may
wonder when certain cheeses are available in a convenient
market. She too may want to be alerted. Such users would
benefit from a publish/subscribe system in which they indi-
cate their desires and they are alerted when items matching
those desires are met. A tool that implements this func-
tionality must be scalable and efficient. Indeed, it should
manage millions of user demands for notifications (i.e., sub-
scriptions). It should handle high rates of events (several
million or more per day) and notify the interested users af-
ter only a short delay. In addition, it should provide a sim-
ple and expressive subscription interface and efficiently cope
with the high volatility of web user demands (new subscrip-
tions, new users and cancellations). For example, a user
may want to go from New York to California in the next 24
hours but only if he can get a flight for under $400. Such a
“subscription” would be short-lived.

We model a publish /subscribe system as a system manag-
ing a stream of incoming subscriptions and a stream of in-
coming data items (or events). Each subscription and each
event is associated with a time interval during which it is
considered valid. A publish/subscribe system stores both
valid subscriptions and valid event and provides two com-
plementary functionalities: First, when a new subscription
comes in, the system evaluates the subscription against the
valid events. Second, when a new event comes in, the sys-
tem identifies the subscriptions matched by the new event
and sends the event to the interested users.

In this paper, we describe a publish/subscribe system that
supports millions of subscriptions and a high throughput
of incoming events (hundreds of new events per second).
We also consider the problem of supporting a high rate of
subscription changes.

1.1 The Event Matching Problem

A subscription s in our system is a collection of predicates
each of which is a triple consisting of an attribute, a value,
and a relational operator (<,<,=,!=,>,>).

An event is a conjunction of pairs, where each pair consists
of an attribute and a value. No two pairs have the same
attribute. For example, (movie, groundhog day), (price, $8
), (theater, odeon) is an event.

An event pair (a',v') matches a subscription predicate
(a,v,relop) if @ = a’ and v’ relop v. For example, (price,

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

$8) matches (price, $10, <) because they share the same
attribute and $8 < $10.

An event e satisfies a subscription s if every predicate in
s is matched by some pair in e. For example, the event
(movie, groundhog day), (price, $8), (theater, odeon) sat-
isfies (movie, groundhog day, =), (price, $10, <),(price, $5,
>).

The matching problem is: Given en event e and a set of
subscription S find all subscriptions that are satisfied by e.

Notational Remark: In the rest of the paper, we denote
the set of equality predicates of s by P(s). A(s) represents
the set of all the attributes occurring in the equality pred-
icates of s. For example, for the subscription s =(movie,
groundhog day, =), (price, $10, <), (price, $5, >) P(s) =
(movie, groundhog day, =) and A(s) = movie.

1.2 Trigger approach

In this section, we examine how database systems can be
used to perform subscription matching directly. Until now,
traditional database systems do not scale well to millions of
subscriptions and very high event throughput.

Database systems are designed for fast evaluation of que-
ries against stored data sets. They also offer trigger func-
tionality that can be used to check subscriptions when a new
item comes in. First all valid data items might be stored
in a single universal table of the form D(A,,..., A,) where
A;, (i € 1---n) are all possible attributes." Subscriptions
are defined as SQL triggers. For example, a subscription S
((A1 = 3), (A3 > 6)) is implemented with the following SQL
trigger :

CREATE TRIGGER T_S as

AFTER INSERT ON D

REFERENCING NEW ROW AS new

FOR EACH ROW

BEGIN
IF (new.A_1 = 3) AND (new.A_3 < 6)
THEN signal(S);

END

To manage millions of subscriptions the database system
must support millions of triggers (one per subscription) and
each single insertion of a data item may cause the execu-
tion of millions of triggers. To make this solution scalable,
database systems should implement optimization techniques
for trigger executions. Projects TriggerMan [8] and Nia-
garaCQ [4] propose global optimization techniques for trig-
ger executions. QOur solution is close to the spirit of Trig-
gerMan in that it proposes main-memory data structures,
though the exact nature of the data structures is different.

1.3 Contributions

This paper presents an efficient main memory matching
algorithm for matching subscriptions which can handle a
large number of volatile subscriptions (several millions) and
support high rates of incoming data items (hundreds of even-
ts per second). Our algorithm has the following nice prop-
erties:

1. It creates data structures that are tailored to the com-
plexity of the subscription language.

'Other schemas are possible but the essentials of ensuring
the scalability of triggers are the same.

116

2. Our algorithm is “processor cache conscious” in that
it maximizes temporal and spatial locality. Moreover
we use techniques that avoid cache misses by using the
processor prefetch command.

3. Our matching algorithm uses a schema based cluster-
ing strategy built on two main ideas: (1) group sub-
scriptions based on their size and common conjunc-
tion of equality predicates, so many subscriptions can
be (partly) evaluated using a single comparison (2) use
multi-attribute hashing indexes so several subscription
attributes can be evaluated using a single comparison.

4. We provide cost-based algorithms that given the know-
ledge of subscriptions and statistics on incoming data
items are able to compute and incrementally adapt the
optimal clustering to changes in subscription and data
item patterns.

Our experiments using these algorithms show that we can
support several millions of subscriptions, high rates of events
(hundreds of events per second) and high rates of subscrip-
tion changes.

Section 2 gives a general description of our matching algo-
rithm. Section 3 presents our cost-based approach to com-
pute optimal clustering. Section 4 presents an adaptive al-
gorithm to deal with changes in subscription and event pat-
terns. Section 5 presents related approaches and algorithms.
Section 6 presents performance studies. Finally, Section 7
concludes.

2. SOLUTION OVERVIEW

2.1 Main memory algorithms

With the emergence of cheap computers having very large
random access memory, more and more algorithms will run
in main memory without any access to secondary memory
[13]. However, PC processors still have small cache mem-
ories: Processor cache memories are static RAM memories
which hold data that were recently referenced by running
programs. Inside a cache memory, memory references can
be processed at processor speed. References that are not
found in the cache, called misses, require the fetch of the
corresponding cache block from the main memory at a much
higher cost (tens of CPU cycles). When a cache miss occurs
the processor is (normally) idle until the fetch is performed.
So cache misses severely impede program performance. For
this reason, main memory algorithm performance is not only
sensitive to the number of instructions performed, but also
to cache behavior. Moreover, the main trends are: (1) RAM
size and processor speed grow exponentially within the next
years; (2) Processor cache size does not increase more than
linearly. Thus, main memory algorithms will become more
and more sensitive to processor cache behavior.

Processor cache management policies are very simple (for
evident processing cost reasons). However, modern proces-
sors provide now the prefetch command that permits a
running program to force the fetch of a cache block from
a specified position in the RAM[15]. The actual prefetch
happens asynchronously, with computation allowed to con-
tinue. Thus, if the program can predict in advance which
cache block it will need to read, it can avoid a cache miss
by prefetching the cache block few instructions before. An-
other way to limit cache misses is to design algorithms that

Indexes orpredicates

»/I%l\ E List of clusters
\ \ \ \ \ |
' List of clusters
1101 =0/ detail of
mapping Vector of one cluster
reference to |
clusters lists
Bit vector subscription line:
CT T T T 11

EENENEEREEEN

predicates lines

Figure 1: Algorithm Data Structures

are aware of temporal and spatial locality. Spatial locality is
achieved when data that are used consecutively by the algo-
rithm are placed in consecutive memory addresses. Tempo-
ral locality is achieved when the same data is manipulated
in consecutive instructions.

In this paper we propose a matching algorithm which is
specifically designed to be cache conscious. A lot of match-
ing algorithms have been proposed in the literature [9, 1,
6, 16, 12]. Nevertheless, to our knowledge, none of them is
aware of the cache behavior.

2.2 The matching algorithm

Data-structures: The algorithm data structures are de-
picted in Figure 1. Recall that a subscription s is defined
by an identifier and a set of predicates of the form < at-
tribute, comparison operator, value>. An event is a set of
<attribute, value> pairs.

The algorithm uses a set of indexes, a predicate bit vector
and a vector of references to subscription cluster lists, called
a cluster vector. The algorithm uses the indexes to compute
the set of predicates satisfied by a given incoming event, and
the set of clusters which are relevant for the event. Each
indexed predicate that occurs in one or more subscriptions
is associated with a single entry in the predicate bit vector.
This entry serves to represent the result of the predicate
evaluation. It is set to 1 if the predicate is satisfied by the
event and 0 otherwise.

A predicate p may also be associated with a reference to
a list of subscription clusters. In such case, we say that p is
an access predicate for all subscriptions in the clusters list.
A predicate p can be an access predicate for a subscription
s only if s can only match events that verifies p. This guar-
antees that subscriptions in the cluster list associated to p
need to be checked if and only if p is satisfied. Inside the
cluster list, subscriptions are grouped in subscription clus-
ters according to their size (number of predicates).

Figure 1 provides a detailed description of a subscription
cluster for subscriptions having 3 predicates to check. A
subscription cluster for subscriptions of size n is organized
as follows: It consists of a collection of n-dimensional arrays
called a predicates array containing references to bit vector
entries and one 1-dimensional array called a subscription
line that contains subscription identifiers. Entry [¢, j] of the

117

predicates array contains a bit vector reference to the "
predicate of the subscription whose identifier is stored at
position j in the subscription line. This subscription will
match an event if and only if all bit vector entries referenced
at column j of the predicates array are equal to 1.

input:
an event instance e
global variables:
a set of index I, a bit vector B
and a set of subscriptions clusters C
local variables:
candidate_C : a set of clusters
S : a set of subscriptions
Body:
B= 0; candidate_C=0; S=0;
1 Predicate testing:
for each index i in I do
for each predicate p reached by e through 7 do
if p has a reference b to the bit vector B
then B[b] =1
if p is an access predicate for a clusters list lc
then candidate C = candidate_C U lc
2 Subscriptions matching :
For each cluster ¢ in candidate_C
S = S U cluster_matching(c)
return S;

Figure 2: The event matching algorithm

The event matching algorithm: The algorithm is de-
picted in Figure 2. The algorithm is executed each time a
new event comes in. First, the predicate bit vector is initial-
ized to 0. Then the algorithm consists of two steps. The first
step uses the indexes to compute the set of verified predi-
cates, it sets to 1 all corresponding entries in the predicate
bit vector and collects the lists of clusters having verified
access predicates. The second step considers each candi-
date cluster and applies the cluster_matching algorithm to
compute matching subscriptions.

The cluster matching algorithm:

An example of the Cluster_matching algorithm is given
below. This particular example is specialized for a group
of subscriptions that all have exactly three predicates. We
have a collection of similar methods specialized for small
numbers of predicates, in our current implementation, ten
or fewer. There is one generic method to deal with subscrip-
tions having more predicates. A generic method is more
time consuming because it needs an additional loop. How-
ever, most subscriptions have a small number of predicates,
so the generic code will not be called often.

ansindex=0;
for(j=0;j<number_of_subscriptions;j+=UNFOLD) {
for (k=j; k<j+UNFOLD ; k++){

if (sub_array[0][j] && sub_array[1]([j] &&

sub_array[2] [j])

{ answer [ansindex] = k; ansindex++;}}
_prefetch(sub_array[0] [j+LOOKAHEAD]) ;
_prefetch(sub_array[1] [j+LOOKAHEAD]) ;
_prefetch(sub_array[2] [j+LOOKAHEAD]) ;

}

There are several important features of this algorithm.
First, notice that the subscriptions are stored columnwise.
Subscription j has entries in three separate subscription ar-
rays. The reason for this choice is to improve data locality.

The loop over subscriptions is partitioned into two loops.
The value UNFOLD is chosen so that UNFOLD array entries fit

into a cache line.> At the end of the inner loop, we execute
some prefetch instructions. These prefetch subroutines are
implemented directly as assembly language prefetch instruc-
tions, telling the CPU to copy from RAM into the cache a
cache line full of array entries, for processing in the near fu-
ture. The LOOKAHEAD value is chosen so that the data arrives
in the cache just before the CPU is ready to process that
data. Such transfer is asynchronous, meaning that we can
overlap computation and data transfer.

Cache Performance: The columnar storage means that
every entry of sub_array[0] will be consulted. If the condi-
tion being tested is relatively selective, we may not consult
every entry of sub_array[1] or sub_array[2]. In fact, we
may in some cases avoid whole cache lines of these later ar-
rays. (If we had used a row-wise storage method we would
have been forced to touch every cache line.)

Even though we are prefetching all cache-lines from all
three arrays, it may pay to avoid reading cache lines when
possible for two reasons. First, the cache line may not have
quite made it to the cache in time. Second and more im-
portant, some processors limit the number of simultaneous
outstanding cache requests. (On a Pentium III, the limit
is two.) Processors reserve the right to drop prefetch in-
structions when the limit has been reached, since prefetch
instructions are not essential for correctness. Under such
circumstances, we cannot be certain that a prefetched cache
line will actually make it to the cache. If we access fewer
cache lines, the effect of dropping prefetch instructions will
be reduced.

For larger numbers of predicates, we have found empiri-
cally that it does not pay to prefetch all of the correspond-
ing arrays. Prefetch instructions compete with one another
according to the limit above, and so it is better to avoid
prefetching from arrays that are unlikely to be consulted,
so that the frequently consulted arrays are prefetched more
thoroughly.

2.3 Algorithm Analysis

In this section we first analyze the properties of our ap-
proach in term of memory space, cache misses, matching
time and subscription changes. We also discuss the problem
of designing clusters and introduce the next sections.

Space cost: Space cost is linear with the number of pred-
icates: The size of the bit vector is equal to the number of
distinct predicates. Moreover, each subscription is stored in
one single cluster that also contains all bit vector references
to its predicates. Thus, the total size of the subscriptions
clusters is linear with the total number of predicates. Fi-
nally, an additional space is used for index data-structures.
By using hash indexes for equality predicates and simple
B-Trees for inequalities we can guarantee a space cost for
indexes that is linear with the number of distinct predicates.

Cache misses: In terms of temporal locality, only entries
in the bit vector may be checked several times during the
matching process. If the bit vector is small, such as when a
small number of predicates appear in many subscriptions,
it is resident in the processor cache. Spatial locality is

2For simplicity of presentation, this code assumes that the
number of subscriptions is a multiple of UNFOLD. In prac-
tice, we need a small separate piece of code to deal with a
remainder of up to UNFOLD-1 subscriptions.

118

achieved (1) by putting close together in the same cluster
those subscriptions that are likely to be checked for the same
event, (2) by using independent data-structures for predicate
matching and subscription matching so that we can use op-
timized main memory data structures for predicate testing
[13], and (3) by using size criteria (the number of predi-
cates) to group subscriptions into clusters, we can organize
clusters in integer arrays and use asynchronous prefetch op-
erations in the cluster_matching algorithm in order to reduce
the number of cache misses, which directly affects response
time.

Matching time: The subscriptions are grouped in cluster
lists according to their access predicates. As subscriptions
in the same cluster list can match only events that verify the
cluster list access predicate, only subscriptions whose access
predicate is verified have to be checked. The performance
challenge is to define access predicates so that each incoming
event has to be matched against only a minimal number of
clusters. In Section 3 we propose a cost based approach to
compute an optimal clustering using simple equality predi-
cates and a conjunction of equality predicates as access pred-
icates.

Insertion and deletion of subscriptions: The algo-
rithm for adding a new subscription s in the system is very
similar to the event matching algorithm. It consists of two
phases. First the algorithm inserts predicates of s in the
predicates indexes.®> Then, the algorithm chooses an access
predicate for s and inserts s in the corresponding cluster.
The cost of the insertion algorithm is close to the event
matching cost. Deletions can be made fast by maintaining
for each subscription the identifier of the cluster that con-
tains it. Besides the cost of insertion or deletion, adding
or deleting many subscriptions can make obsolete and inef-
ficient a previously optimal clustering. In the same way,
changes in event patterns may degrade performance. In
Section 4 we present an adaptive algorithm that maintains
a locally optimal clustering while supporting high rates of
subscription changes and incoming data items.

3. SCHEMA BASED CLUSTERING

The schema based clustering consists of (1) grouping the
subscriptions in terms of their size, and a common conjunc-
tion of equality predicates as access predicate and (2) us-
ing multi-attribute hashing to find the subscription clusters.
More precisely, given a set of subscriptions S, and a cluster-
ing instance C for S, clusters of C are accessed using a set
of multi-attribute hash tables called a hashing configuration
for C. Each table of the configuration is associated with a
set of attributes, called its schema; it allows one to access
clusters having predicates over this schema. A hashing con-
figuration H for a clustering instance C is a set of tables
such that for each cluster c of C there is a table in H having
an entry referencing c¢. By using multi-attribute hashing, we
can filter events according to their schema. Indeed, match-
ing an incoming event e incurs a lookup per hash table of
the configuration whose schema is included in the schema of
e; the remaining tables are not accessed.

ExAMPLE 3.1. Consider a collection S of subscriptions
and three independently distributed attributes A, B, and C

3Indexes are updated only if s contains a new predicate that
is not already in the system.

that are mentioned by some of the subscriptions. Suppose
that each attribute has 100 values, and that all values for
each attribute have the same probability. Suppose that there
are 7 million subscriptions in S, and that every subscription
in S has an equality condition on at least one of A, B, and C.
There are seven nonempty subsets X of {A, B, C'}. For each
such X, suppose there are exactly 1 million subscriptions
from S with equality predicates on exactly the attributes
X.

Consider a clustering instance C involving access predi-
cates that are simple equality predicates on A, B, or C. Sub-
scriptions mentioning more than one attribute with equal-
ity would be placed in the cluster of one of them. If dis-
tributed uniformly, the population accessed by each hash
table would be 2.33 million subscriptions and each cluster
would contain 23,300 subscriptions. Consider C5 involving
access predicates that are simple predicates on A, B, C,
and conjunctions of two equality predicates on AB and BC.
Subscriptions with AC' might be uniformly distributed be-
tween A and C, and subscriptions with ABC might be uni-
formly distributed between AB and BC. Thus, the hash
table populations would be A: 1.5 million; B: 1 million; C:
1.5 million; AB: 1.5 million; BC: 1.5 million. Sizes of the
corresponding clusters would be A: 15,000; B: 10,000; C:
15,000; AB: 1500; BC:1500.

Now consider the cost of matching an event that mentions
A and B but not C. In C7 we would need to consult one
of the A clusters and one of the B clusters, for a total cost
of two hash table lookups and 46,600 subscription checks.
In C3, we would need to consult (on average) one of the A
clusters, one of the B clusters, and one of the AB clusters,
for a total cost of three hash table lookups and 26,500 sub-
scription checks. Based on this analysis, we would expect
the clustering instance C2 to be preferred for this kind of
event.

The per event matching cost of the algorithm can be de-
composed into three main parts: the cost needed for com-
puting the value of the predicate bit vector, the cost of com-
puting the references of the relevant clusters, and the cost
of checking the set of accessed subscriptions. As it is gener-
ally possible to build several clustering instances for a given
set of subscriptions, and the two later costs are sensitive to
the way the subscriptions are clustered, the problem is to
choose the most efficient clustering. In this section we de-
scribe a cost-based approach to compute optimal (schema
based) clusterings for our matching algorithm. The choice
of the clustering is based on a cost function using statistics
over the subscriptions and the events.

The section is organized as follows. We first define the
notions of access predicate, hashing configuration and clus-
tering instance. Then we give the matching cost and space
cost incurred by matching a set of subscriptions using a given
clustering. Finally we pose the clustering problem in terms
of minimization of the matching cost under a space con-
straint, we enumerate the search space and we propose a
greedy algorithm that produces a locally optimal solution.

3.1 Multi-attrib ute clustering

We consider access predicates defined as a conjunction of
equality predicates. An access predicate is defined by a pair
< id,pred > where id is an identifier, and pred is a set of
equality predicates which are pairwise different over their
attributes. The set of attributes occurring in pred is called

119

the schema of the the access predicate.

Hashing configuration: Let AP be a set of access pred-
icates. In order to test these predicates against incoming
events we use one (or several) multi-attribute hashing struc-
tures. Each hashing structure is intended to check predicates
having a certain schema. More precisely: A multi-attribute
hashing structure over a set of access predicates is defined
by a pair < A, h > where A is a set of attributes called the
schema, of the structure, and A is a hash function which takes
an event e, and returns the identifier of the access predicate
(if it exists) which has A as schema, and is satisfied by e. We
call a hashing configuration H for a set of access predicates
AP the set of hashing structures given by H = {< A1, h1 >,
vy < Ap,hn >} where {A1,..., An} denotes the set of the
schemas of access predicates in AP. This set of schemas is
called the schema of the configuration.

Clustering instance: Given a set S of subscriptions we
group them using access predicates. A subscription clusteris
defined by a triple < id, p, subs > where id is an identifier, p
is an access predicate, and subs is a set of subscriptions such
that each subscription contains all the predicates occurring
in p. A clustering instance for S is a set C of clusters over the
subscriptions of § such that each subscription of S appears
in one and only one cluster of C. In the following we write
C(s) to denote the cluster containing subscription s, and
AP(C) to denote the set of all the access predicates to the
clusters of C. Given an access predicate p of AP(C), we
write clusters(C, p) to denote the set of clusters in C having
p as access predicate. (Note that these clusters differ from
each others in the size of their subscriptions.) Finally, we
define the hashing configuration for C' to be the hashing
configuration having an entry for each predicate of AP(C).

Matching cost of a clustering instance: From now on
we assume that we have a set S of subscriptions, a clustering
instance C for S and H the associated hashing configuration.
The cost of matching an event against S using C includes (1)
the cost for retrieving the relevant multi-attribute indexes
for the event, (2) the hashing cost for each relevant table,

and (3) the cost for checking the accessed subscriptions.
Thus the per event cost is given by:

matching(S, C,H) = idx_retrieving(#) +Z u(H)hashing(H)
HeH

+ 2

pEAP(C)

v(p) (>

checking(p,c) (3.1)
cecluster(C,p)

where idx_retrieving(#) is the cost for retrieving the in-
dexes, u(H) is the probability that the incoming event sche-
ma includes the schema of H, hashing(H) is the cost of run-
ning the hashing function of H, v(p) is the probability for an
event to satisfy the access predicate p, checking(p, ¢) is the
checking cost for cluster ¢, and 3 .1, ster(c,p) ChECKING (P, €)
is the total cost for checking the subscriptions in the clusters
set having p as access predicate. This cost takes into account
the fact that the group of predicates in p is already checked,
so only the remaining predicates have to be checked.

In the following we assume that: (1) the cost for retriev-
ing the relevant indexes is linear in the number of structures
in the hashing configuration. (2) the hashing cost is inde-
pendent of the size of the hashing structure but linear in
the size of the schema of the hashing structure, (3) the cost

of checking a set of subscriptions is linear in the number of
subscriptions. All of these assumptions are consistent with
our implementation. Using these assumptions leads to the
following simplified cost formula:

matching(S,C,H) = Kpx | H |+ > p(H)(Cp + Kpx | HA|)
HeH

+ Z v(C(s).p) = checking(C(s).p,s)
s€ES

Where | H |, and | H.A | represent the number of indexes
and the size of the schema of H respectively, K,, Cy and
K}, represent three constants, C(s) is the cluster containing
s and C(s).p is its access predicate.

Space cost of a clustering instance: The space cost of
a clustering instance C on S using the hashing configuration
‘H includes (1) the cost for storing the hashing structures,
and (2) the cost for storing the clusters.

Thus the space cost is given by

Space(S,C,H) = Z (i-space(H) + Z
HeH pEAP(H.A)

>

cEcluster(C)

h_space(H, p))
c-space(c.p, ¢)

where i_space(H) is the initial space necessary to create
an empty hash table, h_space(H, p) is the space necessary to
manage an entry for access predicate p in hashing structure
H, and c_space(c.p, c) is the size of cluster ¢. Regarding the
data structures for clusters (see Section 2) this size is equal
to Kspace * ¢, Size(s — p.preds) where Kgpace represents
a constant.

3.2 Computing the bestclustering instance

Goal: Let S be a set of subscriptions. The problem is to
find the clustering instance for S that minimizes the clus-
ter checking cost depicted above under the constraint that
the total space occupied by the subscriptions clusters and
the hashing structures is less than a given amount of (main
memory) space.

An exhaustive algorithm would examine all the possi-
ble clustering instances. In such approach, the algorithm
builds each clustering instance by picking out one possible
predicate group for each subscription and finds the asso-
ciated matching cost and space. So, the number of clus-
tering instances examined by an exhaustive algorithm is
Mees (2PN = 2I51P where | P(s) | is number of equality
predicates of s, P is the average number of equality pred-
icates per subscription and, | S | represents the number of
subscriptions.

Such complexity makes the exhaustive algorithm imprac-
ticable. We propose a greedy algorithm whose worst case
complexity is | S | x(| GA(S) |)> where | S | represents the
number of subscriptions, GA(S) is the set of the attribute
groups occurring in subscriptions of S and | GA(S) | repre-
sents the cardinality of GA(S); this number is bounded by
241 where A denotes the set of attributes occurring in equal-
ity predicates of S. Our algorithm starts from a “natural”
clustering that consists of grouping the subscriptions using
simple equality predicates as access predicates. Indeed using
these equality predicates as access predicates incurs no addi-
tional hashing (and space) cost since hashing structures are

120

already defined and used for the predicate testing phase of
the global matching algorithm (Section 2). Then we improve
this initial clustering by defining additional multi-attribute
hash tables. The additional tables are chosen incrementally
step by step. At each step we use a benefit function to de-
cide which hash table to add. The benefit function is based
on the notion of best clustering instance for a hashing con-
figuration schema. We first explain this notion, then we
give the benefit function and describe the algorithm. Our
algorithm produces a local optimum. Experimental results
in Section 6 show the matching time improvements realized
through this algorithm.

Best clustering instance for a hashing configuration
schema: Let S be a set of subscriptions, .4 a hashing con-
figuration schema for S and C(.A) the set of all the clustering
instances having A as hashing configuration schema. We call
best clustering instance for A a clustering instance that gives
the best matching cost among all clustering instances in
C(A). Such clustering instance can be built by iterating over
S and choosing for each subscription s in S the predicate
access p in GP(s) N A that minimizes v(p)checking(p, s).
Indeed, matching cost formula 3.1 shows that two cluster-
ing instances associated with a same hashing configuration
schema only differ over the total checking cost (see line 2
of the formula). In the following, best(S,.A) denotes a best
clustering instance for A, bestcost(S,.A) denotes the cost of
such a best clustering instance and Space(S,.A) denotes its
space cost.

Benefit of an additional hashing structure: Let S
be a set of subscriptions, a hashing configuration for S
and A its schema. The matching benefit of adding a hash-
ing structure H of schema A to H with respect to A is
denoted by B(S,.A, A) and is defined as bestcost(S, A) —
bestcost(S, AU {A}). The space cost of adding H is de-
noted by DS(S, A, A) and is defined by Space(S, AU {A})
- Space(S,A) if Space(S, AU {A}) > Space(S, A) and 0
otherwise. The benefit per unit space of adding a hashing
structure of schema A is 0 if B(S,.A, A) < 0 and B(S,A, A)/
DS(S, A, A) otherwise. The benefit per unit of space may
be infinite if the matching benefit is positive and DS is 0
(i.e., some space is saved).

The Greedy algorithm: The algorithm is described bel-
low. It takes as input a set S of subscriptions, and Maxsize
a space bound and returns a hashing configuration sche-
ma and the associated best clustering instance that fits into
Mazsize.

given :S, a set of subscriptions, and
Maxsize, the space bound.
GA = GA(S)
Ao = {{A} | A is an attribute involved in some equality
predicate in S}
A=Ay
C = best(S, A)
while(Space(S, A) < Maxsize)
Among all schemas in GA — A let B be a schema which
has the maximum positive benefit per unit space wrt A.
if B does not exist then return(.A,C)
else A = AU {B}; C = best(S, A)
end while

return (A,C)

4. DYNAMIC CLUSTERING

The goal of clustering is to minimize the number of sub-
scription checks. In the static approach presented above,
clustering decisions are taken given the global knowledge of
all subscriptions in the system and the knowledge of statis-
tics about incoming event streams. But subscription and
event patterns may change over time, degrading an initial
optimal clustering. To cope with this problem a first solution
consists of periodically recomputing from scratch a cluster-
ing instance that is adapted to the new situation. Due to
the complexity of this reorganization, this solution is well
suited for applications where subscriptions and event pat-
terns are relatively stable during large time intervals. But
this static approach is clearly impracticable when patterns
are evolving continually.

In this section we describe a dynamic clustering algorithm
that incrementally adapts clustering to changes in subscrip-
tion and event patterns. Our algorithm dynamically decides
(1) when to redistribute subscriptions from a given cluster
to other more profitable clusters, (2) when to delete a hash
table and redistribute its subscriptions and, (3) when to
create a new hash table and what table to create. These
decisions rely on two metrics called cluster benefit margin,
and hash table benefit. A cluster is redistributed if its benefit
margin is high. A hash table is created when its benefit is
sufficiently high and removed when its benefit is too small.

Cluster Benefit margin: The benefit margin focuses
on the number of checks that could be saved from a given
clustering instance if all possible access predicates were used.
Let ¢ be a cluster and s a subscription in ¢. The benefit
margin of s in ¢ is equal to (v(p.) —v(P(s))) where p. is the
access predicate of ¢, P(s) is the maximal group of equality
predicates of s and, v(p.) and v(P(s)) are respectively the
probability that an incoming event satisfies p. and P(s).
The rationale for this is that P(s) is a superset of p.. The
benefit margin of a cluster ¢ is noted BM (c) and is defined
by the sum of all the benefit margins of its subscriptions and
is equal to) . (v(pc) —v(P(s)). At first approximation we
define BM(c) as v(p) | ¢ | where | ¢ | is the size of the
cluster.

Hash Table Benefit: The benefit of a hash table H,
noted B(H) is the average number of checks that are saved
when using a given hash table. This benefit is equal to
| H | —nbchecks where | H |is the number of subscriptions
in the hash table and nbchecks is the average number of
subscriptions accessed at each hash table access. At first
approximation we define B(H) as | H |.

4.1 MaintenanceAlgorithm

The maintenance algorithm is parameterized by three thre-
shold values: BMmazx, Bdelete and Bereate. A cluster is
redistributed if its benefit margin is above BMmax. A hash
table is created when its benefit is above Bcreate and re-
moved when its benefit is bellow Bdelete. The benefit mar-
gin of a cluster ¢ may increase for two reasons: Either there
is an insertion of a subscription in ¢, or there is an increase
of the selectivity v(p.) of the access predicate of ¢c. The
benefit of a hash table may decrease when subscriptions are
deleted. In our implementation these metrics are updated
periodically after a certain number of subscription changes
and/or a certain number of incoming events. The mainte-
nance algorithm is called each time one of these metrics is

121

updated.

The figure bellow depicts the part of the algorithm that
reacts to a change of the benefit margin of a cluster c. It
takes also as input the set of existing hash tables and the
set of potential hash tables. It maintains for each potential
table H a set of candidate clusters that contains subscrip-
tions that could be moved to H. The algorithm acts only if
benefit margin of ¢ is above BMmaxz. At first step it calls
the procedure cluster_distribute that tries to redistribute
subscriptions in existing tables and updates all Benefit met-
rics of potential hash tables. Then the algorithm consid-
ers tables whose benefit has reached the Bcreate threshold;
it creates them and populates them by redistributing their
candidate clusters. The function cluster_distribute works
as follows: First it tries to redistribute each subscription
s of ¢ into another existing hash table that minimizes the
probability of the subscription being checked. For example a
subscription having equality predicates on attributes A, B,
C and initially placed in a hash table of schema A could be
moved to a hash table of schema BC if v(BC,s) < v(A4,s).
If after such a redistribution the cluster margin is still ex-
cessive the function considers creating new hash tables. It
considers each potential table that could receive subscrip-
tions from ¢, add ¢ to its set of candidates and increments
its benefits.

When the benefit of an existing hash table H drops un-
der the Bdelete threshold the maintenance algorithm simply
redistributes all subscriptions in H to other existing tables
(not shown below).

Maintenance Algorithm:
given :
¢ the current cluster and H. its hash table.
7 the set of hash tables that have been already created.
PH a set of potential hash table.
candidate_clusters a set of pairs (H, cls) where H belongs to PH
and cls is a set of clusters.
BODY :
if BM(c) > BMmaz // Cluster ¢ has an excessive benefit margin
Cluster_distribute(c)
While(Exists H in PH such that B(H) > Bmin
H=HU{H}; PH= PH — {H}
Foreach cluster ¢’ in H.candidate do
Cluster_distribute(c’)
END BODY :
Cluster_distribute(c)
Foreach subscription s in ¢ do
let Hbest(s) be the hash table in #H such that v(H, s) is minimal
ifHbest(s) # H do
move s to H
if s is marked do
Foreach table H in PH N GA(s) do
B(H)-=1; delete mark from s od
// The redistribution did not improve enough the Benefit margin
if BM(c) > BMmax do
Foreach subscription s in ¢ such s is not marked do
Foreach table H in PH N GA(c) do
B(H)+=1
add ¢ to H.candidate
mark s od

Besides the cost of maintaining each hash table, the main-
tenance cost is proportional to the number of subscription
moves. When a new subscription s arrives the insertion al-
gorithm chooses always the hash table that gives the best
absolute benefit for s. However s may move to another hash
table during its lifetime if insertions or changes in event
statistics increase the benefit margin of the cluster of s and

triggers the creation of a hash table that is better for s.
The choice of threshold values clearly influences the number
of moves. Indeed, Bcreate influences the number of hash
tables created. BMmax influences the number of candi-
date clusters for new hash tables. In Section 6 we study the
performance of the maintenance algorithm both in terms of
improvements of matching cost and maintenance cost.

5. RELATED WORK

A lot of main memory matching algorithms have been
proposed in the context of content based publish/subscribe
systems [1, 10, 14, 3], and triggers [8]. (Such systems are
sometimes described as “SDI systems,” where SDI stands
for “selective dissemination of information.”) At the basis
of these algorithms there are two main techniques.

The first one consists of two phase algorithms which test
the predicates during a first step, then compute the match-
ing subscriptions using the results of the first step. Our pro-
posal is a two phase algorithm. We can also cite [16, 10, 12].
Neonet[10] uses a counting algorithm for the second step.
The counting algorithm consists of “counting” for each sub-
scription its number of hits, i.e., its number of satisfied pred-
icates. To achieve this, the algorithm maintains an associa-
tion table giving for each predicate, the subscriptions where
it occurs. Each time a predicate is satisfied, the count of each
corresponding subscription is incremented. SIFT[16] is an
SDI system allowing users to subscribe to Text documents
by specifying a set of weighted keywords. Matching docu-
ments are discovered based on similarity-based techniques
that are very close to the counting approach. “XFilter”[2] is
an SDI system that is able to handle subscriptions written
in XPath for XML documents. XFilter enforces XML filter-
ing by converting XPath queries into finite state machines
(FSMs) which react to XML parsing events. Algorithm per-
formance is improved by using indexing techniques to limit
the number of FSMs to execute for a given document. Our
algorithm is focusing on simpler subscriptions that consist
of conjunctions of predicates. The matching algorithm pro-
posed by Pereira et al. in [12, 11] uses a similar approach to
our algorithm. Our work improves upon this approach by
using prefetching, multi-attribute hash tables, and dynamic
clustering.

The second technique consists of compiling subscription
predicates into a test network ala A_.TREAT[7]. (The net-
work could be a tree structure.) Internal nodes represent
tests (i.e., predicates), and the leaves of the network contain
references to subscriptions. Events enter the network at the
root of the network. They are tested at internal nodes, pro-
gressing from node to node if node test succeeds. Events
having successfully satisfied all the tests along a path reach
a leaf and obtain by reference the matching subscriptions.
In these algorithms, each subscription may appear in sev-
eral leaves (as in [6]), or can appear in only one leaf (as
proposed in [1]). In the first case an incoming event has to
follow only one path in the tree. In the second case, it gener-
ally has to follow several paths. Therefore the first solution
is more efficient but more space consuming. The algorithm
proposed in [1] is used in the Gryphon system. When com-
pared with the two phase approach, these algorithms suffer
several drawbacks. They have poor temporal and spatial
locality; they are space consuming; the test network data
structures are complex and costly to maintain with respect
to insertion and update of subscriptions, making these solu-

122

tions not well suited for high rates of subscription changes.

Within the database community, “Continuous Queries”
(CQ) and triggers have been developed to permit users to
be notified about changes that occur in the database. They
both evaluate conditions that combine predicates on incom-
ing event with predicates on a current database state. This
makes it impossible for these systems to scale over million
of queries because they may have to check millions of com-
plex conditions on the database state each time a new event
modifies the database state. Scalability of XML Continu-
ous queries is studied in [4]. Scalability of triggers is stud-
ied in [8]. In both cases the algorithm works in two steps:
The first one is a filtering step over the content of incom-
ing events in order to select the database conditions which
are candidates for a complete evaluation. During the sec-
ond step, candidate conditions (resp. queries) are evalu-
ated using global optimization techniques. However, the
more discriminating the filtering step, the less the amount
of computation of the evaluation step. In NiagaraCQ, only
the most selective signature (usually a selection predicate
with equality operator) is chosen for initial filtering, other
selections are performed later. TriggerMan’s filtering step is
more sophisticated than in NiagaraCQ since it can consist
of conjunctions of equality predicate signatures. Both use
index techniques to improve filtering through equality pred-
icates. Our algorithm works on any conjunction of equality
and inequality predicates over event content. It could be
used to enhance the filtering phase of TriggerMan and Ni-
agaraCQ by permitting more powerful event filtering that
uses together equality and inequality predicates. Each sub-
scription in our algorithm would be an entry point in the
common query plans (network for TriggerMan) that checks
the database conditions. Even when filtering is limited to
equality predicates our cost based algorithms can improve
performance by choosing the best multi-key index config-
uration. Indeed the performance experiments in the next
section show that the best index configuration is neither the
one counsisting of choosing simple equality predicates (as Nia-
graCQ does) nor the one consisting in systematically choos-
ing the maximal conjunctions of equality predicates. We
show that by using cost based algorithms we can approach
the best configuration.

6. PERFORMANCE EVALUATION

In this section we evaluate the performance of our al-
gorithm and compare the effect of our clustering strate-
gies. We consider three versions of our algorithm: The
simple propagation algorithm uses only single equality pred-
icates as access predicates. To evaluate the effects of the
prefetch command (see Section 2) we compare two imple-
mentations of the propagation algorithm: propagation does
not use prefetching while propagation_wp uses. Both static
and dynamic algorithms use a clustering strategy that takes
advantage of conjunctions of equality predicates. With the
static algorithm the clustering is built statically using the
cost based algorithm depicted in Section 3. In the dynamic
algorithm clustering is incrementally maintained using the
maintenance algorithm depicted in Section 4. Both algo-
rithms are implemented with prefetching. Finally for com-
parison with (part of) related work we implemented the
counting algorithm (see Section 5) since it is used in many
publish/subscribe systems. All algorithms are implemented
in our publish/subscribe system prototype. The system is

evaluated under various simulated workloads, accounting for
subscriptions and events emitted to the system.

6.1 Experimental Setup

We ran all experiments on a single-CPU Pentium worksta-
tion with an 1686 CPU at 500MHz and 1GB RAM operating
under Linux. The publish/subscribe system runs as a pro-
cess on this workstation waiting for subscriptions and events
to process. We implemented a workload generator that, ac-
cording to a workload specification, emits subscriptions and
events to the publish/subscribe system. The workload gen-
eration task ran as a separate process on the same work-
station as the publish/subscribe system. Subscriptions and
events are emitted to the system in fixed-size batches. The
batch size may be set in the workload specification.

Subscriptions and events are drawn randomly according
to a workload specification that determines subscriptions,
predicates, events, and attribute names. If we require that
certain attributes appear in all subscriptions in a distribu-
tion, we call such attributes “common attributes” for the
subscription set. A predicate is fized in a set of subscrip-
tions if its attribute is a common attribute. A subscription
workload specifies the total number of subscriptions to gen-
erate ns, a batch size ns,, that determines the number of
subscriptions to submit to the system at once, the num-
ber of predicates per subscription np, the number of predi-
cates fixed per subscription np,,, (broken down into np,,,_,
np;;,s, and np,,, ., i.e., the number of predicates with the
respective operators), and a predicate workload specifica-
tion.

Predicates are determined by a name, an operator, a value
domain, and the domain’s cardinality. The value domain de-
termines the possible values of a predicate and is specified
with a lower and upper bound, lp and up, respectively. Val-
ues are drawn from this domain, governed by a uniform dis-
tribution. Predicate names are drawn from the predefined
set of attribute names. The same set of attribute names is
used to draw attribute names for events. The total number
of names available is determined by n:. By setting different
lower and upper bounds for each predicate value domain we
can simulate subscription predicate data skew (in the follow-
ing referred to as subscription skew).

Analogously, events are determined by the number of e-
vents to generate ng, the batch size of events to submit to
the system at once ng,, the number of attribute value pairs
within the event n,4, and the value domain, determined by
a lower and an upper bound, la, wa, respectively. Values
are drawn uniformly distributed from this domain. For all
experiments we use intervals of positive integers as value
domains. By setting different lower and upper bounds for
each attribute domain we can simulate event atiribute data
skew (in the following referred to as event skew).

Table 1 summarizes the workload specification parameters
and their values for our experiments.

Timings are taken in milliseconds within the workload
generating process, starting just before events or subscrip-
tions have been submitted to the publish/subscribe system
process and ending right after the system responds. The
system responds to event submissions with the notifications
that contain the IDs of matched subscriptions. The timings
therefore include the interprocess communication times and
individual timings account for the processing of an entire
batch of subscriptions or events submitted.

123

[Parameter | Description | Range

Global parameters

nt total number of predicate 32
/ attribute names
Subscription and predicate
determining parameters

ns total number of 100,000-6,000,000
subscriptions
number of subscriptions
ns, to submit to the 10,000
system at once
np number of predicates 3-16
per subscription
NPy number of predicates fixed 2-8

per subscription
limits of value

lp;, up; domain of predicates 5- 100
(per predicate)
Event determining Parameters
ng number of events
number of events to
ng, submit to the 100
system at once
nA number of attribute 32
value pairs per event
la, ua limits of value 5-100

domain of attributes

Table 1: Parameter definitions and range values.

We ran several experiments multiple times and did not
notice a significant difference in the results. We, therefore,
do not report variances in our figures, which were lower than
0.1%, for the experimental runs repeated.

6.2 Experiments
6.2.1 Total System Throughput and System Scal ability

In this series of experiments we assume that the pub-
lish /subscribe system is subject to a large number of sub-
scriptions, that these subscriptions stay in the system for
a long time, and that the system must handle a high rate
of events. These are the basic assumptions upon which we
designed the matching algorithms. This also represents the
key requirements under which, we assume, our system will
have to operate. In these experiments we measured the event
throughput, the memory size and the subscription loading
time of our system using the different matching algorithms.

Figure 3(a) compares overall system throughput across all
algorithms. The following workload specification was used:
WO = (ny = 32, np = 5 (2 fixed, all equality), na = 32,
value domain: (I = 1, v = 35) (no skews), ns, = 10, 000,
ng, = 100). The same workload is used in Figures 3(c) and
3(d). As expected, the dynamic algorithm shows the best
performance, while the counting algorithm has the poor-
est performance. The performance of the propagation algo-
rithms lies in between these two. The prefetching technique
applied in the implementation of one of the propagation al-
gorithms improves its performance additionally by a factor
of 1.5 for large numbers of subscriptions. For instance, the
event throughput of our system when loaded with 6,000,000
subscriptions is 1.1 events/s (counting), 124 events/s (prop-
agation), 196 events/s (propagation with prefetching) and
602 events/s (dynamic). With this configuration, the time
spent to compute the predicates verified by an event is 1.3
ms. This time is the same for all algorithms since they

matching process time per event

1000 T
counting ——
propagation ——x—
" propagation_wp -
c dynamic e
£ 100+
Q
£
o
£
S 10} .
53 X
£ - X
1 L
10000 100000 1e+06 1e+07
number of subscriptions
(a): np=5, NPy, = 2, ng varies
resident memory size
800000 » .
counting —+—
700000 + propagation -
propagation_wp -
$ 600000 r dynamic s °)
g e
< 500000 r
N4
£ 400000 |
o
[} L
g 300000
£ 200000 -
100000

0 L L L L L
0 1let06 2e+06 3e+06 4e+06 5e+06 6e+06
number of subscriptions

(c): np=5, np;;, =2, ng varies

matching process time per event

35 — T
dynamic W1 ——
g sl dynamic W2
c propagation_wp W1 - e
‘o pg | Propagation wp W2~ "
£~ o
8 2f)
2 .
Q
9 15+t
o
o
£ 1r
ey
5]
© L
g 0.5
0 L L L L L
0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
number of subscriptions
(b) np=(4,9), np,;, = (3,8), ng varies
subscription loading time
1e+07 ——
counting ——
9e+06 | /" propagation —x—
8e+06 | /' propagation_wp --x
dynamic o

, ey static ---+-- 1
£ 6e+06
£ 5e+06 |
[0} a
E 4e+06 |

3e+06 [

20406 "

1e+06

0)
0 1et06 2e+06 3e+06 4e+06 5e+06 6e+06
number of subscriptions

(d): np=5, npg;, =2, ng varies

Figure 3: event matching processing time, memory resident size and subscription loading time.

compute the satisfied predicates using the same method.
Compute the matched subscriptions from the satisfied pred-
icates takes 0.1 ms for the dynamic method and 3.53 ms
for propagation with prefetching, for instance. Predicate
matching performance could be further improved if highly
optimized index structures on predicate domains were used.
Our primary goal has been to highly optimize the subscrip-
tion matching phase, as techniques for the former are well
known. A notable feature of the dynamic algorithm is the
fact that the matching time is kept independent of the num-
ber of subscriptions. This nice behavior is ensured by dy-
namically creating new hash tables when the size of clusters
becomes too large. We also ran experiments to compare the
dynamic and static algorithms. Static algorithm produced
clustering instances that were very similar to those obtained
by the dynamic algorithm (one or two additional hash ta-
bles) and did not significantly beat the dynamic algorithm.
This shows that the metrics used in the dynamic algorithm
provide a good approximation of clustering benefits.

Figure 3(b) compares overall system throughput of the
dynamic algorithm and the propagation with prefetching al-
gorithm for different kinds of operators in predicates. The
workload specifications? were set as follows: W1 = (ns =
3,000,000, np = 4, np;,,_ = 2, np;,, = 1 and one
non-fixed predicate with equality operator, chosen freely
among the n; unused predicate names) and W2 = (ng =
3,000,000, np = 9, np;;,_ = 2, np;, . = 5, npy,, =1
and one non-fixed predicate with equality operator, cho-

We only list values that differ from the above workload
specification.

124

sen freely among the n; unused predicate names). The re-
sults show that both algorithms are sensitive to non-equality
predicates. Their performance decreases by a constant fac-
tor as more non-equality predicates (i.e., W2 vs. W1) are
being processed. The number of satisfied non-equality predi-
cates computed in the first phase of the algorithms is greater
in W2 as more non-equality predicates are being generated
in the workload. The performance difference of both algo-
rithms is equal. This is due to the fact that both algorithms
use the same cluster propagation algorithm to handle non-
equality predicates. In this algorithm bit vector entries asso-
ciated to inequality predicates of a given subscription s are
checked only if all equality predicates of s are verified. Since
both algorithms are tested on similar subscription workloads
the probability that such situation arises is the same for both
of them. The performance gain of the dynamic algorithm
is due to its improved handling of equality predicates via
multi-attribute hash tables.

Figures 3(c) and 3(d) show memory utilization and sub-
scription loading time, respectively, across all algorithms.
The individual graphs follow the natural intuition (increased
processing time and memory use, due to increased data pro-
cessing and storage needs). In terms of memory utilization,
the propagation algorithms (both use the same internal data
structures) require the least amount of memory, closely fol-
lowed by the counting algorithm, while the dynamic algo-
rithms requires the most. The multi-attribute hash-tables
used in the dynamic algorithm use the most memory.

The subscription loading time (cf. Figure 3(d)) is small-
est for the counting algorithm, which deploys very simple

event maximal throughput

1

time in hours

@ dynamic strategy
B "no change" strategy

events per s

2 4

(a): Changing subscriptions schemas

event maximal throughput
600 O dynamic strategy
B "no change" strategy

events per s
w
]
3
[

14 16 18 20

1012
time in hours

(b): adding subscription and event skew

Figure 4: Evolution of event throughput under varying conditions

data structures, and highest for the static algorithm, that
statically computes from scratch an optimal clustering con-
figuration. Compared to the static algorithm, the dynamic
algorithm improves the loading time significantly by reor-
ganizing incrementally its internal data structures during
processing to best suit the subscriptions encountered thus
far. Additional experimental results (not shown) indicate
that the matching performance obtained with incrementally
computed clusterings is as good as that obtained by the
static algorithm.

6.2.2 Adaptability to Subscription Updates

Under real world constraints, publish/subscribe systems
deployed on the Internet are likely to be subjected to a con-
stant stream of subscription updates (e.g., modifications,
insertions, and deletions) and events. Subscriptions and
events are likely to change in structure and content value
distributions over time. Certain similarity patterns within
neighboring elements in the streams may be observable. Sub-
scriptions and events may, for instance, change in terms of
their predicates’ domains. Our dynamic matching algorithm
aims to handle these conditions. In order to study its adap-
tive behavior in comparison to the other algorithms in such a
context we simulate these conditions in a set of experiments.

In these experiments we consider situations where the
publish/subscribe system has to handle concurrently incom-
ing events and a high rate of incoming subscriptions. We as-
sume a subscription has a live time of about 16 hours. Given
a subscription rate of 50 subscription insertions per second,
the system will have to process roughly three million® in-
sertions before aging subscriptions begin to be deleted from
the system. When the system reaches this point, where
the number of deletions balances the number of insertions,
we say the system reaches equilibrium. In the following ex-
periments we investigate the behavior of our algorithms at
system equilibrium. In the experiments the system is first
populated with three million subscriptions according to a
workload specification. At this state we remove 50 subscrip-
tions (representing the 50 oldest ones, inserted 16 hrs ago)
and insert 50 new subscriptions every second. If the system
can manage these insertions and deletions in less than one
second, we use the remaining time before the next second
tick to send events to the system and we measure the num-
ber of events the system can handle within the remaining
time. We measure system evolution according to various
application scenarios where subscription and event patterns

516 * 3600 * 50sub/s = 2, 880, 000.

125

are changing.

The first experiment depicted in Figure 4(a), investigates
the impact of subscription schema changes. This experi-
ment models a situation where subscribers subjects of inter-
est are changing over time. We start from a workload W3
= (nt = 16, ns = 3,000,000, np =5, np;,,_ =1, na = 32,
lp; =1la =1, up;, = ua = 35) where all of the 3,000,000
subscriptions focus on 16 of the 32 attributes available in
the system and events provide uniform values for the 32 at-
tributes. At equilibrium we use a clustering configuration
that it is optimal for W3. During the first two hours sub-
scriptions and events are following workload W3. Then we
insert subscriptions according to a new workload W4 simi-
lar to W3 except it focuses on the 16 attributes that are not
addressed in W3. After 16 hours the system reaches a new
stable state where all subscriptions in the system are fol-
lowing W4. We continue to run the experiment during two
hours inserting and deleting W4 subscriptions. Figure 4(a)
shows the evolution of the average event throughput over
time (throughput is averaged every two hours) and compares
two opposite strategies for clustering maintenance: The dy-
namic strategy uses the dynamic algorithm to adapt cluster-
ing to subscription changes by creating (and deleting) hash
tables. The no change strategy does not change the initial
(optimal) clustering configuration. Figure 4(a) shows that
the no change strategy is vulnerable to performance degra-
dation when subscriptions’ schemas are changing. At the
end of the test period the event throughput is half of what
it was. On the other hand the dynamic strategy adapts the
clustering to the new situation. In the last two hours when
subscription patterns are stable again, the system can han-
dle 350 events per second instead of 200 events per second
with the no change strategy. However during the transition
phase, the dynamic algorithm performance is quite irregular.
This is due to the additional maintenance cost that occurs
when new hash tables are created. This cost is quickly com-
pensated by the matching benefit of the new tables. This
makes the dynamic strategy better than no change strategy
most of the time.

The second experiment is depicted in Figure 4(b). It in-
vestigates the impact of subscription skew when it is com-
bined with event skew. This experiment models a situation
where an area of interest is raised for both subscribers and
publishers. Typical examples arise in news dissemination
systems: A few days before election of the US president,
everybody may want to know about the candidates. At the
same time, more and more information is published on this

subject. To model this phenomenon we designed the follow-
ing experiment. We start from a workload W5 = (ns = 32,
ns = 3,000,000, np =5, np;,,_ =2, na =32, lp, =1la =
1, up; = ua = 35) where equality predicates and attribute
values are uniformly distributed among 35 values. During
the first two hours, subscriptions and events follow work-
load W5. Then after two hours we create both event skew
and subscription skew. New events and subscriptions are
inserted according to a new workload W6. W6 is similar to
W5 except there is a skew (2 different values instead of 35)
on attribute values and predicates of one of the two fixed
attributes used by subscriptions in W5. After 16 hours the
system reaches a new stable state where all subscriptions in
the system are following W6. We then run the system for a
further two hours inserting W6 subscriptions. Figure 4(b)
shows the evolution of the average event throughput over
time (every two hours) when using the dynamic and the no
change strategies. Figure 4(b) shows that the no change
strategy does not prevent performance degradation when
more skewed subscriptions are coming into the system. By
the end of the test period, the event throughput has been
reduced by 20%. On the other hand the dynamic strategy
adapts the clustering to the new situation. At the end of
the experiment, when subscription patterns are stable, the
Ssystem can manage almost the same throughput as before.®
At the beginning of the transition phase the cost of main-
taining clustering remains slightly preponderant compared
to the matching benefit. But after 8 hours, the matching
benefit obtained by clustering reorganization overcomes the
maintenance cost.

7. CONCLUSION

In this paper we propose a main memory algorithm for
filtering event contents with respect to conjunctions of (at-
tribute, comparison operator, constant) predicates. Our al-
gorithm has the following nice properties: (1) our algorithm
is “processor cache conscious” in that it maximizes tempo-
ral and spatial locality. Moreover we use techniques that
avoid cache misses by using the processor prefetch com-
mand. (2) Our algorithm uses a schema based clustering
strategy in order to minimizes the number of subscription
checks. Subscription clusters are accessed through multi-
attribute hash tables.(3) Its clustering strategy is based on a
cost model for computing the optimal hashing configuration
and the corresponding clusters given statistics on incoming
events. (4) We also propose a dynamic algorithm to create
and remove clusters and hash tables dynamically when the
set of subscriptions is modified (due to insertions and dele-
tions) or when event patterns are changing. (5) Performance
studies show that our algorithm can support several million
subscriptions, high rates of events (600 hundred event per
second for a workload containing 6 million subscriptions)
and high rates of subscription changes.

Our filtering algorithm is implemented in a publish/subs-
cribe system and already provides an efficient support to a
subscription language consisting of disjunctive normal form

5Due to subscription and event skew, more subscriptions
are matched at the end of the experiment. This incurs an
additional cost that cannot be compensated by clustering
reorganization.

126

conditions on events. We also think that our algorithm
can be used as an efficient (pre-)filtering module in more
powerful Publish/subscribe systems such as SQL triggers
and continuous queries.

8. REFERENCES

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman,

M. Astley, and T. D. Chandra. Matching events in a
content-based subscription system. In Eighteenth
ACM Symposium on Principles of Distributed
Computing (PODC ’99), 1999.

[2] Mehmet Altinel and Michael J. Franklin. Efficient
filtering of xml documents for selective dissemination
of information. In Proceedings of the 26th VLDB
Conference, 2000.

[3] Antonio Carzaniga, David S. Rosenblum, and
Alexander L. Wolf. Achieving expressiveness and
scalability in an internet-scale event notification
service. In 9th ACM Symposium on Principles of
Distributed Computing (PODC), 2000.

[4] J. Chen, D. DeWitt, F. Tian, and Y. Wang.
Niagaracq: A scalable continuous query system for
internet databases. In In Proc. of the ACM SIGMOD
Conf. on Management of Data, 2000.

[6] P. Bernstein et al. The asilomar report on database
research. ACM Sigmod record, 27(4), 1998.

[6] K. J. Gough and G. Smith. Efficient recognition of
events in distributed systems. In Proceedings of
ACSC-18, 1995.

[7] E. Hanson. Rule condition testing and action
execution in ariel. In Proceedings of the ACM
SIGMOD Int. Conf. on Management of Data, 1992.

[8] E. Hanson, C. Carnes, L. Huang, M. Konyala,

L. Noronha, S. Parasarathy, J. Park, and A. Vernon.
Scalable trigger processing. In Proceedings of the Int.
Conf. on Data Engineering, 1999.

[9] E. N. Hanson, M. Chaabouni, C. Kim, and Y. Wang.
A predicate matching algorithm for database rule
systems. In SIGMOD’90, 1990.

[10] New Era of Networks Inc.
http://www.neonsoft.com/products/NEONet.html.

[11] Jodo Pereira, Frangoise Fabret, Francois Llirbat, Radu
Preotiuc-Pietro, Kenneth A. Ross, and Dennis Shasha.
Publish /subscribe on the web at extreme speed,
demonstration overview. In Proccedings of the 26th
VLDB Conference, 2000.

[12] Jodo Pereira, Francoise Fabret, Francois Llirbat, and
Dennis Shasha. Efficient matching for web-based
publish/subscribe systems. In Proc. of the Int. Conf.
on Cooperative Information Systems (CooPIS), 2000.

[13] Jun Rao and Kenneth A. Ross. Cache conscious
indexing for decision-support in main memory. In
VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, 1999.

[14] Bill Segal and David Arnold. Elvin has left the
building: A publish/subscribe notification service with
quenching. In Proceedings of AUUGY7, 1997.

[15] S. P. Vanderwiel and D. J. Lilja. Data prefetch
mechanisms. ACM Computing Surveys, 32(2), 2000.

[16] T. Yan and H. Garcia-Molina. The sift information
dissemination system. In ACM TODS 2000, 2000.

