
Reverse Engineering Goal Models from Legacy Code

Yijun Yu1, Yiqiao Wang1, John Mylopoulos1, Sotirios Liaskos1, Alexei Lapouchnian1,
Julio Cesar Sampaio do Prado Leite2

1Dept. of Computer Science, Univ. of Toronto,{yijun,yw,jm,liaskos,alexei}@cs.toronto.edu
2Dept. of Computer Science, PUC-Rio, julio@inf.puc-rio.br

Abstract

A reverse engineering process aims at reconstructing
high-level abstractions from source code. This paper
presents a novel reverse engineering methodology for re-
covering requirements goal models from both structured
and unstructured legacy code. The methodology consists of
the following major steps: 1) Refactor source code by ex-
tracting methods based on comments; 2) Convert the refac-
tored code into an abstract structured program through stat-
echart refactoring and hammock graph construction; 3) Ex-
tract a goal model from the structured program abstract
syntax tree; 4) Identify non-functional requirements and de-
rive softgoals based on the traceability between the code
and the goal model. To illustrate this requirements recov-
ery process, we refactor requirements goal models from two
legacy software code bases: an unstructured Web-based
email in PHP (SquirrelMail) and a structured email client
system in Java (Columba).

1 Introduction

A software reengineeringprocess follows a horseshoe
model by first recovering lost abstractions (e.g., elements
of design and/or requirements) throughreverse engineer-
ing [2, 21] (also known asdesign recovery[19]), and then
pushing these abstractions forward into low-level imple-
mentations throughforward engineering. In the initial
horseshoe proposal [18] and all subsequent research, the
lowest level abstraction is legacy source code, while the
highest level abstractions are elements of a software archi-
tecture. The reverse engineering process amounts to ar-
chitecture recovery, while the forward engineering process
amounts to architecture-based development.

For more than a decade, the requirements engineering
community has proposed and studied goal models [22, 7, 3,
32] as high level abstractions for modeling early require-
ments. Goals capture stakeholder intentions. By mod-
eling and analyzing them, we can derive functional and

 1

Refactoring Source Code into Goal Models
Yijun Yu1 Yiqiao Wang1 John Mylopoulos1 Sotirios Liaskos1Alexei Lapouchnian1

Julio Cesar Sampaio do Prado Leite2
1Department of Computer Science, Univ. of Toronto {yijun,yw,jm,liaskos,alexei}@cs.toronto.edu

2 Department of Computer Science, PUC-Rio, julio@inf.puc-rio.br
Abstract

A reverse engineering process aims at
reconstructing high-level abstractions from source
code. This paper presents a novel reverse engineering
methodology for recovering requirements goal models
from both structured and unstructured legacy code.
The methodology consists of the following major steps:
1) Refactor source code by extracting methods based
on comments; 2) Convert the refactored code into a
highly abstract structured program through statecharts
refactoring and hammock graph construction; 3)
Extract a goal model from the structured program’s
abstract syntax tree; 4) Identify non-functional
requirements and derive softgoals based on the
traceability between the code and the goal model. To
illustrate this requirements recovery process, we
refactor requirements goal models from two legacy
software code bases: an unstructured Web-based email
in PHP (SquirrelMail) and a structured email client
system in Java (Columba).

1. Introduction

A software reengineering process follows a
horseshoe model by first recovering lost abstractions
(e.g., elements of design and/or requirements) through
reverse engineering [2] [23] (also known as design
recovery [20]), and then pushing these abstractions
forward into low-level implementations through
forward engineering. In the initial horseshoe proposal
[19], the lowest level abstraction is legacy source code,
while the highest level abstractions are elements of a
software architecture. The reverse engineering process
amounts to architecture recovery, while the forward
engineering process amounts to architecture-based
development.

For more than a decade, the requirements
engineering community has proposed and studied goal
models [3] [24] [38] as high level abstractions for
modeling early requirements. Goals capture
stakeholder intentions. By modeling and analyzing
them, we can derive functional and non-functional
requirements in a systematic and coherent fashion. The
goal models developed in this early phase of software
development tell us not only the origins of functional

and non-functional requirements, but also the space of
alternative solutions (operationalizations) that the
requirements engineer needs to select from. The KAOS
methodology defines the state-of-the-art on this thread
of research [7] [38] [39]. Hui et al [18] propose an
extended framework for developing requirements that
includes modeling and analysis of user goals, skills,
and preferences. The framework is intended for the
design of generic, customizable software, to be used by
a community of users. The original case for this work
involved users with traumatic brain injuries in the State
of Oregon [11].

We are interested in using the goals-skills-
preferences framework to reengineer existing software
into generic, customizable software. To meet this
objective, we are developing techniques for reverse
engineering goal models from legacy software that
offers some service (e.g., email). These models can
then be revised and can serve as basis for generating an
extended version of the legacy software system that
supports the same service in multiple ways. This paper
presents the reverse engineering phase during which a
goal model is extracted from legacy code.

Figure 1. The adapted horseshoe model

In the sequel, we adapt the horseshoe model as
shown in Figure 1. Instead of static architecture
recovery, we aim at discovering requirements goals
from the behaviour of the system, thereby answer the
most fundamental of all questions about a software
system: What is the system intended for?

REQUIREMENTS

Intentions

Architecture

Functions

Source Code

…
…

LEGACY CODE

REFACTORED
REPRESENTATION

GOAL MODEL

Reverse engineering

GOAL MODEL

SOA

Web services

customizable
architecture

components

Forward engineering

Code structure

Figure 1. The horseshoe model

non-functional requirements in a systematic and coherent
fashion. The goal models developed in this early phase
of software development tell us not only the origins of
functional and non-functional requirements, but also the
space of alternative solutions (operationalizations) that the
requirements engineer needs to select from. The KAOS
methodology defines the state-of-the-art on this thread of
research [7, 32, 33]. Hui et al [17] propose an extended
framework for developing requirements that includes mod-
eling and analysis of user goals, skills, and preferences
(GSP). The framework is intended for the design of generic,
customizable (hereafterhigh variability) software, to be
used by a community of users. The original case for this
work involved users with traumatic brain injuries in Oregon
State [11].

We are interested in using the GSP framework to reengi-
neer legacy software into generic, high variability software.
To meet this objective, we are developing techniques for
reverse engineering goal models from legacy software that
offers some service (e.g., email). These models can then
be revised, refined and extended, so that they can serve
as basis for generating an extended version of the legacy
software system that supports the same service in multiple
ways. This paper presents the reverse engineering phase
during which a goal model is extracted from legacy code.

In the sequel, we adapt the horseshoe model as shown in

�������

�	
����

�	��

�����	��

���	
����

�	��

�����������
�����������

����������

����

����	������

�	���������

���
��
����

��	����

�	���

�	���

 !�"	����
���

����	�#������

$!�%����

&!�
����
��
��

'!�(��������

�)�)�

�	����	����

*����

�	���	����

�	���

�	����

*����+,
�

-!�������	�

���������

+,
�

.!������/��0
������

���������	���������

�	���	���

1!�(2������

����	��

�����	����

3�����
��
���4
+	5��

6!�(2������

������7

��������	��

�����	����

Figure 2. Major steps in our process

Figure 1. Instead of static architecture recovery, we aim
at discovering requirements goals from the behaviour of
the system, thereby answering the most fundamental of all
questions about a software system: What is the system in-
tended for?

Our methodology converts structured and unstructured
legacy source code into goal models following the steps il-
lustrated in Figure 2: (1) refactor the source code by extract-
ing methods [12] based on program slicing techniques [35]
and programmer comments scattered in the code; if the
refactored code is structured then go to step (5); otherwise
(2) convert it into equivalent statecharts [14], (3) further
refactor the statecharts into higher-level statecharts by ex-
tracting states and transitions, and (4) convert the high-level
statecharts into an equivalent program which is then struc-
turized by eliminating GOTO’s [37]; (5) parse the structured
program into an abstract syntax tree (AST) representing
an annotated goal graph; (6) restructure the annotated goal
graph into requirements goals; (7) identify non-functional
requirements (NFR) in the resultant goal model by testing
its traceable code in order to (8) derive softgoals from the
NFR, using heuristics such as quality metrics.

The rest of the paper is organized as follows. Section 2
presents relevant concepts and the proposed reverse engi-
neering methodology. Section 3 explains the refactoring of
source code into its abstract form, and Section 4 explains
the extraction of goal models from the refactored programs.
Both sections conduct a case study of open-source software
systems (SquirrelMail [1] and Columba [9]), showing the
independence to programming languages and structureness
of the legacy code. Section 5 discusses tool support that re-
duces the amount of time required for reverse engineering.
Section 6 compares our proposal with related work, while
section 7 summarizes results and sketches directions for fu-
ture research.

2 Concepts and approach

Our proposal is based on well-founded concepts in soft-
ware engineering. In particular, goal models [3, 32] arise
during early requirements elicitation; program slices [35]
are useful for program understanding and static analysis;
while statecharts constitute a powerful representation for
dynamic systems [14]. These concepts are integrated into
a methodology through which the gap between goal mod-
els and source code is bridged. We first introduce these
concepts in more detail, before presenting our proposed
methodology.

2.1 Goal models

A goal represents a stakeholder intention. A goal can
be either fulfilled or not [32], and may depend on sub-
goals through AND/OR refinements. In [22], softgoals are
proposed as means for modeling and analyzing quality at-
tributes. Softgoals, unlike their vanilla cousins, can be par-
tially satisfied or denied, and may depend on other goals and
softgoals through MAKES, HELPS, HURTS and BREAKS
relations. With goal models, software development pro-
ceeds by refining goals, identifying collections of leaf goals
that together fulfil root-level goals, and assigning responsi-
bilities for the fulfilment of leaf-level goals.

2.2 Program slicing

Unstructured programs can be structured using Ham-
mock graphs [35, 37] that have a single entry and a single
exit. For structured programs, program slicing [35] gener-
ates a sliceP ′ of a programP based on a slicing criterion
< p, V > wherep is a statement ofP andV is a subset
of the variables ofP [31]. Static program slicing finds the
statements that are either (control) dependent onp or (data)
dependent onV . Program dependence graph (PDG) [25]
and inter-procedural system dependence graph (SDG) [16]
can be seen as results of program slicing, combining both
control and data dependence information in a program [10].

2.3 Statecharts

Statecharts constitute a concise visual formalism that
captures the dynamic behaviour of a system [14]. State-
charts have been adopted in UML as one of the diagram-
matic notations for modeling behaviour. Statecharts extend
conventional finite state machine diagrams in several ways:
a collection of sub-states can be abstracted into a super-state
through AND or XOR composition; the number of states
is visually reduced by zooming sub-states out; a transition
from/to a super-state can abstract a number of transitions
from/to its sub-states; parallel AND sub-states also reduce

the number of combined states. Low-level statecharts carry
both control and data dependencies of a program, and are
close to implementation; high-level statecharts, on the other
hand, hide implementation detail and abstract system be-
haviour.

Although UML tools such as STATEMATE [15] can
generate executable code from given statecharts, it is not
yet possible to convert source code into statecharts. Our ap-
proach relies on software refactoring and program slicing
techniques to do just that.

2.4 Our approach

Our approach summarized in Figure 2 is inspired by
software refactoring techniques [20].Refactoringhas been
proposed [24] as a method for understanding and main-
taining complex source code. Refactoring restructures and
simplifies source code by improving its internal structure
without changing its external behaviour [12]. In our pro-
posal, source code is converted into more abstract form
by recursively applying the refactoring operationExtract
Method[12]. The scope of this process can be determined
by rules of thumb, such as delimiting comments, as these
comments often indicate a semantic gap for the program un-
derstanding [12]. Aiming at even higher levels of abstrac-
tion, the resultant code are subjected to another round of
refactoring with a scope determined by Hammock graphs:
we extend theExtract Methodon an equivalent statechart
representation of the program. As withExtract Method, Ex-
tract Statesreplaces a sequence of states with a new super-
state andExtract Transitionsreplaces a sequence of tran-
sitions with a new transition to the final state. After these
refactoring steps, the more abstract statecharts can be con-
verted into an equivalent abstract program further structur-
ized by a GOTO elimination algorithm.

Goal models are then automatically constructed based
on the resultant program which is structured and abstract.
An annotated goal graph is created from the program AST,
and an AND/OR goal model is constructedfrom the an-
noated goal graph. Using the traceability between code
and goal model, we identify non-functional requirements
through function tests. By observing the effects on qual-
ity metrics through enabling/disabling the identified NFRs,
we derive quality softgoals and create proper contribution
links from the NFRs to them. The derived softgoals help to
bridge the gap between the actual implementation (source
code) and its early requirements.

3 Refactoring for the abstraction of code

The proposed approach is illustrated with two open-
source legacy software systems. The first system, Squirrel
Mail 1.5.0 [1], is an unstructured Web-based email client

 3

Although UML tools such as STATEMATE [15]
[16] can generate executable code from given
statecharts, it is not yet possible to convert source code
into statecharts. Our approach relies on software
refactoring and program slicing techniques to do just
that.

2.4 Our Approach

Our approach as shown in Figure 2 is inspired by
software refactoring [22]. Refactoring has been
proposed [27] as a method for understanding and
maintaining complex source code. Refactoring
simplifies source code by improving its internal
structure without changing its external behaviour [12].
External behaviour can be described in terms of
statecharts. From these, one can obtain highly abstract
goal models.

In our proposal, unstructured source code is
converted into statecharts by recursively applying the
refactoring operation Extract Method [12]. The scope
of this process can be determined by rules of thumb,
such as delimiting comments. This type of refactoring
can reduce the number of state transitions in the
resultant statecharts. Aiming at still higher levels of
abstraction, the resultant statecharts are subjected to
another round of Extract States and Transitions, an
extension of Extract Method. As with Extract Method,
Extract States replaces a sequence of states with a new
super-state and Extract Transitions replaces a sequence
of transitions with a new transition to the final state.
However, since the comments have been removed by
Extract Method in the previous step, the scope of the
extracted super-state and super-transition has to be
determined by identifying its Hammock graph. After
constructing the more abstract statecharts by
recursively applying Extract States and Transitions,
the high-level statechart is converted into its equivalent
unstructured program which is further structurized by a
GOTO elimination algorithm.

Goal models are automatically constructed based on
these structured programs. An annotated goal graph is
created from the program’s AST, from which a goal
model is constructed. Using the traceability between
code and goal model, we identify non-functional
requirements through function tests. By observing the
effects on quality metrics through enabling/disabling
the identified NFRs, we derive quality softgoals and
create proper contribution links from the NFRs to
them. The derived softgoals help to bridge the gap
between the actual implementation (source code) and
its early requirements.

3. Applications

The proposed approach is illustrated with two open-
source legacy software systems in this section. The
first system, Squirrel Mail 1.5.0 [1], is an unstructured
Web-based email client implemented in PHP. The
second system, Columba 1.0 RC2 [9], is a structured
email client implemented in Java. Our approach
refactors goal models from both systems, regardless of
their different programming languages and
environments.

3.1 An unstructured Web-based email system

Squirrel Mail has more than 70 KLOC in PHP. The
source code includes the following PHP program files:
(1) The Web pages are dynamically generated by 37
main PHP programs located in the src subdirectory; (2)
20 PHP routine files called by the load_theme function
for customizing different look-and-feel themes. They
are located in the themes subdirectory; (3) 15 PHP
utility class files located in the classes subdirectory;
and (4) 34 PHP utility function files located in the
functions subdirectory. In this paper, we denote a
program file only by its file name, for example, the file
src/login.php will be shortened to login.php.

Since a dynamic PHP program generates an HTML
page with hyperlinks to other dynamic PHP pages, the
call to the other PHP program can be delayed until the
user clicks at the link. We must consider these as
GOTO statements in an unstructured program.
Therefore dynamically generated Web-based programs
are considered unstructured, even though PHP is a
structured programming language.

Therefore, after refactoring Squirrel Mail at step 1 in
Figure 2, we need to structurize it by steps 2 to 5.

Figure 3. Illustration of Extract Method

refactoring

3.1.1 Extracting Methods

In order to understand the source code, software
refactoring is used. Since the code is not purely object-
oriented, we use Extract Method [12] as a refactoring
technique to simplify the code. Extract Method has the
advantage that it is applicable to both object-oriented

// refactored
S(I, O);

//// tthhee ffoolllloowwiinngg ddooeess SS
SS11((II11,, OO11));;
SS22((II22,, OO22));;
//// ootthheerr ……

Variables defined before the entry of the block
 I = (I1∪I2) ∩ { v | def (v, p) ∧ p ∠ p entry } ≠ φ
Variables defined in the block that will be used after the exit
 O = (O1∪O2)∩{ v | use (v, p) ∧ p exit ∠ p } ≠ φ

entry

exit

Figure 3. Illustration of Extract Method

implemented in PHP. The second system, Columba 1.0
RC2 [9], is a structured email client implemented in Java.
Our approach refactors goal models from both systems, re-
gardless of their different programming languages and en-
vironments.

3.1 Extract Method using comments

We useExtract Method[12] as a refactoring technique
to simplify the legacy code.Extract Methodhas the advan-
tage that it is applicable to both object-oriented and pro-
cedural code. As illustrated in [12],Extract Methoddeals
with statement blocks. Each block is determined by delim-
itating comments to reveal the programmer intentions. An
implicit requirement forExtract Methodis that the block
must have a single entry and a single exit, and so its struc-
ture corresponds to a Hammock graph [37]. Without loss
of generality, consider just two statementsS1(I1, O1) and
S2(I2, O2) whereI1, I2 are the sets of input variables and
O1, O2 are the sets of output variables for the respectively
numbered statementsS1 andS2. Note that these statements
may also have resulted from a previous application ofEx-
tract Method.

The refactored statementS(I,O) is obtained by program
slicing. Specifically, as shown in Figure 3,S is the new
method named after the comment;I is computed as the set
of input variables on entry of the block;O is computed as
the set of output variables on exit of the block. We sim-
plify the resultant statement by excluding internal variables
of the block that are not used elsewhere in the program
(thereby reducing the complexity of the code representa-
tion). TheExtract Methodrefactoring step can be applied
several times until all the commented blocks are replaced
by single statements.

3.1.1 Refactoring Squirrel Mail

Squirrel Mail consists of more than 70 KLOC written in
PHP. The source code includes the following PHP program
files: (1) 37 main PHP programs responsible for generating
the Web pages are located in thesrc subdirectory; (2) 20
PHP routine files called by theload theme function for
customizing different look-and-feel themes. They are lo-

cated in thethemes subdirectory; (3) 15 PHP utility class
files located in theclasses subdirectory; and (4) 34 PHP
utility function files located in thefunctions subdirec-
tory. In the rest of the paper, we refer to a program file only
by its file name; for example, the filesrc/login.php is
referred to aslogin.php .

Since a dynamic PHP program generates an HTML page
with hyperlinks to other dynamic PHP pages, the call to the
other PHP program can be delayed until the user clicks at
the link. We treat hyperlinks as GOTO statements in an
unstructured program. Hence, dynamically generated Web-
based programs are considered unstructured, even though
PHP is a structured programming language. Therefore, af-
ter refactoring Squirrel Mail at step 1 in Figure 2, we need
to structurize it through steps 2 to 5.

For example, the following Hammock graph in
login.php has a variable definitionSMPATHexported
to the remaining program, while no variable is imported.
/** Path for SquirrelMail required files. */
define(’SM PATH’,’../’);
require once($SM PATH . ’functions/strings.php’);
require once($SM PATH . ’config/config.php’);
require once($SM PATH . ’functions/i18n.php’);
require once($SM PATH . ’functions/plugin.php’);
require once($SM PATH . ’functions/constants.php’);
require once($SM PATH . ’functions/page header.php’);
require once($SM PATH . ’functions/html.php’);
require once($SM PATH . ’functions/global.php’);
require once($SM PATH . ’functions/imap general.php’);

Hence$SMPATHconstitutes the only output variable of
the block, whereas the set of input variables is empty. Note
that even global variables that are not used outside the block
will be hidden during the abstraction. After slicing analysis,
it is safe to declare a new functionset path and call it in
login.php as follows.

$SMPATH=set path ();

A complete listing of login.php has 185 LOC. The follow-
ing listing showslogin.php afterExtract Methodrefac-
toring where all the comments from the original program
have been removed. Several blocks have been replaced with
method calls.
<?php /* login.php */
$SMPATH=set path ();
$SMlang=setup language();
$base uri = findout base URI();
$logindisabled = detect imap server($base uri);
if ($logindisabled) {

explain situation(); exit;
}
do hook(login cookie’);
$header =onload function(’redirect.php’);
display header($header);
load theme($theme[$theme default]);
do hook(’login top’);
show logo();
show form($loginname, $mailto, $key);
do hook(’login form’);
do hook(’login bottom’);
?>

Similarly, suchExtract Methodrefactoring delimited by
comments can be applied to the other PHP files.

3.1.2 Refactoring Columba

Columba [9] is an open-source Email client that has more
than 147 KLOC in Java. The program is structured.

The input to our method is the main class of
Columba:org.columba.core.main.Main.run() .
The lengthy routine has 81 lines of code. Inside the routine,
there are 22 code segments separated by 18 comments and 3
hammock boundaries. The first 20 lines of code are shown
below.

class Main {
public void run(String args[]) {
1 ColumbaLogger.createDefaultHandler();
2 registerCommandLineArguments();
3 // handle commandline parameters
4 if (handleCoreCommandLineParameters(args)) {
5 System.exit(0);
6 }
7 // prompt user for profile
8 Profile profile = ProfileManager.getInstance().getProfile(path);
9 // initialize configuration with selected profile

10 new Config(profile.getLocation());
11 // if user doesn’t overwrite logger settings with commandline arguments
12 // just initialize default logging
13
14 ColumbaLogger.createDefaultHandler();
15 ColumbaLogger.createDefaultFileHandler();
16
17 for (int i=0; i<args.length; i++) {
18 LOG.info("arg["+i+"]="+args[i]);
19 }
20 ...

The Eclipse refactoring tool was used to extract 22 methods
from the code.

public void run(String args[]) {
1 ColumbaLogger.createDefaultHandler();
2 registerCommandLineArguments();
3 handler.registerCommandLineArguments();
4 handle commandline parameters(args);
5 Profile profile = prompt user for profile();
6 initialize configuration with selected profile(profile);
7 initialize default logging(args);
8 SessionController.passToRunningSessionAndExit(args);
9 enable debugging repaint manager ();

10 StartUpFrame frame = show splash screen();
11 register protocol handler();
12 load user customized language pack();
13 initialize plugins(handler);
14 load plugins();
15 set look and feel();
16 init font configurations();
17 set application wide font();
18 hide splash screen(frame);
19 handle commandline arguments in modules(handler);
20 restore frames of last session();
21 ensure native libraries initialized();
22 post startup of the modules(handler);

}

3.2 Extracting states and transitions using ham-
mock graphs

After the application of theExtract Methodrefactoring
delimited by programmer’s comments, the resulting code
has no more comments that can be used further. Moreover,
due to possible lack of comments accompanied with the
program, the refactored code may be still at a lower level
of abstraction than the desired requirements goal models.

In Squirrel Mail, the comments are scattered in the rou-
tines that the result of theExtract Methodrefactoring is still
at a low level. To make it worse, the unstructureness of a
Web-based system, such as Squirrle Mail, limits the extrac-
tion of methods to individual routines. Thus, in order to
obtain a more abstract representation, a behavioral view of
the whole system needs to be extracted. In contrast, the re-
sult of Extract Methodrefactoring on the Columba system
is less complex because Columba is structured and it has
well-written comments.

 4

and procedural code. Other refactoring techniques may
not be as generally applicable as Extract Method.

As illustrated in [12], Extract Method deals with
statement blocks. Each block is determined by the
delimitating comments to reveal the programmer’s
intentions. An implicit requirement for Extract Method
is that the block must have a single entry and a single
exit, and so its structure corresponds to a Hammock
graph [37]. Without loss of generality, consider just
two statements S1 (I1, O1) and S2 (I2, O2) where I1, I2 are
the sets of input variables and O1, O2 are the sets of
output variables for the respectively numbered
statements S1 and S2. Note that these statements may
also have resulted from a previous application of the
Extract Method refactoring.

The refactored statement S(I,O) is obtained by
program slicing. Specifically, as shown in Figure 3, S
is the new method named after the comment; I is
computed as the input variables on entry of the block;
O is computed as the output variables on exit of the
block. We simplify the resultant statement by
excluding the block’s internal variables that are not
used elsewhere in the program. Such a chance reduces
the complexity of the code representation. The Extract
Method refactoring step can be applied several times
until all the commented blocks are replaced by single
statements. For example, the following Hammock
graph in login.php has a variable definition SM_PATH
exported to the remaining program, while no variable
is imported.

/** Path for SquirrelMail required files. */
define(‘SM_PATH’,’../’);
require_once($SM_PATH . ‘functions/strings.php’);
require_once($SM_PATH . ‘config/config.php’);
require_once($SM_PATH . ‘functions/i18n.php’);
require_once($SM_PATH . ‘functions/plugin.php’);
require_once($SM_PATH . ‘functions/constants.php’);
require_once($SM_PATH . ‘functions/page_header.php’);
require_once($SM_PATH . ‘functions/html.php’);
require_once($SM_PATH . ‘functions/global.php’);
require_once($SM_PATH . ‘functions/imap_general.php’);

Hence $SM_PATH constitutes the only output
variable of the block, whereas the set of input variables
is empty. Note that even global variables that are not
used outside the block will be hidden by the
abstraction.

After slicing analysis, it is safe to declare a new
function set_path and call it in login.php as follows.

$SM_PATH=set_path ();

A complete listing of login.php has 185 LOC. The
following listing shows login.php after Extract Method
refactoring where all the comments from the original
program have been removed. The blocks are replaced
by new methods.

<?php /* login.php */
$SM_PATH=set_path ();
$SM_lang=setup_language();
$base_uri = findout_base_URI();
$logindisabled = detect_imap_server($base_uri);
if ($logindisabled) {
 explain_situation(); exit;

}
do_hook(‘login_cookie’);
$header =onload_function(“redirect.php”);
display_header($header);
load_theme($theme[$theme_default]);
do_hook('login_top');
show_logo();
show_form($loginname, $mailto, $key);
do_hook('login_form');
do_hook('login_bottom');
?>

3.1.2 Converting code into initial statecharts

The next step is to construct initial statecharts based
on the output of the previous step.

After Extract Method refactoring, each extracted
method has a single entry and a single exit (Hammock
graph). At the entry and exit of the Hammock graph,
pre- and post-conditions define allowable classes of
input/output states. The transition between them is
effected by the method. The states and transitions
derived from a hammock graph form a statechart. The
statecharts of all hammock graphs are combined into a
complete statechart by adding transitions according to
the program’s control flow.

In principle, each possible value of a variable can be
represented by a state. For example, a Boolean variable
in a PHP file can have three states: True, False, plus an
Unknown state for the case when the variable has not
been initialized. If we use a distinct state to represent
each possible value, however, an Integer variable will
require a practically infinite number of states. To keep
the number of states manageable, we can partition the
domain of a variable into a small set of equivalent
classes. Thus, in the case of an Integer, we may
introduce three equivalent classes and using three
states (>0, =0, <0) to represent positive, zero and
negative numbers respectively.

In Figure 4, we adopt the statechart notation used in
[30]. The action at the transition set_path defines a
variable $SM_PATH. Before the action set_path, the
variable $SM_PATH is undefined. We model
undefined variables as initial states. An event can also
be put to the left of the slash in the transition label, to
specify the triggering condition for the transition.

Figure 4. Statechart notations

Accordingly, we convert the refactored login.php
code into an initial statechart (Figure 5). Note that two
special functions do_hook and load_theme can make
calls to other methods dynamically. Apart from the

$SM_PATH=set_path

$SM_PATH is
undefined

$SM_PATH is
set

/set_path

$SM_PATH

/set_path

Figure 4. Statechart notations

Static program analysis techniques can help us achieve
more abstract program descriptions. In this section, we ex-
plain the use of Hammock graphs and statecharts to obtain
an abstract view of the system behavior.

Each extracted method has a single entry and a sin-
gle exit (Hammock graph). At the entry and exit of the
Hammock graph, pre- and post-conditions define allowable
classes of input/output states. The transition between them
is effected by the method. The states and transitions derived
from a Hammock graph form a statechart. The statecharts
of all hammock graphs are combined into a complete state-
chart by adding transitions according to the control flow.

For example, in Figure 4, we adopt the statechart nota-
tion used in [27]. The action at the transitionset path de-
fines a variable$SMPATH. Before the actionset path ,
the variable$SMPATH is undefined. We model unde-
fined variables as initial states. An event can also be put
to the left of the slash in the transition label, to specify
the triggering condition for the transition. Accordingly,
we convert the refactoredlogin.php code into an ini-
tial statechart (Figure 5). Note that two special functions
do hook andload theme can make calls to other meth-
ods dynamically. Apart from the static calls, plugin rou-
tines registered for a hook name are called dynamically
throughdo hook . If there are no registered plugins for
a hook name, then the action will be a NOP (nil oper-
ation). Similarly, thetheme routines are called by a
load theme function based on a configuration parameter
variable$theme default . Note that in this statechart
there are two exits, each leading to a different final state.

A statechart constructed from refactored code generally
has too many states and transitions, and is hard to under-
stand. We therefore need techniques to group states and
transitions into more abstract, and fewer, super-states and
super-transitions.

We accomplish this first by introducing layers: a group
of states with single entry and exit are grouped together
into one super-state. The new super-state replaces the
group of the original states comprising it, thereby reduc-
ing the number of states. This refactoring step is called
Extract States. In Figure 6, we illustrate how three states
in the login.php (see Figure 5 and Figure 6a), namely
$SMPATH, $SMlang and$base URL, are grouped into

���������

	
�������
������

�������
������

8"	�����3��%9
7������3��%������

8:�	��3��%9

7������3��%������

������������

7�	���;�		#��

7�2��������
���	�

7��	*,	��

�������� �������� ���������

7���
�;����
���
7���;����

7����;	
�;<���;=
�

8:�	��3��%9
7���	��(��	�

7�	�

����
��

7	��	��;�
����	�
����������
�

7�	��;�����

����
���
����� �

7�������;������

���������!�

7��	*;�	�	

���������

7�	���;�	�

7�	�

������������

7�	� 7�	���;<	��	�

8"	�����3��%9
7�����,	��

Figure 5. A statechart converted from the
refactored code

a super-state named asGlobals (Figure 6b). In Fig-
ure 7a, the sequence of three transitions inGlobals stat-
echart in Figure 6b are refactored into a single transition
(set globals).

To simplify the statecharts, a superstate with a single
transition inside can be replaced with a new state by merg-
ing empty incoming/outgoing transitions to/from the su-
perstate with its internal transition. This refactoring step
is called Extract Transition. For example, in Figure 7a,
Globals has an empty incoming transition; this tran-
sition is merged withset globals which was inside
Globals (Figure 7b). Globals is turned into a new
stateglobalsSet with non-empty outgoing transitions.
The result of applyingExtract States and Transitionson
login.php is shown in Figure 8. Figure 9 shows the re-
sult of putting together all top-level programs; the view is
then more abstract in Figure 10 to show only the top-level
states.

3.3 Structurizing the statecharts

The combined statecharts obtained from the PHP pro-
grams in the previous steps are unstructured, even though
the PHP program has no explicit GOTO statements. On the
other hand, a goal model is formed by structured AND/OR
decompositions. Before recovering a structured goal model
(see Section 4), the statechart needs to be structured to con-
tain only sequences, branches and loop structures.

First, the high-level statechart (Figure 10) can be mapped
into a program with GOTO statements. For convenience, in
the sequel we use FORTRAN for such programs. Each state

	
�������
������
 �������
������

8"	�����3��%9
7������3��%������

8:�	��3��%9
7������3��%������

�������� �������� ���������

7���
�;����
���
7���;����

7����;	
�;<���;=
�

���

	
�������
������
 �������
������

8"	�����3��%9
7������3��%������

8:�	��3��%9
7������3��%������

�������� �������� ���������

7���
�;����
���7���;���� 7����;	
�;<���;=
�

"������

�<�

Figure 6. Extract States Refactoring (a) into
(b) where (a) is part of the statechart in Fig-
ure 5

	
�������
������
 �������
������

8"	�����3��%9
7������3��%������ 8:�	��3��%9

7������3��%������

"���������
7���;��	<���

	
�������
������
 �������
������

8"	�����3��%9
7������3��%������

8:�	��3��%9
7������3��%������

7���;��	<���

"������

#�$

#�$

Figure 7. Extract Transitions Refactoring on
the new super-state Globals in Figure 6b

���������

"���������

	
�������
������
 �������
������

8"	�����3��%97
������3��%������

8:�	��3��%97
������3��%������

����"�������

7����
����%���

7�2��������
���	�

7��	*,	��

7���;��	<���

Figure 8. Refactoring on the initial statechart
in Figure 7

���������

�������

������	
�

��
���

�		
	

�
�
�����

��
����

����
�
���
������ ��
�
���
������

��
����������
�����������������

���
��������
����������������

��������	����

��������������

���������������
�

���
�
�!

���
��
�!�����
��"��
�

���
��#�$��
���

�!

��
����%����
�
�
��

�"��������
�������

�&�
����%��'(
&"��������
����

�����
�����

��
����

��������	����

��������������

��	�����
��

���)� ��!�

����
���� ��!�	
�

�	
�����	�����	�

*

��
��
�����

�
��
������

�
���	�����
��

������

�����

��
����%����
�
�
��

�����

�"��������
�������

��
+��,

���
�������
����
��"��
�

��
�����#�$
('�
�����
�!�
��������-����

	��
	�������

��
����

��
�
�����	����� ����
�
�����	�����

��
�����
�!��
��!������

���
��
�!��
��!������

��
�
��"��
�

������	��
�����
�

�	�,�
��#�$�������
�
�������

����	��
�����
�

��
�����#�$��
�����
�
�������

��
�����#�$������.$�
�����.

�	��
	�����	�
�.
�����	
�

������
���
��

���
��#�$������.$�
�����.

��
����������������
�!

�	
���	

����/��
-���

����/��
-���

����/��
-���

Figure 9. The layered statecharts of the web
browser

%�
�&����

7�����=
�

7�	���

�����

���������
�����%���

8�	����)
�97
�	�	
�

8(2�����97
�2����

!����������

7�	A��#

8:�	��3��%97���	��(��	�

��
���������

7�����,	��

8:�	��>��97���	,	��

8"	�����,	���@
"	�����>��9
7�����: �<����

8?�	����)
��@
?(2�����97����

���!���

���������
���!*���

8"	�����3��%97����
����%���

8: �	��,	��97���	��(��	�

Figure 10. Top-level statechart of the browser

 6

3.1.4 Structuring statecharts

The combined statecharts obtained from the PHP
programs in the previous steps are unstructured, even
though the PHP program has no explicit GOTO
statements. On the other hand, a goal model is formed
by structured AND/OR decompositions. Before a
structured goal model can be obtained from an
unstructured statechart, the statechart needs to be
structured to contain only sequences, branches and
loops structures.

First, the high-level statechart can be mapped into a
FORTRAN program with GOTO statements. Each
state with more than one entry will be associated with a
label, and each transition for an additional exit is
associated with a GOTO statement followed by its
activity statement. Secondly, to obtain a structured
program, we adopt the GOTO statements elimination
implemented in the FPT compiler [43]. It has been
established using the theorem prover PVS [29][31] that
all the GOTO’s can be removed through semantic
preserving transformations, resulting in structured
Hammock graphs [43]. For example, the statechart in
Figure 10 can be converted into a FORTRAN program
with GOTO statements (Figure 11a), the program is
then structured (Figure 11b) using FPT [8].

Index.php

/header

/enterURL

/login

error

login.php

Globals

! $login_disabled $login_disabled

CorrectIMAP
/detectIMAPServer

WrongIMAP/
detectIMAPServer

PageGenerated

/calculatePage

/explainSituation

/showForm

WrongForm/reportError

WrongKey/
redoForm

LoggedOut/
logout

Expired/
expired

!LoggedOut &
!Expired/
send

webmail.php

Globals

PageGenerated

/calculatePage

$frame_size

/sizeFrame

/getRightFrameURL

$right_frame_url
H

mailbox.php

compose.php

folders.phpoptions.php

/send

LoggedOut/
logout

/send

Expired/
expired

/goBack

WrongIMAP
/reportError

CorrectKey
& CorrectForm
/startWebMail

redirect.php

Globals

$login_user_name ! $login_user_name

CorrectForm/
nameIsSet

WrongForm/
nameIsSet

/logoutError

! $user_logged_in

UnknownKey/sessionRegister

$user_logged_in

CorrectKey/
sessionRegister

CorrectKey/verifyLoginInfo

$redirect_url/forwardURL /sessionClose

WrongKey/verifyLoginInfo

CorrectIMAP/enterForm

browser

/set_globals

/set_globals
/set_globals

Figure 9. The layered statecharts of the web

browser

3.1.5 Convert structured programs into AND-
OR goal models

This subsection explains the steps 5 to 8 in Figure 2.
In the NFR framework [3], a goal has an intended
function (intention), and an associated topic (subject
matter). In a statechart, the function is found as the
action of a state transition and the topic as the
contextual state of the statechart. There are two basic
modalities for goals: achieve or maintain [38]. In our
process, it is easier to identify an achieve goal as a
transition between different states whereas maintain
goals involve a transition from a state to itself.

Figure 10. Top-level statechart of the browser
 call EnterURL
 10 call Login
 if (wrongIMAP) goto 30
 20 call ShowForm
 if (wrongKey) goto 20
 call EnterForm
 if (wrongForm) goto 30
 call StartWebMail
 if (loggedOut) goto 10
 if (expired) goto 10
 call Send
 Stop
 30 call ReportError
 call GoBack
 goto 10
 end

CALL EnterURL
REPEAT
REPEAT

 CALL Login
 IF (.not.wrongIMAP) THEN
 REPEAT
 CALL ShowForm
 UNTIL (.not.wrongKey)
 CALL EnterForm
 IF(.not.wrongForm)THEN
 CALL StartWebmail
 ENDIF
 ENDIF
UNTIL (.not.loggedOut.or
.not.expired.or.wrongIMAP
.or.wrongForm)

IF(wrongIMAP.or.wrongForm)
THEN
 CALL ReportError
 CALL GoBack
ENDIF
UNTIL (.not.wrongIMAP.and.
 not.wrongForm)
CALL Send
END

(a) (b)

Figure 11. Structuring the code converted
from the statechart in Figure 10

As shown in Figure 12, (a) a chain of state
transitions designates an AND decomposition of a goal
and they correspond to a sequential composite
statement. Here an ellipse denotes an unnamed goal.
Furthermore, the parallel join of transitions from/to
other states (b) designates OR-decompositions of a
goal, corresponding to a branch statement e.g., IF-
THEN-ELSE, with a condition derived from the event
label on the transitions. Loops can also to be mapped to
the goal model where the stop event s is converted into

Figure 11. Structuring the code converted
from the statechart in Figure 10

with more than one entry will be associated with a label,
and each transition for an additional exit is associated with a
GOTO statement following its activity statement. Secondly,
to obtain a structured program, we adopt the GOTO state-
ments elimination implemented in the FPT compiler [37]. It
has been established using the theorem prover PVS [26, 28]
that all the GOTO’s can be removed through semantic pre-
serving transformations, resulting in structured Hammock
graphs [37]. As the technique eliminates GOTO’s through
hammock graph construction, it can be directly combined
with our Extract States and Transitionrefactoring. For ex-
ample, the statechart in Figure 10 can be converted into a
FORTRAN program with GOTO statements (Figure 11a);
the program is then structured (Figure 11b) using FPT [8].

4 Extracting goal models from abstract code

This section explains the steps 5 to 8 in Figure 2. In the
NFR framework [3], a goal has an intended function (inten-
tion), and an associated topic (subject matter). In a state-
chart, the function is found as the action of a state transition
and the topic as the contextual state of the statechart. There
are two basic modalities for goals: achieve or maintain [32].
In our process, it is easier to identify anachievegoal as a
transition between different states whereas amaintaingoal
as a transition from a state to itself.

As shown in Figure 12, (a) a chain of state transitions
designates an AND decomposition of a goal; the transitions
correspond to a sequential composite statement. Here an
ellipse denotes an unnamed goal. Furthermore, the par-
allel join of transitions from/to other states (b) designates

�����

�� ��

�����

�������

�����

�����

�	�����

��	��

���

� �

�	
 �	

������

�����

���

� �

�
���������

��
������

����

��
�����

����

���

�

�
�

�	
 �	

�	

����������������	

�����

������

���
����

������	

�����

���

� �

�	
 �	

���

� �

�
 �

���

���

�

�
�

�

�	
 �	

�	

�
 �

�
���� �
����

�
 �

���

���

���

Figure 12. Patterns to extract goal models

���

0�������
���

����� ������0����

���!*���

"�+���

�+B�+B

�+B

0����*��� �����1������

���

���

���

�+B

�+B

���

(%(��!!=+�3��
��	��*�	��3��%�
�	���	��*�	��,	���

(%(��!!=+�3��
��	���	����)
��	���	��(2�����
	��*�	��3��%�	��:�	��,	���

3,���	��*�	��3��%�

(%(��!!=+�3��
��	��*�	��>��� 3,���	��*�	��,	���

3,�*�	��3��%!	�!*�	��,	���

Figure 13. View AST as annotated goal model

OR-decompositions of a goal, corresponding to a branch
statement e.g., IF-THEN-ELSE, with a condition derived
from the event label on the transitions. Loops can also
to be mapped to the goal model where the stop event s is
converted into an intermediate goal along with the actions
(c). This case results in a cyclic goal model, where the
switching events on the transitions correspond to an OR de-
composition. Having a structured state chart/program, we
can view its abstract syntax tree (AST) as a goal model
annotated with the control conditions, such asIF(x) ,
REPEAT..UNTIL(s) , etc.

4.1 Extracting goal models from Squirrel Mail

The structured program in Figure 11b can be converted
into an annotated goal model in Figure 13.

Using the basic conversions (Figure 12) on the annotated
control patterns (Figure 13), all the transitions are converted
into goals in an AND/OR graph (Figure 14). Moreover,
some of the tasks in the goal model are non-functional that
contribute to softgoals as qualities or concerns (see the dot-
ted links in Figure 14). For example, “Login” is a non-

���

0�������
���

����� ������0���� "�+���

�+B
�+B

�+B

0����*���

!����*���

���

���

���

�+B

�+B

���

���

	1����%���
��

	!����*���

)

���

	�����
/)�
��

	0&����

��

!����%���
��
!����*���

)

���!*���

���

	!����2�

)

�����1������

���

)

!����%���

���

)

	!����%���
��

	!����*���

)

���
���
����

��<�����
�����<�����

Figure 14. The SquirrelMail goal model

functional task that is concerned bysecurity, “ReportError”
is another one that implements theusabilityconcern, etc.

4.2 Extracting goal models from Columba

The AST of the further refactored high-level Columba
code generates 22 leaf subgoals in the annotated goal
model. After applying the three transformation patterns
(Figure 12) on the annotated goal graph, we obtain an
AND/OR goal model that contains 22 leaf-goals. Among
them, 13 goals were identified as non-functional through
a functional testing when they are disabled. These NFR
goals can be enabled by satisfying guard conditions in the
IF statements, which are based on the quality metrics of
9 softgoals, including usability, maintainability, extensibil-
ity, etc. One can further catagorize them into decomposing
hierarchies.

Having the refactored code in Section 3.1.2, we obtained
22 goals through the AST conversion. But, these goals are
not all necessary to run the program. For example, after
one can comment out as many as 13 lines of the program,
without breaking the system.

public void run(String args[]) {
// ColumbaLogger.createDefaultHandler();
registerCommandLineArguments();
ComponentPluginHandler handler = register plugins();
handler.registerCommandLineArguments();
// handle commandline parameters(args);
Profile profile = prompt user for profile();
initialize configuration with selected profile(profile);
// initialize default logging(args);
SessionController.passToRunningSessionAndExit(args);
// enable debugging repaint manager ();
StartUpFrame frame = null;
// frame = show splash screen();
register protocol handler();
// load user customized language pack();
initialize plugins(handler);
// load plugins();
// set look and feel();
init font configurations();
// set application wide font();
// hide splash screen(frame);
// handle commandline arguments in modules(handler);

Figure 15. The full-fledged Columbasystem

restore frames of last session();
// ensure native libraries initialized();
// post startup of the modules(handler);

}

Of course, one may recognize that the program has less
usability (as the look and feels and fonts are not as nice
as before), becomes more difficult to maintain (as the log-
ging and debugging information are not stored), and harder
to extend (as the plugins are not loaded and the native li-
braries are not initialized). Figure 16 shows a screenshot of
resulting program. Comparing to the full-fledged system in
Figure 17, one can see that the look-and-feel is basic and
logging is no longer stored after our change. However,
the system is still functional: one can still fulfill the goal of
sending an email by using the abridged program.

In a further study, we also relate the identified NFRs with
the softgoals. We show the refactored code corresponding
to the extracted goal model in Figure 17, where the non-
functional goals are separate into decomposition hierarchy
for softgoals.

public void run(String args[]) {
if (maintainability logging) ColumbaLogger.createDefaultHandler();
registerCommandLineArguments();
ComponentPluginHandler handler = register plugins();

handler.registerCommandLineArguments();
if (extensibility) handle commandline parameters(args);
Profile profile = prompt user for profile();
initialize configuration with selected profile(profile);
if (maintainability logging) initialize default logging(args);
SessionController.passToRunningSessionAndExit(args);
if (maintainability debugging) enable debugging repaint manager ();
StartUpFrame frame = null;
if (usability assured progress) frame = show splash screen();
register protocol handler();
if(usability language customization)load user customized language pack();
initialize plugins(handler);
if (extensibility) load plugins();
if (usability look and feel) set look and feel();
init font configurations();
if (usability font configuration) set application wide font();
if (usability assured progress) hide splash screen(frame);
if (extensibility) handle commandline arguments in modules(handler);
restore frames of last session();
if (extensibility) ensure native libraries initialized();
if (extensibility) post startup of the modules(handler);

}

Figure 16. The Columbasystem with NFR goals
disabled

���

��������

������
����

���)�����

�������

'�����
�'

����
�������

�+B

%�������(�
*���

���'��)������

%�������(�

��)����

��������

��������

���
���

����
��
�)�����

��������
��

�&��

.��'��)��

)����
�������

)���
���'���

������
)���

���'���

���

���

���

�+B

�+B

=��<�����

���������<�����

(2�����<�����

�	����� B�<
�����

����
����

�
��	��/���	� �		#���������

���
����

��	�����

,	���

�	����
����	�

.�����

�'�)��

���
���
'��

������

%�������(�

�'�)��

�������

0�����

��)�

�������

�������

CC

CC
CC

���!
������

������

��
�
������

������

�+B

�+B

�+B

�+B

���
����

��

'���

CC

���

�����������

!�
�
'���

CC

���

)���

�)�����(�

����)���
����

CC

���

��)����

���
��

������
����

����������

���
��

������
����

���)�����
��

��
)���

0��)��
����3�

���������

��������(�

����
�����)�
�'

���
��
)���

CC

�+B

��������

������
����

���)�����
'��

���
���
���

�+B

Figure 17. The Columbagoal model

These softgoals fill in a gap between the code and its early
requirements.

5 Discussion

In this section, we outline the implemented tool support
for the reverse engineering process and cross-verify our ap-
proach through another case study.

First, it is important to check the correctness of the
refactoring steps to ensure that semantics is indeed pre-
served. A standard way for accomplishing this [12] is to
test each refactoring step using available test cases. How-
ever, test cases can identify incorrectness, but can’t ensure
correctness. In order to prove that each step is semantics-
preserving, we use program slicing techniques to ensure
bothExtract MethodandExtract States and Transitionsare
properly used. Also, the structuring of the statecharts is
based on a well-established theory for GOTO eliminations,
where the basic transformations have been proven correct.
We can also annotate the state transitions in the statechart
with the corresponding code. Therefore the very detailed
statechart is exemplified by the program code. Moreover,
such traceability allows a change in the high-level abstrac-
tion to be reflected in the change of the code.

We can significantly improve the usefulness of our
method by automating parts of it as follows:

• Refactoring based on program slicing. We can use
the Extract Method as it is available for Java through
the Eclipse IDE [36] (Shift Alt M). This refactor-
ing is done semi-automatically by selecting statements
delimited by programmer comments. Although a gen-
eral refactoring tool for PHP is not available yet, we
are developing anExtract Methodtool for PHP and
we are looking for a suitable case study in JSP that al-
lows us to reuse existing Java refactoring tool support
in Eclipse. Developing a tool for theExtract States and
Transitionsrefactoring is also in our tool implementa-
tion agenda.

• Statechart structuring. Currently we deal with the
problem by converting statecharts into an equivalent
Fortran code with GOTO statements to leverage an
existing Fortran compiler that has implemented the
GOTO elimination algorithm [8, 37].

• Extracting goal model. The AST of the structured pro-
gram is used to generate the annotated goal models.
The format of these generated goal models conforms to
the OMG XMI standard, which is exchangeable with
other modeling tools such as EclipseUML or Rational-
Rose. To this end, we used Eclipse modeling frame-
work (EMF). Then we used the JDT API in Eclipse

to convert any structured Java program into an anno-
tated goal model, and further created an AND-OR goal
model using the basic patterns. The annotation labels
are automatically transformed into a purely AND-OR
goal model using the basic patterns in Figure 12.

• Identifying non-functional goals. Currently, this step
is semi-automatic. We obtain the NFR based on the
traceability of a goal and a statement in the program
such that the statement is guarded by its truth value.
Once a goal is considered non-functional, the state-
ment is disabled during execution. We then test the re-
compiled system to verify that system function is still
being delivered. If so, then the goal is tagged as non-
functional.

• Linking non-functional goals to softgoals. Once non-
functional tasks are identified, one can resort to the
NFR framework [3] to categorize them with certain
quality attributes as softgoals in the extended goal
model. The quality attributes answer why the non-
functional tasks are present in the source code.

6 Related work

Initially, goal models [7] were proposed to capture re-
quirements, i.e., the optative statements of the environ-
ment [33]. Goal models have been extended to represent
both functional and non-functional requirements for the
software developing processes [22]. The requirements en-
gineering community has developed a set of requirements
eliciting tools to reflect goal models into UML diagrams [6],
where Class, Sequence and Collaboration diagrams are con-
sidered. According to the horse shoe model, this corre-
sponds to the forward engineering phase. In this paper, we
consider statecharts [14] as a suitable intermediate repre-
sentation for the dynamic behavior of legacy code, as well
as the abstract interface to the environment.

This paper is not the first attempt to discover goal models
from sources other than requirements. In the KAOS project,
goal models can be inferred from user scenarios [33]. How-
ever, scenarios generally do not cover all possible paths
of program executions. And legacy software often comes
with incomplete and inaccurate documents. Therefore our
methodology complements the KAOS approach, based on
the idea of understanding-by-refactoring. The recovered
goal model is not guaranteed to capture the intentions of
the original requirements, but can be trusted to capture the
implemented intentions of stakeholders, as understood by
programmers. It is also more traceable from the code since
each refactoring step is documented and is also invertible.

Goal models can also be seen as abstractions of software
processes. Other literature details techniques for recovering
process models from events collected during the software

development process [4]. However, this work focuses on in-
ferring the processes used to develop software, rather than
the processes realized by the software itself. Program model
checking [34] systems, such as Bandera [5], extract finite-
state machines from Java source code. Although such sys-
tems have succeeded in finding counter examples for some
programs, the combinatorial explosion of states ultimately
limits their applicability in revealing intentions behind a
large software system. Not surprisingly we found a sim-
ilar combinational barrier when requirements goal models
are converted into state machines for model checking [13].
According to our case study, goal models can be built more
concisely from statecharts.

In [29] and later in [30], an algorithm is proposed to
compress state diagrams into UML state diagrams, which
constitute a variant of the statechart notation. The algo-
rithm works by using execution event traces. The approach
is complementary to our technique, which does not rely on
program inputs.

Pattern-based design recovery as proposed in [23] finds
UML diagrams, including collaboration diagrams and stat-
echarts from source code. This approach is also similar to
our work, but relies on pattern matching rather than legacy
code comments.

7 Conclusions and future work

We have proposed a framework for reverse engineering
legacy code in order to discover the requirements goals it
was intended to fulfill. Our tool has been illustrated with
two case studies involving public-domain legacy email sys-
tems (SquirrelMail and Columba). The case studies suggest
that the process of recovering requirements goals can be
systematized. Moreover, the reverse engineered goal mod-
els are traceable in the code, making it feasible to forward
engineering goal models into new architectures.

In future work, we propose to study methods for the re-
covery of softgoals using hints from architecture and design
documents. We will also compare the reverse engineered
goal models with the goal models derived through require-
ments elicitation.

References

[1] R. Castello. SquirrelMail 1.5.0,
http://www.squirrelmail.org.

[2] E. J. Chikofsky and J. H. C. II. Reverse engineering and
design recovery: A taxonomy.IEEE Software, 7(1):13–17,
1990.

[3] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishing, 2000.

[4] J. Cook and A. Wolf. Discovering models of software pro-
cesses from event-based data.ACM Transactions on Soft-
ware Engineering and Methodology, 7(3):215–249, 1998.

[5] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zhang. Bandera: Extracting finite-state
models from java source code. InICSE00, pages 439–448.
ACM Press.

[6] L. M. Cysneiros and J. C. S. P. Leite. Non-functional re-
quirements: from elicitation to conceptual models.IEEE
Transactions on Software Engineering, 30(5):328–350, May
2004.

[7] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition.Science of Computer Pro-
gramming, 20(1–2):3–50, Apr. 1993.

[8] E. H. D’Hollander, F. Zhang, and Q. Wang. The Fortran par-
allel transformer and its programming environment.Journal
of Information Sciences, (106):293–317, 1998.

[9] F. Dietz and T. Stich. The Columba project, 1.0 RC2,
http://columba.sourceforge.net.

[10] J. Ferrante, K. Ottenstein, and J. Warren. The program de-
pendence graph and its use in optimization.ACM Trans.
Program Languages and Systems, 9(3):319–349, 1987.

[11] S. Fickas, L. Ehlhardt, M. Sohlberg, and B. Todis. Towards
personal RE: A challenging case study, 45-02. Technical re-
port, Computer Science Department, University of Oregon.

[12] M. Fowler. Refactoring: Improve the design of existing
code. Addison-Wesley, Reading MA, 1997.

[13] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,
and P. Traverso. Specifying and analyzing early require-
ments in Tropos. InRE’03, pages 105–114, 2003.

[14] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, pages 231–274,
1987.

[15] D. Harel and A. Naamad. The STATEMATE semantics
of statecharts.ACM Trans. on Software Engineering and
Methodology, 5(4):293–333, Oct. 1996.

[16] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs.ACM Trans. On Programming
Languages and Systems, 12(1):26–60, 1990.

[17] B. Hui, S. Liaskos, and J. Mylopoulos. Goal skills and pref-
erence framework. InRE’03, pages 117–126.

[18] R. Kazman, S. G. Woods, and S. J. Carriere. Requirements
for integrating software architecture and reengineering mod-
els: CORUM II. pages 154–163, 1998.

[19] J. Leite. Working results on software re-engineering.ACM
SIGSOFT Software Engineering Notes, 21(2):39–44, 1996.

[20] T. Mens and T. Tourwe. A survey of software refactoring.
IEEE Trans. Software Engineering, 30(2):126–139, 2004.

[21] H. Muller, J. Jahnke, D. Smith, M. Storey, S. Tilley, and
K. Wong. Reverse engineering: A roadmap. InFuture of
Software Engineering, ICSE’00, pages 49–60, 2000.

[22] J. Mylopoulos, L. Chung, and B. Nixon. Representing
and using nonfunctional requirements: A process-oriented
approach. IEEE Transactions on Software Engineering,
18(6):483–497, Jun 1992.

[23] J. Niere, J. P. Wadsack, and A. Zundorf. Recovering UML
diagrams from Java code using patterns. InSCASE’01, 2001.

[24] W. Opdyke.Refactoring: A program restructuring aid in de-
signing object-oriented application frameworks. PhD thesis,
1992.

[25] K. Otteinstein and L. Ottenstain. The program dependence
graph in a software development environment.ACM SIG-
PLAN Notices, 19(5):177–184, May 1984.

[26] S. Owre, J. Rushby, N. Shankar, , and F. von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to
the design of PVS.IEEE Trans. Software Eng., 21(2):107–
125, Feb. 1995.

[27] M. Samek.Practical statecharts in C/C++. Quantum pro-
gramming for embedded systems. CMP books, 2002.

[28] N. Shankar. Steps towards mechanizing program transfor-
mations using PVS.Science of Computer Programming,
26(1–3):33–57, May 1996.

[29] T. Systa. Understanding the behavior of Java programs. In
WCRE’00, pages 214–223, 2000.

[30] T. Systa, K. Koskimies, and E. Makinen. Automated com-
pression of state machines using uml statechart diagram no-
tation. Information & Software Technology, 44(10):565–
578, 2002.

[31] F. Tip. A survey of program slicing techniques.Journal of
programming languages, 3:121–189, 1995.

[32] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: From system objectives to UML models to precise soft-
ware specifications. InICSE 2003, pages 744–745, 2003.

[33] A. van Lamsweerde and L. Willemet. Inferring declarative
requirements from operational scenarios.IEEE Trans. Soft-
ware Engineering, 24(12):1089–1114, Nov. 1998.

[34] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs.ASE, 2002.

[35] M. Weiser. Program slicing.IEEE Trans. Software Engi-
neering, 10(4):352–357, July 1984.

[36] www.eclipse.org. Eclipse IDE 3.0.1: Refactoring in JDT,
EMF, UML2.

[37] F. Zhang and E. H. D’Hollander. Using hammock graphs
to structure programs.IEEE Trans. Software Engineering,
30(4):231–245, Apr. 2004.

