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Abstract. Our central idea is to algebraically derive model transforma-
tions from mappings between the metamodels. Importantly, these map-
pings are allowed to map elements of one metamodel to elements that
can be derived in the other metamodel (by posing suitable queries to
it) but are not immediately present in it. In this way we build a formal
semantics for a surprisingly wide class of model transformations. We also
formally expound a number of notions usually treated informally or semi-
formally, e.g., model analysis and migration, or the difference between
bi-directionality and bijectiveness.

1 Introduction and motivating discussion

Model transformation, MT, is a key component of many activities in software
engineering. In databases, it appears in data warehousing (the infamous ex-
tract/transofrm/load cycle) and in numerous scenarios of data and schema in-
tegration from federated databases to web data. In programming, if we consider
code artifacts as models whose metamodels are usually set by the correspond-
ing grammars, model transformations are everywhere: from model-based code
generation to compilation to reverse engineering. In the MDA/MDD vision, pro-
gramming is model transformation and software development is all about MT.

1.1 The problem. Models are normally comprised of many different ele-
ments and their structural links, which in MT-tasks need to be traversed. It
makes MT-programming very laborious and error-prone [1], and many specific
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languages and tools have been designed to aid the programmer. The field is flour-
ishing as can be seen from the surveys and experience reports [3, 17, 11, 14],
and from acceptance in 2005 of an OMG standard for the area, “Queries, views,
transformations (QVT)” [15]. However, the modern MT-languages (though com-
putationally powerful or even Turing complete) are at a low abstraction level and
still require the programmer to deal with many model navigation details. In or-
der to raise the level of abstraction, a semantic theory for MT is needed but
has not yet been developed. Understanding semantics of MT-programs is also
required for their reuse; the latter is important because of high costs of MT-
program development. Tool design also needs a certain level of abstraction and
genericness of the functionalities being offered, which can hardly be achieved
without an underlying semantic theory. It not only makes building tools expen-
sive, but the users cannot use them effectively without a clear semantic picture
of the procedures being used.

So far, building theoretical foundations under MT has been going mainly
within the graph grammars stream (GG), especially triple graph grammars
(TGG) that have influenced the definition of the QVT standard (see, e.g., [8] for
a TGG-outline). However, the GG-view addresses the operational rather than
denotational semantics of model transformations. A GG-theory explains how to
transform a (graph-based) model by applying to it a given set of rewriting rules
but says little about how to design this set and what goals it aims to accomplish.
The lack of such high-level semantics in GG-foundations for MT was emphasized
in [16], which was itself aimed at filling the gap by “approaching semantics issues
in ... model transformations from first principles.” The present paper is similar
in its intentions but differs in their realization: we go much further in mathe-
matical elaboration and apply graph-based (rather than string-based) logic and
algebra.

1.2 The approach. Our central idea is to derive model transformations
from mappings between the metamodels. Indeed, for a given MT-context, we
are normally interested in a generic procedure translating any model over some
(source) metamodel S to a model over another (target) metamodel T. It is rea-
sonable to assume that T-elements should be already “hidden” somehow amongst
S-elements. The simplest case is when we have a mapping m : T → S interpret-
ing T-constructs by suitable S-constructs. Yet in practice we rarely have such
a simple relationship between the metamodels. As a rule, S-counterparts of T-
constructs are not immediately present in the set of S-elements but can be
derived from the latter by applying suitable algebraic operationqueries in the
database jargon). The metamodel relationship is then specified by a mapping
m : T → derQS into some augmentation derQS of the source metamodel with
derived elements (with Q referring to the set of operations/queries used).

We will show that given such a mapping m, the result of translating S-models
into T-models could be defined as the result of some algebraic (meta)operation
over models and model mappings. This operation is well known in category the-
ory under the name of pull-back (PB) and appears in many different contexts.
Particularly, when we consider typed graphs and their transformations, the re-
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typing procedure is given by the corresponding pull-back (see, e.g., [10]). Model
transformation also can be seen as a sort of retyping. However, the crucial point
is that first the source model must be augmented with new derived elements,
which are then retyped according to the metamodel mapping. It is the first part
of this process, which captures the intended semantics of the transformation
and makes it semantically non-trivial that we will demonstrate in the paper.
The second part, retyping itself, is a purely algebraic procedure automatically
performed by PB. In the GG-approach, these two principally different (at least
semantically) components of MT are merged in one big set of rewriting rules,
which blurs the semantics of the transformation.

 

  

(a) Principal schema of  MT-programming  (b) Schema of MT-via-PB procedure   
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Fig. 1: Two approaches to MT: conventional (a) (adapted from [9]) and algebraic (b).
Components to be specified by the programmer are shown in italic (green)

The two approaches to MT, the conventional and ours, are schematically
compared in Fig. 1. The key block of the former is Transformation specification,
TSpec. It says how each element, or a group of elements, in the source model are
to be transformed into an element or a group in the target model. Hence, the
programmer is required to create an elementwise specification relating the source
and the target models. It is the elementwise nature of TSpec that makes MT-
programming notoriously laborious and error-prone. In our algebraic approach,
the transformation specification amounts to setting a metamodel mapping m
as above. Building the mapping is also an elementwise task but it is easier
than specifying rewriting rules because (i) metamodels contain significantly fewer
elements than models and (ii) it is generally easier to build queries than rewriting
rules. After the mapping is built, all the rest is done automatically by the PB-
algorithm. If we read Fig. 1 from right to left, we can say that the mapping
between the metamodels is hidden in the set of rules TSpec. In this sense, the
difference between the two approaches can be seen as yet another retelling of
the classical story of software engineering: “semantics of the domain is hidden
in the application code.”

1.3 Underlying mathematics and its presentation in the paper. Mod-
els are graph-based structures endowed with constraints. The discussion above
shows that it is vital for MT to consider operations/queries over models, which
augment them with derived elements. To avoid idiosyncrasies of using particular
logics for specifying constraints and particular query languages for operations,
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we use a fairly abstract version of logic and algebra that subsumes OCL, SQL,
FOL and higher-order logics as well [12]. In this logic, constraints are diagram
predicates whose arities are graphs, and queries are diagram operations whose
input/output arities are graphs too. We will refer to this framework as DLA - di-
agram logic and algebra. In the paper, we accurately describe predicate diagrams
and operations that appear in our examples but do not give formal definitions
as they would make the text too technical and bulky. A one-page outline of DLA
basics can be found in [5], and full technical accounts are in [4, 19].1.

Another technical apparatus heavily employed in our approach is categorical
algebra (CA), especially the machinery of Kleisli mappings [13]. Our key notion
– a base metamodel mapping – is nothing but a Kleisli mapping for a corre-
sponding algebraic theory (query language). Again, we motivate and describe
our constructions rather than give formal definitions. If the reader is familiar
with CA, he will be able to extract such definitions from our descriptions; if not,
the interested reader will be motivated to take a look at CA.

2 Model transformation via algebraic procedures

2.1 What is the input?

Suppose we want to design a procedure transforming bipartite graphs (bp-graphs
or nets) modeling concurrent distributed computation into directed multi-graphs
(just graphs in this section). The intended semantics of the transformation is to
project a model over the rich metamodel onto a poorer metamodel but preserve
certain aspects we consider important. Since this paper is about model trans-
formation rather than modeling concurrency, we consider the semantic context
approximately and mainly for illustration purposes.

Firstly, we must precisely define the objects we are going to manipulate: bp-
graphs/nets and graphs. In MDA-parlance, this means that we need to build
their graph-based metamodels. The metamodel of graphs, Graph, is well-known
and presented in Fig. 1(a).

A sample net is shown in Fig. 1(b0), its metamodel BpGraph and abstract
syntax are presented in, respectively, Fig. 1(b) and (b’): ignore the dashed (blue
with a color display) part in the latter for the time being.2

We assume that what is usually called flow relation is presented by in-arcs
going from places to transitions, and out-arcs going from transitions to places.
In the metamodel, these elements are denoted by nodes iArc and oArc with
correspondingly alternated source and target references, *So and *Ta, *=i,o, to

1 Warning: in these works, semantics of predicates and operations is given in the
indexed category setting, while for MT the fibred setting is more customary and
convenient. Translating DLA to the fibred setting is an ongoing project at our insti-
tutions

2 Colors help to distinguish semantically different elements. For white-black print-
ing we use other means: dashed lines, fonts and sometimes decorate the names of
elements, e.g., by prefixing them with slash.
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Places and Transitions. Thus, net (b0) is represented by a typed graph shown
in (b’). Note two labels [key] “hung” on the top and bottom arrow spans in
BpGraph-graph. These labels denote two predicate declarations, [key](iSo,iTa)
and [key](oTa,oSo), which say that the respective pairs of mappings uniquely
determine the objects in the source nodes of the spans; such pairs of mappings
are called keys in databases 3. Thus, nodes iArc and oArc denote binary relations
without duplication of elements.

Since we are going to transform uniformly any net into a graph, elements
of the metamodel for graphs should be somehow found in the metamodel for
nets. In other words, we should reconstruct elements of metamodel Graph within
metamodel BpGraph and, in a sense, model nets by ordinary graphs. There are
multiple ways of such modeling, which are related to semantic aspects of our
future transformations. To fix semantics, suppose that we are not interested in
the fine-grained structure of transitions’ inputs and outputs: all that is needed
is to record relations between sets of input and output places. In other words,
we want to consider transitions as binary relations between sets of places rather
than multi-ary relations over individual places. A formal realization of this idea
is shown in the bottom layer of Fig. 1.

We first add to metamodel BpGraph a node set(Place) denoting the powerset
object of Places; it is related to node Place by a binary membership relation
shown with a double-dashed edge ∈. Then we can present the two binary relations
iArc and oArc by the respective mappings map(R) : Trans → set(Place) with
R=iArc,oArc, into the powerset. These derived elements are shown with dashed
(blue) lines. Our intension of modeling nets by graphs is formally fixed by a
metamodel mapping m : Graph → BpGraph that interprets elements of the target
metamodel by the respective elements of the source metamodel.

What we did is abstractly presented in Fig. 2(a). Nodes S and T are the
source and target metamodels respectively. Node derQS denotes augmentation
of the source metamodel with derived elements required for the interpretation.
Index Q refers to the set of operations (queries), which produce these elements;
we will call this set the base query, and mapping m the base mapping of the
transformation. The vertical mapping σ is nothing but typing of model’s elements
by metamodel’s elements.

2.2 What is the output, declaratively

We assume that all input data required for transformation of model M to the
target metamodel T are shown in diagram Fig. 2(a). Now we will try to figure out
what should be the result of transformation according to some common sense
reasons.

The first step is obvious. Derived elements of metamodel derQS are just
denotations of necessary operations. To transform an instance M, we first need
to compute/execute these operations for the data embodied in the instance.
For example, in the metamodel derQBpGraph in Fig. 1(b), two applications of

3 and jointly monic in category theory
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Fig. 2: MT-transformation via diagram operations

operation map are specified. Their execution within the instance (b’) results in
three new nodes of type set(Place) (along with membership references) and the
corresponding source and target references from the transitions f and g. Thus,
executing queries gives us an augmented source model derQM typed over the
augmented source metamodel derQS as shown by Fig. 2(b1), where σQ denotes
the extended typing mapping. We may say that node derQM (together with
two adjoint arrows) is derived by applying the operation [Q〉 to the lower-right
triangle of elements (note asymmetry in the brackets embracing the operation
symbol).

An important feature of adding derived elements to a model is that it should
not have side-effects and does not affect the input data. Formally, the pre-image
[σQ]−1(S) of the source metamodel must be exactly the original source model
M, preImσQ(S) = M.

Now we need to transform the augmented model derQM towards the target
metamodel T as is prescribed by the mapping m. Let N denotes the result of
transformation we are looking for. Since it must be a model over the target
metamodel T, it comes equipped with a typing mapping τ : N → T, Fig. 2(b2).
In addition, it is reasonable to require that each element of the new model N
should be traced back to either basic or derived element of the original model.
It is also reasonable to assume that this traceability relationship is structure-
preserving and, hence, traceability appears as a morphism m′ : N → M between
the models. Moreover, if an element a in model N has a type a.τ and is traced
back to element a.m′, then the type of the latter should be a.τ.m. That is,
a.m′.σQ = a.τ.m for all elements a in model N and the square diagram in (b2)
must be commutative.

The properties just listed do not necessarily characterize a unique model
and we can well imagine another model N1 along with mappings τ1 and m′

1

making commutative square as required. What should distinguish the desired
translation N among other possible translations N1, N2, ... is that the former
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must not lose information and hence be maximal amongst all models Ni in some
sense. A generic way of specifying such maximality is to require the existence of a
unique mapping !i to the model N from any candidate model Ni (with mappings
τi and m′

i making the outer square diagram in Fig. 2(b2) commutative) such
that both triangle diagrams are commutative too. Following the category theory
terminology, we will call the property just described universal.

Thus, we define the transformation of model (derQM, σQ) to a metamodel
T determined by mapping m to be an operation that produces the left square
in Fig. 2(b2), which is (i) commutative and (ii) possesses the universal prop-
erty above. The latter implies that the result of transformation is inique up to
isomorphism between the models and hence model transformation is indeed an
operation. This operation is well-known in category theory and is called pull-back
(PB). What we have done above is then a motivation to identify the informal
notion of model transformation with a formal algebraic procedure called PB. In
addition, it can be easily checked that the preImage operation on graphs is also
nothing but a pull-back. Then the final result of model transformation can be
elegantly specified as shown in diagram (b3). The label 〈PB] in the left square
denotes an operation (note asymmetric bracketing 〈, ]) while label [PB] in the
right square denotes a predicate specifying a postcondition for the operation 〈Q]
(and bracketing is symmetric).

2.3 What is the output, constructively

The definition of model transformation given above is entirely declarative and
says nothing about how to compute the transform. It would be basically useless
unless a group of mathematical results, which show how to compute PBs for
various universes of objects and mappings between them. Particularly, a well-
known result of category theory says that if a universe has Cartesian products
and some simple set-comprehension schema determined by equalities, then the
pull-back object N can be computed as follows:

(1) N =
{
(a, b) ∈ derQM × T

∣∣ σQ(a) = m(b)
}

,

that is, N is a relation over derQM and T with m′ and τ being the projection
mappings.

Moreover, if the objects of the universe are systems of sets (e.g., a graph is
a set of nodes and a set of arrows) and mappings between them are mappings
between these sets (sending nodes to nodes and arrows to arrows), then PBs
can be computed by applying definition (1) to each of the component sets.4

For instance, if our universe consists of graphs and their mappings, PBs can
be computed by applying the definition (1) twice: for nodes and for arrows.
Example in Fig. 1 shows how it works. The graph (a’) is computed by the direct
application of the definition (1): elements of this graph are pairs of elements from
graphs (a) and (b’) with pairing denoted by an infix bullet. The trace mapping is
4 We have omitted some important details, they can be found in any textbook on

category theory considering presheaf toposes.
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given by the first component of the pairs and typing by the second one. Diagram
(a”) shows the object (a’) in the familiar concrete syntax.

Note that the result provided by the PB-operation conforms to our expecta-
tions. Indeed, the idea behind the base mapping (ab) is to interpret Nodes by
sets of Places disregarding the internal structure of these sets. Correspondingly,
the result of transformation, (a’), is a specific projection of net (b0), in which the
fine-grained picture of place distribution is ignored. We may say that semantics
of transformation is encoded by the base mapping (ab) while PB just routinely
explicates this semantics by an accurate retyping of the elements involved. We
consider this pattern to be an important advantage of the approach: it makes se-
mantics explicit and localizes it in the base mapping, which in its turn facilitates
understanding and reuse. Below we will consider more examples of how it works
(section 3.2). In addition, more complex and practically interesting examples can
be found in [7][6], where reverse engineering of SQL-schemas into ER-diagrams
and translation of (a sort of) UML class diagrams into SQL are shown to be
also provided by the pattern we considered. For further references, we will call
it (Q+PB)-pattern.
Remark (Constraints). Normally, metamodels are graph-based structures en-
dowed with conditions that constrain the set of their instances: to be a valid
model, the typing mapping σ : M → S must satisfy these constraints. An impor-
tant result of the diagram logic says that if m is compatible with the constraints
embodied in metamodels T and S, then as soon as the source model (M, σ)
satisfies the constraints in S, its PB-transform (N, τ) = PB(M, σ, m) satisfies
the constraints in T. Thus, the PB-operation transforms valid models into valid
models.

3 Model transformation as view materialization: Flow of
information during model transformation.

Our work in the previous section can be summarized by the slogan “MT =
Q+PB”. It was shown in [6] that a major database construct of view consisting
of view definition and view materialization (VM) is also specified by the (Q+PB)-
pattern: the base mapping is a view definition (metamodels are schemas in the
database terms), and the PB-procedure materializes it (models are data). We
conclude that mathematically “MT = VM”. The pragmatic contexts are dif-
ferent but the common formal base provides some useful analogies and ideas.5

Particularly, we will see below that the fundamental notion of bi-directionality
of model transformation actually subsumes two different problems: view updata-
bility and view invertibility. This point seems to be underestimated or missed
from the literature.

5 The more so that VM have been studied by the database community since seventies
while MT is a relatively novel research area.
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3.1 A bit more of abstraction.

It will be useful for our discussion to present the (Q+PB)-pattern in more ab-
stract terms focusing on the global mapping from the class of all source models
to the class of target models. Figure Fig. 3 shows two consecutive abstractions
of our MT-semantics developed in Fig. 2. Diagram (b4) is an abbreviation of di-
agram (b3), where v, v′ encode the pairs (Q,m), (Q,m′) respectively. The arrow
defines a view to metamodel S, and we will call it a view mapping. The double-
bracketed label [PB] denotes the composition of operation [Q〉;[PB〉, and thus
defines (N, τ) to be the materialization of view v to the model M; we will also
call it the v-reduct of M.

Given a view v : T ⇒ S, any model (M,σ) over the source metamodel can be
transformed into a model (N, τ) over the target metamodel. Hence, a view map-
ping v gives rise to a mapping between the sets of instances v# : inst(S) → inst(T)
as shown by diagram (b5), note that the direction of mapping is reversed. Also
note that while view v maps model’s elements to model’s elements, mapping
v# maps whole models to whole models. We will sometimes call such mappings
functorial or functors.

N ===========
v′

⇒ M

〈〈 PB ]]

T

τ
?
===========

v
⇒ S

σ
?

inst(T) � v#

inst(S)

T ===========
v

⇒

6

S

inst(T)
� v#

[inv]

w#
- inst(S)

T
======

v
=====⇒

[[inv]]
⇐=====

w
======

S

(b4): abstract version of (b3) (b5) even more abstract version (c) invertibility

Fig. 3: (Continues Fig. 2). From metamodel mappings to functors between sets of mod-
els: v is a view mapping, v′ is the model trace mapping and v# is the model transfor-
mation (meta)mapping or functor.

3.2 View updatability and MT.

Database views are designed to select a specific part of data stored in the
database. They are thus projections or reducts of the database. Formally it
means that the functor v# is not supposed to be injective and the set [v#]−1(N)
includes many models over S besides M . It implies that propagating view up-
dates back to the source can be problematic: if the user of the view modifies
N into a model N ′, it’s not clear in general which of the models [v#]−1(N ′)
should be taken to be the updated version of M . Moreover, the modified model
N ′ can go beyond the range

{
v#(M) | M ∈ inst(S)

}
of legitimate views, if the

functor v# is not surjective. These anomalies constitute the view update problem
that attracted much research in the database area, see [2] for a discussion and
references.
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The MT area sets another context but surely many of model transformations
aim at abstracting/filtering the information and thus are views: typical exam-
ples are reverse engineering and model analysis. Table 2 presents a few samples
illustrating the issue.

The table presents three different generic transformations of bp-graphs into
graphs: each one is set by a certain semantic context and is specified by the
corresponding metamodel mapping (see Fig. 2).

The first transformation is mainly syntactical and simply ignores the dif-
ference between places and transitions. To realize this as a view mapping, we
first augment the source metamodel with two abstract classes: Node and Arc
together with two abstract associations /so and /ta between them as specified
in the leftmost column of Query Definition Table. Then we build mapping v1 of
the target metamodel to the augmented source metamodel as shown in the right
part of Fig. 2(a). The result of the transformation determined by this mapping is
shown in cell (b1): the PB-operation produced what we expected. Since a lot of
information is lost with this transformation, the view update anomalies appear
immediately. For example, the user of view (b1) can draw an arc between nodes
M and K orf and g, which does not make sense for the source net.

Base mapping v2 is the same that was used in our example in Table 1 (up to
inessential renaming of derived elements): the fine-grained distribution of places
on the inputs and outputs of transitions is ignored. In contrast to the source
model in Table 1, the source model (b0) in Fig. 2 is asymmetric and the results
of forgetting the distribution are even more visible. For example, the transformed
graph (b2) shows a new node J, whose relationship to nodes K and L is entirely
lost. Then a seemingly local update, say, deletion of arrow f would cause deletion
of the entire graph (b2), or drawing an arrows from J to K cannot be propagated
back to net (b0).

The idea behind the third transformation is to ignore the concurrent nature
of net transitions and consider them as sets of independent single-source/single-
target graph transitions. To this end, given a transition f , we compose each in-arc
with each out-arc and replace f with pairs of compatible in-out arcs. Node 2Arc
denotes the set of all such composable pairs with the naturally defined source
and target projections (see the right column of the Query Definition Table).
Given the base mapping v3, application of PB to source model (b0) produces
graph (b3). Single in-out transitions g and h are losslessly transformed while
transition f is split into arrows f1 and f2. The latter are executed concurrently
but this information in lost in graph (b3).

To summarize (we return to diagram (b5) in Fig. 3): in certain special cases
it may be possible to make a choice of a single S-model M in the set [v#]−1(N ′)
by a specially designed policy. Yet in general the view update problem is difficult
to manage in a generic way, and much research is needed here. Surprisingly, this
aspect of MT has gained little attention in the MT-literature and has never
been discussed in precise terms. In addition, the view update problems in MT
are often mixed with view invertibility, which we will show in the next section is
a different issue.
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3.3 View invertibility.

The problem we are going to consider is usually discussed in the MT-literature
under the title of bi-directionality. However, there is a subtle but important
technical detail that is usually missed by the literature. Suppose that the functor
v# is injective, even bijective, and hence there is the inverse functor
[v#]−1 : inst(T ) → inst(S). Yet this functor does not do the job of the inverse
transformation, if we want the latter to be generic, i.e., to work uniformly for
all T -models. To ensure genericness of the inverse transformation, we need to
require existence of an inverse view mapping w : S ⇒ T s.t. w# = [v#]−1. Thus,
what we really need for generic bi-directionality is a pair of mutually inverse
view mappings as shown by diagram Fig. 3(c).

In this diagram, the upper label [inv] denotes the predicate of being mutually
inverse for ordinary mappings between sets. The lower label [[inv]] denotes a
more complex notion. We remind that double-arrows are abbreviations of views,
say,

(2) v : T → derQS and w : S → derRT

with Q,R denoting the corresponding (sets of) queries. To consider invertibility
of these two constructs we first need to extend appropriately the domains of the
view mappings and consider their homomorphic extensions:

(3) derRv : derRT → derRderQS and derQw : derQS → derQderRT .

It is seen that the crucial component of views’ invertibility is invertibility
of the corresponding queries. The diagram (4) shows a query R to be executed
after query Q. If the final result, the model σQ;R : derQ;RM → derQ;RS with
derRderQX ∼= derQ;RX, X = M,S, is canonically isomorphic (up to renaming
the derived elements) to the source model σ : M → S for any model (M,σ), we
say that query R is a (right) inverse to query Q and write Q;R = id. If both
Q;R = id and R;Q = id, we say that queries are mutually inverse.

(4)

derQ;RM �
∼=

derRderQM � ⊃ derQM � ⊃ M

[ ≡≡≡ ] 〈 R ] 〈 Q ]

derQ;RS

σQ;R

?
�

∼=
derRderQS

σQ
R

?
� ⊃ derQS

σQ

?
� ⊃ S

σ
?

Definition 1 (view invertibility). Two views v and w as above in (2) are
called mutually inverse if (i) queries Q and R are mutually inverse and hence
derQ;RS ∼= S, and (ii) each of the pairs of mappings (v, derQw) and (w, derRv)
is mutually inverse too.

Definition 2. Two metamodels S, T are said to possess equal information
capacity if there is a pair of mutually inverse views between them. If (v, w) is
such a pair, we write v : T ' S or, equivalently, w : S ' T .
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Proposition 3. If two metamodels have equal information capacity via
an invertible view v : T ' S, their sets of instances (models) are canon-
ically isomorphic via mutually inverse mappings v# : inst(S) → inst(T ) and
w# : inst(T ) → inst(S).

An example of two metamodels with equal information capacities can be
found in Appendix.

3.4 Towards formal taxonomy of model transformations.

Definition 4. Let v : T ⇒ S be a view mapping between the metamodels and
v# : inst(S) → inst(T ) is its model transformation functor. We call v (i) safe or
instance-surjective if v# is surjective, (ii) precise or instance-injective if v# is
injective, and (iii) safe & precise or instance-bijective if v# is bijective.

Having v instance-bijective does not imply v’s invertibility: instance-bijectiveness
means that each T -model is a v-transform of a unique S-model but this corre-
spondence may be not expressible syntactically via a suitable view. In other
words, the inverse translation is not generic. In [16] the issue is discussed in
detail but in less precise terms.
Definition 5 gives rise to a formal taxonomy of model transformations presented
in Fig. 4.

 

yes 

no

yes 

instance-
bijective ? 

no 

(1) Transform. is 
generically bi - 

directional

yes 

(2) Transform. is safe and 
bi-directional but not 

generically  

Is view v 
invertible ? no

instance-
surjective ?

yes 
(5) Safe but 

non-unique back 
propagation 

instance-
injective ?

(3) Transform. is bi-
directional (non-

generically) but  unsafe 

(4) Unsafe & 
non-unique 

back 
ti

Lossless transformations

no 

Unsafe transf. 

View update problems 

Fig. 4: View-based taxonomy of model transformation

The taxonomy shows five types of MT (final oval nodes), which can be further
categorized into three pairs of complementary classes: a transformation can be
(i) reductive, i.e., losing information, or lossless, (ii) safe or unsafe, and (iii)
invertible or with view update problems. These classes are shown in Fig. 4 as
areas with dashed boundaries. It appears that often cited bi-directionality of
transformations is a loose term, whose meaning ranges over three types (1..3) of
lossless transformations depending on the context.

It is interesting to relate taxonomies of MT developed in surveys [14][18] with
our formal classification. Reverse engineering and model analysis appear to be
reductive transformations from the group (4..5). Model migration, and various
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sorts of normalization, refactoring and optimization should go to the group of
lossless transformations (1..3). If we want these transformations to be generically
invertible, they must go to the group (1).

Finally, such transformations as model synthesis, code generation and com-
pilation do not match the MT=VM pattern (and are thus not covered by our
taxonomy), because they involve creation of new data. A precise algebraic se-
mantics for them is a work in progress.
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(a0) concrete syntax of (a’)  (b0) bi-partite graph (model) M  

(a’) the v-transform of M, v*(M) 
(an instance of Graph) 

(ab)’ trace mapping, 
v*(M) → M 

(b’)  abstract syntax of M, 
an instance  of BpGraph 

Models’ abstract syntax________       

 

 

(a) Target metamodel, 
Graph 

(ab) Base mapping, 
v: Graph → BpGraph 

(b) Source metamodel, 
BpGraph 

 

:iSo

:iTa
f•Arrow 

{K,M}•Node 

g•Arrow 

{K,N}•Node 

{K,L}•Node  

:so :so 

:ta :ta 
f :Trans

 1:iArc
11:so 

M:Place

g :Trans

:oSo 

N:Place 

K:Place

L:Place

 4:oArc

{K,M}:setPlace {K,N}:setPlace 

{K,L}:setPlace 

:∈

 2:iArc 6:iArc 

5:iArc

8:oArc 

 3:oArc 7:oArc 

:∈

:∈ 

:∈

:∈

12:ta 10:ta

9:so

:oTa

to  11:so 

to  12:ta 

∈
/ta=map(oArc) 

/so=map(iArc) 

ta 

so 
Node Arrow 

oTa oSo 

Place Trans 

oArc 

iArc
iSo iTa 

set(Place) 

[key]

[key]

to Trans 

to  /so 

f 

N1 
{K,M} 

g 

N3 
{K,L} 

N2 
{K,N} 

73
2

M

L 

N 

K
1

f g 

4

5 
6

8

Models’ 
Concrete 
Syntax 

Table 1: Example of how the pull-back operation works
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(b2) M-transform via v2 

 

(b1) M-transform via v1,  v1*(M) 

 

(b3) M-transform via v3 

(b0) an instance M of BpGraph 
           (circles are places,  
            diamonds - transition) 

 

(b) …and three corresponding model transformations via PB 

 

Definitions of derived elements 
Query Q1=Qa ; Qb  

with Qi=Qi1|| Qi2, i=a,b   Query Q2=Qa||Qb 
Query Q3=Qa; Qb  

with Qq=Qa1|| Qa2||Qa3,   Qb=Qb1|| Qb2 

Node = Place U Trans (a) inP=map(inArc)   2Arc={(a,b)∈ inArc x outArc: iTa(a)= oSo(b)} (a) 
    Arc =inArc U outArc (b) outP = map(outArc) 

(a) 
 (a,b).inA = a,   (a,b).outA=b 

so = iSo U oSo 2so = inA ; iSo (b) 
ta =  iTa U oTa 

 (b) 
2ta = outA ; oTa  

(a) Three metamodel mappings… 

K 

L 

f g 

M N 

h 

f1 

M 

K 

L 

N 

h 

f2 g 

L

Kf g

M 

h

N
f

M g 

J 
K 

L 

N 

h 

ta 

∈ 

/2so 
/2ta

ta 

/so

/ta

ta 

so

Node

Arrow 

iTa

iSo

Trans 

Place 

[key] outArc
oSo

oTa
[key]

/Node /Arc

inArc base mapping 
v1:  derQ1S ← T 

Set(Place) 

Node 

Arrow 

so 

/2Arc

[key]

Arrow 

Node 

/inA
/outA

/inP /outP 

so 

v2:T→ derQ2S 

v3: T→ derQ3S

Table 2: Transforming nets to graphs
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A Appendix. Two metamodels with equal information
capacities

 
   

Definitions of derived elements 
Query Q = Q1;…;Q4 with Qi=Qi1|| Qi2||... 

(Node, l) = Place |_| Trans (1) 
(Arc, k)  =  inArc  |_| outArc 
so = iSo U oSo,   s(in)=P, s(out)=T (2) ta =  iTa U oTa,    t(in)=T, t(out)=P 

(3) i(P)=0, i(T)=1,  j(in)=0, j(out)=1 
(4) l’= l;i      k’=k;j 

 

Definitions of derived elements 
Query R = R1; R2 with Ri=Ri1||Ri2 
Node0/1 ={n∈ Node:  n.l  = 0/1} (1) 
Arc0/1 = {a∈ Arc:  a.k = 0/1} 
a. so0 =a.so,  a.ta0=a.ta for a∈Arc0 (2) 
a. so1 =a.ta,  a.ta1=a.so for a∈Arc1 

 BpGraph LblGraph 
 

so0

i j 

l ' k' 

t 

k 

ta0

ta1

so1

so 

ta 

iTa 

iSo 

Trans 

Place 

[key] outArc 
oSo 

oTa 
[key] 

Node Arc 

inArc 

{P,T} 

[≠] 

so

ta

Node0 

Node1

[key] Arc0 

[key]

Node Arc 

Arc1 

{0,1}

[≠] 

[=] l l k 

{in,out}
s 

{0,1} 

[=] 

v(Q)

w(R)

Fig. 5: Two metamodels of equal information capacity
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