
Authorization Views and Conditional Query

Containment

Zheng Zhang and Alberto O. Mendelzon

University of Toronto
Department of Computer Science
{zhzhang, mendel}@cs.toronto.edu

Abstract. A recent proposal for database access control consists of
defining “authorization views” that specify the accessible data, and declar-
ing a query valid if it can be completely rewritten using the views. Unlike
traditional work in query rewriting using views, the rewritten query needs
to be equivalent to the original query only over the set of database states
that agree with a given set of materializations for the authorization views.
With this motivation, we study conditional query containment, i.e. , con-
tainment over states that agree on a set of materialized views. We give
an algorithm to test conditional containment of conjunctive queries with
respect to a set of materialized conjunctive views. We show the problem
is Πp

2 -complete. Based on the algorithm, we give a test for a query to be
conditionally authorized given a set of materialized authorization views.

1 Introduction

Access control is an integral part of databases and information systems. Tra-
ditionally, access control has been achieved by presenting users with a set of
views that their queries must operate on. An alternative approach achieves “au-
thorization transparency” [13–16] by using views in a different way. A set of
“authorization views” specifies what information a user is allowed to access.
The user writes the query in terms of the base relations, and the system tests
the query for validity by determining whether it can be completely rewritten
using the authorization views. For flexibility, views can be parameterized with
information specific to a session, such as the user-id, location, date, time, etc.,
which are instantiated before access control is performed.

Example 1. Consider a database with the following relations: Employees(eid,
name, rank), Projects(pid, name, headid), EP(eid, pid), Progress(eid, pid,
prgs). The EP relation associates employees with projects, while a tuple in
Progress represents a progress report by an employee on a project that the
employee is working on. We use this schema as a running example here and in
Section 4. The following authorization view V1 states the policy that an employee
can see the progress of his or her colleagues in the projects that the employee is
working on.

V1(eid, pid, prgs)← Progress(eid, pid, prgs), EP ($userid, pid).



For simplicity, we assume that a user’s id is the same as his or her employee-
id. The parameter $user-id is instantiated to the actual user-id before access
control is performed. The set of authorization view definitions resulting from
instantiating all the parameters that occur in them is called the instantiated
authorization views. These define exactly what information is accessible to the
user in the current session.

Now suppose employee ‘88’ wants to see the progress in all the projects that
he or she is associated with, using the following query q.

q(eid, pid, prgs)← Progress(eid, pid, prgs), EP (88, pid).

The instantiated authorization view V1 is as follows.

V1(eid, pid, prgs)← Progress(eid, pid, prgs), EP (88, pid).

The following query q′ is an equivalent rewriting of q in terms of the instantiated
view V1, showing that q is authorized.

q′(eid, pid, prgs)← V1(eid, pid, prgs).

Now suppose the same employee wants to see who are the employees who have
reported progress in both projects ‘XP1’ and ‘XP2’, using the following query q.

q(eid)← Progress(eid,XP1 , prgs1), P rogress(eid,XP2 , prgs2).

Since it is the same employee, the instantiated authorization view remains
the same. It is easy to see that there is no rewriting q′ of q in terms of V1

such that q′ is equivalent to q over all database states; hence, the query will be
rejected. But this is unnecessarily harsh. Intuitively, if EP says that employee
‘88’ is working on projects ‘XP1’ and ‘XP2’, then q should be authorized. The
problem is that the requirement that there be a rewriting q′ that is equivalent to
q over all database states is too strong. For example, the following q′ is equivalent
to the last query q, not over all database states, but only over those states where
employee ‘88’ is working on projects ‘XP1’ and ‘XP2’.

q′(eid)← V1(eid,XP1 , prgs1), V1(eid,XP2 , prgs2).

In sum, we adopt the definition of [14]: a query q is conditionally valid with
respect to a set of views V and a set of materializations of these views MV if
there is a rewriting q′ of q using the views V such that, for all database states
where the values of the views V agree with MV , q agrees with q′.

Note that unconditional authorization (i.e. , with equivalence required over
all database states) reduces to the well-known problem of whether a query can
be rewritten using views [10, 11]. Just as query containment plays a crucial role
in the theory of rewriting queries using views, the problem of conditional query
containment with respect to a set of view materializations must be solved in
order to solve the problem of conditional authorization. We study conditional



containment of conjunctive queries with respect to a set of materialized conjunc-
tive views. We show that this problem is Πp

2 -complete and use it to give a test
for conditional query authorization.

The rest of the paper is organized as follows. Section 2 is the preliminar-
ies. Section 3 presents the test for conditional containment between conjunc-
tive queries. Section 4 presents our solution to conditional query authorization.
Section 5 describes related work, and Section 6 concludes the paper and gives
directions for future work.

2 Preliminaries

We consider the usual class of conjunctive queries, CQ. The conjunctive queries
with arithmetic comparisons (CQAC) extend the conjunctive queries CQ by
allowing subgoals with built-in predicates of the form xjθxk, where xj and xk
are either variables or constants and θ is 6=,=, <, or ≤. Every variable occurring
in an equality or inequality must also occur in a regular subgoal. The predicates
used in the regular subgoals are called EDB (extensional database) predicates.
In particular, denote by CQ 6= the subclass of CQAC with only disequations (6=).

The normalization of a query q in CQAC creates a new query nq from q in two
steps: first replace each occurrence of a shared variable x in the regular subgoals,
except the first occurrence, by a new distinct variable xi and add x = xi to nq;
then replace each constant c by a new distinct variable t, and add t = c to nq.

Given an instance d, a valuation ρ from a query Q into d is a total function ρ
from the variables of Q to the domain of constants from d such that ρ(Xi) ∈ d(pi)
for each regular subgoal pi(Xi) of Q. The answer to a query Q on instance d is
denoted by Q(d) and defined as follows.

Q(d) = {ρ(X) | ρ is a valuation for Q into d, q(X) is the head predicate of Q}.

A query Q is satisfiable if there exists a database instance d such that Q(d) is
nonempty. Unlike the CQ’s, which are always satisfiable, a query in CQAC is
unsatisfiable when its equality and inequality subgoals are unsatisfiable.

For any two queries Q1 and Q2, Q1 is said to be unconditionally contained in
Q2, denoted by Q1 ⊆ Q2, if for all database instances d, Q1(d) ⊆ Q2(d). Many
algorithms exist to test containment of CQ’s and their extensions in set theoret-
ical semantics [2, 4, 8, 17]. Among them, the concept of containment mapping is
widely used. A containment mapping from query Q2 to query Q1 is a function
from the variables and constants of Q2 to those of Q1 that is the identity on
constants and that induces a mapping from the subgoals of Q2 to those of Q1.

Theorem 1. [4] For any two CQ’s Q1 and Q2, Q1 ⊆ Q2 if and only if there
exists a containment mapping ρ from Q2 to Q1 such that ρ maps the head of Q2

to the head of Q1.

This theorem remains true when Q1 contains built-in predicates [10]. We say
a query Qr is a complete rewriting of Q using V if Qr is written using only the
views in V and is equivalent to Q. The paper just cited also gives an algorithm
to determine whether a query Q has a complete rewriting in a set of views V .



3 Conditional Query Containment

This section presents our solution to the conditional query containment problem.
We assume a fixed set of view definitions V = {v1, . . . vn}. For each view vi, we
are given an instance of it called mvi. The set of all materialized view instances
is called MV . The set of database instances D = {d | vj(d) = mvj , 1 ≤ j ≤ n}
is called the set of valid instances for V and MV . Note that it is possible for the
set of materializations to be inconsistent, i.e. , the set D can be empty. Although
our methods work in this case also, we do not treat it explicitly in this paper for
lack of space.

The default variable set is {x, y, z, . . .} while {X,Y, Z, . . .} are tuples of vari-
ables and constants. We only consider queries and views in CQ (i.e. , no arith-
metic comparisons) in the following sections, unless otherwise noted.

Definition 1. For any two queries Q1 and Q2, Q1 is said to be conditionally
contained in Q2 w.r.t. V and MV , denoted by Q1 ⊆V,MV Q2, if for every d in
D, Q1(d) ⊆ Q2(d). Q1 is said to be conditionally equivalent to Q2 w.r.t. V and
MV , denoted by Q1 ≡V,MV Q2, if Q1 ⊆V,MV Q2 and Q2 ⊆V,MV Q1.

Definition 2. A query Q is conditionally empty w.r.t. V and MV if Q(d) is
empty for every d in D.

3.1 A Necessary Condition

Given two CQ’s Q1 and Q2 such that Q1 ⊆ Q2, by Theorem 1, the set of EDB
predicates appearing in Q2 must be contained in the set of those appearing in
Q1. This, however, may not be the case for conditional containment.

Example 2. Given a view v(x)← r2(x) and two queries Q1 : q1()← r1(x), r2(x),
Q2 : q2() ← r2(x), r3(x). If mv is empty, Q1 and Q2 are conditionally empty.
Hence, Q1 ≡v,mv Q2 even though their sets of EDB predicates do not contain
each other.

If mv is nonempty, query results depend on r1 and r3, respectively. The
materialized view does not have r1 and r3 in its body, so there is no conditional
containment relationship between the two queries.

Theorem 2. If Q1 ⊆V,MV Q2, then either Q1 is conditionally empty w.r.t. V
and MV , or the set of EDB predicates of Q2 is contained in the set of EDB
predicates appearing either in Q1 or in the definition of some view whose mate-
rialization is nonempty.

Thus, we know that if Q1 is not conditionally empty, and the set of EDB
predicates of Q2 is not contained in the set of EDB predicates appearing in
Q1 or in the definition of one or more nonempty materialized views, then we
can conclude Q1 6⊆V,MV Q2. We will discuss testing conditional emptiness in
Section 3.5. From now on, we assume that the condition of the Theorem holds.

Our plan for testing conditional containment is as follows. First, for any
conjunctive query Q we shall construct a query Q′ that has the property that



Q′ agrees with Q on the valid instances and is empty on the invalid ones. Given
two CQ’s Q1 and Q2, it will follow that Q1 ⊆V,MV Q2 if and only if Q′1 ⊆ Q2.
That is, we have transformed the problem of conditional containment to one
of standard, unconditional containment. Unfortunately, we are not done yet,
because Q′1 is not a conjunctive query, or even a union of queries in CQAC ; it is
a nonrecursive Datalog program with negation. The second step therefore is to
transform Q′1 into a query Q′′1 that is a union of queries in CQAC and still has
the property that Q1 ⊆V,MV Q2 if and only if Q′′1 ⊆ Q2.

3.2 Construction of Q′

For each view vi and materialization mvi, such that mvi is not empty, we create
a set of subgoals Pi that we will add to the body of Q. Abusing notation slightly,
we say that Pi is true on instance d when there is a valuation that embeds Pi
in d. Intuitively, Pi is true on instance d if and only if every tuple in mvi is in
vi(d). Suppose that view vi is given by

vi(x1, x2, . . . , xsi) ← rs(. . . , x1, . . .), . . . , rt(. . . , x2, . . .), . . .

and its nonempty materializationmvi consists of tuples: t1 = (x1
1, x

1
2, . . . , x

1
si), . . .,

tKi = (xKi1 , xKi2 , . . . , xKisi ) where si ≥ 0 is the size of the head predicate of vi and
Ki ≥ 1 is the cardinality of mvi. For (1 ≤ j ≤ Ki), let

cij = {rs(. . . , x1, . . .), . . . , rt(. . . , x2, . . .), . . . , x1 = xj1, x2 = xj2, . . . , xsi = xjsi}.

Rename the variables in each cij so that they are disjoint from every other cij
and also disjoint from those in Q. Let Pi =

⋃Ki
j=1 cij .

Lemma 1. There is a valuation from Pi into d if and only if mvi ⊆ vi(d).

In addition to the Pi’s, we define a set of negated subgoals called Ni’s, one
for each view vi. Each Ni is the negation of a subgoal ci(), where ci is a new
intensional predicate. Intuitively, ci() will be true (nonempty) on instance d if
and only if vi(d) contains some tuple not in mvi; so that Ni will be true on
instance d if and only if vi(d) ⊆ mvi. The rule that defines ci is the following.

ci()← rs(. . . , x1, . . .), . . . , rt(. . . , x2, . . .), . . . ,
Ki∧
k=1

¬(x1 = xk1 , x2 = xk2 , . . . , xsi = xksi ). (∗)

Note that the rule for ci is expressed for convenience with a negated conjunction
of subgoals in the body; this is a shorthand for the union ci of all the rules whose
body contains one disequation from each of the negated subgoals.

Lemma 2. Ni is true on instance d if and only if vi(d) ⊆ mvi.



Now we can rewrite Q as a nonrecursive Datalog program by adding all the
Pi and Ni subgoals to its body, and attaching the rules that define the ci’s.

Q′ : q(X)← p1(X1), p2(X2), . . . , pn(Xn), P1, . . . , Pm,

N1, . . . , Nm, Nm+1, . . . , Nm′ .

ci()← rs(. . . , x1, . . .), . . . , rt(. . . , x2, . . .), . . . ,
Ki∧
k=1

¬(x1 = xk1 , x2 = xk2 , . . . , xsi = xksi).

where m′ is the number of views and m is the number of views with nonempty
materializations. Q′ has the following properties.

Lemma 3. Q′(d) = Q(d) for all valid database instances d, and Q′(d′) = ∅ for
all invalid database instances d′.

Example 3. Consider three views v1()← r(x) with mv1 containing just the one
tuple () (i.e. , true), v2(x) ← s(x) with mv2 containing just the tuple (e), and
v3(x)← t(x) with empty materialization, as well as a CQ Q : q(x)← r(x). The
Datalog program is

Q′ : q(x)← r(x), r(x1), s(e),¬c2(),¬c3().
c2()← s(x), x 6= e.

c3()← t(x).

Proposition 1. Given two CQ’s Q1 and Q2 as well as a set of conjunctive
views V with materializations MV , Q′1 ⊆ Q2 if and only if Q1 ⊆V,MV Q2.

Proof. (only if) Suppose Q′1 ⊆ Q2. Let d be a valid database instance. Then
Q′1(d) = Q1(d) by Lemma 3. Therefore, Q1(d) ⊆ Q2(d).

(if) Suppose Q1 ⊆V,MV Q2. Let d be any database instance. If d is valid,
from Q1(d) ⊆ Q2(d), it follows that Q′1(d) ⊆ Q2(d). If d is not valid, Q′1(d) = ∅,
so Q′1(d) ⊆ Q2(d). Therefore, Q′1 ⊆ Q2. ut

3.3 Construction of Q′′

With the above proposition, we are on our way to transform the conditional
containment problem into an unconditional problem. We would like to elimi-
nate the ci’s and replace the corresponding Ni’s to create a CQ or one of its
extensions. Consider a ci whose mvi is nonempty. Query (*) is equivalent to a
union ci of queries cik in CQ 6= which share the same regular subgoals. Given a
database instance e, Ni = true for e means there is no valuation over the regular
subgoals of ci into e such that (x1, x2, . . . , xsi) is mapped to a tuple not in mvi.
We will relax this restriction by replacing Ni with N ′i , where N ′i = true for e
means that, if d is any sub-instance obtained by some valuation ρ of the regular
subgoals in Q′ over e, then there is no valuation over the regular subgoals of ci



into d such that (x1, x2, . . . , xsi) is mapped to a tuple not in mvi. To obtain N ′i ,
we first normalize each query cik in ci (see Section 2) and obtain a rule whose
body has three parts: the regular subgoals nc+ik, a set of equalities Eqik, and a
set of negations Neq ik in cik. Since cik’s share the regular subgoals, nc+ik’s are
the same, denoted by nc+i . So are Eqik’s, denoted by Eqi. Clearly,

⋃
k Neqik is

equivalent to the disequations in ci,

Neqi =
Ki∧
k=1

¬(x1 = xk1 , x2 = xk2 , . . . , xsi = xksi).

Consider all the containment mappings {mpi1,mpi2, . . . ,mpig} from nc+i to Q′.
Since we are assuming that mvi is nonempty,

⋃
k Neq ik is nonempty. Let N ′i be:

g∧
j=1

¬mpij(Eq i) ∨ ¬mpij(
⋃
k

Neq ik).

Notice all subgoals in mpij(nc+i ) exist in Q′, hence they are redundant and omit-
ted here. Furthermore,

⋃
k Neqik is just Neq i, hence ¬mpij(

⋃
k Neqik) can be sim-

plified to ¬mpij(Neq i) which is equivalent to its positive form, say mpij(Peq i),

Ki∨
l=1

(mpij(x1) = xl1,mpij(x2) = xl2, . . . ,mpij(xsi ) = xlsi).

Example 4. Given a view v(x) ← r1(x, y, y) with mv containing only the tuple
(1) and a query Q : q(x, y) ← r1(x, y, z), r2(z), the Datalog program Q′ is

Q′ : q(x, y)← r1(x, y, z), r2(z), r1(1, y1, y1),¬c1,
c1()← r1(x2, y2, y2), x2 6= 1.

The normalization of c1 is nc1 ← r1(x2, y2, y3), y2 = y3, x2 6= 1. There are two
containment mappings from nc+1 to Q′:

{mp11 : r1(x2, y2, y3)→ r1(x, y, z), mp12 : r1(x2, y2, y3)→ r1(1, y1, y1)}.

So ¬mp11(y2 = y3) is (y 6= z), mp11(x2 = 1) is (x = 1) and ¬mp12(y2 = y3) is
(y1 6= y1), mp12(x2 = 1) is (1 = 1). Thus, (y 6= z ∨ x = 1) ∧ (y1 6= y1 ∨ 1 = 1)
can replace the ¬c1 in Q′. Thus, Q′′ is a union of queries in CQ 6=.

Q′′ : q(x, y)← r1(x, y, z), r2(z), r1(1, y1, y1), y 6= z.

q(1, y)← r1(1, y, z), r2(z), r1(1, y1, y1).

We would also like to replace Ni’s with empty mvi in a similar fashion. Since
in this case there is no Pi in Q′, we cannot guarantee that every subgoal in
nc+i can be mapped to a regular subgoal in Q′. Consider all the containment
mappings {mpi1,mpi2, . . . ,mpig} from nc+i to Q′, where if a subgoal p(X) in



nc+i cannot be mapped to a subgoal in Q′ (i.e. , the EDB predicate p does not
appear in Q′), then p(X) is mapped to itself. We define N ′i in this case as:

g∧
j=1

¬mpij(nc+i ) ∨ ¬mpij(Eqi).

If every EDB predicate in vi appears in Q or in some view with a nonempty
materialization, then for a containment mapping mpij , all subgoals in mpij(nc+i )
are in Q′, and if Eqi is nonempty, we can replace Ni by

∧g
j=1 ¬mpij(Eqi). If Eqi

is empty, we can conclude that Q is conditionally empty with respect to V and
MV (See Section 3.5). For all other cases, we simply delete Ni from Q′.

In sum, we rewrite Q′ into the following:

Q′′ : q(X) ← p1(X1), . . . , pn(Xn), P1, . . . , Pm,∧
k,j

¬mpkj(Eqk),
∧
i,j

¬mpij(Eqi) ∨mpij(Peq i)

where each Pi and
∧
j ¬mpij(Eqi)∨mpij(Peq i) represent a view vi with nonempty

materialization, and each
∧
j ¬mpkj(Eqk) represents a view vk whose EDB pred-

icates appear in Q or in the views with nonempty materializations, and whose
mvk is empty. Q′′ is equivalent to a union of queries in CQ 6=. Let the view
definitions be fixed. The number of queries in the union is exponential in the
sizes of the query and the view materializations. Notice that Example 3 covers
all possible cases in the construction of Q′; Example 4 shows how to replace Ni
when mvi is nonempty in the construction of Q′′. Before we show more examples
to cover different cases when mvi is empty in the construction of Q′′, we state
that Q′′ has the following properties.

Lemma 4. Given a CQ Q and a set of conjunctive views V with materializa-
tions MV , let ρ be a valuation of Q′′ on any input database instance. Then the
set {ρ(p(X)) | p(X) is a regular subgoal of Q′′} is a valid database instance.

Lemma 5. Given a CQ Q and a set of conjunctive views V with materializa-
tions MV , Q(d) = Q′(d) = Q′′(d) for all valid database instances d.

Lemma 6. Given a CQ Q and a set of conjunctive views V with materializa-
tions MV , Q′(d) ⊆ Q′′(d) for all database instances d.

Theorem 3. Let Q1 and Q2 be two CQ’s, V be a set of conjunctive views with
materializations MV . Q′′1 ⊆ Q2 if and only if Q1 ⊆V,MV Q2.

Example 5. Given two queries Q1 : q1(x) ← r(x), s(y); Q2 : q2(x) ← r(x)
and a view v() ← r(x), s(x) with no tuple. The set of EDB predicates of Q2 is
contained in the set of Q1’s EDB predicates. All EDB predicates in v appear in
Q1. Therefore, Q′′1 : q1(x) ← r(x), s(y), x 6= y. Clearly, Q′′1 is unconditionally
contained in Q2, which implies Q1 ⊆V,MV Q2. If the view is v() ← r(x) with
no tuple, then its Eq is empty and all EDB predicates in v appear in Q1. Thus,
Q1 is conditionally empty with respect to V and MV .



Example 6. Given two queries Q1 : q1(x) ← s(x), t(x); Q2 : q2(x) ← s(x) and
a view v() ← r(x) with no tuple. View v has no effect over the containment re-
lationship between Q1 and Q2. Q′′1 : q1(x) ← s(x), t(x) which is unconditionally
contained in Q2. Thus, Q1 ⊆V,MV Q2.

Example 7. Given two queries Q1 : q1(x) ← s(x), t(x); Q2 : q2(x) ← s(x) and
a view v() ← r(x), t(x) with no tuple. The EDB predicate r does not appear
in Q1 and Q2. Q′′1 is Q1. For any valuation ρ of Q′′1 , the valuation of the regular
subgoals in Q′′1 is a valid database instance since the empty r makes mv empty.
Q′′1 ⊆ Q2 implies Q1 ⊆V,MV Q2.

The construction of Q′′, and Theorem 3, can in fact be generalized to the
case when Q1 and Q2 are unions of queries in CQ 6=. First, consider the case
when Q is in CQ 6=. Then Q′ and Q′′ are constructed as before, i.e. , we leave the
disequations of Q untouched. Notice a valuation of Q′′ satisfies all the equality
and inequality subgoals in Q.

When Q is a union of queries in CQ 6=, let q be one of them in the union. We
can create q′ and q′′ as above. Then Q′′ is a union of such q′′’s. In particular,
consider Q′′ for some CQ Q. Q′′ is a union of queries in CQ 6=. Since the views and
their materializations are unchanged, the Pi’s in (Q′′)′ are the same as the Pi’s
in Q′. So are Ni’s in (Q′′)′ and Q′. Since Q′′ contains Pi’s of Q′ as its subgoals,
adding another set of Pi’s does not change the semantics of Q′′. Thus, the Pi’s in
(Q′′)′ can be deleted. Next, we would like to replace the Ni’s in (Q′′)′ to create
(Q′′)′′. Since Q′ shares the regular subgoals with Q′′, which has the same regular
subgoals of (Q′′)′ (after deleting the extra Pi’s), the containment mappings from
nc+i ’s to Q′ are the same as those from nc+i ’s to (Q′′)′. Thus, the replacement
of Ni’s in Q′ is the same as the one for (Q′′)′ (Notice all the equations and
disequations only depend on the view definitions and materializations, which
are not changed). Hence (Q′′)′′ is Q′′. We conclude that the Q′′ construction can
be generalized to unions of queries in CQ 6=.

Theorem 4. Let Q1 and Q2 be two unions of queries in CQ 6=, V be a set of
conjunctive views with materializations MV . Q′′1 ⊆ Q2 if and only if Q1 ⊆V,MV

Q2.

3.4 Complexity of Conditional Query Containment

For standard containment, complexity is given as a function of query size. How-
ever, for conditional containment, the sizes of the queries, the view definitions,
and the view materializations are all important factors on the problem’s com-
plexity. In our analysis, we chose to assume that the view definitions change
much more slowly than the underlying database instance and the user queries,
so the view definitions are fixed and we measured the combined complexity as a
function of query size and materialization size.

Let Q1 and Q2 be two CQ’s, V be a set of conjunctive views with materi-
alizations MV . As described in the previous sections, we can construct a query



Q′′1 , a union of queries in CQ 6=, such that Q′′1 ⊆ Q2 if and only if Q1 ⊆V,MV Q2.
This idea provides the following upper bound on the complexity of conditional
query containment.

Theorem 5. Let Q1 and Q2 be two CQ’s, V be a set of conjunctive views with
materializations MV . Determining whether Q1 ⊆V,MV Q2 is in Πp

2 .

Proof (Sketch). By Theorem 3,Q′′1 ⊆ Q2 if and only if Q1 ⊆V,MV Q2. Thus, if for
all queries q in the union Q′′1 , there exists a containment mapping from Q2 to q
such that the head ofQ2 is mapped to the head of q, thenQ1 ⊆V,MV Q2. Let gi be
the number of containment mappings from nc+i to Q′1. Since the sizes of views are
constants, gi is polynomial in the sizes of Q1 and the view materializations. The
number of equality and inequality subgoals in q is the sum of all gi’s. Therefore,
the size of q is polynomial in the sizes of Q1 and the view materializations. The
size of a containment mapping from Q2 to q is polynomial in the sizes of the
queries and the view materializations. Thus, the complexity is Πp

2 . ut

Theorem 6. Let Q1 and Q2 be two CQ’s, V be a set of conjunctive views with
materializations MV . Determining whether Q1 ⊆V,MV Q2 is Πp

2 -hard.

Proof (Sketch). To reduce from the ∀∃-CNF problem to our problem, we use
a similar construction to the one in [12]. Our construction is slightly modified
from the one in the paper just cited, because we assume the queries and the
materializations can vary and the view definitions are fixed while Millstein et al.
assumed the queries and the view definitions can vary. ut

The above two theorems show that the problem is Πp
2 -complete when the

queries and the materializations can vary. In comparison, the certain answer
containment problem of [12] is Πp

2 -complete when the queries and the view
definitions can vary. In terms of unconditional query containment where the
input consists of just the two queries, determining the containment between two
CQ 6=’s is also Πp

2 -complete [18]. In contrast, unconditional CQ containment is
NP -complete [4] in terms of the sizes of the input queries.

3.5 Testing Conditional Emptiness

So far we have assumed Q1 and Q2 are not conditionally empty queries and the
set of EDB predicates of Q2 is contained in the set of EDB predicates appearing
either in Q1 or in the definition of some view whose materialization is nonempty.
Thus, we need to determine whether a query Q is conditionally empty with
respect to a set of conjunctive views V with materializations MV . We first
create Q′′ from Q as before. From Lemma 4, we get the following result.

Proposition 2. A CQ Q is conditionally empty w.r.t. a set of conjunctive views
V with materializations MV if and only if Q′′ is unsatisfiable.



Example 8. Given v1(x) ← r2(x) with one tuple (2) and v2(x) ← r4(x) with
one tuple (4); two queries Q1 : q1(x) ← r1(x), r2(x), r4(x) and Q2 : q2(x) ←
r2(x), r3(x), r4(x). Note that the set of EDB predicates of Q2 is not contained
in the set of the EDB predicates appearing in Q1 or the views with nonempty
materializations, and similarly for Q1. By Theorem 2, if the two queries are
nonempty with respect to V and MV , then there is no conditional containment
relationship between the two queries. To check if the queries are conditionally
empty, we construct Q′′1 and Q′′2 :

Q′′1 : q1(x) ← r1(x), r2(x), r4(x), r2(2), r4(4), x = 2, x = 4.

Clearly, Q′′1 is not satisfiable. Similarly, Q′′2 is unsatisfiable:

Q′′2 : q2(x) ← r2(x), r3(x), r4(x), r2(2), r4(4), x = 2, x = 4.

Therefore, we conclude the two queries are conditionally empty.

Theorem 7. Given a CQ Q and a set of conjunctive views V with material-
izations MV , checking whether Q is conditionally empty w.r.t. V and MV is
coNP -complete.

Proof. Checking whether Q is conditionally empty with respect to V and MV
is equivalent to checking whether Q′′ is unsatisfiable. Satisfiability of Q′′ can be
checked in time polynomial in the sizes of V and MV by guessing a valuation for
one of the disjuncts inQ′′ and checking it is satisfied by that valuation. Therefore,
the problem of checking whether Q is conditionally empty with respect to V and
MV is in coNP .

The coNP -hardness is obtained by adapting the following result of Abiteboul
and Duschka [1]. Let V be a set of conjunctive views with materializations MV ,
checking whether there exists a database instance d such that MV = V (d) is
NP -hard. We assume that MV is not empty, since when MV is empty, there is
trivially an instance I (the empty instance) such that V (I) = MV . We reduce
the complement of this problem to our problem.

Since MV is nonempty, there exists some nonempty mvi. Let r(X) be a
subgoal in vi. Define a CQ Q : q() ← r(X). If for all database instances d,
MV 6= V (d), then Q′′ is unsatisfiable. Otherwise, by Lemma 4, there exists a d
such that MV = V (d). Therefore, by Proposition 2, Q is conditionally empty
with respect to V and MV .

If Q is conditionally empty with respect to V and MV , there does not exist
a database instance d such that MV = V (d). Otherwise, since mvi is nonempty,
Q(d) is nonempty for the valid database instance d.

Thus, checking conditionally emptiness is also coNP -hard. ut

4 Conditional Authorization

In the Introduction, we discussed parameterized authorization views. Given a
user query, our approach always first instantiates the parameterized views using



the parameter values associated with the user and the session, before we deter-
mine whether a query should be conditionally authorized. Thus, we can assume
in this section that the views have already been instantiated. First, we define
conditional authorization.

Definition 3. A query Q is conditionally authorized w.r.t. authorization views
V with materializations MV , if there is a query Qr that is written using only
the views in V , and that is conditionally equivalent to Q.

We have shown how to construct Q′′ for a CQ Q. We know Q is condi-
tionally empty if and only if Q′′ is unsatisfiable. If Q is conditionally empty,
there are many complete rewritings of Q′′ using views V . Therefore, Q should
be authorized.

When Q is not conditionally empty, we have shown that Q(d) = Q′′(d) for all
valid database instances d. Therefore, if there is a complete rewriting of Q′′ using
V , the query Q is conditionally authorized. We would like to show that if there
is no complete rewriting of Q′′ using V , then Q is not conditionally authorized.
Suppose Q′′ does not have a complete rewriting and Q is still conditionally
authorized. Then there exists a query Q1 that is conditionally equivalent to Q
and that can be rewritten using only the views in V . Let us abuse notation and
call Q1 also the query obtained by expanding the view subgoals in this rewriting.

Lemma 7. 1. Every EDB predicate of Q′′ occurs in Q1 or in the definition of
some view with nonempty materialization.

2. Every EDB predicate of Q′′1 occurs in Q′′ or in the definition of some view
with nonempty materialization.

Since Q(d) = Q′′(d) for all valid database instances d, Q1 ≡V,MV Q′′. Thus,
by the above lemma and Theorem 4, Q1 ⊆V,MV Q′′ implies Q′′1 ⊆ Q′′. On the
other hand, we know Q′′1 ≡V,MV Q1 ≡V,MV Q ≡V,MV Q′′. Since (Q′′)′′ is still
Q′′, Q′′ ⊆V,MV Q′′1 implies Q′′ ⊆ Q′′1 . Then, we haveQ′′ ≡ Q′′1 . However, we know
Q′′1 is completely rewritable in V , yet Q′′ does not have a complete rewriting
using V , which is a contradiction.

Theorem 8. Let Q be a CQ and V be a set of conjunctive views with materi-
alizations MV . Q is conditionally authorized if and only if there is a complete
rewriting of Q′′ using V .

Similar to the discussion of Theorem 3, the above theorem also applies when
Q is a union of queries in CQ 6=. Since the query contains inequalities while the
views are conjunctive, the algorithm in [10] can be used here to check whether
Q′′ has a complete rewriting in V .

In the paper just cited, the algorithm depends on a bound for the number
of view literals that need to appear in a complete rewriting. The same bound
applies for conditional complete rewritings.

Corollary 1. Let Q be a CQ with n subgoals, and V be a set of conjunctive
views with materializations MV . If there is a query Qr that is written using
only the views in V , and that is conditionally equivalent to Q, then it has such
a rewriting with at most n subgoals.



Example 9 (Example 1 continued). Recall the query q is

q(eid)← Progress(eid,XP1 , prgs1), P rogress(eid,XP2 , prgs2),

and the instantiated authorization view is

V1(eid, pid, prgs)← Progress(eid, pid, prgs), EP (88, pid).

We consider the following four cases of the materialization of the instantiated
authorization view.

1. MV1 is not empty, and in the current database state, employee ‘88’ is working
on projects ‘XP1’ and ‘XP2’, and some other employee has reported progress
for both projects. Let MV1 be { (99,XP1 , P1), (99,XP2 , P2) }.

q′′(99)← Progress(99,XP1 , P1), P rogress(99,XP2 , P2),
P rogress(99,XP1 , P1), EP (88,XP1 ),
P rogress(99,XP2 , P2), EP (88,XP2 ).

Thus, the complete rewriting is q′′(99) ← V1(99,XP1 , P1), V1(99,XP2 , P2).
Therefore, we authorize this query q.

2. MV1 is not empty, and in the current database state, employee ‘88’ is not
working on both projects, say only on project ‘XP2’, and some other em-
ployee has reported progress for ‘XP2’. Let MV1 be {(99,XP2, P2)}.

q′′(eid)← Progress(eid,XP1 , prgs1), P rogress(99,XP2 , P2),
P rogress(99,XP2 , P2), EP (88,XP2 ).

There is no containment mapping from the body of V1 to the body of q′′ such
that Progress(eid,XP1 , prgs1) is the image of Progress(eid, pid, prgs), since
that requires EP (88,XP1 ) to occur in q′′. There is no complete rewriting
of q′′ using V1. Therefore, we reject the query q. In fact, the materialization
can contain other information, such as employee ‘88’ works on project ‘XP3’
and there is a report for ‘XP3’ from some employee. As long as the material-
ization does not contain (99,XP1, P1), the above analysis applies. Similarly,
when employee ‘88’ does not work on any of the two projects and MV1 is
not empty, the query should be rejected.

3. MV1 is empty, but there is one more authorization view that allows any
user to know who is working on which project: V2(eid, pid)← EP (eid, pid).
Suppose the materialization of V2 is (88,XP1 ), (88,XP2 ).

q′′(eid)← Progress(eid,XP1 , prgs1), P rogress(eid,XP2 , prgs2),
EP (88,XP1 ), EP (88,XP2 ),XP1 6= XP1 ,XP2 6= XP2 .

This is a conditionally empty query, hence, we accept it.
4. MV1 is empty. From the information of other materialized authorization

views, employee ‘88’ cannot infer that he or she is associated with projects



‘XP1’ and ‘XP2’. There are no containment mappings to show EP (88,XP1)
and EP (88,XP2) exist in all valid database states. Suppose there are no
other authorization views. Then we have

q′′(eid)← Progress(eid,XP1, prgs1), P rogress(eid,XP2, prgs2).

There is no complete rewriting of q′′ using V1 since there is no containment
mapping from the view to q′′. Therefore, we reject the query q.

5 Related Work

Chaudhuri et al. [5] considered the problem of optimizing queries in the presence
of materialized views. They gave an incomplete set of query rewriting rules that
generate conditionally equivalent queries under bag semantics. Rizvi et al. [14]
gave an incomplete set of inference rules for conditional authorization of SQL
queries using bag semantics.

Millstein et al. introduced the notion of certain answer containment with
respect to a set of global views in a Data Integration System [12]. Our setting can
be viewed as a Data Integration System with base relations as the global schema
and authorization views as the local sources, using Local-As-View semantics [9].
However, our notion of conditional containment is different from Millstein et
al.’s, which is based on the set of certain answers of one query being contained
in the set of certain answers of the other one.

Instead of defining authorized queries in terms of rewritings, we could use
Calvanese et al.’s notion of lossless query [3] and say a query is authorized if it
is lossless with respect to the views V and their materializations MV , that is,
for any two valid instances d and e with respect to V and MV , Q(d) = Q(e).
Existence of rewritings is a special case of this. Losslessness has been studied for
regular path queries and materialized regular views in [3].

An alternative approach to solve the problem of conditional query contain-
ment could be to reduce it to the problem of deciding containment under a set
of embedded or disjunctive dependencies, which is decidable under disjunctive
chase [7]. Similarly, conditional query authorization could be solved as rewriting
a query using views in the presence of embedded or disjunctive dependencies [6].

6 Conclusions and Future Work

We studied the problem of conditional query authorization. We showed that con-
ditional query containment plays a crucial role in it and proposed an algorithm
to test conditional containment for unions of queries in CQ 6=. Then, we solved
the problem of conditional authorization for a conjunctive query with respect to
a set of conjunctive authorization views with materializations.

Given the high complexity of the conditional containment and authoriza-
tion problems, we need to study heuristics or tractable classes of queries and
views. For applying our results to the SQL setting, we would also like to solve
conditional query authorization under bag semantics.



Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada
and the Institute for Robotics and Intelligent Systems for their support, and the
anonymous reviewers for their careful comments.

References

1. S. Abiteboul and O. Duschka. Complexity of answering queries using materialized
views. In Proc. ACM PODS, pages 254–263, 1998.

2. A. Aho, Y. Sagiv, and J. D. Ullman. Equivalence of relational expressions. SIAM
Journal of Computing, (8)2:218–246, 1979.

3. D. Calvanese, D. G. Giuseppe, M. Lenzerini, and M. Y. Vardi. Lossless regular
views. In Proc. ACM PODS, pages 247–258, 2002.

4. A. K. Chandra and P. M. Merlin. Optimal implementations of conjunctive queries
in relational databases. In Proc. STOC, pages 77–90, 1977.

5. S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries
with materialized views. In Proc. ICDE, pages 190–200, 1995.

6. A. Deutsch and V. Tannen. Reformulation of xml queries and constraints. In Proc.
ICDT, pages 225–241, 2003.

7. G. Grahne and A. Mendelzon. Tableau techniques for querying information sources
through global schema. In Proc. ICDT, pages 332–347, 1999.

8. A. Klug. On conjunctive queries containing inequalities. Journal of the Association
for Computing Machinery, 35(1):146–160, 1998.

9. M. Lenzerini. Data integration: a theoretical perspective. In Proc. ACM PODS,
pages 233–246, 2002.

10. A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using
views. In Proc. ACM PODS, pages 95–104, 1995.

11. A. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information
sources using source descriptions. In Proc. VLDB, pages 251–262, 1996.

12. T. Millstein, A. Levy, and M. Friedman. Query containment for data integration
systems. Journal of Computer and System Sciences, pages 67–75, 2002.

13. A. Motro. An access authorization model for relational databases based on alge-
braic manipulation of view definitions. In Proc. ICDE, pages 339–347, 1989.

14. S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting
techniques for fine-grained access control. In Proc. ACM SIGMOD, pages 551–
562, 2004.

15. A. Rosenthal and E. Sciore. View security as the basis for data warehouse security.
In Intl. Workshop on Design and Management of Data Warehouses, 2000.

16. A. Rosenthal, E. Sciore, and V. Doshi. Security administration for federations,
warehouses, and other derived data. In IFIP WG11.3 Conf. on Database Security,
1999.

17. Y. Sagiv and M. Yannakakis. Equivalence among relational expressions with the
union and difference operations. Journal of the ACM, 27(4):633–655, 1980.

18. Ron van der Meyden. The complexity of querying indefinite data about linearly
ordered domains (extended version). In Proc. ACM PODS, pages 331–345, 1992.


