
Image Segmentation

Introduction. The goal of image segmentation is to cluster pixels into

salient image regions, i.e., regions corresponding to individual surfaces,

objects, or natural parts of objects.

A segmentation could be used for object recognition, occlusion bound-

ary estimation within motion or stereo systems, image compression,

image editing, or image database look-up.

We considerbottom-up image segmentation. That is, we ignore (top-

down) contributions from object recognition in the segmentation pro-

cess.

For input we primarily consider image brightness here, although simi-

lar techniques can be used with colour, motion, and/or stereo disparity

information.

Reading on Segmentation:See Chapter 14 of the text.
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Example Segmentations: Simple Scenes

Segmentations of simple gray-level images can provide useful infor-

mation about the surfaces in the scene.

Original Image Segmentation (by SMC)

Note, unlike edge images, these boundaries delimit disjoint image re-

gions (i.e. they areclosed).
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Siren Song of Segmentation

Why would a good segmentation be useful? Imagine...

Parent to baby: “Look, there is a baby horse with its mommy!”

Baby:

Reasoning
1. Follow pointing gesture.
2. Acquire image.
3. horse isa animal
4. animal ; quadraped
5. baby horse ; small horse

Visual Task: Seek correlates
of two similar quadrapeds in image,
one smaller than the other.

Image

Bottom-Up Segmentation Parse of Two Quadrapeds

Baby: “Gaaa.” (Translation: “Eureka, I can see!”)
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Key Questions

1. How well can we expect to segment images without recognizing

objects (i.e. bottom-up segmentation)?

2. What determines a segment? How can we pose the problem math-

ematically?

3. How do we solve the specified problem(s)?

4. How can we evaluate the results?
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Example Segmentations: Horses Image

Original Image LV

SMC H

ED NC

Which is the best segmentation? Why?
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Example Segmentations: Tiger Image

Original Image LV

SMC H

ED NC

Group these intoK categories based on quality. (K = 2?)
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Observations on Example Segmentations

The previous segmentations were done by the local variation (LV) al-

gorithm [7], spectral min-cut (SMC) [6], human (H) [11, 9], edge-

augmented mean-shift (ED) [4, 3], and normalized cut (NC) [13, 5].

� The quality of the segmentation depends on the image. Smoothly

shaded surfaces with clear gray-level steps between different sur-

faces are ideal for the above algorithms.

� Humans probably use object recognition in conjunction with seg-

mentation, although the machine algorithms exhibited above do

not.

� For relatively simple images it is plausible that machine segmen-

tations, such as those shown on p.2, are useful for several visual

tasks, including object recognition.

� For more complex images (pp. 5, 6), the machine segmentations

provide a less reliable indicator for surface boundaries, and their

utility for subsequent processing becomes questionable.

� While many segmentation algorithms work well with simple ex-

amples, they will all break down given examples with enough clut-

ter and camouflage. The assessment of segmentation algorithms

therefore needs to be done on standardized datasets.
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Current Goals

� Provide a brief introduction to the current image segmentation lit-

erature, including:

– Feature space clustering approaches.

– Graph-based approaches.

� Discuss the inherent assumptions different approaches make about

what constitutes a good segment.

� Emphasize general mathematical tools that are promising.

� Discuss metrics for evaluating the results.
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Clustering in Feature Space

Given an imageI(~x), consider feature vectors~F (~x) of the form

~F (~x) =

0
BB@

~x

I(~x)

~L(~x)

1
CCA :

Here~L(~x) is a vector of local image features, perhaps bandpass filter

responses. For colour images,~F (~x) would also include information

about the colour at pixel~x.

In order to segment the image we might seek a clustering of the feature

vectors~F (~x) observed in that image. A compact region of the image

having a distinct gray-level or colour will correspond to a region in the

feature space with a relatively high density of sampled feature vectors.
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Mixture of Gaussians Model

A natural approach is then to model the observed feature vector distri-

bution using a mixture of Gaussians (MoG) modelM ,

p(~F jM) =

KX
k=1

�kg( ~F j ~mk;�k):

Here�k � 0 are the mixing coefficients, with
PK

k=1 �k = 1, and ~mk,

�k are the means and covariances of the component Gaussians.

For a givenK, the parametersf(�k; ~mk;�k)g
K
k=1 of the MoG model

can be fit to the dataf~F (~x)g~x2X using maximum-likelihood (hereX

denotes the set of all pixels).

Penalized likelihood (aka minimum description length (MDL)) can be

used to select the number of components,K.
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Maximum Ownership Labelling

The segment labelc(~x) = k for a pixel~x is thek which maximizes the

ownership of~F (~x) in the MoG modelM . That is,

c(~x) = argmax
k

"
�kg( ~F (~x) j ~mk;�k)

p( ~F (~x) jM)

#
:

Here K = 3 (above right). The max-

ownership image was post-processed us-

ing connected components and small re-

gions were discarded (gray). The aver-

age colour of the remaining large com-

ponents is shown (right). The width of

the segment boundaries is due to the use

of a spatial texture feature. From Blobworld [2].

Variations: The MoG model can be replaced by K-means (see text), or

restricted to use low-dimensional parameterizations for�k (eg. block

diagonal).
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Assumptions Come Home to Roost

The quality of the resulting segmentation depends on the degree to

which the given image matches the (implicit) assumptions we began

with, namely:

1. Different segments form compact, well-separated clusters in~F .

2. Gaussian components inM correspond to salient regions.

From Blobworld [2].

Nevertheless, this feature space clustering can be useful for extract-

ing rough summaries of image content suitable for querying image

databases [2].
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Mean-Shift Segmentation

The mean-shift segmentation algorithm [4] also considers the proba-

bility density of feature vectors~F (~x) obtained from a given image.

However, anon-parametric model of the density is used instead of

an MoG. In particular, a kernel-density estimate is used, with

pK(~f) �
1

jXj

X
~x2X

K(~f � ~F (~x));

whereX is the set of all pixels in the image,jXj is the number of

pixels, andK(~e) is a kernel.

Common choices forK(~e) have the form

K(~e) = k(~e T��1~e); (1)

wherek(s) is a convex decreasing function of the squared deviation

s � ~e T��1~e � 0. For example,

k(s) = ce�s=2; for a Gaussian kernel; (2)

k(s) = cb1� sc+; for an Epanechnikov kernel: (3)

Herec = c(�) is a normalizing constant which ensuresK(~e) integrates

to one, andbzc+ denotes positive rectification, i.e.bzc+ � max(z; 0).

We show an example next.
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Example Feature Density

From Comaniciu and Meer [4].

The 2d feature points in (a) are interpolated using the Epanechnikov

kernel (c). The covariance parameter� of the kernelK(~e) determines

the smoothness of the density estimatepK(~f). The trade-off is between

sampling artifacts (kernel too narrow) versus loss of resolution inpK(~f)

(kernel too broad).
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Mean-Shift Iterations

We will use the modes (i.e. peaks) ofpK(~f) to be segmentation labels,

replacing the use of the component labels in the previous MoG model.

That is, we wish to locally solve

~f� = argmax
~f
pK(~f):

This is similar to robust M-estimation, although here we are maximiz-

ing the objective functionpK(~f ), not minimizing it. A similar deriva-

tion to the one for M-estimation shows~f� must satisfy

~f� =

"X
~x2X

w(~F (~x)� ~f�) ~F (~x)

#
=

"X
~x2X

w( ~F (~x)� ~f�)

#

wherew(~e) = �k0(~e T��1~e) andk0(s) = dk
ds(s). In words, ~f� must be

the weighted mean of~F (~x) using the weightsw(~F (~x) � ~f�) centered

on ~f�.

The analogue of the iterative reweighting idea used in M-estimation is

to solve for~f� here by iterating themean-shiftequation

~fj+1 =

P
~x2X w( ~F (~x)� ~fj) ~F (~x)P

~x2X w(~F (~x)� ~fj)
: (4)

Note ~fj+1 is just the weighted mean of the feature points~F (~x), with the

weightsw(~F (~x)� ~fj) centered on the previous guess~fj.
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Watersheds of Mean-Shift

The label for an arbitrary pixel~x0 denotes the mode that the mean shift

iterations (4) converge to, when started at the feature~f0 = ~F (~x0). That

is, the segments produced by mean-shift are defined to be thedomains

of convergence(aka watersheds) of the mean-shift iterations.

In the figure on p.14 the trajectories of mean-shift are shown in (c). The

labelling resulting from the watersheds is shown by the colours in (b).

Properties:

1. Convergence:The mean-shift iterations converge to a stationary

point ofpK(~f) (see [4]).

2. Anti-edge Detection:The mean-shift iterations are repelled from

local maxima of the norm of the gradient (wrt~x) of ~F T (~x)��1 ~F (~x).

This occurs, for example, at strong edges in the imageI(~x).

3. Fragmentation of Constant Gradient Regions:The densitypK(~f)

is constant (up to discretization artifacts) in regions where the gra-

dient of ~F T (~x)��1 ~F (~x) is constant. For example, when~rI(~x) is

constant, every point ofpK(~f) is stationary and the mean-shift it-

erations stall (see figure p.14, part c). Postprocessing is required to

keep only salient local maxima (see [4]).
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Example Mean-Shift Segmentations

Segmentations from the basic mean-shift algorithm:

The scale of the mean-shift kernel (controlled by�) roughly controls

the size and shape of the extracted regions. There is a trade-off between

maintaining the salient boundaries but suffering over-segmentation, ver-

sus missing some of the important boundaries and under-segmenting

the image. The segmentations above illustrate a typical compromise.

An enhanced system (EDISON [3]) combines the mean-shift algorithm

with image edge information. An edge-saliency measure is used to

modify the weight function used in the mean-shift equation (4). This

eases the above trade-off, allowing weak boundaries to be kept in the

segmentation without incurring as much over-segmentation. Image

segmentation results using the EDISON system are shown on pp. 5-

6 (labelled ED). The use of salient-edge information significantly im-

proves the results.
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Similarity Graph Based Methods

Graph-based methods provide an alternative to feature space clustering.

A weighted undirected graphG = (V;E) is formed, with the set of

verticesV corresponding to the pixels~x in the image. EdgesE in

the graph are taken between any two pixels~xi and~xj within a small

distance of each other.

The edge weightw(~xi; ~xj) � 0 reflects the dissimilarity (alternatively,

the similarity) between the two image neighbourhoods centered on pix-

els~xi and~xj. A common form of the weight function is to usew(~xi; ~xj) =

1� a(~xi; ~xj) where the affinitya(~xi; ~xj) is given by

a(~xi; ~xj) � e�
1

2
(~F (~xi)�~F (~xj))

T��1(~F (~xi)�~F (~xj)):

Here ~F (~x) is a feature vector associated with pixel~x, for example:

1. ~F (~x) = I(~x), so the affinity is determined only by the grey-level

difference between neighbouring pixels,

2. ~F (~x) = ~I(~x), the RGB values for a colour image, or some mapping

of the RGB values to a more uniform colour space (eg. L*u*v*).

3. ~F (~x) includes texture primitives, such as local filter responses,

along with the brightness and/or colour at pixel~x.
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Connected Components (Not Robust)

A simple approach is to delete all edges between dissimilar pixels (i.e.,

with weightsw(~xi; ~xj) > � ), and then seek connected components

(CCs) in the remaining graph.

Note that a single edge withw(~xi; ~xj) � � would be sufficient to cause

two desired regions to be merged. Therefore CCs are not robust to stray

links (aka “leaks”) between regions. The consequence is that there is

often no suitable value of� which gives a useful segmentation.

Kruskal’s Algorithm. In passing, it is useful to point out that an ef-

ficient way to do CC clustering, with a variable� , is to first build a

minimal spanning tree (MST) of the graph. Kruskal’s algorithm can be

used, which is a greedy approach guaranteed to give an optimal MST.

Beginning with the completely disconnected graph, edges are added

one at a time in increasing order of their weights, so long as adding an

edge does not introduce cycles in the current sub-graph.

The CCs of the decimated graph (with edges havingw(~xi; ~xj) > �

removed) are then efficiently computed by deleting these same edges

from the MST. The trees in the resulting forest provide the desired CCs.

A modified version of Kruskal’s algorithm is considered next.
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Local Variation Method

Felzenszwalb and Huttenlocher [7] introduce a simple but effective

modification of Kruskal’s algorithm. As in Kruskal’s algorithm, it be-

gins with the completely disconnected graph, edges are added one at a

time in increasing order of their weights, maintaining a forest of MSTs

for the current components.

During processing, each MSTCi is associated with a threshold

T (Ci) = w(Ci) + k=jCij (5)

wherew(Ci) is the maximum weight in the spanning treeCi (i.e. the

local variation of Ci). Alsok > 0 is a constant, andjCij is the number

of pixels inCi.

Suppose the edge(~xk; ~xl) is to be processed next, and its two endpoints

are in two separate MSTsCi andCj. Then these MSTs are merged by

adding the edge(~xk; ~xl) only if

w(~xk; ~xl) � min(T (Ci); T (Cj)): (6)

Note that, as the size ofCi increases, (5) and (6) dictate an increasingly

tight upper boundT (Ci) (compared to the largest weightw(Ci) in Ci)

for the acceptable affinity of an edge mergingCi with another region.
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Examples of Local Variation Segmentation

Sorting the edges according to weight causes the algorithm to grow

relatively homogeneous regions first.

The parameterk in (5) roughly controls the size of the regions in the

resulting segmentation. Largerk provides a looser constraint (6), and

allows more merging.

k = 50 k = 150 k = 250

The merging is sensitive to the local variation within the regions being

merged. Due to the increasingly tight bound (5), a large homogeneous

regionCi is only merged using edges with weights at most fractionally

larger thanw(Ci), the largest affinity in the MSTCi. However, this

bound is much looser for small regionsCi, encouraging their growth.

The approach has a tendency to produce narrow regions along ‘true’

segment boundaries (see examples above).

The approach is very efficient computationally, requiringO(e log(e))

operations wheree is the number of edges.
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Source-Sink Minimum Cut

An alternative graph-based approach makes use of efficient solutions

of the max-flow/min-cut problem between source and sink nodes in

directed graphs.

S-T Min Cut

From Boykov and Kolmogorov [1].

S-T Min-Cut Problem. An S-T graph is a weighted directed graph

with two identified nodes, the sources and the sinkt. We seek a mini-

mum cut separatings andt. That is, we seek a partioning of the graph

into two sets of nodesF andG, with G = V � F , s 2 F , andt 2 G,

such that the linkage

L(F;G) =
X

~xi2F;~xj2G

a(~xi; ~xj): (7)

is minimized.
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Source-Sink Minimum Cut (Cont.)

Efficient algorithms have recently been developed that solve the S-T

min-cut problem (see [1]).

The S-T min-cut problem is computationally much simpler than the

more generalgraph partitioning problem , which is to find a (non-

empty) partitionF andG = V � F which minimizesL(F;G) (i.e.,

without any further constraints, such ass 2 F andt 2 G.)

To take advantage of an efficient solution to the S-T min-cut problem,

we need to generate an S-T graph. Given two disjoint sets of pixels

S andT , we form a weighted directed graph as follows. For each

edge(~xi; ~xj) in the previous undirected graph, the two directed edges

h~xi; ~xji and the reverse edgeh~xj; ~xii are included. Both of these edges

are weighted by the affinitya(~xi; ~xj). In addition, two additional nodes

s andt are created, namely the source and sink nodes, respectively. Fi-

nally, infinitely weighted directed linkshs; ~xii andh~xj; ti are included

for each~xi 2 S and~xj 2 T .

The resulting S-T min-cut then provides a globally minimum cost cut

between the sets of pixelsS andT .
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Seed Regions for S-T Min Cut

The setsS and T (connected to the source and sink, respectively)

should satisfy:

1. EachS andT generated must be sufficiently large (otherwise the

minimum cut is eitherS andV � S, orT andV � T ),

2. EachS andT should be contained within different ‘true’ segments

(due to the infinite weights, neitherS or T will be partitioned),

3. Enough pairsS andT should be generated to identify most of the

salient segments in the image.

One suitable generation process is discussed in Estrada et al [6]. It

is based on spectral properties of a matrix representing the affinities.

Sample results are given in segmentations labelled SMC on pp.2, 5,

and 6 above.

The process is much more computationally intensive than the previous

ones. Several hundred min-cut problems are typically solved for dif-

ferentS, T , and these alone require several minutes on relatively small

images (eg. 40K pixels).

The intriguing property of this approach is that the S-T min-cut algo-

rithm computesglobally optimal cuts (subject to the proposals forS

andT ).
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Normalized Cut

Finally we outline the normalized cut approach of Shi and Malik [13].

Here we seek a partitionF andG = V � F of the affinity weighted,

undirected graph (without source and sink nodes). In order to avoid

partitions where one ofF orG is a tiny region, Shi and Malik propose

the normalized cut criterion, namely thatF andG should minimize

N(F;G) � L(F;G)

�
1

L(F; V )
+

1

L(G; V )

�
; (8)

whereL is the linkage defined in (7).

Unfortunately, the resulting graph partitioning problem,

F = arg min
F�V

N(F; V � F ); (9)

is computationally intractable [13]. Therefore we must seek algorithms

which provide approximate solutions of (9).

Note any segmentation technique can be used for generating proposals for suitable

regionsF , for whichN(F; V � F ) could be evaluated. Indeed, the SMC approach

above can be viewed as usingS andT to provide lower bounds on the termsL(F; V )

andL(G; V ) (namelyL(S; V ) andL(T; V ), respectively), and then using the S-T

min cut to globally minimizeL(F;G) subject toS � F andT � G.
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Discrete Rayleigh Quotient

Shi and Malik [13] prove that (9) is equivalent to the discrete optimiza-

tion problem

argmin
~y

~y T (D �A)~y

~y TD~y
subject toyi 2 f1;�bg and ~d T~y = 0: (10)

HereA is theN � N symmetric matrix of affinitiesa(~xi; ~xj), which

is arranged (say) according to the raster ordering of the pixels~xi, i =

1; : : : ; N . Also, ~d = A~1, where~1 is theN -vector of all ones,b > 0, and

D is the diagonal matrix withDi;i = di.

Given a solution~y of (10), the corresponding solutionF of (9) is then

obtained by settingF = f~xi j yi > 0g. And, vice versa, givenF we set

yi = 1 for each~xi 2 F , and set the other elements of~y to �b, where

b > 0 is chosen such that~d T~y = 0.
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Spectral Approximation for Normalized Cut

Equation (10) is a discrete version of a standard eigenvector formula-

tion, namely the Rayleigh quotient. This suggests using the tractable

approximation obtained by temporarily allowing~y to be a real-valued

vector (instead of 2-valued). By setting~y = D�1=2~u we find

argmin
~u

~u T (I �B)~u

~u T~u
subject to~d T=2~u = 0: (11)

with B = D�1=2AD�1=2, a symmetric matrix. This is a standard eigen-

value problem in linear algebra!

Equation (11) can be simplified further by noting that~u = ~d 1=2 is an

eigenvector ofB with eigenvalue1. It therefore must be an eigenvector

of I � B with eigenvalue0. Moreover, it can be shown that all the

eigenvalues ofI �B are in the interval[0; 2]. Thus (11) is the standard

Rayleigh quotient form for the eigenvectoru of I �B with thesecond

smallesteigenvalue.
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Spectral Approximation (Cont.)

In the original Ncut algorithm [13], an approximation to a discrete so-

lution of (10) is then obtained by thresholdingD1=2~u at each of a set

of values. For each threshold� , the Ncut objective function (8) is eval-

uated, and the best value of� is selected. This produces two regions

F andV � F . Regions are then recursively partitioned using the same

approach, until a user-specified number of segments is obtained. See

pp.5-6 for examples.

The step of thresholding the second largest eigenvector to provide a

partitioning proposal is a key limitation of the approach. In practice,

the approximation only appears to be consistently reliable when there

is exactly one obvious way to partition the data. More recently, Yu and

Shi [14] attempt to alleviate this problem by extractingK segments

from the subspace spanned by theK eigenvectors ofI �B having the

smallest eigenvalues.

For further information, see the reading list in the CVPR 2004, graph-

based segmentation tutorial [12].
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Natural Image Boundaries

As we have seen, segmentation involves finding salient regions and

their boundaries.

A boundary in an image is a contour that represents the change from

one object or surface to another. This is distinct from imageedges,

which mark rapid changes in image brightness (say), but may or may

not correspond to salient boundaries.

The previous segmentation techniques could be (and some have been)

usefully coupled with a bottom-up boundary detector. For example:

1. The EDISON mean-shift segmentation algorithm [3] illustrated one

example of this in reweighting the mean-shift iterations based on

salient edge information.

2. The affinities used in the Ncut algorithm [13] use intervening edge

information to reduce the affinities between pairs of pixels [8].

The development of local, bottom-up, boundary detectors is an impor-

tant problem, complimentary to the segmentation approaches discussed

here. See Martin et al [10] for recent work.
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Berkeley Segmentation Database

The Berkeley Segmentation Dataset [9, 11] provides image segmenta-

tions done by humans. As stated on the dataset’s webpage:

The goal of this work is to provide an empirical and scientific

basis for research on image segmentation and boundary detec-

tion.

The public portion of this dataset consists of the segmentations of 300

images by roughly 5 humans each, done separately for greylevel and

colour versions of the images. Three examples from one image are

shown below:

Note these segmentations appear to be consistent, except different sub-

jects have decided to resolve particular regions into more or less detail.

This variability should be taken into account in a quantitative compari-

son of two segmentations.
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Quantitative Comparison of Segmentations

Martin et al [11] suggest a quantitative measure for comparing two seg-

mentations, which must have roughly the same number of segments,

but for which the relative resolution of each region may be different.

This measure is as follows. LetR(S; ~xi) be the set of pixels having the

same label as pixel~xi in the segmentationS. Given two segmentations,

S1 andS2, define

E(S1; S2; ~xi) =
jR(S1; ~xi)�R(S2; ~xi)j

jR(S1; ~xi)j
:

ThenE(S1; S2; ~xi) = 0 when the regionR(S2; ~xi) containsR(S1; ~xi),

but not vice versa. Finally, the local consistency error is defined to be

LCE(S1; S2) =
1

N

X
~x2X

min(E(S1; S2; ~xi); E(S2; S1; ~xi)):

The minimization within the sum allows local refinements ofS1 with

respect toS2, orS2 wrt S1, to both receive a LCE score of0.

Only the Ncut algorithm has been quantitatively compared to human

segmentations [11] in the literature so far. However, this type of quan-

titative comparison (perhaps with other measures, such as boundary de-

tection statistics [10]) is expected to play an important role in assessing

the performance of segmentation algorithms in the future.
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