
Algebra of bidirectional
model synchronization?

Technical Report CSRG-573
Department of Computer Science,

University of Toronto, 2008

Zinovy Diskin

zdiskin@cs.toronto.edu

Abstract. The paper presents several algebraic models for semantics of
bidirectional model synchronization and transformation. Different types
of model synchronization are analyzed (view updates, selective and incre-
mental synchronization), and this analysis motivates the formal definitions.
Particularly, a new formal model of updates is proposed. Relationships be-
tween the formal models are precisely specified and discussed.

1 Introduction

By the very nature of modeling, a snapshot of an MDD-project appears as a
diverse collection of interrelated models. If one of these models is modified, other
related models must be also modified to maintain the relationships. In other words,
updates to a model need to be propagated to other related models to keep the
entire collection consistent.We will call this activity model synchronization.

Two main classes of synchronization scenarios can be distinguished. One is
synchronization of overlapping models. For example, consider a behavioral model
m (e.g., a UML sequence diagram) and a structural model n (a class diagram or
a database schema) of the same domain. These models overlap in the sense that
the structural part of m is normally a part of n, or a view to it. We may say
that these two models have a common view/abstraction a and informally write
something like m � a ≺ n. If one of the models m,n is updated, its counterpart
must be correspondingly updated too. Note also that in both cases the consistency
relation between models is not a (single-valued) function: given m, there may be
? Supported by Bell Canada through the Bell University Labs, NSERC, and the Ontario

Centres of Excellence.

many models n such that m � a ≺ n or m ≺ b � n, and symmetrically for n. It
implies that synchronization is, in general, a pair of multi-valued mapping between
the classes of models. To make these mappings single-valued, some synchronization
policy has to be adopted.

The second class of synchronization scenarios appears in model transformations
(MT). Consider, for example, refinements of high-level models by more detailed
ones, or implementation of UML models by Java programs. Synchronization pro-
cedures should be provided for both directions because either of the models, the
source or the target one, can be modified. Consistency between models m and n
now means that n is a possible correct transform/implemetation of m, and it is
again a multi-valued rather than functional relation in both directions (e.g., the
same UML model can be implemented differently, and different models can have
the same implementation). Hence, some synchronization policy is needed again.

As a rule, a reasonable policy is based on information contained in the old
(before updates) models. Suppose we begin with two consistent models m and
n, and then model n is modified to n′. To synchronize models and compute m′,
we may need (besides model n′) information contained in models m and n, or
perhaps only in m, or perhaps n′ alone would suffice. Thus, we can distinguish
triple-model-, di-model- or single-model-based synchronizations. In more detail,
synchronization essentially depends on what data structures the models are (trees,
XML documents, relational tables,...), and what operations over them are used in
view definitions (hidden in symbols ≺ and � above) or in model transformations.
The richer these operations are, the more complex synchronization policies are.
The issue is well known in the database community as the view update problem,
and has been studied there since early 80s (see [8] for a brief survey). More recently,
it has also been studied in the bi-directional programming community [12], and
in replica synchronization, most notably, in work of the Harmony group [8]. The
issue is also well-known to MDD practitioners, but its theoretical exploration in
the modeling community only recently began [14, 1]. Particularly, it is shown in
[14] that model synchronization is tightly connected to the QVT-style of model
transformation [13].

The goal of the present paper is to analyze a variety of synchronization proce-
dures and patterns in an abstract semantics framework. We follow the syntax-free
(or schema/metamodel-free) style of formal modeling of model management proce-
dures developed in [11, 8, 3, 14, 1] and also ignore metamodels and their mappings.
In this approach, having a metamodel amounts to having a class of models M .
Then, given two classes M and N , a forward triple-model-based synchronization
policy appears as a function from M ×M ×N to N , which takes a source model
m, its updated version m′ and the N -counterpart of m, n, as the arguments, and
returns the updated version n′ of model n. The type of backward synchroniza-
tion policies is a symmetric mapping N × N ×M → M returning the updated
model m′ for a triple (n, n′,m). Somewhat surprisingly, interesting observations
on the nature of synchronization can be made, and useful concepts emerge, even
in this simple algebraic framework. Nevertheless, having the diversity and com-
plexity of concrete data structures involved in the synchronization scenarios, one
may doubt the usefulness of abstract semantic considerations. These concerns are

2

quite reasonable but not indisputable. The following quote from [14] explains the
position:

... it may seem foolhardy to write a paper which approaches semantic issues
in bidirectional model transformations from first principles. However, there
is currently a wide gap between what is desired for the success of MDD
and what is known to be soundly supportable by graph transformations;
the use of QVT-style bidirectional transformations has not spread fast,
despite the early availability of a few tools, partly (we think) because of
uncertainty among users over fundamental semantic issues.

An important pro-semantics argument is the success of synchronization tools de-
veloped by the Harmony group: they have designed complex and effective proce-
dures for replica synchronization, which are based on firm semantic foundations
[8]. In the paper we take the semantic argument for granted, and pursue the
“foolhardy” syntax-free approach even further by analyzing and scrutinizing the
first principles stated in [14]. We will see that there are two essentially different
types of synchronization, selective and incremental: the former is most naturally
formalized with di-model-based mappings while the latter is triple-model-based.
Moreover, the two synchronization types obey different algebraic laws. We argue
that the Check-then-enforce law required by QVT (it was called Hippocraticness
in [14]) is natural for selective synchronization but may be too restrictive for in-
cremental one. On the other hand, the History Ignorance law and its immediate
consequence, Undoability, are natural for incremental synchronization but do not
generally hold for selective one. Nevertheless, it will be proven that in the case of
functional consistency relations, the difference between selective and incremental
synchronization collapses and we have trivially Hippocratic systems (which may
enjoy but not necessarily history ignorance and undoability).

Related work and contributions of the paper. A long-standing tradition
in modeling model synchronization can be referred to as algebraic semantics be-
cause synchronization procedures are considered as algebraic operations regulated
by algebraic equations (laws). It can be traced back to early work on the view
update problem (VU), particularly to seminal papers by Bancilhon and Spyratos
[2] and Dayal and Bernstein [4]. This algebraic style was continued by Meertens
in [11] in the context of constraint maintenance (CM) far more general than VU,
and more recently was further elaborated in the works of the Harmony group
on so-called lenses [8] (but again within the VU-perspective). An adaptation of
the CM-approach for bi-directional MT is developed by Stevens in [14]. A much
broader and less formal perspective on model synchronization is presented by
Antkiewicz and Czarnecki in [1]. The paper aims to classify a wide spectrum of
synchronization procedures and tools within a unified framework. Updates are
modeled as functions over model spaces and single-valuedness of synchronizers is
achieved through so-called decision functions. Algebraic laws/equations are not
considered because [1] focuses on types (signatures) of the synchronization pro-
cedures rather than their algebra. The paper describes more than a dozen of
different model synchronization types, including those that we will consider in the
paper, but their precise algebraic treatment needs further work. As mentioned

3

above, this algebraic tradition focuses exclusively on semantics and is syntax-free
(metamodeling-free). In contrast, the work [5] presents an algebraic framework
encompassing both syntax and semantics of MT but in the particular case of
functional (rather than relational) transformations; model synchronization is not
considered. Another approach also encompassing both syntax and semantics is
based on graph transformations, in which triple graph grammars [10] are espe-
cially relevant for model synchronization and transformation [7].

The present paper is within the relational syntax-free algebraic approach, and
its contributions are as follows. The ideas of Meertens and Stevens are adapted
for modeling synchronization of overlapping models (the first class of scenarios
mentioned above), and analyzed within the context of selective-vs-incremental
synchronization (Sect. 2.2 and 2.3).The notion of coherent transformation system
[14] is refined by (a) considering partial synchronizing functions, (b) introduc-
ing conditions of history Ignorance and new version of Undoability that is more
practically applicable, and (c) considering weak invertibility of synchronizers as
a possible substitute for Hippocraticness (Sect. 3.2).1 An important result of the
paper is Theorem 5 on p.10 that specifies relationships between the formalisms.
Also, a novel algebraic model of updates and update translation is presented, and
its abstract version – updatability – is motivated as well (Sect. 2.3.1-2). On this
base, a new trigonal model of incremental synchronization is built (Sect. 3.3).
Finally, two new ways of composing elementary synchronization systems are in-
troduced (Sect. 4), which seem to be widely applicable in MDD practice. To make
the paper self-contained, the view update problem is sketched in Sect. 2.1.

2 Types of synchronization and Undoability

2.1 The view update problem

We consider a toy example illustrating the issue. Suppose that we have a database
storing a triple of rational numbers, m = (x, y, z), and a view to it storing the first
and third components, n = (x, z). If the view is updated to n′ = (x′, z′), we can
easily translate it back and define the updated database state to be m′ = (x′, y, z′).
However, if the view definition involves operations with records, the situation
becomes much more complicated. For example, suppose that the view is defined
by setting n = (s, z) with s = x + y an operation (query) over the database
state. If the view is updated to n′ = (s′, z′), computing the updated database
is problematic: we know that x′ + y′ = s′ but it is not enough to define x′ and
y′. To make the latter certain, we need one more condition for x′ and y′. For
example, we may assume that x′ = x and then y′ = s′−x, or that x′ = x+∆s/2,
y′ = y + ∆s/2 where ∆s = s′ − s, or that x′/y′ = x/y. Each of these update
policies uniquely determines an updated database state. Thus, if M and N denote
the spaces of database states and view states respectively, the choice of an update
policy means that we have a function put : N ×M →M (where put stands for
“put back”) while the very view definition amounts to a function get : M → N
(“get” the view value). Of course, getting the view of the updated database should
produce the updated view, get (put (n′,m)) = n′. This is the (PutGet) law in [8].
1 We also introduce a new notion of undoable lens (Sect. 3.1).

4

Putting back the original (not updated) view should not change the database,
put (get (m),m) = m; this is the (GetPut) law in [8].

In applications, it is often more convenient to consider the space of view states
bigger (or equal) than the range of get , get (M) ⊆ N . It may be even necessary

like in our example of two-views system M
getM- A �getN N considered on

page 1, if the ranges of get functions are different. By the (PutGet) law, non-
surjectivity of get implies partiality of put because otherwise, for any n′ ∈ N we
take any m ∈M and find that n′ = get (put (n′,m)). Thus, for any fixed database
state m, Dom[put (−,m)] ⊆ get (M).2 The exact equality would be an additional
yet reasonable requirement: any real view can be propagated back. In this way
we come to the notion of an updatable or dynamic view: it is a view definition
(function get) equipped with a certain partial policy of update translation (put),
which satisfy the equalities above. The Harmony group calls such a pair a lens
(whose top and bottom edges are functions get and put).

2.2 Selective synchronization

Let M be a class of models (say, in UML), N a class of programs (say, in Java) and
predicate mRn means that model m is implemented by program n. Importantly,
relation R is not functional: there may be many implementations of the same
model and different models can be implemented by the same program. In other

words, mappings
�
R : M � N ,

�
R(m) def= {n ∈ N | mRn} and

�
R : N � M ,

�
R(n) def=

{m ∈M | mRn}, are generally multi-valued. This is a typical situation for many

cases of MT (see [14]. Another aspect is that mappings
�
R,

�
R may result in empty

sets (are partially defined), which is equivalent to having their inverses
�
R,

�
R non-

surjective. For example, not every Java program can be reverse engineered into
UML due to the lack of expressiveness of the latter (e.g., [6] shows this for class
diagrams). Thus, in general, the (model) consistency relation R is neither total
nor surjective nor single-valued in either of the directions. Arguably, this schema
is assumed by the QVT Standard [13] (see [14] for a detailed discussion).

The following scenario is typical. Given first a pair of consistent models mRn,
one of the models, say n, changes to n′. The goal is to synchronize models and find
a suitable model m′ ∈M consistent with n′, i.e., m′Rn′. The set of all M -models

consistent with n′ is given by
�
R(n′), that is, we need to select a unique model

m′ ∈
�
R(n′); hence the name selective synchronization. Some selection policy is

required and a natural idea is to employ the model m that we already have. For
example, we may try to introduce some metrics in the space M and look for the

model m′ ∈
�
R(n′) closest to m. In this way we obtain a function M �

←−σ
N ×M

called the backward synchronizer. Symmetrically, we have also a forward

2 Given a binary function f : X × Y → Z and an element y ∈ Y , we denote by fy the

function from X to Z defined by fy(x)
def
= f(x, y). We also write f(−, y) for fy.

5

synchronizer M ×N
−→σ- N as illustrated by the diagram

on the right). In this diagram, arrows denote applications
of mappings to their arguments. For example, n′ = −→σ (m,n)
and m′ =←−σ (n, m). Also, the two-model set in the right-

upper corner is
�
R(m), and the three-model set in the left-

lower corner is
�
R(n).

→→
R

→ σ
←←
R

← σ
n

m n'

m'

This framework was proposed in [11], where many theoretical results and exam-
ples can be found, and then adopted for MT in [14]. We will now revise the basic as-
sumptions. A fundamental law of any synchronization is correctness: synchroniza-
tion procedure must return consistent models, m′R[−→σ (m′, n)] and [←−σ (n′,m)]Rn′

hold for all m,m′ ∈M ,n, n′ ∈ N . We call these conditions range correctness.

Since we want to consider partial consistency relations (
�
R and

�
R may result in

empty sets), range correctness implies that synchronizers must be only partially
defined, otherwise we come to a contradiction: [←−σ (n′,m)]Rn′ means that n′ ∈
�
R(M) for any n′ ∈ N . Thus, to keep partiality of R in the direction from N to M ,

i.e., to have
�
R(M) & N , we must keep Dom[←−σ (−,m)] ⊆

�
R(M). It is reasonable to

require the exact equality here: if n′ ∈
�
R(M) and hence

�
R(n′) 6= ∅, a suitable m′ =

←−σ (n, m) can be found. In other words, if a model n can be synchronized, then
the backward synchronization procedure is defined for n (and provides a correct
synchronization by the range correctness). Thus, we postulate Dom[←−σ (−,m)] =
�
R(M) and symmetrically Dom[−→σ (−, n)] =

�
R(N) (domain correctness).

Another basic law of selective synchronization is that if the old model happens

to be in the new selection set, m ∈
�
R(n′), then synchronization does nothing,

m′ = m. That is, ←−σ (n′,m) = m and, symmetrically, −→σ (m′, n) = n if m′Rn. In
other words, synchronization does not affect (“harm”) models that are already
consistent, hence the name Hippocraticness adopted in [14] for this law.

In [14], one more synchronization law, undoability, was proposed. It says that
if all changes to the model were undone, for example, if we have started from a
consistent pair mRn, then updated the target to n′ and then come back to n, the
synchronous counterpart in the space M must come back to m too. Undoability
is a direct consequence of a stronger property of history ignorance. Let mRn and
n0 = n, n1 = n′, n2 = n′′, . . . nk = n(k) is a sequence of updates on the target
side, and m0 = m, m1 = ←−σ (n1,m0), m2 = ←−σ (n2,m1),. . .mk = ←−σ (nk,mk−1)
is the corresponding sequence of synchronized source models. History ignorance
means that mk = ←−σ (nk,m0): it is the final result/state of model n that matters
rather than the way of evolution. Specifically, when nk = n0, history ignorance
(plus Hippocraticness) imply undoability. Undoability seems to be a very natural
requirement yet (surprisingly) selective synchronization should not obey Ignorance
nor Undoability laws. The reasons are demonstrated by

6

diagram on the right, in which it is assumed that selection
metrics is given by the geometrical distance between the

points representing models. Then in the set
�
R(n′′), model

m2 =←−σ (n′′,m1) is the closest to m1, but the model clos-
est to m = m0 is m∗ = ←−σ (n′′,m) rather than m2. This
has happened because in the first synchronization (m and

n′), a special configuration of the set
�
R(n′) “deviated” the

model m1 =←−σ (n′,m) from “the vertical” m-m∗.

← σ

←←
R

← σ

←←
R

← σ n' m1

m

→→
R

n

m2 ←←
R

n''
m*

2.3 Incremental synchronization

2.3.1 Update translation. We consider the same synchronization scenario as
above. Given consistent models mRn, model n changes to n′ and we aim at finding
its consistent counterpart m′. The idea of incremental synchronization is that if
the changes from n to n′ are not too significant, it is not reasonable to recompute
the model m′ = ←−σ (n′,m) from scratch. Rather, having an update (an “edit
sequence”) v such that n′ = n.v, we translate it back to the source side to obtain a
source model update u =←−τ (v) to be applied to the old source model, m′ = m.u.
In general, the update translation is multi-valued and we employ the previous
version of the model m to make it certain. Thus, the update translation functions
have the types ←−τ : V ×M →M , −→τ : U ×N → N , where V,U are the spaces of
updates on the target and the source sides respectively.

In the context of incremental synchronization, Hippocraticness does not seem
obligatory. Indeed, a model can contain some information that does not affect its
consistency yet is useful. Hence, if even the updated model n′ is consistent with
“old” m, we may still want to update the latter to m′ to make a better match with
n′. On the other hand, history ignorance and undoability, which are somewhat
foreign for selective synchronization, appear as quite natural requirements for
incremental one. We will consider them in more detail but first we need to make
the notion of update more certain.

2.3.2 Modeling updates. There are a few approaches in the literature: func-
tional (in which updates are functions/procedures over the model spaces [4, 9, 1]),
history-based (updates are edit sequences), state-based (an update is just a new
state [8]). In the paper we present a new model, which can be classified as an ab-
stract history-based one. We first consider a space of models M as a directed graph,
whose nodes are models and arrows are updates. The latter can be thought of as
edit sequences. Because there may be different updates leading to the same result,
it would be a multi-graph (many arrows between the same nodes are allowed).
Evidently, arrows-updates could be composed (just concatenate the sequences),
and each node should have a loop arrow denoting the trivial “do-nothing” up-
date (the empty sequence). The possibility to undo changes means that updates
are invertible: for any arrow u : m→ m′ there is an arrow u−1 : m′ → m such
that u;u−1 = 1m, where ; denotes update composition and 1m denotes the “do-
nothing” update of the node m. Similarly, u−1;u = 1m′ .

7

Compatibility of update translation with undoing, i.e., undoability, is demon-
strated by diagram on the right. Given an update u : m→ m′ and a model n

consistent with m, we translate u into an up-
date v = −→τ (u, n) : n→ n′ on the target side, while
the inverse u−1 of u is translated, in general, into
w = −→τ (u−1, n′) : n′ → n′′. Undoability of translation
means that w = v−1, that is, n′′ = n and v;w = 1n. Evi-
dently, if translation τ is compatible with (i) update com-
position, −→τ (u;u−1, n) = −→τ (u, n);−→τ (u−1, n′), and (ii)
”do-nothing”, −→τ (1m, n) = 1n, then τ is undoable.

u ?
→ τ

→ τ
u-1

R

undo

m n

m' n' R

The two latter conditions were studied in [9] in the setting of functional up-
dates. Our model is more adequate to practice than functional: an edit sequences
is an artifact attached to a particular model – the source model of the sequence,
rather than a function over the entire space of models. It is also technically simpler
to work with. Yet we leave this model for a future work and in the present paper
consider an even simpler notion closer to the framework of lenses [8] and coherent
transformations of [14]. To wit, rather than considering updates themselves, we
will deal with a binary updatability relation UM ⊂M×M : (m,m′) ∈ UM iff there is
an update u : m→ m′. Relation UM is reflexive (owing to “do-nothing” updates),
symmetric (undoing) and transitive (update composition). Hence, updatability is
an equivalence relations, and the model space is partitioned into classes of mutu-
ally updatable models. Assumption that there is more than one such class means
that not any two model can be updated to each other. Thinking extensionally,
this assumption may seem counter-intuitive: just entirely delete one model and
then build the other one. However, if models embody some contextual informa-
tion (e.g., authorship and authorization), the existence of mutually non-updatable
models becomes reasonable. Thus, a model space is a pair (M,UM) with M a set
and UM an equivalence relation over M . Update translation is now modeled by a
ternary function −→τ : M ×M ×N → N as shown by the upper diagram (a) below,
and undoability means that if n′ = −→τ (m,m′, n) then n = −→τ (m′,m, n′) (consider
both diagrams (a) together).

2.3.3 Diagonal schema revisited. We return to the two-model-based (diago-
nal) synchronization considered on p.5 but now with the incremental interpreta-
tion and with focus on undoability. Specifying the latter needs three models as
demonstrated by diagrams (a) below while in the diagonal schema we have only
two – the “old” model on the source side, m, is absent (the upper diagram in
(b1)). To overcome this obstacle, it was proposed in [14] to consider

8

any model consistent with n as a
possible “old” model m. Then un-
doability is specified by the follow-
ing implication: if n′ =

−→
δ (m′, n)

and R(m,n) then
−→
δ (m,n′) =

n as shown by the pair of dia-
grams (b1). However, applicability
of this condition to many possi-
ble m makes undoability a rather
strong imposition that, as is noted
in [14], may be hard to meet.

(a) (b1) (b2)

→
δ

n

m' n'R

UN

→ τUM

m n

m' n'

R

R

←
δ

→
δ

m n

m' n'

R

R

→
δ

←
δ

m n

m' n'R

R

→
δ

∀m n

m' n'

R

R

→ τ
UM

m

m' n'

n
R

R

UN

We propose another version of the condition specified by diagrams (b2). We
consider the only “old” source model provided by the pair (m′, n), namely, that
one given by the backward synchronization: if n′ =

−→
δ (m′, n) and m =

←−
δ (n, m′)

then
−→
δ (m,n′) = n (undo on the target side) and

←−
δ (m,n′) = m′ (undo on the

source side). Note that in this specification of Undoability, it appears as an integral
property of the pair of synchronizers rather than a semi-synchronizer’s individual
property.

3 Formal semantic models and their relationships

In this section we transform semi-formal descriptions above into formal definitions.
Let M , N be two spaces of data structures (trees, lists, models, databases).

3.1 View updates

Definition 1 (Dynamic views or lenses). A lens from M to N is a pair λ =
(getλ, putλ) of functions: total getλ : M → N and partial putλ : N ×M →M (di-
agram (a) in Table 1). A lens is called well-behaved if conditions (Dom), (GetPut)
and (PutGet) in Table 1 below are satisfied. If condition (PutPut) also holds (dia-
gram (c)), the lens is called very well-behaved or history ignorant. A lens is called
undoable if conditions (PutGet) and (Undo) hold (consider diagrams (a) and (b)
together). Finally, a lens λ is called total if putλ is a total function.

Below we omit the label λ if it is clear from the context. The class of all
well-behaved lenses over M ×N will be denoted by Lens(M,N).

Remark 1. Definitions of lens and (very) well-behaved lens (but without condition
(Dom)) were introduced by the Harmony group. The notion of undoable lens is
new.

Proposition 1. Conditions (PutPut) and (GetPut) imply (Undo). Hence, a very
well-behaved lens is undoable.

Proof. Write (PutPut) for n′′ = m.get and apply (GetPut) to the right part.

Example 1. Each of update polices described in our toy example in section 2.1 de-
termines a very well-behaved (hence, undoable) lens. (For the policy x′/y′ = x/y,

9

Table 1: Conditions for lenses. All formulas are universally quantified for all their vari-
ables (∀m, m′, m′′ ∈M,∀n, n′, n′′ ∈ N). Symbol ⇓ means definability.

Condition: View def. Backward translation
getλ : M → N putλ : N ×M →M

(Dom) putλ(m′.getλ, m) ⇓
(GetPut) m = putλ(m.getλ, m)
(PutGet) putλ(n′, m).getλ = n′

(Undo) m = putλ(m.getλ, putλ(n′, m))

history Ignorance
(GetGet) trivial N/A

(PutPut) N/A
let m′ = putλ(n′, m)

then putλ(n′′, m′) = putλ(n′′, m)

(a)

(b) (c)

putλ

getλ m

m' n'

n

putλ
m

m' n'

m'' n''

putλ

getλ

putλ

m

m' n'

n

it follows from the distributivity laws). However, if for the database m = (x, y, z)
and the view n = (x, y), we define the update policy put (m,n′) = (x′, y′, z +1) so
that the third component serves as a counter, then neither (PutPut) nor (Undo)
hold.

3.2 Diagonal (two-model-based) synchronization

As it was noted in [14], a bi-directional MT program is a specification that can be
read and interpreted in three different ways: as a specification of some consistency
relation between the models, as a forward synchronizer and as a backward one.

Definition 2. A diagonal synchronization system (di-system in short) over M×N

is a triple δ = (Rδ,
−→
δ ,
←−
δ) with Rδ ⊂ M × N a binary consistency relation,

and
−→
δ : M ×N → N and

←−
δ : N ×M →M are two partial functions called the

forward and backward synchronizers respectively (see diagram (a) below on the
right). We call a di-system well-behaved if conditions (Corr) and (wInv) in Table
2 are satisfied. It is very well-behaved or history ignorant if, in addition, condition
(hIgno) in the table holds (diagram (c)). The system is undoable if
two (Undo) equations (with ’s/t’ standing for
Undo on the source/target sides) hold (see
diagrams (a,b) together). A di-system is total
if both synchronizers are total functions.

Remark 2. The idea of diagonal synchroniza-
tion was proposed by Meertens [11] in the
context of user interface design. What he
called a constraint maintainer is a total di-
system satisfying (rgCorr) and (Hipp). For
model transformation, this notion was adop-

(a)

(b) (c)

Rδ

←
δ

→
δ

m n

m' n'

Rδ

←
δ

Rδ

m

m' n'
←
δ

m'' n'' Rδ

Rδ

→
δ

←
δ

Rδ

m n

m' n'

ted by Stevens [14] and augmented with a version of the undoability condition
stronger than our (Undo) (see section 2.3.3). Precise relationships between the
notions are described in Theorem 5 below.

10

Table 2: Conditions for diagonal synchronization systems. All formulas are universally
quantified for all their free variables To ease reading formulas, we write [m, n〉 and 〈m, n]

for
→
δ (m, n) and

←
δ (n, m)

Condition: Forward synch. Backward synch.

name and label
−→
δ = [∗, ∗〉 : M ×N → N M ← N ×M :〈∗, ∗] =

←−
δ

Correctness (Corr): // see discussion in sect. 2.3

Domain (dmCorr) [m, n〉⇓ iff m ∈
�
Rδ(N) 〈m, n]⇓ iff n ∈

�
Rδ(M)

Range (rgCorr) mRδ[m, n〉 〈m, n]Rδn

weakInvertibility (wInv): // see diagram (a) above
(wFwdBck) or (wFB) m′ = 〈m′, [m′, n〉]

(wBckFwd) or (wBF) [〈m′, n], n〉 = n

hist. Ignorance (hIgno)
//consider diagram (c)

let [m′, n〉 = n′

then [m′′, n′〉 = [m′′, n〉
let m′ = 〈m, n′]

then 〈m′, n′′] = 〈m, n′′]

Undoability (Undo) // consider diagrams (a,b) together
(tUndo) [〈m′, n], [m′, n〉〉 = n

(sUndo) m′ = 〈〈m′, n], [m′, n〉]
Hippocraticness (Hipp)
or Check-then-enforce

mRδn⇒ [m, n〉 = n mRδn⇒ m = 〈m, n]

Proposition 2. The following implications hold:
(i) (hIgno) and (wInv) imply (Undo)
(ii) (Corr) and (Hipp) imply (wInv)

Proof. (i) To prove (sUndo), write
←−−−−−
(hIgno) for n′′ = [m,n′〉 and use (wFB). Sym-

metrically for (tUndo). (ii) is straightforward and observed in [14]
The next result, though proved in a straightforward way, is important.

Lemma 3. Suppose that the consistency relation Rδ is functional from M to N ,
that is, there is a total function f : M → N such that mRδn iff m.f = n. Then
for any m ∈M , n ∈ N , [m,n〉 = m.f and a lens λ(δ) = (f, 〈∗, ∗]) is defined.
The diagonal axioms specified in Ta-
ble 2 then become lens axiom as
specified in Table on the right. Con-
versely, any lens λ determines a func-
tional di-system δ(λ) as described
above.
Corollary 4. Given a di-system
δ with functional consistency rela-
tion, the lens λ(δ) is (very) well-
behaved/undoable iff δ is (very) well-
behaved/undoable. Similarly, given a
lens λ, di-system δ(λ) is (very) well-
behaved/undoable iff λ is such.

Condition of dia- Corresponding
gonal system δ lens λ(δ)

Correctness
(dmCorr)→ / (dmCorr)← trivial/(Dom)
(rgCorr)→ / (rgCorr)← trivial/(PutGet)

weak Invertibility
(wFB) / (wBF) (GetPut)/(PutGet)

history Ignorance
(hIgno)→ / (hIgno)← trivial/(PutPut)

(tUndo) / (sUndo) (PutGet)/(Undo)

Hippocraticness
(Hipp)→/ (Hipp)← trivial/(GetPut)

Our results in this section are summarized as follows.

11

Theorem 5. Different synchronization models are inter-relatd as shown by the
class diagram in Fig. 1.

[∩]

Well-behaved diagonal
synch. system
(Corr)+(wInv)

Undoable di-system
(Corr)+(wInv)+(Undo)

History Ignorant di-system
(Corr)+(wInv)+(hIgno)

Well-behaved lens
 (GetPut)+(PutGet) // Harmony [5]
 + (Dom)

Undoable lens
(Dom) + (GetPut) +
 (PutGet) + (Undo)

Very-well-behaved lens
(GetPut)+(PutGet)+(PutPut)

// Harmony [5]
 +(Dom)

Constraint Maintainer
(Total)+(rgCorr)+(Hipp)

// Meertens [6]

Coherent MT
(Total)+(rgCorr)+(Hipp)+(Undo)*

// Stevens [10]

consistency
relation is
functional

[∩]

Fig. 1: Relationships between formal models. ∩ means intersection

3.3 Incremental synchronization

Let (M,UM) and (N,UN) be two model spaces with updatability relations.

Definition 3. A well-behaved trigonal synchronization system over M,N (tri-
system in short) is a triple τ = (Rτ ,−→τ ,←−τ) with Rτ ⊂ M × N a binary con-
sistency relation, and −→τ : M ×M ×N → N and ←−τ : N ×N ×M →M are two
partial functions called the forward and backward synchronizers resp., such that
conditions (dmCorr), (rgCorr) and (Idnt) in Table 3 are satisfied.
To ease reading formulas, for ar-
guments m,m′ ∈ M , n, n′ ∈ N ,
we write [m,m′, n〉 and 〈m,n′, n] for
−→τ (m,m′, n) and ←−τ (n, n′,m).
A synchronization system is called
very well-behaved/undoable if, in
addition, conditions (hIgno)/(Undo)
hold. If synchronizers are mutually
inverse in the sense of conditions
(Inv), the synchronization is called
invertible – consider the pair of di-
agrams (a1)+(a2). Note that con-
ditions (hIgno) and (Idnt) are tri-
system counterparts of update tran-

Invertibility

(a1) (a2)

(b1) (b2) (c)

(Undo)→ (Undo)← (hist. Ignorance)

← τ UM

m

m' n' Rτ

n

UN

Rτ

UM
→ τ

Rτ

m n

m' n'

Rτ

UN

←τ
Rτ

←τ

←τ

Rτ

UNUM

m

m' n'Rτ

n

m" n''

UNUM

→ τ

Rτ

UN UM

m

m' n'

n

Rτ

← τ
UNUM

m

m' n'

n

slation compatibility with update composition and “do-nothing” updates (Sect.2.3.2)

Proposition 6. The following implications hold:
(i) (Hipp) implies (Idnt) //straightforward
(ii) (hIgno) and (Idnt) imply (Undo) //assume m′′ = m in

−−−−−→
(hIgno) and n′′ = n in

←−−−−−
(hIgno)

12

Table 3: Conditions for trigonal synchronization systems. All formulas are universally
quantified for all their variables (∀m, m′, m′′ ∈ M,∀n, n′, n′′ ∈ N). Expression f(x) ⇓
for a partial function f means that f(x) is defined.

Condition: Forward increm. synch. Backward increm. synch.
name and label [∗, ∗, ∗〉 : M ×M ×N → N M ← N ×N ×M :〈∗, ∗, ∗]

Correctness:
domain (dmCorr) [m, m′, n〉⇓ iff (mRτn)& (mUMm′) 〈m, n′, n]⇓ iff (mRτn)& (nUNn′)

range (rgCorr)
let [m, m′, n〉 = n′

then (m′Rτn′)& (nUNn′)
let m′ = 〈m, n′, n]

then (m′Rτn′)& (mUMm′)

Identity (Idnt) [m, m, n〉 = n 〈m, n, n] = m

history
Ignorance (hIgno) [m′, m′′, [m, m′, n〉〉 = [m, m′′, n〉 〈〈m, n′, n], n′′, n′] = 〈m, n′′, n]

Undoability (Undo) [m′, m, [m, m′, n〉〉 = n m = 〈〈m, n′, n], n, n′]

Hippocraticness
(Hipp)

if m′Rτn
then [m, m′, n〉 = n

if mRτn′

then m = 〈m, n′, n]
Invertibility (Inv):

(BckFwd) [m, 〈m, n′, n], n〉 = n′

(FwdBck) m′ = 〈m, [m, n, m′〉, n]

Example 2. Suppose that Rτ , UM , UN are always true, i.e., Rτ = M ×N , UM =
M × M , UN = N × N , and synchronizers do not actually react to updates:
[m,m′, n〉 = n, 〈m,n′, n] = m. It is very well-behaved but not invertible. It is
trivially Hippocratic because it does nothing. Thus, in contrast to di-systems, in
tri-synchronization Hippocraticness does not imply invertibility.

Example 3. Suppose that consistency relation is determined by a bijection f : M → N
compatible with updatability: mUMm′ ⇒ m.fUNm′.f . We define Rf (m,n) iff
n = m.f , (m,m′, n)−→τf = m′.f and ←−τf (n, n′,m) = f−1(n′). Then the triple
τ(f) = (Rf ,−→τf ,←−τf) is very well-behaved (hence undoable) and invertible. It is
also trivially Hippocratic because any update destroys consistency.

Example 4. Let M = N = R×R with R denoting the set of real numbers. Then
model are pairs of numbers, which we will write as ab for M and xy for N . We
define updatability and consistency relation by UM = M ×M , UN = N ×N and
abRxy iff a = x. Synchronizers are defined as follows: [ab, a′b′, xy〉 = (x+∆a)(y +
∆b) where ∆a = a′ − a, ∆b = b′ − b, and 〈ab, x′y′, xy] = (a + ∆x)(b + ∆y) where
∆x = x′−x, ∆y = y′−y. It is easy to check that this system is very well-behaved
and invertible yet it is not Hippocratic. If ∆a = 0 but ∆b 6= 0, we have a′b′Rxy
yet [ab, a′b′, xy〉 = x(y + ∆b) 6= xy. The cause of non-Hippocraticness is that
model synchronization uses all information embodied in the models while their
consistency is based on only a part of it.

The examples demonstrate that (very) well-behavedness, invertibility and Hip-
pocraticness are orthogonal concepts in trigonal synchronization. Particularly,
non-Hippocraticness is quite natural for incremental systems. On the other hand,

13

(Idnt) laws can be regarded as a weak form of Hippocraticness, and they are
always assumed to hold.

Lemma 7. Suppose that for a correct trigonal system τ the consistency relation
Rτ is functional from M to N : there is a total function f : M → N such that
mRτn iff m.f = n. Then for any n, n′ ∈ N , nUNn′ iff both n, n′ ∈ f(M), and for
any m,m′ ∈M , , [m,m′, n〉 = m′.f and〈m,n′, n] = 〈m,n′,m.f]. This defines

a lens λ(τ) with getλ(τ) = f and
putλ(τ)(n′,m) = 〈m,n′,m.f]. The trig-
onal axioms specified in Table 3 then be-
come lens axiom as specified in Table on
the right. Conversely, any lens λ deter-
mines a functional tri-system τ(λ) as de-
fined above.
Corollary 8. Given a correct tri-system
τ with functional consistency relation,
the lens λ(τ) is well-behaved (and un-
doable) iff τ is well-behaved (and un-
doable). Similarly, given λ, tri-system
τ(λ) is very well-behaved/undoable iff λ
is such.

Condition of tri- Corresponding
gonal system δ lens λ(τ)

Correctness
(dmCor)→/(dmCor)← trivial/(Dom)
(rgCorr)→/(rgCorr)← trivial/(PutGet)
Identity

(Idnt)→/(Idnt)← trivial/(GetPut)

history Ignorance
(hIgno)→ / (hIgno)← trivial/(PutPut)

(tUndo) / (sUndo) (PutGet)/(Undo)

Invertibility
(FwdBck) / (BckFwd) (GetPut)/(PutGet)

Hippocraticness
(Hipp)→/ (Hipp)← trivial/(GetPut)

This result together with Corollary 4 shows that when consistency relation
is functional, both di- and tri-synchronization systems degenerate to the same
construct - a lens.

3.4 Summary

We have considered three families of formal models for model synchronization:
lenses, di- and tri-systems, and analyzed four groups of algebraic laws represent-
ing four major synchronization concepts: (a) correctness (or well-behavedness),
(b) Hippocraticness, (c) history ignorance (very well-behavedness) and undoabil-
ity, and (d) invertibility. Among these structures, tri-systems present the most ad-
equate and detailed model of incremental synchronization, and our analysis shows
that they are also the most technically manageable: the four concepts are directly
modeled in trigonal systems and, in fact, are mutually orthogonal within the trig-
onal framework. In contrast, for diagonal systems, history Ignorance, undoability
and invertibility are modeled indirectly and there is some overlap between them.
For lenses, the situation is even more complicated and the same pair of laws,
(GetPut) and (PutGet) plays multiple roles (see tables in Lemmas 3,7).

4 Building synchronization systems from lenses

We consider three ways of lens composition: sequential one is known, the other
two seem to be new (see discussion on p.1 for motivation).

Construction 1 (Sequential composition of lenses). Let κ ∈ Lens(M, I),

14

λ ∈ Lens(I,N) be two lenses. Their sequential compo-
sition κ;λ ∈ Lens(M,N) is defined as follows: for any
m ∈ M , n′ ∈ N , we set m.getκ;λ

def= m.getκ.getλ and

putκ;λ(n′,m) def= putλ(n′,m.getκ)

getκ

putλ

getλ

m' i' n'

i n
putκ

m

Proposition 9. The composition (κ;λ) is(very) well-behaved/undoable as soon
as both lenses are such.

Construction 2 (Co-targetial composition of lenses). Let µ be a lens from M to
some space A and ν be a lens from N to the same space A. It makes A a space
of common abstractions for M and N structures. Their co-targetial composition
µ ./ ν is a di-system over M ×N defined as follows.

Consistency relation:: Rµ./ν(m,n) iff m.getµ = n.getν .
Forward synchronizer, −−→τµ./ν : M ×N → N ::
−−→τµ./ν(m,n′) def= putν(m.getµ, n′).

getμ

getν

getν

putν

m

m' a' n'

a n
putμ

getμ

Backward synchronizer,←−−τµ./ν : N ×M →M :: ←−−τµ./ν(n′,m) def= putµ(n′.getν ,m).

Proposition 10. The co-targetial composition (µ ./ ν) of lenses is a (very) well-
behaved/undoable diagonal system as soon as both lenses are such. In addition,
the system is Hippocratic.

Construction 3 (Co-sourcial composition of lenses). Let µ be a lens from some
space B to M and ν be a lens from the same B to N . It makes M and N two
different views to the same structure. Their co-sourcial composition µ/.ν is the
following synchronization system. Consistency relation:: Rµ/.ν(m,n) iff there is
b ∈ B s.t.m = b.getµ, n = b.getν .
Forward synchronizer, −−−→τµ/.ν : M ×B → N ::
−−−→τµ/.ν(m′, b) def= (m′, b)putµ.getν ,

Backward synchronizer, ←−−−τµ/.ν : N ×B →M ::
←−−−τµ/.ν(n′, b) def= (n′, b)putν .getµ, where we write

put function symbols to the right of the arguments.

getμ

getμ

getν

getν

m

m' b' n'

b n
putν putμ

5 Conclusion

The paper presents an algebraic framework, in which semantics of different types
of bi-directional model synchronization and transformation can be formally spec-
ified and analyzed. We have discussed semantics of bi-directional model synchro-
nization in algebraic terms from the very first principles, including the notions of
update and update translation, and the difference between selective and incremen-
tal synchronization as well. The goal was to find formal definitions and constructs
that would be adequate to practice on one hand and technically manageable on
the other. The four main synchronization concepts are distinguished (correctness,
Hippocraticness, history ignorance/undoability and invertibility) and algebraically
specified by equations. The behavior of these notions in different formalisms is also
explored. Particularly, history ignorance and undoability appear to be very special

15

requirements for selective synchronization but are natural for incremental synchro-
nization while Hippocraticness, which seems quite natural for the former type of
synchronization, is not necessary and may be too restrictive for the latter. It is
also shown that trigonal synchronization structures present the most adequate
and technically simple algebraic model of incremental synchronization, in which
the four concepts are directly modeled and mutually independent.

References

[1] M. Antkiewicz and K. Czarnecki. Design space of heterogeneous synchronization.
In Generative and Transformational Techniques in Software Engineering, 2008.

[2] F. Bancilhon and N. Spyratos. Update semantics of relational views. TODS,
6(4):557–575, 1981.

[3] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh.
A manifesto for model merging. In GaMMa ’06: Proc. Int. workshop on Global
integrated model management. ACM Press, 2006.

[4] U. Dayal and P. Bernstein. On the correct translation of update operations on
relational views. TODS, 7(3):381–416, 1982.

[5] Z. Diskin and J. Diengel. A metamodel independent framework for model trans-
formation: Towards generic model management patterns in reverse engineering. In
J-M. Favre et al., editor, 3rd Int.Workshop on Metamodels, Schemas, Grammas and
Ontologies for Reverse Engineering, 2006.

[6] Z. Diskin, S. Easterbrook, and J. Dingel. Engineering associations: from models
to code and back through semantics. In R. Paige and B. Meyer, editors, TOOLS
Europe 2008, number 11 in LNBIP 11. Springer, 2008.

[7] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Information preserving
bidirectional model transformations. In FASE, pages 72–86, 2007.

[8] J. Foster, M. Greenwald, J. Moore, B. Pierce, and A. Schmitt. Combinators for bi-
directional tree transformations: a linguistic approach to the view update problem.
In POPL, pages 233–246, 2005.

[9] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent
views. ACM TODS, 13(4):486–524, 1988.

[10] A. Königs and A. Schürr. Tool integration with triple graph grammars - A survey.
ENTCS, 148(1):113–150, 2006.

[11] L. Meertens. Designing constraint maintainers for user interaction. available from
http://www.kestrel.edu/home/people/meertens/, 1998.

[12] S. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bi-directional updating.
In W.-N. Chin, editor, APLAS 2004, volume 3302 of LNCS, 2004.

[13] OMG, http://www.omg.org/docs/ptc. MOF QVT Final Adopted Specification.
Formal/05-11-01, 2005.

[14] P. Stevens. Bidirectional model transformation in QVT: Semantic issues and open
questions. In Models-07. Springer LNCS#4735, 2007.

16

