
Integrating schema integration
frameworks, algebraically∗

Technical Report CSRG-583

Department of Computer Science,

University of Toronto, 2008

Zinovy Diskin Steve Easterbrook Renée Miller
{zdiskin, sme, miller}@cs.toronto.edu

Abstract

The paper presents a framework, in which the main
concepts of schema and data integration can be spec-
ified both semantically and syntactically in an ab-
stract data-model independent way. We first define
what are schema matching and integration seman-
tically, in terms of sets of instances and mappings
between them. We also define a schema matching
and integration syntactically, and introduce a pro-
cedure (the how) for computing the integration of
matched schema according to the syntactical defini-
tion in fairly abstract terms. The main theorem of
the paper states that the result of syntactical inte-
gration satisfies the semantic definition and, hence,
does produce what we really need. We show how
this framework unifies the approach taken in at least
five other schema integration proposals and fills in
some important gaps in these proposals. Viewed in a
broader perspective, the framework developed in the
paper integrates the syntactical and semantical sides
of model management and, particularly, reveals a re-

∗Supported by Bell Canada through the Bell University
Labs, NSERC and Ontario Centres Of Excellence

markable duality between them. The results of the
paper can then be seen as an (important yet) partic-
ular case of this general duality theory.

Contents

1 Introduction 2
1.1 The problems 2
1.2 The causes 3
1.3 The approach 3
1.4 Some highlights 4

2 Background. 5
2.1 Manual vs. semi-automatic

(heuristics vs. algebra) 5
2.2 How to specify and manage structural

conflicts 7
2.3 Semantic justification of syntactic pro-

cedures 7
2.4 Summary of Schema Integration Ap-

proaches 8

3 Sample scenario 8
3.1 Example of relational schema integration 8

1

3.2 Abstract arrangement 11
3.3 Discussion 11

4 Universal data model 12
4.1 Example of data definition with dp-

graphs 12
4.2 Querying dp-graphs 13
4.3 Universality statement. 13
4.4 FAQ about dp-graphs 14

5 Schema matching as query discovery
and equating 14
5.1 Vanilla’s constructs via dp-graphs . . . 15

5.1.1 Preliminaries. 15
5.1.2 Synonymy 15
5.1.3 Homonymy 16

5.2 More on conflicts 17

6 Conclusion 18

1 Introduction

Schema integration (lately, schema/model merge) is
the problem of building a global data schema from a
set of local schemas (usually with overlapping seman-
tics) to provide the user with a unified view of the en-
tire dataset. The goal is to give the user of the global
schema an illusion of a single dataset specified by a
single schema. Schema integration appears in many
metadata management tasks, e.g., view integration
for database design, building mediated schemas for
data integration and warehousing, merging ontolo-
gies and several others. It is a well-known research
topic with an enormous literature. Early works are
surveyed in [BLN86, SL90], and references to more
recent work can be found in [Len02, PB03]. Yet a suf-
ficiently general, theoretically sound and practically
applicable solution still seems to be missing from the
literature.

1.1 The problems

Three inter-related aspects of the problem contribute
to its complexity. The first is structural conflict be-
tween local schemas. The same data can be viewed
quite differently by different users and hence may be

poetry
art

Book

title topic science

Book

Sci.

Art

Poetry

title

V1 V2

Figure 1: Structural conflict/relativism: two views of
the same data

Book

title isbn auth-name

Book

title isbn

Author

name RBA

V1 V3

Author

name books

V2

m

n

Figure 2: Semantic relativism: three views on the
same data

specified differently in local schemas. For example,
one schema may have an attribute fullName while the
other has attributes f-name and l-name (first and last
names respectively). Or, an enumeration-valued at-
tribute in one schema might correspond to a subclass-
ing hierarchy in another schema (Fig. 1). Or, what
is an entity for one user, may be a relationship for
another, and an attribute for the third (Fig. 2). For
integration, these conflicts must be precisely speci-
fied and then reconciled. Though many particular
approaches and languages for this purpose have been
proposed, a simple yet general definition of what is a
structural conflict is missing from the literature.

The second source of complexity is extreme hetero-
geneity of the modern metadata management. Local
schemas are usually built in different data models
(relational, XML, ER, UML...), and new domain-
specific languages appearing on the stage continue
to increase the diversity. A typical approach to the
problem is first to translate local schemas into some
universal data model U , and then integrate them
within it. A few questions immediately arise. Is
U sufficiently expressive to accurately represent lo-
cal schemas without loss of information? If so, how
natural are these translations, and do they require
significant restructuring? This question becomes es-
pecially important if local schemas are actually pop-
ulated with data. A particular work on schema inte-

2

gration typically argues that the chosen data model is
sufficiently universal for “practical purposes”, with-
out providing any formal or semi-formal arguments to
support such a claim, nor estimating the real scope
of universality. The only justification of these choices
for U is common sense, supported by a series of ex-
amples. This approach is perhaps sufficient for well-
known models like the relational model, XML, and
the ER model, for which rich intuition and experi-
ence have been accumulated. Yet for newer models
like, say, a new UML-profile, or a new domain-specific
data model (which the Web never hesitates to pro-
vide) require more precise and formal arguments.

Anyway, the arsenal of modeling constructs in U
must be rich enough to simulate structuring capabil-
ities of the local models, and we return again to the
issue of structural and semantic conflicts between the
views. To capture the diversity of conflicts, languages
for specifying view overlapping become complicated
and hard to use. Moreover, the algorithms for schema
merging are also very complex because they must ad-
dress each type of conflict and manage it correspond-
ingly.

Finally, most current frameworks for schema inte-
gration lack declarative semantic definitions of what
schema matching and merging are. An integra-
tion framework usually provides a syntactical algo-
rithm for schema merging based on given correspon-
dences, and justifies it by some reasonable argu-
ments. However, in the absence of a semantically-
based declarative definition, one cannot be sure that
one’s merge algorithm is sound and computes exactly
what one needs. In fact, even semi-formal descrip-
tions of the schema merge problem in terms of data-
base states/schema instances are uncommon and cer-
tainly not widely shared among approaches. An ex-
cellent early work [BC86] does address semantics but
seems to be a notable exception rather than a rule.1

1Paper [BDK92] provides a syntactic declarative definition
of merged schema as the least upper bound in the lattice of
schemas ordered by their information contents, and [AB01] ex-
tends it by working with a graph of schemas and schema map-
pings rather than a lattice. However, neither of these works
takes derived schema elements (queries) into account, which
significantly lessens their practical applicability.

1.2 The causes

Overlapping between local schemas is a semantic phe-
nomenon, and the problem of schema integration is
inherently semantic. The crucial observation is that
the query mechanism plays a major role in recon-
ciling conflicts. This is evident for the schemas in
Fig. 1, and in the paper we will show that views in
Fig. 2 can also be reconciled with a few simple but
graph-based query operations. However, the lack of
a precise algebraic machinery for specifying queries
to semantically rich models has led to ad hoc ap-
proaches. For example, the schema integration ap-
proach of [PB03] relies on user provided expressions
for conflict resolution. In general, modern database
theory brings a schema integration practitioner to
the following alternative. Either one works with the
precisely defined and well-understood, but semanti-
cally inflexible relational model and relational alge-
bra. Or one uses graphical and semantically rich
models like ER-diagrams with various enrichments,
whose semantics is intuitive rather than formal, and
whose query mechanism is not elaborated. For most
practical situations, the second alternative is prefer-
able, and current schema integration methodologies
result in complicated solutions lacking precise seman-
tic foundations.

1.3 The approach

The goal of this paper is not to present yet another
semantic data model and a schema integration algo-
rithm. Our aim is to define a general specification
framework, where the major ingredients of schema
integration – matching, merging and (we will see)
normalizing the merge – are clearly specified and sup-
plied with precise formal semantics. In a sense, we
aim to build a clear ontology of schema integration
procedure, in which different integration steps are
clearly separated so that each step is realized with its
own methods and tools. In particular, with a prop-
erly addressed match, the very merge is a sufficiently
trivial automatic algebraic procedure.2

2The result is always a well-defined schema but it may turn
out to be inconsistent, which means that the local schemas are
globally inconsistent. For poor semantic models, inconsistency

3

Technically, the approach is based on the machin-
ery of graphs with diagram predicates (dp-graphs) in-
troduced in [DK03]. We define a generic notion of
dp-graph, while the signature of diagram predicates is
user-defined. (The approach is reminiscent of the way
that first-order logic provides the mechanism to build
formulas over a given signature of predicate symbols).
Some diagram predicates can actually define opera-
tions; for example, a ternary predicate add(x,y,z) can
be made equivalent to an operation x=y+z. This
gives us a framework for query language definition
within dp-graphs. The reader may think of a frame-
work where the user can define a sort of relational
algebra suitable for applications.

In a nutshell, our integration strategy is a sequence
of the following steps.

1. Given a set of local schemas, design a predicate
signature rich enough to provide translation of
the local schemas into dp-graphs. In general,
this is a heuristic procedure but if semantics of
the local schemas is well understood, design and
translation are not problematic.

2. Match schemas and specify the results by a set
of equations between queries against the local
schemas. In fact, any correspondence can be
specified in this way if the query language is rich
enough. To say it briefly, schema matching is
query discovery and equating.

3. Given a set of equations, run the merge algo-
rithm, which essentially produces the disjoint
union of the local dp-graphs augmented with
derived elements, and factorizes it by the equa-
tions.

The algorithm also carries the predicates de-
clared in the local dp-graphs to the merged dp-
graph. Some of these predicates are query speci-
fications introduced during the matching phase;

can be automatically detected. For practically interesting se-
mantic models, inconsistency can be immediately detected in
simple cases but in general should be checked with the cor-
responding tools: theorem provers and model checkers. Con-
sistency may be algorithmically undecidable [Con86] or unde-
cidable due to the expressiveness of the constraints considered
[?]. Thus, the result of schema merge should be checked for
consistency.

it means that the merge contains derived ele-
ments. Other predicates are constraints declared
in local schemas.

4. Run a model checker/theorem prover to check
and analyze consistency of the merged con-
straints.

5. If the merged dp-graph is consistent, normalize
it, that is, remove derived elements (as much as
possible) to reduce redundancy.

1.4 Some highlights

• The language of dp-graphs is provably univer-
sal: we show in the paper that any data schema
with formal semantics can be translated to a dp-
graph.3 Semantics for dp-graphs is truly com-
positional: it can be presented as a graph mor-
phism from the schema-graph to the universe-
graph. In the latter, the nodes are sets (of
objects and values), and the arrows are func-
tions between them. Arranging semantics as
a morphism allows us to relate operations over
schemas (the level of syntax) to operations over
sets of instances (semantics).

• The results of matching (query equations) are
reified as a new correspondence model/schema
equipped with projection mappings into local
schemas augmented with necessary derived el-
ements. This gives us a universal pattern
for recording all the information necessary for
schema merging in a compact way.

• We provide a declarative syntactic definition of
what is schema merge, and present it as a (graph-
based) algebraic operation. We also provide a se-
mantic (that is, instance-based) declarative defi-
nition of merge. A proof that these two declara-
tive constructions define the same construct (up
to renaming of elements) is presented in [Dis06].4

• The result of merge contains derived elements
and hence can be restructured by making some

3We also explain the meaning of provability in this context.
4The proof is unnecessarily complicated. A short transpar-

ent proof will be presented elsewhere/

4

of the derived elements basic and original basic
elements derived. We call schemas differentiated
by this choice der-equivalent. We show in the
paper that the correspondence schema as well
as the merge schema are determined up to der-
equivalence.

Some parts of the framework outlined above are
novel or may seem novel, but on a whole it is not a
radical departure from the existing approaches and
ideas. For example, the dp-graphs can be seen as a
(far reaching) generalization of the familiar, but now
almost forgotten, functional data model [Shi81]. As
for integration as such, almost all parts of the picture
are known to the community but in a implicit or fuzzy
way. Table 1 makes this observation explicit. The
rows present the main actors and the columns refer
to several well known articles. For each row there
is at least one column with a positive mark (though
often with reservations). The framework presented
in the present paper is thus a sort of closure: we
formulate the ideas in precise terms, fill-in the gaps
and integrate the pieces into a coherent framework
for schema integration.

The rest of the paper is structured as follows. In
the next section we briefly survey the existing ideas
and works. Section 3 presents the essence of the in-
tegration procedure in our approach; the goal is to
give the reader a general notion while details are pre-
sented in the consecutive sections.

2 Background.

Existing approaches to schema merging can be clas-
sified along the following dimensions.

2.1 Manual vs. semi-automatic
(heuristics vs. algebra)

In early approaches like [DH84, Mot87]), schema in-
tegration is performed by schema restructuring, ie,
by consecutively applying structural operations taken
from a predefined collection to the local schemas.
Which operations to take and how to apply them
is the responsibility of the global schema designer.

The entire process is thus essentially heuristic and
human-centric, though the designer may be aided
by special tools. Another approach, originated in
[SPD92, SP92]splits integration into two principally
different phases. In the first one, correspondence be-
tween local schemas are specified by a set of asser-
tions in a special language of correspondence asser-
tions. Then the global schema is built automatically
based on the correspondences specified. In modern
generic model management parlance [Ber03], both
phases are considered as operations over schemas
and are called, respectively, model match and model
merge. However, there is an important difference be-
tween them. Model matching is a heuristic process
of discovering correspondences between schemas and,
strictly speaking, is not an algebraic operation. For
example, in the case of two local schemas S1 and
S2, the correspondence specification match(S1, S2)
is determined not only by the operands S1, S2, but
by their semantics and other context dependant fac-
tors not specified by the schemas. Thus, an expres-
sion C12 = match(S1, S2) refers to a semi-heuristic
process rather than to an algebraic term. This
process can be assisted with intelligent tools using
ideas from machine learning and natural language,
but a certain heuristic component is principally in-
evitable. The output of this process largely deter-
mines the types of discovery tools used. When the
correspondence assertions are simple (uninterpreted)
lines, the correspondence specification is commonly
called a schema matching [RB01, MBR01, LSDR07],
when the assertions are queries or general GLAV
(global-and-local-as-view) constraints with a formal
semantics, the specification is typically called a
schema mapping [MHH00, PVM+02].

5

M
ot

87

B
D

K
92

SP

94

C
D

96

A
B

01

PB
03

FK

M
P0

5

Un
ive

rs
e

of
 sc

he
m

as

No
tio

n o
f s

ch
em

a
Ve

rsi
on

 o
f

Fu
nc

tio
na

l
mo

de
l (F

M)

Ri
ch

er

FM
-ve

rsi
on

Ve

rsi
on

 of
 E

R-
mo

de
l, E

RC
+

Gr
ap

h w
ith

 di
ag

ra
m

pr
ed

ica
tes

 an
d

op
er

ati
on

s

Ab
str

ac
t o

bje
ct

wi
th

str

uc
tur

e i
mp

lic
it

Ri
ch

er

FM
 ve

rsi
on

Re

lat
ion

al

Th
e u

niv
er

se
 is

 se
en

 as

Se
t

La
ttic

e
Se

t
Ca

teg
or

y
Ca

teg
or

y
La

ttic
e

N/
A

Is
du

ali
ty

be
tw

ee
n s

yn
tax

an

d s
em

an
tic

s a
dd

re
ss

ed
?

No

No

No

No

Ye
s b

ut
ab

str
ac

tly
:

po
stu

lat
ed

 bu
t n

ot

ex
pla

ine
d

No

Ye
s

Sc
he

m
a

m
at

ch
ing

:

Ho
w

int
er

sc
he

ma
 co

rre
sp

.
is

sp
ec

ifie
d

Sc
he

ma

re
str

uc
tur

ing

Na
me

co

inc
ide

nc
e

Co
rre

sp
on

de
nc

e
as

se
rtio

ns

Ar
ro

w
sp

an

Ar
ro

w
sp

an

Ar
ro

w
sp

an

TG
Ds

Do
es

 de
riv

ed
 in

fo
pla

y a
n

im
po

rta
nt

ro
le?

Ye

s
Mi

nim
all

y a
nd

im

pli
cit

ly
No

Ye

s
No

Im

pli
cit

ly,
 vi

a
ex

pr
es

sio
ns

 on

ma
pp

ing
 el

em
en

ts

Ye
s

De
cla

ra
tiv

e s
yn

tac
tic

 de
f.

No

No

No

Ye
s

Ye
s

Ye
s

Ye
s

De
cla

ra
tiv

e s
em

an
tic

 de
f.

No

No

No

Ye
s

No

No

Ye
s

Sc
he

m
a

m
er

gin
g:

De

cla
ra

tiv
e s

yn
tac

tic
 de

f.
No

Ye

s,
alg

.op
er

ati
on

 of

lub

No
, ju

st
an

alg

or
ith

m
Ye

s

Ye
s,

alg
. o

pe
ra

tio
n o

f
co

lim
it

Ye
s,

alg
.op

er
ati

on
 of

lub

Do

es
 de

riv
ed

 in
fo

pla
y a

n
im

po
rta

nt
ro

le?

Ye
s

Mi
nim

all
y a

nd
 im

pli
cit

.
(vi

a c
los

ur
e c

on
d.)

No

Ye

s
No

Im

pli
cit

ly,
 vi

a
ex

pr
es

sio
ns

Is

me
rg

e d
ete

rm
ine

d u
p t

o
de

r-e
qu

iva
len

ce
?

No

No

No

Ye
s

No

So
me

wh
at

(p
ar

tia
lly

, im
pli

cit
ly)

De
cla

ra
tiv

e s
em

an
tic

 de
f.

No

No

No

No

No

No

 N/
A

T
ab

le
1:

Su
rv

ey
ta

bl
e

6

In contrast to the semi-heuristic match operator,
when correspondences between schemas are given by
some specification C12, the global schema G can po-
tentially be computed automatically. That is, it is
uniquely determined and can be algebraically writ-
ten as

(1) G = merge(S1, S2, C12),

where merge refers to a ternary operation S × S ×
C → S with S denoting the universe of schemas and
C the universe of correspondence specifications.

An important question of the automatic approach
is what are the objects of the universe C? In early
work on automatic integration [SPD92] they are
statements in a special language of correspondence
assertions tailored for a particular data model ERC+,
an enriched version of ER-diagrams. More recently,
GLAV schema mappings, most commonly specified
as formulas of first-order logic adapted for the re-
lational data model are used [Len02, FKMP05]. A
disadvantage of these specifications for schema merg-
ing is that the third operand C12 is conceptually and
structurally different from the first two operands and,
thus, merge needs to handle two very different arti-
facts in a coherent way.

A different and prominent idea proposed in [CD96,
AB01, PB03] is to reify the correspondence specifica-
tion as a schema, say, S0, equipped with two func-
tions (projections) f0i : S0 → Si, i = 1, 2 into local
schemas. In mathematical category theory, a set of
functions/arrows with a common source is called a
span and thus a correspondence specification is a
span

C12 =
(
S1

�f01
S0

f02- S2

)
.

Schema S0 is called the head of the spans and func-
tions f0i, i = 1, 2 are arms. In modern meta-
data management literature, schemas are often called
models and the entire span configuration as above a
model mapping. Also, the projection functions are
often left implicit.

2.2 How to specify and manage struc-
tural conflicts

Whatever language/format is used for specifying cor-
respondences, the main question is whether it is
expressive enough to capture overlapping of local
schema semantics in precise terms. Moreover, if we
speak about an automatic phase of schema merge, the
language must be formal. The issue is non-trivial be-
cause of structural (sometimes called semantic) con-
flicts between local views.

Obviously, for automatic schema merge we need
a precise taxonomy and specification of possible con-
flicts. In [SP92], a taxonomy distinguishing semantic,
descriptional, structural and heterogeneity conflicts
is presented. However, their description is largely
informal and is tailored for a particular data model
ERC+. Paper [PB03] elaborates the issue further and
presents a more precise taxonomy in terms of a much
more universal tree-based schema format. They dis-
tinguish representation, meta-model and fundamen-
tal conflicts. The former address the possibility of
different representations of the same data (structural
conflict) while the latter address the integrity of the
merged schema after absorption of the information
from the local schemas. The meta-model conflicts are
conflicts of translations between particular schema
languages and the universal language used in [PB03].
Very simple conflicts are well managed in [PB03] by
the very span format for correspondence; for more
complex conflicts, a mechanism of algebraic expres-
sions attached to mapping elements is used. Unfor-
tunately, the details of the expression language are
not specified, and it decreases the precision of the
machinery making it partially heuristic.

2.3 Semantic justification of syntactic
procedures

In the present paper, by semantics we mean consid-
ering database states or else schema instances in a
explicit and precise way. That is, if S is a schema,
we consider its set of instances inst(S), functions de-
fined on them and operations over them. Note that
the term “semantics” is often used for talking about
purely syntactical requirements intended to address

7

semantic issues. In this case, semantics is implicit
and (at least because of this) is informal.

The consideration of semantics in a precise way is
important for schema integration. Consider the fol-
lowing questions. Is a given pool of restructuring
operations, or a given correspondence assertion lan-
guage expressive enough for specifying all possible
conflicts between local schemas, or all possibilities of
their overlapping? Can a given data model serve as
a common universal model for the local models, or to
what extent is it universal, or how natural are trans-
lations from the local models into this common data
model? These questions are essentially semantic and
can be answered only in a formal semantics frame-
work. However, formal semantics is rarely addressed
in schema integration approaches (with a few notable
exceptions [BC86]), particularly those based on infor-
mal, but expressive, semantic data models.

The majority of schema integration approaches in-
clude clear syntactical procedures that are motivated
by reasonable, but informal, semantic considerations.
Thus, semantics in the sense above is not addressed
and the question of whether the result of a syntacti-
cally defined procedure is semantically sound, that is,
whether we compute what we really need to compute,
remains more a subject of belief rather than formal
verification. In many approaches there are no declar-
ative definitions of what is the merged schema at all;
hence the merge algorithm is simultaneously a defi-
nition of what is computed. A declarative (but still
syntactical) definition of what is schema merging ap-
peared first in [BDK92]. They organize the universe
of schemas into a set partially ordered by inclusions
between schemas, and show that this poset is a lub
semi-lattice (that is, the least upper bound of two
schemas always exists). Paper [PB03] significantly
developed this idea by applying it for a much richer
type of schemas and for a much richer set of possi-
ble correspondences between them. Unfortunately,
their framework becomes less precise as soon as cor-
respondence specifications between schemas involve
expressions attached to mapping elements.

On the other hand, research on the data exchange
problem is properly semantically based from the very
beginning [FKMP05]. They first define the notion of
mapping between schemas and its derivatives seman-

tically and then consider necessary syntactical means
to specify these notions. There are two obstacles in
direct use of these results for schema integration: (i)
the context of data exchange is different and (ii) the
formalisms is tightly connected to the relational data
model.

2.4 Summary of Schema Integration
Approaches

In Table 1, we present a summary of our observations
about the state-of-the-art in schema integration. We
include six papers on schema integration methods,
along with a paper on data exchange. Although the
last paper does not include a schema merging opera-
tion, it is notable for including a declarative seman-
tics for schema matching. It is also relevant to the
approach we will be presenting because it explicitly
recognizes that structural (semantic) conflicts can be
resolved by explicitly representing derived informa-
tion as queries.5 This same observation was made
much earlier by Motro [Mot87] and [CD96], but omit-
ted from later integration work.

As we have noted, all of these approaches have lim-
itations in some important aspects. Our goal in this
paper is to present a schema integration approach
without these limitations and in a conceptually clear
way. In the next section, we present an example of
schema integration of two relational schemas. We use
the example to show the main phases of our approach
and the main problems to be solved.

3 Sample scenario

3.1 Example of relational schema in-
tegration

Consider two simple relational schemas in the top
part of Fig. 3. The schema S1 consists of two tables,
Orders and Hardware, each having three columns
whose names are written under the table names. The
second schema consists of one three-column table

5Indeed an early paper on discovering schema mappings for
data exchange was called “Schema Mapping as Query Discov-
ery” [MHH00].

8

(i) Heuristics: Specifying
correspondence by query discovery.

(ii) Algebra: Merge operation (iii) A mixture: Normalization

Abstract description of the example above

eΣeN [≅]

SN

SΣ derqΣ SΣ

derqN SN

f2f1
S1

derq1S1 derq2S2

S2S0

v1 v2

SΣ

[merge]

S1

derq1S derq2S

S2 S0

mapping v2

schema S1+= derq1S1
Orders Hardware T=πc,cN (σ vend=”HP”(Ord ⊗Hdw))

customer# product# col1=customer-proj
custName prodName col2=custName-proj
product# vendor

schema S0
HP-customer

customer#
name

schema S2
Customer

customer#
name
bDate

schema SΣ
Orders Hardware HP-Customer

customer# product# customer# = col1 of T
name prodName name = col2 of T
product# vendor bDate

schema S2
Customer

customer#
name
bDate

 schema S1
Orders Hardware

customer# product#
custName prodName
product# vendor

 Two relational schemas
to be integrated

Specifying correspondence via
span (S0,f1,f2) and merging

SΣ = S1 ⊕(S0, f1, f2) S2

 Removing derived elements
(Normalization)

mapping f1 mapping f2 query q1

schema SN
Orders Hardware HP-Customer

customer# product# customer#
name prodName bDate
product# vendor

mapping v1

Constraint C: πc (σ vend=”HP”(Ord ⊗Hdw) = πc(HP-Cust)

New elements are
dashed-dotted and green

New elements are
dashed-dotted and green New elements are

dashed and blue

Figure 3: Example of relational schema integration. [Derived elements are shaded (and blue in color print)
. In long expressions, names of tables and columns are abbreviated by a few letters.]

9

Customer. Suppose we know that the set of cus-
tomers referred to by schema S2 is exactly the set
of those customers for schema S1, who ordered prod-
ucts of vendor “HP”. This latter set can be computed
by an evident query q1 specified in schema derq1

S1 in
Fig. 3.

Our first step is to specify the correspondence be-
tween schemas in a formal and sufficiently general
way. To this end, we augment schema S1 with a
derived table T[col1,col2]: see Fig. 3 where the de-
rived elements are shaded. Table T is computed by
query q1 as specified in the Figure. We denote the
augmented schema by derq1

S1 or S1
+. Then we in-

troduce a new schema S0 with the only table HP-
Customer and show how this table is represented in
the local schemas. This work is done by schema map-
pings f0j : S0 → Sj

+ = derqj
Sj (j = 1, 2), which map

elements of the middle schema to the corresponding
elements, either basic or derived, of the local schemas.
In our particular example, S2

+ = S2. Thus, the cor-
respondence information is specified by the following
configuration of schemas and mappings between them

C12 =
(
derq1

S1
�f01 S0

f02- derq2
S2

)
.

We will call such a configuration a span.
The span C12 can be thought of as a set of equa-

tions between local schema elements like col1@S1
+

= customer#@S2 and col2@S1
+ = name@S2, where

expression e@S means that e ∈ S. These equations
are necessary for the merge algorithm to eliminate
duplication of elements in the merged schema.

The correspondence span we have built has a clear
semantic meaning. Note that mapping f01 defines a
view to schema S1 (with schema S0 being the view
schema). Semantically, it means that for any in-
stance I ∈ inst(S1), the result of view/query exe-
cution is defined as [[f01]](I) ∈ inst(S0). Here we
use the following notation: if X is a syntactic notion,
a schema or mapping between schemas, then [[X]] is
its semantic meaning, the set of instances or the map-
ping between these sets respectively. The same is for
mapping f02, in our case trivial. Thus, the seman-
tic meaning of the span declaration is the following
equality: [[f01]](I1) = [[f02]](I2), where Ij is an in-

stance of schema Sj for j = 1, 2. That is, S0 specifies
the shared information in S1 and S2.

The natural next step is to merge the augmented
local schemas disjointedly, and then glue together the
elements that are declared equal in the correspon-
dence span.The resulting schema SΣ will be a disjoint
union of the three components:

(2) SΣ
∼= (S1

+ \ S0)] S0] (S2
+ \ S0).6

In addition, we obtain mappings (views) between the
local schemas and the merge, v1 and v2 in the figure.
Thus, the result of integration is a configuration of
schemas and mappings S = (SΣ, v1, v2) specified in
Fig. 3. We will call such configurations sinks.

If schemas in the correspondence span contain de-
rived elements, the merge schema will also contain
derived elements. To finish integration, we may like
to remove from SΣ derived (shaded) items. In general
this process is not trivial since removal derived items
may violate some structural requirements to schemas.
For instance, in our example, removing the derived
column cutomer# will leave the table HP-Customer
without its primary key. Hence, we forced to keep
it in the schema but then add to it a corresponding
integrity constraint: this is Constraint C in Fig. 3,
which asserts equality of the results of two queries.

Thus, an important final part of the integra-
tion procedure should be a special procedure of
schema normalization. The latter is aimed at find-
ing some schema SN with minimal redundancy but
der-equivalent to the merge schema. That is, each
element of the merge schema SΣ can be derived from
SN (no information is lost) and conversely, each el-
ement of SN is derivable from SΣ (nothing extra is
acquired). It is easy to see that our schema SΣ can be
further normalized but a detailed discussion goes be-
yond the goals of this paper but has been addressed
by others [AH88].

6This would be a quite precise description if schemas were
sets of elements. However, relational, XML and other schemas
used in practice are much richer structures, and the merge
procedure must be compatible with it. Later we will address
the issue.

10

3.2 Abstract arrangement

The diagrams in the bottom part of Fig. 3 present
an abstract view of the procedures we used in the
example. This view is based on abstract graphs and
operations over them. Nodes of these graphs denote
schemas (considered as structured sets of elements)
and arrows are mappings between them (preserving
the structure); hooked arrows denote inclusions. In
diagram (ii), label join denotes the graph-based ana-
log of the familiar lattice-theoretic operation of tak-
ing the least upper bound (cf. [BDK92]). This analog
is defined as follows. Mappings vi : Si → SΣ, i = 1, 2
say that all the information contained in the local
schemas is contained in the merged schema as well
without duplication. The latter condition is pro-
vided by the commutativity of the diamond formed
by the arrows: for any element e ∈ S0, equality
e.f01.v1 = e.f02.v2 holds in SΣ. Thus, information of
local schemas is properly passed to SΣ and no infor-
mation is lost (SΣ is an upper bound). To formulate
that nothing extra is acquired (SΣ is the least up-
per bound), we take an arbitrary schema S′ together
with mappings v′

i : Si → S′, i = 1, 2 such that the
diamond (f01, v

′
1, f02, v2) is commutative. That is,

schema S′ also properly (without duplication) con-
tains the information of the local schemas (another
upper bound). The minimality property of SΣ then
means that for any such S′ there is a uniquely de-
fined mapping ! : SΣ → S′ such that every diagram
formed by all the arrows involved is commutative.
In mathematical category theory such an operation
on objects is called colimit. Thus, it is reasonable
to define the result of merging schemas matches by
a span as the colimit of the span. We will use the
more familiar term (arrow) merge as a synonym for
colimit. Note that the result of [merge] is a config-
uration of schemas and mappings, a cospan or sink
S = (SΣ, v1, v2), rather than the merged schema it-
self.

A well-known result of mathematical category the-
ory says that for a wide class of meta-models, the
classes of schemas defined by those metamodels are
closed under arrow merge. Moreover, for this class
of metamodels, merge defined above declaratively,
can be defined constructively as well. Roughly, a

merge is computed by taking disjointed union of the
two schemas followed by factorization according to
the “equations” specified by the correspondence span
C12 = (S0, f01, f02). A typical algorithm of this sort
for the case of graphs is presented in [SE05]. It can
be immediately generalized for any schema consist-
ing of sets of elements and mappings between them
[BW95]. In this way we obtain an effective procedure
for computing merged schemas defined w.r.t. their in-
formation content. Finally, it can be proved that the
declarative syntactical definition above is equivalent
to a reasonable semantic definition of merge in terms
of instances [Dis06].

3.3 Discussion

We have seen that schema integration consists of
three consecutive steps: matching, merging, and nor-
malizing the merge. The first and the third are
context-dependant heuristic procedures (that may be
assisted by tools but not fully automated), the sec-
ond step is an algebraic operation and can be en-
tirely automatic. The key to a proper integration is
not in the merge itself but in a proper specification of
their overlapping/correspondences often called struc-
tural conflicts. Below we call them conflicts.

A major integration issue is thus how to classify
and specify conflicts between schemas: a few at-
tempts were made in the literature, most notable and
systematic are [SPD92, PB03]). These classifications
are quite complicated and lead to considerable com-
plexity of the merge algorithms. A major contribu-
tion of the present paper is to show that all conflicts
between views can be uniformly described as in our
example above: a schema element basic in one view
can be derived in another view (and vice versa). In
general, a conflict appears as the “sameness” of two
elements, e1 ' e2, where ei denotes the result of ap-
plying a query qi to schema Si, i = 1, 2. Then the
merge algorithm itself is a purely algebraic procedure
and is simple.

The first step towards drawing this base is to
avoid syntactical idiosyncracies of relational or other
particular data models and consider the integration
problem on the basis of what we call a universal data
model; the query language is also included as part of

11

the model. A universal model must (i) be tailored
for specifying semantics in as direct a way as possi-
ble, (ii) be semantically rich to allow specification of
a wide class of conflicts, (iii) allow for natural transla-
tion from practically used data models like relational,
XML or ER and yet, (iv) be syntactically manageable
and semantically suggestive. We will present a frame-
work, in which it is possible to build such model, dp-
graphs, in the next section. After that, we will show
how various conflicts identified in the literature can
be specified by query equations over dp-graphs.

4 Universal data model

Dp-graphs were introduced (under the name of
sketch) and applied to data modeling in [DK03]. To
explain the idea, we begin with an example. It is sim-
ple but sufficiently generic to present the language of
dp-graphs and its expressive capabilities.

4.1 Example of data definition with
dp-graphs

Fig. 4(a) presents a simple ER-diagram. Semantics
of its elements is clear from their names but we want
to make it precise. Let t be a time moment, or the
database/real-world state at moment t. The rec-
tangle nodes give us four sets [[Book]]t, [[Author]]t,
[[Shelf]]t and [[Building]]t. Attributes are functions
title : [[Book]]t → [[str]], [[tel]]t : [[Author]]t → [[int]]
etc, where [[str]], [[int]] are extensions of primitive
types, which do not depend on time. Note that do-
mains of the attribute are implicit in ER-diagrams
and we used semantics of names to reveal them. Di-
amond nodes denote relations: [[RBA]]t ⊂ [[Book]]t×
[[Author]]t etc. Relations [[RBS]]t and [[RSB]]t are of
type many-to-one and hence are functions at any mo-
ment. Furthermore we will omit the index t keeping
it in mind. We will also omit the square brackets if
it does not lead to confusion.

Formal explication of what are keys, relative keys
and weak entity sets need slightly more accurate for-
mulations, and we proceed to Fig. 4(b). In this dia-
gram, nodes denote sets and arrows are functions, ei-
ther single-valued (an ordinary head) or multi-valued

(double-head). Rectangles denote sets with extension
changing in time (classes), and ovals denote primitive
types with permanent predefined extension. A fam-
ily of functions with a common source fi : X → Yi,
i = 1..n is called a key if for any two different ele-
ments of the source, a, b ∈ X, there is at least one
function fi in the family such that fi(a) 6= fi(b).
Then in the diagram, which is a syntactical object,
label [key] “hung” on the pair of arrows name and
bdate means that at any time moment t, the pair
of functions [[name]]t and [[bdate]]t is a key. Simi-
larly, declaring the pair of arrows author and book
to be a key to the node Authorship actually means
that extension of this node is a set of pairs (a, b) with
a ∈ [[Author]]t and b ∈ [[Book]]t. If a single arrow is
a key, we mark it with a short bar crossing the tail.

Note that node Book in the ER-diagram is declared
to be a weak entity (double-frame). Suppose that it
means that each book participate in at least one Au-
thorship and hence depends on it (or the correspond-
ing author). Formally, it means that the function
[[book]]t is surjective (or covering) at any time mo-
ment; hence, the label [cover] on arrow book.

Since relationships RBS and RSB are of type many-
to-one, they are in fact functions and we replace them
by arrows on : Book → Shelf and in : Shelf → Building.
Note the label [key] hung on the pair (num, in) –
this the precise formal meaning of declaring the node
Shelf to be a weak entity in the sense that its key
num is relative to the Building the shelf is in. Note
that this semantics of weak entity is quite different
from semantics of node Book, and the difference is
made explicit in our dp-graph. In the literature on
ER-diagrams, there is one more meaning of being a
weak entity, which is usually called existence depen-
dency. Namely, in our context, if a Building is deleted
from the universe (the database), all its Shelves are
also deleted. This is a dynamic property of function
[[has]]t, which we make explicit by declaring pred-
icate [contains] for arrow has.7 Formal definition

7In addition, as a syntactic sugar tip, we also make the
tail of the arrows a black diamond: this notation is borrowed
from UML and is now common. Note that usually semantics
of black diamond includes not only existence dependency (our
predicate [contains]) but also non-sharing: every shelf belongs
to one and only one building. In our dp-graph this is captured

12

(a) an ER-diagram with weak entity sets

(b) dp-graph specifying intended semantics of diagram (a)
(names of diagram predicate are bracketed by [-] and red)

(c) a few simple queries (names of diagram operations are bracketed by

[-〉 and blue; derived elements are dashed and blue)

/bo-au--name

book

//age

/age /bo-au

name bdate

yy
Book

isbn

str

Person

Authorship

Date str

[navigate〉

int

〈subtr]

* < 30
/Young

〈select]

[compose〉

dd

1
num Building Shelf

RBA Book

title isbn
RBS

m

m n Author

RSB

m

name mm yy

bdate

tel

addr
1

The Legend:
- keys are
underlined;
- dashed underline
denotes a relative
key

name

bdate

dd yy book author
on

num

Book

title
str

isbn
str

Shelf

str

Person

Building

Authorship

in

[cover] [key]

[key]

[inverse]

Date

int
[key]

Addr
addr

[contains]
str

has

Figure 4: Dp-graphs vs. ER-diagrams

of the property [contains] is more intricate than
above because it involves specifying behavior of func-
tion [[has]]t when t changes; details can be found in
[DK03].

Finally, to express the required semantics of the
configuration Shelf - RSB - Building, we have intro-
duced two functions, in and has, representing the
same relationship RSB . Hence, these functions are
mutually inverse and we must declare this fact in out
dp-graph: note label [inverse] hung on the respective
pair of arrows. The resulting dp-graph in Fig. 4(b)
has the following two main features: it does possess
a precise formal semantics (which is close to the in-
tended semantics of the ER-diagram), yet it is syn-
tactically transparent and similar to the ER-diagram.

by declaring the arrow in (inverse to has) to be single-valued.

4.2 Querying dp-graphs

A special subclass of diagram predicates are diagram
operations. For example, we may consider an oper-
ation navigate: its input is a pair of functions with
a common source (multi-relation), and the output is
the function of navigating the relation from its one
participant to the other. Syntactically, declaring such
operation looks like shown in Fig. 4(c). Semantically
it means that having a relation

([[Authorship]]t,[[book]]t,[[author]]t)
with two projection functions to the classes Book and
Author, we navigate the relation and produce a new
(in general, multi-valued) function

/bo-au : [[Book]]t → [[Author]]t.
More accurately, /bo-au/ is the name of the new func-
tion denoted in the dp-graph by a new arrow /bo-au,
and the very new function is its extension [[/bo-au]]t.
We denote derived elements by dashed blue lines and
their names are prefixed with slash (the latter nota-
tional tip is borrowed from UML).

Having a pair of functions with the target of the
first being the source of the second, e.g., [[/bo-au]]t

and [[name]]t in Fig. 4, we can compose them and
produce a new function. Syntactically we denote this
new function by an arrow /bo-au-name. Semantically,
its extension [[/bo-au-name]]t is the result of execut-
ing the operation compose. The right lower part of
the diagram shows a query specification, whose exe-
cution would produce a set of Persons younger than
30.

Thus, queries against dp-graphs are diagram oper-
ations: they input and output configurations of sets
and mappings (specific and predefined for a specific
operations). Technical details of how syntax and se-
mantics of such operations is formally defined can be
found in [Dis96]. We emphasize that we do not pro-
vide an a priori fixed query language. It is the user’s
responsibility to define her own query language in ac-
cordance with dp-graphs’ syntax, and supply it with
execution procedures.

4.3 Universality statement.

Thesis. Let S be some data schema (relational,
XML, ERD, yours favorite one). If semantics of S

13

can be somehow formalized, then there is a dp-graph
(graph with diagram predicates) G such that sets
inst(()S) and inst(()G) are naturally isomorphic.

“Proof”/Justification. Let X be some notion,
eg, semantics of S. Formalizability means that X
can be expressed in some formal set theory devel-
oped in modern mathemtics. There are a few such
theories, which are roughly equivalent between them-
selves. One of the most handy and convenient in
applications is the higher-order type theory, HOTT,
presented, e.g., in [LS86]. Thus, we may define for-
malizability of X as the possibility to present X as a
HOTT-theory.

In part II of [LS86], the following results are care-
fully proven. Any HOTT-theory generates a spe-
cial algebraic structure called topos. Conversely, any
topos can be presented as a HOTT-theory. Moreover,
the notions of HOTT-theory and topos are equivalent
in some technical sense. Thus, we may say that for-
malizability of X means the possibility to present X
algebraically as a topos.Finally, any topos is noth-
ing but a dp-graph in a specific signature of diagram
predicates (in fact, operations), see e.g. [FS90] for a
precise but “pictorial” definition. We conclude that
formalizability of X means that X can be encoded
by a dp-graph.8

4.4 FAQ about dp-graphs

How natural are translations of local schemas
in different data models to dp-graphs? If se-
mantics of a local schema is well understood in pre-
cise (better, formal) terms, translation to a dp-graph
is easy because dp-graphs are nothing but specifica-
tions of schema semantics.

How complex is the vocabulary of basic con-
cepts for dp-graphs? Any dp-graph consists of ele-
ments of only three types: nodes, arrows and diagram
predicates. In addition, some of the elements can be
declared derived, which means that the correspond-
ing diagram predicate is actually an operation.

8Speaking more accurately, we have mentioned three formal
models, ie, three formal definitions, of the notion of formaliz-
ability. What is mathematically proven is that they are all
equivalent.

(a) building the graph
of a function

(b) navigating a
(multi)-relation

gR

X

Y

fR R 〈navig][inv]

qf

[graph〉

X

Y

f /Rf

pf

Figure 5: The representation conflict of dp-graphs

How complex are possible structural conflict
between different dp-graphs representing the
same data? We will show in the next section how
different representation conflicts can be managed by
queries. Since the vocabulary of structural element
in dp-graphs consists of only nodes and arrows, there
is only one type of structural conflicts. To wit: data
seen as a set (node) by one dp-graph, is seen as a
function (arrow) in another dp-graph. This conflict is
resolved by two queries/operations as shown in Fig. 5.

5 Schema matching as query
discovery and equating

In this section we show that the diversity of conflicts
between schemas can be reduced to basically the only
one: a query against one schema and a query to an-
other schema produce the same result (up to canonic
isomorphism). We will call such statement a query
equation. The idea appeared in [CD96] and then in
[MBHR05] but it seems its full potential is still not
realized. The most elaborated taxonomies of con-
flicts reported in the literature are those in [SP92]
and [PB03]. Since the latter claims that its taxon-
omy and merge algorithm subsumes those in [SP92],
we will carefully consider how conflicts considered in
[PB03] can be described by query equations. To ease
references, we will call the taxonomy and merge pro-
cedure specified in [PB03] Vanilla – the name of the
tool implementing them. Also, in this section we use
terms schema and graph interchangeably.

14

5.1 Vanilla’s constructs via dp-graphs

5.1.1 Preliminaries.

In this section we apply general patterns for specify-
ing inter-schema correspondences (section 3.2) in the
dp-graph framework. For dp-graphs, the important
condition of preserving the structure by inter-schema
mappings (projections of correspondence spans and
injections of local schemas into the merged ones) is
formulated as follows.

First of all, mappings must be compatible with in-
cidence relations between nodes and arrows. Given
two graphs G, H and a mapping f : G → H between
them, we require that if f(a) = b for arrows a ∈ G
and b ∈ H, then

(3) f(2a) = 2b and f(a2) = b2,

where 2∗ and ∗2 denote the source and the target
nodes of an arrow ∗. We will often call mappings be-
tween graphs satisfying this requirement graph mor-
phisms. To specify a graph morphism, it is sufficient
to specify it for arrows and isolated nodes. For ex-
ample, the only dotted curly arrow in the right half
of Table 2(a’) specifies morphism f02 as precisely as
three dotted arrows specify f01 on the left. The sec-
ond condition requires preservation of diagram predi-
cates. Given two dp-graphs G, H, a graph morphism
f : G → H is called a dp-graph morphism, if for any
group E of nodes and arrows in G labeled by pred-
icate P , the image of this group in graph H, f(E)
is also labeled by P . Below we will call morphism
mappings as it is a suggestive and natural name for
them. We remind that the configuration

C12 =
(
S1

�f01
S0

f02- S2

)
.

is called a correspondence span with schema S0 the
head and projection mappings fi the legs.9

The left column of Table 2 presents simple exam-
ples (taken from [PB03]) illustrating Vanilla’s tax-
onomy of conflicts. In the right column we spec-
ify these examples with dp-graphs and mappings be-
tween them. We will consider the table row by row.

9Warning: in the literature, particularly in Vanilla, spans
are often called mappings while the projections are left name-
less.

5.1.2 Synonymy

Conflict (a). It is a simple synonymy situation.
Both specifications (a) and (a’) are practically equiva-
lent yet two points of difference are worth mentioning.
(i) For us, attributes are arrows targeted at primitive
types and hence attribute domains become explicit.
Since schema integration is all about semantics, ex-
plicit specifications are preferable. (ii) An equation
between elements is set by projection mappings and
labeling the corresponding element in schema S0 with
equality symbol is not necessary. The head of the
correspondence span is an ordinary schema like S1

or S2, in which there are neither equality nor similar-
ity labels.Particularly, it allows us to write names of
correspondence nodes right on them, which is conve-
nient and helpful in practical work.

Conflict (b). Here the situation is a bit more
complicated. Attributes f-name, l-nameof the right
schema (S2) are absent in the left schema (S1) but
can be derived in it. This derivation can be speci-
fied either in the left schema itself, or in the corre-
spondence schema. We choose the latter way as it
makes comparison with Vanilla easier. Composition
of two evident queries q11 and q12 against the corre-
spondence schema produces two new arrows /f-name
and /l-name/ as needed. Now correspondence be-
tween the local schemas can be specified by setting
projection morphisms as shown.

Remark. All examples in Table 2 are very special
in the sense that the local schemas are subsumed by
the correspondence schema and hence the latter is
simultaneously the merged schema as well. In more
detail, what the merge algorithm described in the
next section does is “absorbing” (without any dam-
age to the structure!) those parts of local schemas,
which are in the range of projection mappings, into
the correspondence schema . The name conflicts
are uniformly resolved: the correspondence schema
names dominate. Since for the examples in the table,
projections are surjections (cover their target), local
schemas will be entirely absorbed. This consideration
helps to interpret the examples.

The result of merge in cell (b’) is thus a schema
where the local schemas are embedded. In addition
to images of the local schemas, the correspondence

15

schema include also new information: specification
of query q1 = q11; q12, which relates data instances of
the local schemas.

Conflict (c). Semantically, the situation is en-
tirely similar to the above. Instances of the left
schema can be derived from those of the right one
by executing a query q2. We again have partially
defined projection mappings, which will absorb the
local schemas into the correspondence one. The only
difference between (b’) and (c’) is that the former
uses query q1 to derive the right from the left, while
(c’) uses query q2 to derive the left from the right.
Moreover, it is easy to see that queries q1 and q2 are
mutually inverse, hence the correspondence schemas
in (b’) and (c’) are der-equivalent : they differ only
in the choice of which elements are considered basic
and which are derived.

A striking difference in Vanilla’s view of the two
situations is caused by replacing querying in (b’)
by a new structural relationship, that is, as a new
rather than derived information.10 Not only replac-
ing queries by sub-structural relationships unjustly
complicates the taxonomy and hence the merge al-
gorithm, it may create problems later if the original
data model does not have a similar structural rela-
tionship. For example, SQL does not have a con-
struct of sub-column. Vanilla calls such problems
meta-model conflicts. Thus, Vanilla’s way of process-
ing a typical representation conflict may create an-
other type of conflict.

5.1.3 Homonymy

Non-mapping element (d). Semantics of the sit-
uation is this. Schema matching investigation reveals
that left and right Persons refer to the same class but
the attributes bio, although having the same name
in both schemas, actually refer to different concepts:
official bio (o-bio) for the left and unofficial one (n-
bio) for the right view. Furthermore, it is revealed

10As for similarity elements with expressions attached, cell
(c), this is Vanilla’s way to manage query specifications. Btw,
machinery of expressions is syntactically hard to manage. It
is unclear, for example, how to compose mappings carrying
expressions or reverse such mappings – this problem was ex-
plicitly stated in [Ber03]. It can be resolved with dp-graphs as
shown in [Dis05].

that a person actually has two bios but the left view
is not interested (does not know about?) n-bio while
the right view does not concern about o-bio. (This
is semantics of (d) as it is described in [PB03]). The
correspondence span in cell (d1’) directly specifies ex-
actly this semantics: Persons are glued together while
bios are not. The fact of having exactly two bios can
be captured by requiring the functions [[o-bio]] and
[[n-bio]] to be totally defined. Note that each element
of the correspondence schema is either in the domain
of projection f01 or f02, that is, there are no non-
mapping elements in the span. The following con-
sideration explains what is meant by Vanilla’s classi-
fication of case (d) as non-mapping element. Let us
perform merge/join of the span in (d1’). The result is
shown in (d2’) with black solid lines. Now we can ap-
ply the operation of pairing to the two functions, and
obtain a new derived function allBio. For any person
P , allBio(P) def= (o-bio(P), n-bio(P)) ∈ txt× txt, that
is, a pair of texts with first component giving the of-
ficial, and the second the non-official bio. It appears
that Vanilla implicitly introduced into correspon-
dence specification a part of the future merge! To
finish the case, diagram (d3’) shows a der-equivalent
restructuring of the merge, where the attribute allBio
is basic while the component bios are derived. (Der-
equivalence is implied by the fact that operations of
pairing and projecting are mutually inverse).

Conflict (e). We again have a case of homonymy.
Zip elements of the views are declared equal but their
types are different. Hence, after the merge, element
Zip will have two types, which violates the integrity
constraint of the model itself: types must be unique.
Vanilla calls such conflicts fundamental and pays spe-
cial attention to them. The way of resolving this type
of fundamental conflicts in Vanilla is borrowed from
[BDK92] and is shown in the lower half of the dia-
gram (e). The intersection of the types is formed and
is considered to be the new unique type. There are a
few reasons to consider this solution unsatisfactory.
First, it is not clear what is to do with Zip-values
outside the intersection. If there are no such values,
then the views actually use the same type int-and-
str, which can be matched from the very beginning.
If such values exist, then the conflict is not resolved.

16

Finally, there are possible other operations on types
coercing/unifying them and the choice of intersec-
tion only is not justified. For example, diagram (e1’)
presents another view of the conflict in the dp-graph
framework.

First of all we note that when attributes are seen
as arrows, it is illegal to equate two zips with different
target nodes: we remind that equality of two arrows
automatically means equality of their sources and tar-
gets.11 Thus zip-arrows cannot be equated. Yet we
can equate their sources thus coming to situation in
(d1’). It would mean that an address has two zips,
one of type int and the other of type str. That would
be an interesting address system but, anyway, if se-
mantics of the case is such, we specify it and merge as
shown in cells (d1’)..(d3’). However, for address sys-
tems, more likely is the situation when different zip
types mean that we deal with different address sys-
tems, e.g., in US and Canada. The correspondence
span specifying this semantics is shown in cell (e1’).
The only fact this correspondence spec reveals is that
Addr and zip are homonyms and fixes the problem by
renaming the Addr nodes (assuming that the arrow
names are qualified by the source names, us-zip, ca-
zip). Merge is fairly simple as shown in cell (e2’), ig-
nore the blue-dashed part of the graph for a moment.
Since two address systems have much in common, it
is reasonable to generalize the classes as shown in
(e2’) (the upper operation [gen], double-body arrows
denote subclassing). In the simple set-theoretical se-
mantics we consider, the operation is nothing but the
disjoint set union).12. Similarly, we can generalize
the domains into a new domain int ∪ str (in pro-
gramming terms, form a variant type). Finally, we
define a new generalized attribute /zipin the evident
way: it is the int-valued zip (left view) for USAddr
objects in /Addr and the str-valued zip (right view)
for CaAddr-objects. Da-graph (e3’) presents a der-
equivalent restructuring of the merge, in which gen-
eralized Address and zip are basic while their US and
Ca versions are derived. (Der-equivalence is followed

11In the model management tool we are implementing
[SCE+07], such declaration would be a compile time rather
than merge time error.

12If the sets were not disjoint, we would specify this in the
correspondence span

from the fact that operations [gen] and [select] are
mutually inverse).

We see that the situation described in cell (e) be-
fore the merge is significantly underspecified. It may
be specified either by the correspondence span like
in (d1’) (an address has two zips) or by the span
(e1’) (an address has one zip that is either int or
str) or as in (e) (assumed by default in Vanilla).
Note that for either-or semantics takes place, it is
not necessary that the sources of the attributes were
different. We can imagine a single address system
but so freely designed that some addresses have int-
zips and others str-zips.Correspondingly, we have dif-
ferent merged schemas. Neither of merges is right
or wrong: there are different semantics and respec-
tively there are different merges adequate to them (cf.
[MIR93]). Importantly, merges are different because
the correspondence specifications for these semantics
are different, not because the operation of merge is
non-deterministic.

5.2 More on conflicts

Queries vs. constraints. Fig. 6(a) shows a sim-
ple conflict resolved by a simple query. However, this
would work only if the following two conditions hold.
Firstly, we need to know that the class Person in the
left view is exactly the class right Person whose age
is less than 30. Secondly, the query language must
be expressive enough to specify this knowledge in an
adequate way. If one of this components is absent,
but still we know that the left Person is a subclass
of the right Person, we introduce into the correspon-
dence schema the subclassing constraint. This con-
straint presents a new piece of information captured
in neither of local schemas and neither of the projec-
tion mappings is defined on it. In Vanilla’s terms,
this constraint is a non-mapping element. There are
also situations when non-mapping elements are data
elements (nodes or arrows) rather than constraints.

Books and Authors continued. It is easy to see
that with query operations of navig or/and graph
Fig. 5 and function composition = , conflicts be-
tween views depicted in Fig. 2 can be specified by
equations and thus resolved.

The examples we considered show the flexibility

17

(a) query language is expressive enough

(a) query language is not expressive

 f01

age
Corr. schema S0

age

Person

int

 f02
Young Person Person

int

age age
 f01

 Sch. S1

/age

/Young Person

Sch. S2Corr. schema S0

<30
int

Person

ageint
〈select]

Person

int

 f02

Figure 6: Queries vs. constraints

and convenience of the Query Discovery and Equat-
ing (QDE) approach in the framework of dp-graphs.
Moreover, based on the Universality statement (sec-
tion 2.3), we can say that any overlapping between
views, which can be formally specified, can be speci-
fied by QDE in a suitable signature of dp-graphs.

6 Conclusion

The goal of the paper was to analyze the problem of
schema integration in precise conceptual and techni-
cal terms. To achieve it, we have applied a mathe-
matically sound and powerful semantic model based
on graphs with diagram predicates (constraints) and
diagram operations (queries), dp-graphs in short.
We have carefully analyzed major research works
on schema integration, reformulated them in precise
terms of dp-graphs, removed inconsistencies and re-
dundancies within and between the approaches, and
integrate them into, we believe, a coherent frame-
work. Its main highlights are as follows.

Schema integration consists of three major phases:
schema matching, merging and normalizing. Match-
ing is the key to the entire problem because of the
infamous problem of specifying overlaping/conflicts
between views in a manageable way. We have shown
that all types of conflicts identified in the litera-
ture can be reduced to the following one universal
type: elements basic in one view are derived in an-
other view and can be computed if the query lan-
gauge is rich enough. Thus, specifying inter-schema
correspondences is nothing but query discovery and

equating. This formulation gives us a universal yet
compact specification pattern, which schema match-
ing must fill in, with a clear semantic meaning. In
its turn, a syntactically and semantically transpar-
ent pattern for inter-schema correspondences gives
rise to a syntactically and semantically clear algo-
rithm for schema merging. Particularly, we give a
declarative syntactic definition of schema merging as
a graph-based analog of the lattice-theoretic notion
of the least upper bound. In a companion paper,
we give a declarative semantic definition and show
that these two definitions are equivalent. Also, hav-
ing only one type of conflicts between schemas allows
us to use a purely algebraic and in fact very simple al-
gorithm for schema merging. However, since the cor-
respondence specification involves derived elements
and queries against local schemas, the merged schema
also contains derived elements and hence redundan-
cies. It implies a post-merge phase (normalization)
aimed at removing redundancies as much as possi-
ble. Normalization can be non-trivial; particularly,
we have presented an example showing that complete
removal of derived elements from the merged schema
is not always possible.

To summarize, among the three main steps of inte-
gration (match, merge, normalize), the first and the
third are heuristic and may be really complex (espe-
cially match) while the very merge is pure algebra
and simple. We suppose that excessive complexity of
merge algorithms proposed in the literature is caused
by partial absorbtion of underspecified overlapping
and implicit normalization into the very merge pro-
cedure. In contrast, in our approach the three phases
are explicitly separated and provided with clear spec-
ification patterns ensuring their smooth sequential
composition. Importantly, clear separation of the en-
tire problem into three well-shaped subproblems al-
lows one to address each of them in a appropriate
way and use the appropriate tools.

References

[AB01] S. Alagic and P. Bernstein. A model the-
ory for generic schema management. In
Proc. DBPL’2001, 2001.

18

[AH88] S. Abiteboul and R. Hull. Restructuring
Hierarchical Database Objects. Theoret-
ical Computer Science, 62:3–38, 1988.

[BC86] J. Biscup and B. Convent. A formal view
integration method. In ACM SIGMOD
Conf.on Managment of Data, pages 398–
407, 1986.

[BDK92] P. Buneman, S. Davidson, and A. Kosky.
Theoretical aspects of schema merging.
In Advances in Database Technology -
EDBT’92, Springer LNCS # 580, 1992.

[Ber03] P. Bernstein. Applying model manage-
ment to classical metadata problems. In
Proc. CIDR’2003, pages 209–220, 2003.

[BLN86] C. Batini, M. Lenzerini, and S. Navathe.
A comparitive analysis of methodologies
for database schema integration. ACM
Computing Surveys, 18(4):323–364, 1986.

[BW95] M. Barr and C. Wells. Category The-
ory for Computing Science. Prentice Hall,
1995.

[CD96] B. Cadish and Z. Diskin. Heteroge-
nious view integration via sketches and
equations. In Foundations of Intelligent
Systems, 9th Int.Symposium, ISMIS ’96,
Springer LNAI #1079, pages 603–612,
1996.

[Con86] B. Convent. Unsolvable problems related
to the view integration. In Int.Conf.on
Database Theory, Roma, pages 141–156,
1986.

[DH84] U. Dayal and H. Hwang. View definition
and generalization for database integra-
tion of a multibase system. IEEE Trans.
Software Eng., 10(6):628–644, 1984.

[Dis96] Z. Diskin. Databases as diagram al-
gebras: Specifying queries and views
via the graph-based logic of skethes.
Technical Report 9602, Frame In-
form Systems, Riga, Latvia, 1996.

www.cs.toronto.edu/ zdiskin/Pubs/TR-
9602.pdf.

[Dis05] Z. Diskin. Mathemtics of generic speci-
fications for model management. In En-
cyclopedia of Database Technologies and
Applications, pages 351–366. Idea Group,
2005.

[Dis06] Z. Diskin. Metamodel-independent
schema & data integration: Towards
joining syntax and semantics in generic
model management. Technical Report
2006-522, School of Computing, Queen’s
University, Kingston, Canada, 2006.
http://www.cs.queensu.ca/TechReports/.

[DK03] Z. Diskin and B. Kadish. Variable set
semantics for keyed generalized sketches:
Formal semantics for object identity and
abstract syntax for conceptual modeling.
Data & Knowledge Engineering, 47:1–59,
2003.

[FKMP05] R. Fagin, P. Kolaitis, R. Miller, and
L. Popa. Data exchange: semantics and
query answering. Theoretical Computer
Science, 336(1), 2005.

[FS90] P. Freyd and A. Scedrov. Categories, Al-
legories. Elsevier Sciece Publishers, 1990.

[Len02] M. Lenzerini. Data integration: A theo-
retical perspective. (Invited tutorial). In
21st ACM Symposium on Principles of
database systems, pages 233–246, 2002.

[LS86] J. Lambek and P. Scott. Introduction to
higher order categorical logic. Cambridge
University Press, 1986.

[LSDR07] Y. Lee, M. Sayyadian, A. Doan, and
A. Rosenthal. eTuner: Tuning Schema
Matching Software Using Synthetic Sce-
narios. The VLDB Journal, 16(1):97–122,
2007.

19

[MBHR05] S. Melnik, P. Bernstein, A. Halevy, and
E. Rahm. Supporting executable map-
pings in model management. In Proc.
SIGMOD’05. ACM Press, 2005.

[MBR01] J. Madhavan, P. Bernstein, and E. Rahm.
Generic schema matching with Cupid. In
Proc. of the Int’l Conf. on Very Large
Data Bases (VLDB), 2001.

[MHH00] R. J. Miller, L. M. Haas, and
M. Hernández. Schema Mapping as
Query Discovery. In Proc. VLDB, pages
77–88, 2000.

[MIR93] R. Miller, Y. Ioannidis, and R. Ramakr-
ishnan. The use of information capacity
in schema integration and translation. In
Proc. Very Large Data Bases, pages 120–
133, 1993.

[Mot87] A. Motro. Superviews: Virtual integra-
tion of multiple databases. IEEE TOSE,
13(7):785–798, 1987.

[PB03] R. Pottinger and P. Bernstein. Merging
models based on given correspondences.
In Proc. of the Int’l Conf. on Very Large
Data Bases (VLDB), 2003.

[PVM+02] L. Popa, Y. Velegrakis, R. J. Miller, M. A.
Hernández, and R. Fagin. Translating
Web Data. In Proc. VLDB, pages 598–
609, 2002.

[RB01] E. Rahm and P. Bernstein. A survey of
approaches to automatic schema match-
ing. The VLDB Journal, 10(4):334–350,
2001.

[SCE+07] Rick Salay, Marsha Chechik, Steve M.
Easterbrook, Zinovy Diskin, Pete Mc-
Cormick, Shiva Nejati, Mehrdad Sabet-
zadeh, and Petcharat Viriyakattiyaporn.
An eclipse-based tool framework for soft-
ware model management. In ETX, pages
55–59, 2007.

[SE05] M. Sabetzadeh and S. Easterbrook. An
algebraic framework for merging incom-
plete and inconsistent views. In 13th
Int.Conference on Requirement Engineer-
ing, 2005.

[Shi81] D. Shipman. The functional data model
and the data language DAPLEX. ACM
TODS, 6(1):140–173, 1981.

[SL90] A. Sneth and C. Larson. Federated data-
base systems for managing distributed,
heterogeneous, and autonomous data-
bases. ACM Computing Surveys, 1990.

[SP92] S. Spaccapietra and C. Parent. View in-
tegration: a step forward in solving struc-
tural conflicts. IEEE Transactions on
KDE, 1992.

[SPD92] S. Spaccapietra, C. Parent, and
Y. Dupont. Model-independent as-
sertions for integration of heterogeneous
schemas. The VLDB Journal, 1(1), 1992.

20

Taxonomy of conflicts in Vanilla
[PB03]

… and their algebraic query-based representation
(Schema matching as Query Discovery)

(a) Representation (R)-conflict of type I:
resolved by equality mapping elements

(EMEs)

(a’) Properties of the Corr-span:
 (i) Corr-head (schema S0) does not contain derived elements,
 (ii) Corr. legs f01, f02 are totally defined functions

(b) R-conflict of type II: resolved by
EMEs and sub-element relationship

(b’) Properties of the Corr-span:
 (i) Corr-head does contain derived elements (produced by query q1 = q11° q12)
 (ii) Corr. legs f01, f02 are partially defined functions but
 (iii) For each basic element of the head, either f01 or f02 is defined.

(c) R-conflict of type III: resolved by

SMEs and Expression property
(c’) The same as b’. The only difference is that a different query is used to match schemas

(d1’) match

(d) R-conflict: Matching schemas with a

non-mapping element allBio
(d2’) merge with some derived info added

(pairing arrows o-bio and n-bio)
(d3’) restructuring the merge to a der-

equivalent form

(e1’) match

(e) Fundamental (F)-conflict (e2’) merge with some derived info added (e3’) restructuring the merge to a der-

equivalent form

/zip2

/USAddr

zip
Addr

int
zip

Addr

str

Addr

int str

int ∪ str

zip

/CaAddr

/zip1
[select1〉〈select2]

zip
zip

Addr

int
zip

Addr

str

CaAddr

int
zip

str

USAddr f01 f02Zip-code

int

Zip-code

str

int and str

=

[merge]

Zip-code

int str zip

USAddr CaAddr

/Addr

[gen]

int

zip
str

int ∪ str

[gen] /zip

 v2m’

/n-bio /o-biol
allBio

bio
txt

bio
Person

txt

txt × txt

[= 〉〈 =]

txt

Person

txt

 v ’ 1m

Person

Person

bio

Person

bio allBio

=
Official Bio

=
Non-official

Bio

=

n-bio o-bio bio
txt

Person
bio

Person Person f01
f02

txt txt txt

n-bio o-bio
Person

txt txt /allBio

txt × txt

f-name l-name

Person

str
〈q2 (concat)]/name name str

Person

l-name

f-name
str

Person

f01

 f02

Person

name

Empl

f-name
=

sim
l-name name =

 concat(f-name,l-name)

f01
l-name

/2-proj

Person

name

sepStr

[q11〉 /name
/1-proj

/f-name /l-name name

Person
f-name

str

Person

 f02

[q12〉

str str str

str

Person

name

Empl

f-name
=

=
l-name

=
=

f01 Sch. S1

pin int

Person
idn

Employee

eid

Empl

 Sch. S2 Corr. schema S0

 f02int int

Person

pin

Empl

eid

 Sch. S2 Sch. S1

=
=

 Map M12

 v2m v1m

Table 2: Conflicts via query discovery
21

