Reverse Engineering Goal Models from Legacy Code

Yijun Yu!, Yigiao Wangd, John Mylopoulo, Sotirios Liaskos, Alexei Lapouchniah
Julio Cesar Sampaio do Prado Léite
'Dept. of Computer Science, Univ. of Toronfgijun,yw,jm,liaskos,alexgi@cs.toronto.edu
2Dept. of Computer Science, PUC-Rio, julio@inf.puc-rio.br

Abstract Reverse engineering REQUIREMENTS Forward engineering

A reverse engineering process aims at reconstructing GOAL MODEL GO&MODEL
high-level abstractions from source code. This paper \ "
presents a novel reverse engineering methodology for re- & Architectur: Sx arontecire.
covering requirements goal models from both structured REPRESENTATION Functions
and unstructured legacy code. The methodology consists of ode structure Web services. components

the following major steps: 1) Refactor source code by ex- LEGACY CODE

tracting methods based on comments; 2) Convert the refac-

tored code into an abstract structured program through stat-

echart refactoring and hammock graph construction; 3) Ex-

tract a goal model from the structured program abstract Figure 1. The horseshoe model

syntax tree; 4) Identify non-functional requirements and de-

rive softgoals based on the traceability between the code

and the goal model. To illustrate this requirements recov- non-functional requirements in a systematic and coherent

ery process, we refactor requirements goal models from twofashion. The goal models developed in this early phase

legacy software code bases: an unstructured Web-basedf software development tell us not only the origins of

email in PHP (SquirrelMail) and a structured email client functional and non-functional requirements, but also the

system in Java (Columba). space of alternative solutions (operationalizations) that the
requirements engineer needs to select from. The KAOS
methodology defines the state-of-the-art on this thread of

1 Introduction research [7, 32, 33]. Hui et al [17] propose an extended
framework for developing requirements that includes mod-

A software reengineeringprocess follows a horseshoe €liNg and analysis of user goals, skills, and preferences
model by first recovering lost abstractions (e.g., elements(GSP). The framework is intended for the design of generic,
of design and/or requirements) througiverse engineer- customizable (heref'iftehngh variability) so_ftware, to be _
ing [2, 21] (also known aslesign recovery19]), and then used _by a communlty_ of users. _The 9r|_g|.nall case for this
pushing these abstractions forward into low-level imple- work involved users with traumatic brain injuries in Oregon
mentations throughorward engineering In the initial State [11].
horseshoe proposal [18] and all subsequent research, the We are interested in using the GSP framework to reengi-
lowest level abstraction is legacy source code, while the Neer legacy software into generic, high variability software.
highest level abstractions are elements of a software archi-To meet this objective, we are developing techniques for
tecture. The reverse engineering process amounts to arfeéverse engineering goal models from legacy software that
chitecture recovery, while the forward engineering processoffers some service (e.g., email). These models can then
amounts to architecture-based development. be revised, refined and extended, so that they can serve

For more than a decade, the requirements engineering®s basis for generating an extended version of the legacy
community has proposed and studied goal models [22, 7, 3software system that supports the same service in multiple
32] as high level abstractions for modeling early require- ways. This paper presents the reverse engineering phase
ments. Goals capture stakeholder intentions. By mod-during which a goal model is extracted from legacy code.
eling and analyzing them, we can derive functional and In the sequel, we adapt the horseshoe model as shown in

Refactore
d source
code

Legacy 1. Extract
sou(:ce Methods
coce) Refactoring

2 Concepts and approach

Yes

No 2. Construct Our proposal is based on well-founded concepts in soft-

Hammock graph ware engineering. In particular, goal models [3, 32] arise
3. Extract H H P : . H

(an/:;;ed . paree| Structured . Etiminate/ Hightlevel | _States/ during early requirements eI|C|tat|0|_1, program ;hces [35_]

Goal graph) program [GOTO | Statechart " Transitions are useful for program understanding and static analysis;

6. Restructure Refactoring while statecharts constitute a powerful representation for

et 7. Testto Goal /8. Analyze Quality ~/Goal Model dynamic systems [14]. These concepts are integrated into
Model identify Model metrics to identify with .

NFRs with NFRs softgoals Softgoals a methodology through which the gap between goal mod-

els and source code is bridged. We first introduce these

concepts in more detail, before presenting our proposed
Figure 2. Major steps in our process methodology.

Statecharts

2.1 Goal models

A goal represents a stakeholder intention. A goal can
Figure 1. Instead of static architecture recovery, we aim be either fulfilled or not [32], and may depend on sub-
at discovering requirements goals from the behaviour of goals through AND/OR refinements. In [22], softgoals are
the system, thereby answering the most fundamental of allproposed as means for modeling and analyzing quality at-
guestions about a software system: What is the system intributes. Softgoals, unlike their vanilla cousins, can be par-
tended for? tially satisfied or denied, and may depend on other goals and
softgoals through MAKES, HELPS, HURTS and BREAKS
Our methodology converts structured and unstructuredrelations. With goal models, software development pro-
legacy source code into goal models following the steps il- ceeds by refining goals, identifying collections of leaf goals
lustrated in Figure 2: (1) refactor the source code by extract-that together fulfil root-level goals, and assigning responsi-
ing methods [12] based on program slicing techniques [35] bilities for the fulfiiment of leaf-level goals.
and programmer comments scattered in the code; if the
refactored code is structured then go to step (5); otherwise2.2 Program slicing
(2) convert it into equivalent statecharts [14], (3) further
refactor the statecharts into higher-level statecharts by ex- Unstructured programs can be structured using Ham-
tracting states and transitions, and (4) convert the high-levelmock graphs [35, 37] that have a single entry and a single
statecharts into an equivalent program which is then struc-exit. For structured programs, program slicing [35] gener-
turized by eliminating GOTO's [37]; (5) parse the structured ates a slice”’ of a programP based on a slicing criterion
program into an abstract syntax tree (AST) representing< p,V > wherep is a statement o andV is a subset
an annotated goal graph; (6) restructure the annotated goabf the variables of? [31]. Static program slicing finds the
graph into requirements goals; (7) identify non-functional statements that are either (control) dependent on(data)
requirements (NFR) in the resultant goal model by testing dependent or/. Program dependence graph (PDG) [25]
its traceable code in order to (8) derive softgoals from the and inter-procedural system dependence graph (SDG) [16]
NFR, using heuristics such as quality metrics. can be seen as results of program slicing, combining both
control and data dependence information in a program [10].
The rest of the paper is organized as follows. Section 2
presents relevant concepts and the proposed reverse eng2.3 Statecharts
neering methodology. Section 3 explains the refactoring of
source code into its abstract form, and Section 4 explains Statecharts constitute a concise visual formalism that
the extraction of goal models from the refactored programs. captures the dynamic behaviour of a system [14]. State-
Both sections conduct a case study of open-source softwareharts have been adopted in UML as one of the diagram-
systems (SquirrelMail [1] and Columba [9]), showing the matic notations for modeling behaviour. Statecharts extend
independence to programming languages and structurenessonventional finite state machine diagrams in several ways:
of the legacy code. Section 5 discusses tool support that rea collection of sub-states can be abstracted into a super-state
duces the amount of time required for reverse engineering.through AND or XOR composition; the number of states
Section 6 compares our proposal with related work, while is visually reduced by zooming sub-states out; a transition
section 7 summarizes results and sketches directions for fufrom/to a super-state can abstract a number of transitions
ture research. from/to its sub-states; parallel AND sub-states also reduce

the number of combined states. Low-level statecharts carry
both control and data dependencies of a program, and are
close to implementation; high-level statecharts, on the other
hand, hide implementation detail and abstract system be-
haviour.

Although UML tools such as STATEMATE [15] can

"V N\ // the following does S
Si(1y, O1); *\‘// refactored

Soly O2); S, 0);
exit o~ // other ... T

Variables defined before the entry of the block
I=(ul)n{v/]def(v,p) ApLpeny}#¢
Variables defined in the block that will be used after the exit

generate executable code from given statecharts, it is not 0=(01L0:) (v] use (v, p)rpPesp}=¢

yet possible to convert source code into statecharts. Our ap-
proach relies on software refactoring and program slicing
techniques to do just that.

Figure 3. lllustration of Extract Method

implemented in PHP. The second system, Columba 1.0
RC2 [9], is a structured email client implemented in Java.
Our approach refactors goal models from both systems, re-

Our approach summarized in Figure 2 is inspired by gardless of their different programming languages and en-
software refactoring techniques [2®efactoringhas been \ironments.

proposed [24] as a method for understanding and main-
taining complex source code. Refactoring restructures and3_1 Extract Method using comments
simplifies source code by improving its internal structure
without changing its external behaviour [12]. In our pro-
posal, source code is converted into more abstract form

by recursively applying the refactoring operati@mtract .) . !
. : tage that it is applicable to both object-oriented and pro-
Method[12]. The scope of this process can be determined cedural code. As illustrated in [12Extract Methoddeals

by rules of thumb, such as delimiting comments, as these "’ ; ; .
comments often indicate a semantic gap for the program un-Vith statement blocks. Each block is determined by defim-
itating comments to reveal the programmer intentions. An

derstanding [L2]. Aiming at even higher levels of abStraC-fimpIicit requirement forExtract Methodis that the block

tion, the resultant code are subjected to another round o X) . .
must have a single entry and a single exit, and so its struc-

refactoring with a scope determined by Hammock graphs: .
we extend theExtract Methodon an equivalent statechart ture corregponds t_o a I_-|ammock graph [37]. Without loss
of generality, consider just two statemestg /;, O,) and

representation of the program. As wiiixtract MethodEx- . X
tract Stategeplaces a sequence of states with a new super-gQ(I(Q)’ Oafr)evtvk?:;eeltls’ é? g;f TtevZﬁzb?g;r}glrjttr\l/:rrlggleescg\?e(:jl
state ancExtract Transitionsreplaces a sequence of tran- 1’2 p P y

sitions with a new transition to the final state. After these numbered statement; and.3;. Note that these statements

refactoring steps, the more abstract statecharts can be coqr?:; ?/:Z(t)hgzve resulted from a previous applicatiofxf

i ival furth - . .
?/Zeer:jeg;r;%%r]rgqslz\giﬁ;\;;? Ztlga(;:rtit;r)]rrzgram urther structur The refactored statemefit7, O) is obtained by program
' dincing. Specifically, as shown in Figure 3, is the new

Goal models are then automatically constructed base thod d after th P ted as th ¢
on the resultant program which is structured and abstract.M€h0od named atterine comments computed as the se
of input variables on entry of the block) is computed as

An annotated goal graph is created from the program AST, . .)
and an AND/OR goal model is constructedfrom the an- th_e set of output variables on exit of -the.block. We sim-
noated goal graph. Using the traceability between codepllfy the resultant statement by excluding |ntgrnal variables
and goal model, we identify non-functional requirements of the block th.at are not used.elsewhere in the program
(thereby reducing the complexity of the code representa-

through function tests. By observing the effects on qual- . .)
ity metrics through enabling/disabling the identified NFRs, tion). Th_eExtract_Methodefactonng step can be applied
several times until all the commented blocks are replaced

we derive quality softgoals and create proper contribution i

links from the NFRs to them. The derived softgoals help to by single statements.
bridge the gap between the actual implementation (source

code) and its early requirements. 3.1.1 Refactoring Squirrel Mail

2.4 Our approach

We useExtract Method[12] as a refactoring technique
to simplify the legacy codeExtract Methodhas the advan-

Squirrel Mail consists of more than 70 KLOC written in
PHP. The source code includes the following PHP program
files: (1) 37 main PHP programs responsible for generating
The proposed approach is illustrated with two open- the Web pages are located in thre subdirectory; (2) 20
source legacy software systems. The first system, SquirrePHP routine files called by thead _theme function for
Mail 1.5.0 [1], is an unstructured Web-based email client customizing different look-and-feel themes. They are lo-

3 Refactoring for the abstraction of code

cated in thehemes subdirectory; (3) 15 PHP utility class The input to our method is the main class of
files located in thelasses subdirectory; and (4) 34 PHP Columba:org.columba.core.main.Main.run()
utility function files located in théunctions subdirec- The lengthy routine has 81 lines of code. Inside the routlne
tory. In the rest of the paper, we refer to a program file only there are 22 code segments separated by 18 comments and 3
by its file name; for example, the fikrc/login.php is hammock boundaries. The first 20 lines of code are shown
referred to asogin.php . below.

Since a dynamic PHP program generates an HTML page ... |
with hyperlinks to other dynamic PHP pages, the call to the puic void run(Sting argsD)

{
Columbalogger.createDefaultHandler();

other PHP program can be delayed until the user clicks at; registerCommandLineArguments();

/I handle commandline parameters

the link. We treat hyperlinks as GOTO statements in an ¢ 1 Gandecorecommandtineparameters(aros) {
unstructured program. Hence, dynamically generated Web-¢ }

/I prompt user for profile

based programs are considered unstructured, even thougtf Profie prfie = ProfieManagergetinstance(getProfie(path);

/I initialize configuration with selected profile

PHP is a structured programming language. Therefore, af-1¢ new Config(profie.getLocation();

1l if user doesn't overwrite logger settings with commandline arguments

ter refactoring Squirrel Mail at step 1 in Figure 2, we need 12/ iust initalize default logging
to Structurlze |t through StepS 2 to 5 14 Columbal.ogger.createDefaultHandler();

)) 15 Columbalogger.createDefaultFileHandler();
For example, the following Hammock graph in 1 = e .

login.php has a variable definitio® MPATHexported 18 Lo oarglr = sargsll)
to the remaining program, while no variable is imported. 2 -

/= Path for SquirrelMail required files. */

define(SM _PATH"_/); The Eclipse refactoring tool was used to extract 22 methods
require _once($SM _PATH . 'functions/strings.php’);
require _once($SM _PATH . 'config/config.php’); fl'0m the COde

require _once($SM _PATH . ‘functions/i18n.php’);
require _once($SM _PATH . ‘functions/plugin.php’);

require _once($SM _PATH . *functions/constants.php’); public void run(String args{l)

require -once($SM _PATH . ‘functions/page -header.php’); 1 Columbal ogger.createDefaultHandler();
reguire ,onceE$SM PATH . ’funct\ons/gtrgl.php’); Phe) 2 reg|sterCorr_\mandLmeArgumems(); :
require _once($SM _PATH . ‘functions/global.php’); 3 handler.reg|sterCom_mandLmeArgumemsQ,
require _once($SM _PATH . 'functions/imap -general.php’); 4 hanqle ,cor_nmandlme -parameters(args); "
5 Profile profile = prompt _user _for _profile();
)) 6 initialize -configuration -with _selected _profile(profile);
Hence$SMPATH constitutes the only output variable of 7 nualee -defau oggng(ergs)

SessionController.passToRunningSessionAndExit(args);

the block, whereas the set of input variables is empty. Note ¢ enable debugaing repaint .manager (;

StartUpFrame frame = show _splash _screen();

that even global variables that are not used outside the block? reaser protocol handier(:

load _user _customized _anguage -pack();

will be hidden during the abstraction. After slicing analysis, 12 inuaize pugnstanden;

load _plugins();

it is safe to declare a new functi@et _path and call itin 15 set Jook and-feel(;

init _font _configurations();

|0g|n php as fOIIOWS 17 set application _wide _font();
18 hide _splash _screen(frame);
$SMPATH=set _path (); 19 handle _commandline _arguments _.in _modules(handler);
20 restore _frames _of _last _session();

ensure _native _libraries _initialized();
post _startup _of _the _modules(handler);

N B

A complete listing of login.php has 185 LOC. The follow- :
ing listing showdogin.php after Extract Methodrefac-
toring where all the comments from the original program

have been removed. Several blocks have been replaced Wltﬁo’ 2 Exiracting states and transitions using ham-

mock graphs

method calls.

<?php /* login.php */ . . .
SSMPATH=set.path 0 After the application of thé&Extract Methodrefactoring
$SMlang=setup _language(); L. .

$base uri = findout base .URI(); N delimited by programmer’s comments, the resulting code
$logindisabled = detect -imap _server($base _uri);

I logindisabied) ong; et has no more comments that can be used further. Moreover,
. hooklogin cookie; due to possible lack of comments accompanied with the
$header =onload _function(redirect php; program, the refactored code may be still at a lower level
display -header($header); . .)

osd neme(SremelStheme _defaun) of abstraction than the desired requirements goal models.
show.logo(: . _ In Squirrel Mail, the comments are scattered in the rou-
show_form($loginname, $mailto, $key);) . . .
do-hook(login - form); tines that the result of thextract Methodefactoring is still
0_hook('login _bottom’); .

> at a low level. To make it worse, the unstructureness of a
Similarly, suchExtract Methodrefactoring delimited by ~ Web-based system, such as Squirrle Mail, limits the extrac-
comments can be applied to the other PHP files. tion of methods to individual routines. Thus, in order to

obtain a more abstract representation, a behavioral view of
the whole system needs to be extracted. In contrast, the re-
sult of Extract Methodrefactoring on the Columba system
Columba [9] is an open-source Email client that has more is less complex because Columba is structured and it has
than 147 KLOC in Java. The program is structured. well-written comments.

3.1.2 Refactoring Columba

$SM_PATH is login.php

undefined

— o

Isetup_language ffind_out_base_URL
/set_path Iset_path

A
$SM_PATH=set_path * fset_path * , A(ssmpatn) (ssmiang) (‘sbase URL)
- - [WrongIMAP]

/detectMAPServer

$login_disabled

[CorrectiMAP]
$SM_PATH is $SM_PATH /detectiMAPServer

set (¥ $togin_disabled w
/ !—J/ﬁheader \/—‘/Ioaditheme‘

Inop /login_cookie

. . \ Jonload_function $theme_loaded
Figure 4. Statechart notations
|

; /display_header lexplainSituation
o Inop

[mp_hooked\ [$logo_shown \ /Sheader_displayed\
Static program analysis technigues can help us achieve [\‘\nogm_to,, ™ arow oo
more abstract program descriptions. In this section, we ex-| e login_bottom
plain the use of Hammock graphs and statecharts to obtair bowtorm
an abstract view of the system behavior. —
Each extracted method has a single entry and a sin- (CorectVAP] WiongIMAP]

lenterForm [reportError

gle exit Hammock graph At the entry and exit of the
Hammock graph, pre- and post-conditions define allowable
classes of input/output states. The transition between them
is effected by the method. The states and transitions derived
from a Hammock graph form a statechart. The statecharts
of all hammock graphs are combined into a complete state-
chart by adding transitions according to the control flow.

For example, in Figure 4, we adopt the statechart nota-a Super-state named &ilobals (Figure 6b). In Fig-
tion used in [27]. The action at the transitiset _path de- ure 7a, the sequence of three transition&lobals stat-
fines a variabl&SMPATH Before the actiorset _path | echart in Figure 6b are refactored into a single transition
the variable$SMPATH is undefined. We model unde- (S€t _globals).
fined variables as initial states. An event can also be put To simplify the statecharts, a superstate with a single
to the left of the slash in the transition label, to specify transition inside can be replaced with a new state by merg-
the triggering condition for the transition. Accordingly, INg empty incoming/outgoing transitions to/from the su-
we convert the refactorefbgin.php code into an ini- perstate with its internal transition. This refactoring step
tial statechart (Figure 5). Note that two special functions IS called Extract Transition For example, in Figure 7a,
do_hook andload _theme can make calls to other meth- Globals has an empty incoming transition; this tran-
ods dynamically. Apart from the static calls, plugin rou- Sition is merged withset _globals which was inside
tines registered for a hook name are called dynamically Globals (Figure 7b). Globals is turned into a new
throughdo_hook . If there are no registered plugins for stateglobalsSet with non-empty outgoing transitions.
a hook name, then the action will be a NOP (nil oper- The result of applyingExtract States and Transitionsn
ation). Similarly, thetheme routines are called by a login.php is shown in Figure 8. Figure 9 shows the re-
load _theme function based on a configuration parameter Sult of putting together all top-level programs; the view is
variable$theme _default . Note that in this statechart then more abstract in Figure 10 to show only the top-level
there are two exits, each leading to a different final state. ~ States.

A statechart constructed from refactored code generally
has too many states and transitions, and is hard to under3.3 Structurizing the statecharts
stand. We therefore need techniques to group states and
transitions into more abstract, and fewer, super-states and The combined statecharts obtained from the PHP pro-
super-transitions. grams in the previous steps are unstructured, even though

We accomplish this first by introducing layers: a group the PHP program has no explicit GOTO statements. On the
of states with single entry and exit are grouped togetherother hand, a goal model is formed by structured AND/OR
into one super-state. The new super-state replaces thelecompositions. Before recovering a structured goal model
group of the original states comprising it, thereby reduc- (see Section 4), the statechart needs to be structured to con-
ing the number of states. This refactoring step is called tain only sequences, branches and loop structures.
Extract States In Figure 6, we illustrate how three states First, the high-level statechart (Figure 10) can be mapped
in thelogin.php (see Figure 5 and Figure 6a), namely into a program with GOTO statements. For convenience, in
$SMPATH $SMlang and$base _URL are grouped into the sequel we use FORTRAN for such programs. Each state

Figure 5. A statechart converted from the
refactored code

/setup_language /ffind_out_base_URL

Iset_path
$SM_PATH $SM_lang $base_URL
[WrongIMAP]
[CorrectiMAP]
/detectiIMAPServer [detectiMAPServer
1 $login_disabled
(@)
Globals |
75eLpalh setup_language Tind_out_base_URL

'/(SSM_PATH (ssMang (sbase_URL m

[CorrecllMAP]l o WrongIMAP] . Slogin_disabled

(b)

Figure 6. Extract States Refactoring (a) into
(b) where (a) is part of the statechart in Fig-
ure 5

Globals

Iset_globals

L [CorrectiIMAP] rongIMAP! -
! $login_disable IdetectIMAPServer %\étec?lMAPéer\/erslon*d'sable‘;

(a)

/set_globals

[CorrectiIMAP
/detectiMAPServer [WrongIMAP]

/detectiIMAPServer-

(b)

Figure 7. Extract Transitions Refactoring on
the new super-state Globals in Figure 6b

browser

JenterURL

flogin

4

y Togin.php

o Jset_globals (__Globals
—_— 7
[WrongIMAPY/

[CorrectIMAP]
detectiMAPServer

IdetectMAPServer,
s

(!Sloqin_dislbledw (Slagin_disabledw

[LoggedOut))
logout

[Expired)/
expired

['LoggedOut
{Expired)/
send

b

iL.oh

JcalculatePage
JexplainSituation
C) s

IshowForm [WrongIMAP]

%)/'/repnrlError
[CorrectiMAPYenterForm e
redirect.phy
direct.php o—/set_globals
Iset_globals ~* Gighals WrongKey/

[CorrectForm]
namelsSet

namelsSet
e ~a
(Slegin,user,namew (!SIuginiuser,namew

[UnknownKey)/sessionRegister

[WrongForm)/ flogoufError

redoForm

PageGenerated

[Expired)
expired

Isend

[CorrectKey)/
sessionRegister

TSuser_logged_in

forwardURL.__ Sredivect il
| ——

[CorrectKey
user_Togged_in [CorrectKey]iverifyLogininfo & CorrectForm]
IstartWebMail
IsessionClose

ogininfo’

O]

@

|

IsizeFrame

Figure 9. The layered statecharts of the web

browser

browser

login.php

(/Set_globals GlobalsSet

[CorrectIMAP]/

[WrongIMAP)/
detectiIMAPServer

detectiIMAPServer

(!$Iogin_disabled W ($login_disabled w

/calculatePage

PageGenerated /explainSituation

/showForm

!

lenterURL

N

login.php
checkimap
|

[CorrectiMAP)/calculatePage

login.php
showForm
—

[WrongKey]/redoForm

lenterFarm

redirect.php
| —

[CorrectForm &
CorrectKey]
IstartWebMail

[WronglMAP]/reportErro\r

[WrongForm/reportError

[LoggedOut)/
logout

[Expired]/
expire

webmail.php
N

['LoggedOut &
IExpired)/send

Figure 8. Refactoring on the initial statechart
in Figure 7

Figure 10. Top-level statechart of the browser

call EnterURL

CALL EnterURL

fopic

AN; ;AND

AN; ;AND

10 call Login REPEAT A B CALL A
if (WrongIMAP) goto 30 REPEAT @ e | caus ‘ .
20 call ShowForm CALL Login @ o
if (wrongKey) goto 20 IF (.not.wrongIMAP) THEN
call EnterForm REPEAT — topic IF (x) THEN @ @
if (wrongForm) goto 30 CALL ShowForm o CALL A oY Ror o oR
call StartWebMail UNTIL (.not.wrongKey) (b) Tos @ Ft9 @
X [X]/8
if (loggedOut) goto 10 CALL EnterForm ENDIF o

if (expired) goto 10

IF(.not.wrongForm)THEN

call Send CALL StartWebmail T @
Stop ENDIF Ee REPEAT Q-\. @ '\.
30 call ReportError ENDIF (©) A [sIB Uﬁ/TxlliLsc @ AND
call GoBack UNTIL (.not.loggedOut.or CALLB REPEAT .. UNTILs
goto 10 .not.expired.or.wrongIMAP c @
end .or.wrongForm)
IF(wrongIMAP.or.wrongForm)
THEN
CALL ReportError
e GoBack Figure 12. Patterns to extract goal models

UNTIL (.not.wrongIMAP.and.
not.wrongForm)

CALL Send

END

(@) (b)

REPEAT..UNTIL
(not wrongIMAP
or not wrongForm

EnterURL

Figure 11. Structuring the code converted
from the statechart in Figure 10

REPEAT..UNTIL
(not loggedOut or not Expired
or wrongIMAP or WrongForm)

IF(wrongIMAP .or.wrongForm)

AND

F (not wrongIMAP)
with more than one entry will be associated with a label,
and each transition for an additional exit is associated with a
GOTO statement following its activity statement. Secondly,
to obtain a structured program, we adopt the GOTO state-
ments elimination implemented in the FPT compiler [37]. It
has been established using the theorem prover PVS [26, 28]
that all the GOTO’s can be removed through semantic pre-
serving transformations, resulting in structured Hammock
graphs [37]. As the technique eliminates GOTQO'’s through
hammock graph construction, it can be directly combined oRr-decompositions of a goal, corresponding to a branch
with our Extract States and Transitiorefactoring. For ex- statement e.g., IF-THEN-ELSE, with a condition derived
ample, the statechart in Figure 10 can be converted into &om the event label on the transitions. Loops can also
FORTRAN program with GOTO statements (Figure 11a); to he mapped to the goal model where the stop event s is
the program is then structured (Figure 11b) using FPT [8]. converted into an intermediate goal along with the actions
(c). This case results in a cyclic goal model, where the
switching events on the transitions correspond to an OR de-
composition. Having a structured state chart/program, we
can view its abstract syntax tree (AST) as a goal model
annotated with the control conditions, such I&x)
REPEAT..UNTIL(s) , etc.

REPEAT..UNTIL
(not wrongKey)

[ShowFormj [EnterForm] [StartWebMall]

Figure 13. View AST as annotated goal model

ReportError

AND IF (not wrongForm)

4 Extracting goal models from abstract code

This section explains the steps 5 to 8 in Figure 2. In the
NFR framework [3], a goal has an intended function (inten-
tion), and an associated topic (subject matter). In a state-
chart, the function is found as the action of a state transition
and the topic as the contextual state of the statechart. Theré-1 EXtracting goal models from Squirrel Mail
are two basic modalities for goals: achieve or maintain [32].
In our process, it is easier to identify achievegoal as a
transition between different states whereasaintaingoal into an annotated goal model in Figure 13.
as a transition from a state to itself. Using the basic conversions (Figure 12) on the annotated

As shown in Figure 12, (a) a chain of state transitions control patterns (Figure 13), all the transitions are converted
designates an AND decomposition of a goal; the transitionsinto goals in an AND/OR graph (Figure 14). Moreover,
correspond to a sequential composite statement. Here aisome of the tasks in the goal model are non-functional that
ellipse denotes an unnamed goal. Furthermore, the parcontribute to softgoals as qualities or concerns (see the dot-
allel join of transitions from/to other states (b) designates ted links in Figure 14). For example, “Login” is a non-

The structured program in Figure 11b can be converted

D Local Folders - Columba E B

Ble Edt Yew Foder Message Liites e
[E2f tewmessone (@ Receiveisend &]
BN Jocsl Folde | | @[8 [] 0] subect or sender contains: Reset ‘Search dalog..
T @‘,\T;mwﬁw O (@8] ! [sebject From ot~ s 0
Q subject contains Comba
!Wronglmap or Q change met
03 0rafts
IwrongForm D Templok
5> oub
D sent
e £
’ Q, search Resuk:
| AN 0 @ nu
[k K lloggedOut or
‘. SN IExpired or
. ,’\ wrongIMAP or lwrongIMAP and
'I 'I wrongForm wrongForm
[} AND
.
[}
“ ReportError
4
)
[} ‘"“.~
)
t=mm——=
wrongForm StartWebMail
=] <axe

Fi 14. The SquirrelMail goal model .
'gure © >Squirreliallgoal mode Figure 15. The full-fledged Columbasystem

functional task that is concerned bgcurity “ReportError”
is another one that implements theability concern, etc. o e T e esesson():

/I ensure _native _libraries -initialized();
Il post _startup -of _the _modules(handler);

4.2 Extracting goal models from Columba
Of course, one may recognize that the program has less
The AST of the further refactored high-level Columba Usability (as the look and feels and fonts are not as nice
code generates 22 leaf subgoals in the annotated goa®s before), becomes more difficult to maintain (as the log-
model. After applying the three transformation patterns 9ing and debugging information are not stored), and harder
(Figure 12) on the annotated goal graph, we obtain antO extend (as the plugins are not loaded and the native li-
AND/OR goal model that contains 22 leaf-goals. Among braries are not initialized). Figure 16 shows a screenshot of
them, 13 goals were identified as non-functional through resulting program. Comparing to the full-fledged system in
a functional testing when they are disabled. These NFRFigure 17, one can see that the look-and-feel is basic and
goals can be enabled by satisfying guard conditions in the/099ing is no longer stored after our change. ~ However,
IF statements, which are based on the quality metrics ofthe system is still functional: one can still fulfill the goal of
9 softgoals, including usability, maintainability, extensibil- Sending an email by using the abridged program.
ity, etc. One can further catagorize them into decomposing In afurther study, we also relate the identified NFRs with
hierarchies. the softgoals. We show the refactored code corresponding
Having the refactored code in Section 3.1.2, we obtainedto the extracted goal model in Figure 17, where the non-
22 goals through the AST conversion. But, these goals arefunctional goals are separate into decomposition hierarchy
not all necessary to run the program. For example, afterfor softgoals.
one can comment out as many as 13 lines of the program,

public void run(String args[]) {
1 1 if (maintainability -ogging) ColumbaLogger.createDefaultHandler();
WlthOUt breaklng the SyStem' registerCommandLineArguments();
ComponentPluginHandler handler = register -plugins();

public void run(String args(]) { handler.registerCommandLineArguments();
/I Columbalogger.createDefaultHandler(); if (extensibility) handle _commandline _parameters(args);
registerCommandLineArguments(); Profile profile = prompt -user _for _profile();
ComponentPluginHandler handler = register -plugins(); initialize —configuration -with _selected _profile(profile);
handler.registerCommandLineArguments(); if (maintainability ogging) initialize _default _logging(args);
/I handle _commandline _parameters(args); SessionController.passToRunningSessionAndExit(args);
Profile profile = prompt user _for _profile(); if (maintainability _debugging) enable _debugging _repaint _manager ();
initialize —configuration -with _selected _profile(profile); StartUpFrame frame = null;
11 initialize -default _logging(args); if (usabilty .assured _progress) frame = show _splash _screen();
SessionController.passToRunningSessionAndExit(args); register _protocol _handler();
/I enable _debugging -repaint _manager (); if(usability _anguage _customization)load .user _customized _language -pack();
StartUpFrame frame = null; initialize -plugins(handler);
/I frame = show _splash _screen(); if (extensibility) load _plugins();
register _protocol _handler(); if (usability _look _and_feel) set _look .and _feel();
/I load _user _customized _language -_pack(); init _font _configurations();
initialize _plugins(handler); if (usability _font _configuration) set _application -wide _font();
/I load _plugins(); if (usabilty _assured _progress) hide _splash _screen(frame);
/I set _look _and_feel(); if (extensibility) handle _commandline _arguments _in _modules(handler);
init _font _configurations(); restore _frames _of _last _session();
/I set _application -wide _font(); if (extensibility) ensure _native _libraries -initialized();
/I hide _splash _screen(frame); if (extensibility) post .startup .of _the _modules(handler);

/I handle _commandline _arguments _in .modules(handler); }

BOBE O o€ L RO B - " [walcommarie. [Discns [D ot

Figure 16. The Columbasystem with NFR goals
disabled

reate defaul
handler for

Tnitialize nable debug
default repaint
logging manager

Set
application
wide font

Toad user
customized
language pack

Set look
and feel

Show splash
screen
Assured Ay, o
progress’
-
Hide splash
screen

-+

A

+

+
b4

Handle
commandline
parameters

Handle

commandline

arguments in
modules

.
rren
AND

Ensure native ANDY \
libraries g \
nitialized AN {’

Post startup of
the modules

Register
commandline |—-AND!

arguments
Register
commandline

arguments for
the handler

Configure ass 16 running Register
Prompt user > X
using selected | | sessions and protocol
profile "
user profile exit handler

/

Restore
frames of
ast sessiol

AN

Figure 17. The Columbagoal model

These softgoals fill in a gap between the code and its early
requirements.

5 Discussion

In this section, we outline the implemented tool support
for the reverse engineering process and cross-verify our ap-
proach through another case study.

First, it is important to check the correctness of the
refactoring steps to ensure that semantics is indeed pre-
served. A standard way for accomplishing this [12] is to
test each refactoring step using available test cases. How-
ever, test cases can identify incorrectness, but can't ensure
correctness. In order to prove that each step is semantics-
preserving, we use program slicing techniques to ensure
both Extract MethodandExtract States and Transitiorsse
properly used. Also, the structuring of the statecharts is
based on a well-established theory for GOTO eliminations,
where the basic transformations have been proven correct.
We can also annotate the state transitions in the statechart
with the corresponding code. Therefore the very detailed
statechart is exemplified by the program code. Moreover,
such traceability allows a change in the high-level abstrac-
tion to be reflected in the change of the code.

We can significantly improve the usefulness of our
method by automating parts of it as follows:

e Refactoring based on program slicingiWe can use
the Extract Method as it is available for Java through
the Eclipse IDE [36] §hift _Alt _M. This refactor-
ing is done semi-automatically by selecting statements
delimited by programmer comments. Although a gen-
eral refactoring tool for PHP is not available yet, we
are developing arextract Methodtool for PHP and
we are looking for a suitable case study in JSP that al-
lows us to reuse existing Java refactoring tool support
in Eclipse. Developing a tool for tHextract States and
Transitionsrefactoring is also in our tool implementa-
tion agenda.

e Statechart structuring Currently we deal with the
problem by converting statecharts into an equivalent
Fortran code with GOTO statements to leverage an
existing Fortran compiler that has implemented the
GOTO elimination algorithm [8, 37].

e Extracting goal modelThe AST of the structured pro-
gram is used to generate the annotated goal models.
The format of these generated goal models conforms to
the OMG XMI standard, which is exchangeable with
other modeling tools such as EclipseUML or Rational-
Rose. To this end, we used Eclipse modeling frame-
work (EMF). Then we used the JDT API in Eclipse

to convert any structured Java program into an anno-development process [4]. However, this work focuses on in-
tated goal model, and further created an AND-OR goal ferring the processes used to develop software, rather than
model using the basic patterns. The annotation labelsthe processes realized by the software itself. Program model
are automatically transformed into a purely AND-OR checking [34] systems, such as Bandera [5], extract finite-
goal model using the basic patterns in Figure 12. state machines from Java source code. Although such sys-
. . . tems have succeeded in finding counter examples for some
¢ _'de”“fy_'”g non-f_unctlonal gansCurrentIy, this step programs, the combinatorial explosion of states ultimately
IS semi-automatic. We obtain the NFR based on the jnjss their applicability in revealing intentions behind a
traceability of a goal and. a statement n the program large software system. Not surprisingly we found a sim-
such that the statement is guarded by its truth value. ;"o mpinational barrier when requirements goal models
Once a goal is considered non-functional, the state- are converted into state machines for model checking [13].

ment IS disabled durmg_execuﬂon. We then _test_the re- According to our case study, goal models can be built more
compiled system to verify that system function is still

being delivered. If so, then the goal is tagged as non-
functional.

concisely from statecharts.

In [29] and later in [30], an algorithm is proposed to
compress state diagrams into UML state diagrams, which
e Linking non-functional goals to softgoal©nce non- constitute a variant of the statechart notation. The algo-

functional tasks are identified, one can resort to the rithm works by using execution event traces. The approach

NFR framework [3] to categorize them with certain iS complementary to our technique, which does not rely on

quality attributes as softgoals in the extended goal Program inputs.

model. The quality attributes answer why the non- Pattern-based design recovery as proposed in [23] finds

functional tasks are present in the source code. UML diagrams, including collaboration diagrams and stat-
echarts from source code. This approach is also similar to
6 Related work our work, but relies on pattern matching rather than legacy

code comments.

Initially, goal models [7] were proposed to capture re-
quirements, i.e., the optative statements of the environ-7 Conclusions and future work
ment [33]. Goal models have been extended to represent
ts)g]ft?/v ;l:gc(;gvneaﬂ)gzg ;%2;22220[235 r?_?]lélrggjir;ésmz:tstheen_ We have proposed a fr_amework for reverse engineering
gineering community has developed a set of requirementslega(?y code in orde_r to discover the requw_ements goa_ls It
I X : was intended to fulfill. Our tool has been illustrated with
eliciting tools to reflect goal models into UML diagrams [6],

. i two case studies involving public-domain legacy email sys-
where Class, Sequence and Collaboration diagrams are con- gp gacy y

. . . m irrelMail an lumba). Th i
sidered. According to the horse shoe model, this corre- ems (SquirrelMail and Columba). The case studies suggest

: . . that the process of recovering requirements goals can be

sponds to the forward engineering phase. In this paper, we ized. M h ; d | mod

consider statecharts [14] as a suitable intermediate repre_systemanze X qreover,t © TeVErse engineerec goal mod-

sentation for the dvnamic behavior of leaacy code. as well els are traceable in the code, making it feasible to forward
e . gacy ' engineering goal models into new architectures.

as the abstract interface to the environment.

X . ! . In future work, we propose to study methods for the re-
This paper is not the first attempt to discover goal models covery of softgoals using hints from architecture and design
from sources other than requirements. In the KAOS project, y g 9 g

. : documents. We will also compare the reverse engineered
goal models can be inferred from user scenarios [33]. How- . . ;
ever, scenarios generally do not cover all possible pathsgoal moQgIs \.N'th the goal models derived through require-
of program executions. And legacy software often comes ments elicitation.
with incomplete and inaccurate documents. Therefore our
methodology complements the KAOS approach, based onReferences
the idea of understanding-by-refactoring. The recovered
goal quel is nqt guaranteed to capture the intentions of R. Castello. SquirrelMail 15.0,
Fhe original requwements, but can be trusted to capture the http:/Awww.squirrelmail.org.
implemented mtgntlons of stakeholders, as understooq by [2] E. J. Chikofsky and J. H. C. Il. Reverse engineering and
programmers. It is also more traceable from the code since design recovery: A taxonomyEEE Software7(1):13-17,
each refactoring step is documented and is also invertible. 1990.

Goal models can also be seen as abstractions of software [3] L. chung, B. A. Nixon, E. Yu, and J. MylopoulosNon-
processes. Other literature details techniques for recovering Functional Requirements in Software Engineeritguwer
process models from events collected during the software Academic Publishing, 2000.

(4]

(5]

(6]

(7]

(8]

9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]
(20]

[21]

[22]

(23]

(24]

J. Cook and A. Wolf. Discovering models of software pro-
cesses from event-based daCM Transactions on Soft-
ware Engineering and Methodolog(3):215-249, 1998.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zhang. Bandera: Extracting finite-state
models from java source code. IGSEOQ pages 439-448.
ACM Press.

L. M. Cysneiros and J. C. S. P. Leite. Non-functional re-
quirements: from elicitation to conceptual modelEEEE
Transactions on Software Engineerjrg§(5):328-350, May
2004.

A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisitid®cience of Computer Pro-
gramming 20(1-2):3-50, Apr. 1993.

E. H. D'Hollander, F. Zhang, and Q. Wang. The Fortran par-
allel transformer and its programming environmelournal

of Information Science$106):293-317, 1998.

F. Dietz and T. Stich. The Columba project, 1.0 RC2,
http://columba.sourceforge.net.

J. Ferrante, K. Ottenstein, and J. Warren. The program de-
pendence graph and its use in optimizatioACM Trans.
Program Languages and Systeri§3):319-349, 1987.

S. Fickas, L. Ehlhardt, M. Sohlberg, and B. Todis. Towards

personal RE: A challenging case study, 45-02. Technical re- [33]

port, Computer Science Department, University of Oregon.
M. Fowler. Refactoring: Improve the design of existing
code Addison-Wesley, Reading MA, 1997.

A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,

and P. Traverso. Specifying and analyzing early require- [35]

ments in Tropos. IIRE’03 pages 105-114, 2003.

D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programmingages 231-274,
1987.

D. Harel and A. Naamad. The STATEMATE semantics
of statecharts. ACM Trans. on Software Engineering and
Methodology5(4):293—-333, Oct. 1996.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graph®ACM Trans. On Programming
Languages and Systeni®(1):26-60, 1990.

B. Hui, S. Liaskos, and J. Mylopoulos. Goal skills and pref-
erence framework. IRE'03 pages 117-126.

R. Kazman, S. G. Woods, and S. J. Carriere. Requirements
for integrating software architecture and reengineering mod-
els: CORUM Il. pages 154-163, 1998.

J. Leite. Working results on software re-engineeriag¢M
SIGSOFT Software Engineering Nqt24(2):39—-44, 1996.

T. Mens and T. Tourwe. A survey of software refactoring.
IEEE Trans. Software Engineering§0(2):126-139, 2004.

H. Muller, J. Jahnke, D. Smith, M. Storey, S. Tilley, and
K. Wong. Reverse engineering: A roadmap. Ruature of
Software Engineering, ICSE’'Qfages 49-60, 2000.

J. Mylopoulos, L. Chung, and B. Nixon. Representing
and using nonfunctional requirements: A process-oriented
approach. IEEE Transactions on Software Engineering
18(6):483-497, Jun 1992.

J. Niere, J. P. Wadsack, and A. Zundorf. Recovering UML
diagrams from Java code using patternsSGASE’012001.

W. Opdyke.Refactoring: A program restructuring aid in de-
signing object-oriented application frameworl&hD thesis,
1992.

[25] K. Otteinstein and L. Ottenstain. The program dependence

graph in a software development environmeACM SIG-
PLAN Notices19(5):177-184, May 1984.

S. Owre, J. Rushby, N. Shankar, , and F. von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to
the design of PVSIEEE Trans. Software Eng21(2):107—
125, Feb. 1995.

M. Samek.Practical statecharts in C/C++ Quantum pro-
gramming for embedded systems. CMP books, 2002.

N. Shankar. Steps towards mechanizing program transfor-
mations using PVS.Science of Computer Programming
26(1-3):33-57, May 1996.

[29] T. Systa. Understanding the behavior of Java programs. In

WCRE’0Q pages 214-223, 2000.

[30] T. Systa, K. Koskimies, and E. Makinen. Automated com-

pression of state machines using uml statechart diagram no-
tation. Information & Software Technologyt4(10):565—
578, 2002.

F. Tip. A survey of program slicing techniquedournal of
programming language$:121-189, 1995.

A. van Lamsweerde. Goal-oriented requirements engineer-
ing: From system objectives to UML models to precise soft-
ware specifications. IICSE 2003 pages 744—745, 2003.

A. van Lamsweerde and L. Willemet. Inferring declarative
requirements from operational scenaritlSEE Trans. Soft-
ware Engineering24(12):1089-1114, Nov. 1998.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking program#ASE 2002.

M. Weiser. Program slicinglEEE Trans. Software Engi-
neering 10(4):352—-357, July 1984.

www.eclipse.org. Eclipse IDE 3.0.1: Refactoring in JDT,
EMF, UML2.

F. Zhang and E. H. D’'Hollander. Using hammock graphs
to structure programslEEE Trans. Software Engineering
30(4):231-245, Apr. 2004.

