
Online Queries for Collaborative Filtering

Craig Boutilier and Richard S. Zemel
Department of Computer Science

University of Toronto
Toronto, ON, M5S 3H5, CANADA�

cebly,zemel � @cs.toronto.edu

Abstract

Collaborative filtering allows the preferences of
multiple users to be pooled in a principled way in
order to make recommendations about products,
services or information unseen by a specific user.
We consider here the problem of online and in-
teractive collaborative filtering: given the current
ratings and recommendations associated with a
user, what queries (new ratings) would most im-
prove the quality of the recommendations made?
This can be cast in a straightforward fashion in
terms of expected value of information; but the
online computational cost of computing optimal
queries is prohibitive. We show how offline pre-
computation of bounds on value of information,
and of prototypes in query space, can be used to
dramatically reduce the required online computa-
tion. The framework we develop is quite general,
but we derive detailed bounds for the multiple-
cause vector quantization model, and empirically
demonstrate the value of our active approach us-
ing this model.

1 Introduction

Collaborative filtering (CF) has attracted considerable at-
tention over the past decade due to the ease of online
data accumulation and the pressing need in many appli-
cations to make suggestions or recommendations to users
about products, services or information. When other users
have viewed (say) a product of interest and offered rat-
ings of that product, the existing ratings can be used to
predict the rating of a subject who has not seen the prod-
uct. Specifically, if users with similar “interests” to the
subject (as determined using ratings by the subject on
other products) have rated the product in a particular way,
we might want to recommend that product to our sub-
ject. In this way, collaborative filtering allows the pref-
erences of multiple users to be pooled in a principled

way in order to make recommendations. The collabo-
rative filtering approach forms the basis of many recom-
mender systems [Breese et al., 1998; Konstan et al., 1997;
Nguyen and Haddawy, 1998; Hofmann and Puzicha, 1999;
Goldberg et al., 2000], applied to areas as diverse as books,
movies, jokes, and newsgroup articles.

A number of different approaches to collaborative filtering
have been proposed, including correlation analysis [Kon-
stan et al., 1997], naive Bayes classifiers [Breese et al.,
1998], latent class models [Hofmann and Puzicha, 1999],
and PCA [Goldberg et al., 2000]. Many of these ap-
proaches construct explicit probabilistic models of the do-
main, positing features or clusters of users and/or products,
and relating user and product features to predicted ratings.
In many of these models, reasonable results have been ob-
tained.

It is natural to ask in such settings whether additional rat-
ings provided by a user can increase the quality of recom-
mendations made for that user (or equivalently, increase
the accuracy of our predicted ratings). Specifically, sup-
pose a user has rated � products, on the basis of which we
make predictions for her ratings of the unrated products.
If we have the opportunity to ask the user for a rating of a
�������
	 product, we want to know whether: (a) this new rat-
ing can improve our predictions (and ultimately the value
of the recommendation we make); and (b) which prod-
uct offers the greatest expected benefit in this regard. An
active approach to collaborative filtering involves asking
queries of this type when the expected benefit outweighs
the cost (e.g., delay, bandwidth, or cognitive burden) asso-
ciated with the query.

Approaches to CF that learn explicit probabilistic models
of the domain facilitate the analysis of this problem: we can
pose it in terms of expected value of information (EVOI).
Prior to asking a query, we have a distribution over the rat-
ings of unrated products. We assume some decision crite-
rion used to make recommendations based on this prior, as
well as a measure of the expected utility of any decision.
If we query the user about an unrated product � and ob-
tain a rating � in response, the posterior over ratings will

generally lead to a different recommendation with different
expected utility. Taking expectation of these utilities with
respect to possible responses, we obtain the myopic (i.e.,
single-step lookahead) EVOI for query � . The query with
maximum EVOI is most appropriate, so long as its value
exceeds the cost of the query.1 This model can be espe-
cially useful when dealing with new users, or users who
have not yet populated rating space sufficiently. This ap-
proach allows maximum benefit to be derived from fewer
product ratings. It is also useful in settings in which we
have low confidence in our predicted ratings. In such set-
tings, the benefit of having a user rate several unseen prod-
ucts (e.g., by playing a music or movie clip) before making
a recommendation may outweight the costs.

Unfortunately, computing (myopic) EVOI exactly is com-
putationally difficult. In principle, we could ask a user
about any unrated product, and for each possible response
(rating), we must generally compute the posterior over the
remaining ratings to determine the new optimal decision.
This requires ���������
	 posterior computations, where � is
the number of products and � the number of ratings. Worse
yet, this computation must be performed online, while in-
teracting with the user. Since CF is most useful in situations
with large numbers of users and products, this in unlikely
to be feasible except in the most trivial settings.

We consider approaches that allow us to bound the ex-
pected changes in these posteriors in a user-independent
fashion. By constructing such bounds offline (using the
learned model), we can dramatically reduce the number
of online posterior computations needed to determine the
query with maximum EVOI. In addition, we can use prop-
erties of the learned model to construct a small set of pro-
totype queries, further reducing the online computational
complexity, with only a small sacrifice in decision qual-
ity. The framework we develop is quite generic, and can be
applied to any CF algorithm that produces an explicit prob-
abilistic model of the domain. However, the details will
depend on the specifics of the model in question. Here we
develop these details for the specific case of the multiple-
cause vector quantization (MCVQ) model developed by
Ross and Zemel [2002]. However, the development will
be similar for most other common types of probabilistic
models used for CF.

The remainder of the paper is organized as follows. In Sec-
tion 2, we discuss collaborative filtering and the MCVQ
model. Section 3 describes value of information in gen-
eral terms, and spells out the details the specific case of the
MCVQ model. We show empirically that supplementing
product ratings using myopic EVOI in the MCVQ model
descreases loss more quickly than adding random ratings.
Section 4 details a method for bounding the impact a query
can have on the mean rating of a target product in a user-

1This myopic approximation of EVOI is generalized below.
Our focus in this paper is on myopic approaches, however.

independent (offline) fashion, allowing the query with max-
imum EVOI to be computed more effectively online. Em-
pirical results again demonstrate a significant amount of
pruning can be obtained in the MCVQ model. We dis-
cuss some preliminary ideas pertaining to offline prototyp-
ing of queries in Section 5, which further reduces the space
of queries one needs to consider. We conclude with some
suggestions for refinements to the model and directions for
future research.

The notion of active collaborative filtering has been sug-
gested by Pennock and Horvitz [2000]; but this work does
not suggest specific techniques for implementing the active
component in the face of the intensive online computational
challenges facing any use of EVOI. Our work is also related
to more generic forms of active learning (e.g., [Cohn et al.,
1996]), though our focus is on the more specific details of
CF and ensuring that online computation is tractable.

2 Collaborative Filtering

We begin by establishing notation and basic background on
collaborative filtering. We then describe the MCVQ model.

2.1 The Collaborative Filtering Problem

The basic task in collaborative filtering is to predict the util-
ity of items to the target or active user based on a database
of ratings from a population of other users. Ratings can
be classified as either explicit or implicit. Explicit rating
refers to a user directly specifying his/her preference for an
item (e.g., GroupLens users rated each Netnews article on
a scale of one (bad) to five (good) [Konstan et al., 1997]).
Implicit rating entails interpreting user behavior or selec-
tions, for example based on browsing data in web applica-
tions, purchase history, or other types of information access
patterns. We focus here on applications in which the rating
database contains explicit ratings.

From a probabilistic perspective, the aim is to estimate the
probability that the active user will assign a particular rat-
ing to an as-yet unobserved item. The basic paradigm in CF
is that offline processing on the training set of user ratings
produces model parameter values, which permit the online
estimation of these probabilities based on the set of items
for which the active user has provided ratings. Batches of
user data can also be used to update the parameter values.

Let � denote the distribution over rating vectors for a
generic CF model, trained on existing data. Let ����������	
denote the set of products for which user � has provided
ratings, with �������
�� denoting vector of ratings over this set.
Let �
�� ����!	#"$�&%#� '��(�)�!	 . From this we obtain a poste-
rior distribution for each *,+-�

��(�)�!	 :

��./�10 �32 	#"$�4��0 �5276 � �����
�� 	 (1)

where 89" 6 � '�������	 6 . In general, we use the 8 subscript
to denote posterior distributions that take into account the

8 known ratings of the active user. Note that 0 �52 can be
treated as either a discrete or continous variable.

2.2 Probabilistic Models

Original statistical collaborative filtering approaches pre-
dicted unobserved ratings by weighted linear combinations
of other users’ ratings, with weights derived from the cor-
relation between each user and the active user [Konstan et
al., 1997].

Latent factor models have also been applied to this prob-
lem. A simple form of these, a mixture or vector quanti-
zation (VQ) model, assumes that users cluster into classes
with common tastes and preferences. In the standard naive
Bayes formulation, the ratings of items * are conditionally
independent, given the class of user � :

�4��� � "���� �����	�
��� �� 	#"$�4��� � "���	 ��2�� � �4��0 �52 " � 2 6 � � "�� 	
The parameters of the model—the probabilities of class
membership �4��� � "�� 	 , and the conditional probabilities
�4��0 �32 " � 2�6 � � "�� 	 —are estimated offline. Online pro-
cessing simply re-estimates the class membership probabil-
ities based on the observed ratings and uses these to refine
the posterior over ratings of unobserved items:2

� . ��0 �52 	 "���� �4��0 �52 " � 2 6 � � "���	!�4��� � "�� 6 � �����
�� 	

A second form of latent factor model is the aspect model
[Hofmann and Puzicha, 1999], which associates an unob-
served class variable, the aspect � , with each observation.
Unlike the VQ model, each observation here consists of
pair, an item * and a user � . The key assumption is that �
and * are independent, conditioned on � :

�4�)����*�	#" ��� �4� * 6 ��	!�4��� 6 �!	!�4�)�!	

Each aspect implies a distribution over items and ratings,
and each user is modeled as a convex combination of as-
pects. This model offers more flexibility than the VQ
model, in that a user can be described by several aspects,
since �4��� 6 �!	 serve as the mixture weights of the aspects.
However, the aspect model is not a proper generative model
of input vectors, since � is a dummy index referring to the
list of users in the training set. This variable has as many
possible values as there are training users so the model
learns �4��� 6 �!	 only for those users, and there is no natural
way to examine the probability of some unseen user.

2Note that unobserved items are treated as missing-at-random.
In many cases this assumption is not true, as the fact that an item
is unobserved can be telling. However, we make this simplifying
assumption for all models considered in this paper, even though
each can be elaborated to handle this additional information.

� �

0 � �

� ���

� �
� � �

0 � �
User �

Figure 1: Graphical model for the MCVQ model. Circles
denote random variables and the dashed rectangle shows
the plate (i.e., repetitions) over the data (users).

2.3 Multiple-Cause Vector Quantization

MCVQ is a new probabilistic model for unsupervised
learning which is particularly relevant to CF. The key as-
sumption is that dimensions of the data can be separated
into several disjoint subsets, or multiple causes, which take
on values independently of each other. We also assume
each cause is a vector quantizer, i.e., a multinomial with
a small number of discrete states. Given a set of training
examples, the MCVQ model learns the association of data
dimensions with causes, as well as the states of each VQ.

In the context of CF, the causes could correspond to types of
items or products, and the states of a particular type could
correspond to a user’s attitudes or rating profiles that a user
can adopt towards items of the given type. In a music rat-
ing database, for example, each piece of music could be
considered as a mixture of types or genres, and a user can
be described as a mixture of attitudes towards each type,
where each attitude implies a particular distribution over
ratings for each piece of that type. In different terms, a
particular user can be described as a composite sketch: a
selection of the attitudes towards each type.

The notation and basic equations of MCVQ are as follows.
Each item * is one of types, or VQs: �4� � 2 " � 	!� � +� �"�#���
���� � . Corresponding to each type � there are $ dif-
ferent attitudes that a user can adopt: �4� � �&% "('�)�*' +� �"�#���
�*$ � . Distributions over ratings can be estimated given
these two quantities: +",2*%�-/. �4�10 �32 " � 6 � 2 " �0� � ��% "1'�	 ,
and the posterior over an item’s rating is:

��./�10 �32 " � 	 "1� % �4� � 2 " � 	2� - �4� � ��% "�' 6 � �����
�� 	3+ ,2*%)-

This posterior computation uses the model parameters
that are estimated offline from the large ratings database:
�4� � 2 " � 	 , +4,2*%)- , and �4� � �32 "5'�	 . The only online com-
putation in the model entails updating the attitude distribu-

tions as more item ratings are observed:��������� 	�
������������� 	�
���� ����������

�� !#" �$�%���#& �('*),+-%.�/0 -

����1 !
�2435 +%6 . ����� � -�.
��(3(�7#8�9!:- . 6 .
; ����1 !
�2<�7#8 9!:- 6>= ����� � -
���

where ? is a normalizing constant.3

A variational EM algorithm is used to learn the model pa-
rameters, and infer hidden variables (attitude distributions)
given observations. Details of learning and inference in the
model can be found in [Ross and Zemel, 2002].

An example application of MCVQ to CF involves the Each-
Movie dataset; this is the target database for the experi-
ments described in this paper. The dataset contains ratings,
on a scale from 1 to 6, of a set of 1649 movies, by 74,424
users. We divide the full dataset into two subsets: The
main subset includes users who rated at least 75 movies
and movies rated by at least 126 users, leaving a total of
1003 movies and 5831 users. The sparse subset includes
the rest of the users. We train the model on the main sub-
set, and test it on both. We further split the main dataset
randomly into 1000 users in a test set, leaving 4831 users
in the training set. We ran MCVQ with 12 VQs and 4 com-
ponents per VQ on this dataset.4 An example of the results,
after 15 iterations of EM, is shown in Fig. 2.

MCVQ resembles the aspect model in that a given user
can be represented by a multitude of hidden factors, but
it is a proper generative model, in that a novel user’s rating
vectors can be generated by sampling from the distribution
over types for each item, and sampling from the attitudes
over each type, and then sampling from the combined rat-
ing distribution. Also note that an MCVQ model with a
single type or VQ is equivalent to the standard VQ model
described above. The representational scheme in MCVQ
is powerful due to its combinatorial nature: while the stan-
dard VQ containing @ components can represent at most@ items, if we divide the @ into *A@CB * -component VQs,
MCVQ can represent *EDGF 2 items.

3 Myopic EVOI in Collaborative Filtering

We first review the basics of value of information in a
generic CF context, and then derive the details of EVOI
computations in the MCVQ model, demonstrating that ac-
tively generated queries (data points) with high EVOI pro-
vide better results than randomly generated queries.

3In order to reduce the number of parameters in the model,
ratings are treated as continuous variables, so each state

�
of type2

has a mean H7 	 - 6 and variance I�J	 - 6 in its rating predictions for
item K . These are converted into multinomial distributions over
ratings through binning and normalization.

4We use this same trained MCVQ model throughout the paper.
The model performance varies somewhat for different numbers of
VQs and components per VQ, but this variation is not the central
focus of this paper.

VQ 2 VQ 6
The Shawshank Redemption 5.5 (5) The Godfather 5.8 (6)

Taxi Driver 5.3 (6) Pulp Fiction 5.7 (5)
Dead Man Walking 5.1 (-) Get Shorty 5.2 (-)

Billy Madison 3.2 (-) Sound of Music 2.9 (2)
Clerks 3.0 (4) Lawrence of Arabia 2.6 (3)

Forrest Gump 2.7 (2) Mary Poppins 2.4 (1)
Sling Blade 5.4 (5) Mary Poppins 5.3 (5)

One Flew ... Cuckoo’s Nest 5.3 (6) The Wrong Trousers 5.2 (6)
Dr. Strangelove 5.2 (5) Willy Wonka 5.0 (6)

The Beverly Hillbillies 2.0 (-) Married to the Mob (3.3) 4
Canadian Bacon 1.9 (4) Pulp Fiction 3.2 (2)
Mrs. Doubtfire 1.7 (-) GoodFellas 2.9 (2)

Figure 2: The MCVQ representation of two test users in
the EachMovie dataset. The 3 most conspicuously high-
rated (bold) and low-rated movies by the most active states
(dominant attitudes) of 2 of the 12 VQs are shown, where
conspicuousness is the deviation from the mean rating for
a given movie. Each state’s predictions, L+ 2*%�- , can be com-
pared to the test user’s true ratings (in parentheses); the
model’s prediction is a convex combination of state pre-
dictions. Note the intuitive decomposition of movies into
separate VQs, and that different states within a VQ may
predict very different rating patterns for the same movies.

3.1 Value of Information

Most models of CF produce an explicit probabilistic model
of the domain, giving rise to distributions over ratings for a
specific user-product pair based on attributes of the user
and product in question. The MCVQ model described
above, for example, can be seen as producing a distribu-
tion over types for each product, a distribution over user
attitudes towards products of each type, and a distribution
over the ratings of product * by user � conditioned on their
respective types and attitudes.

For simplicity, we assume that the system can make recom-
mendations only for a single product, and that the utility of
any recommendation is given by its actual rating.5 Thus
the recommendation with highest expected utility is that
product with highest mean rating. We define the value of
� . �10 �32 	 to be

M �1� . 	#" NPO4Q2:RTS �����VU �(W � , ��X � . ��0 �52 " � 	

If we ask user � to rate product � + �
�� (�)�!	 and obtain
response ��Y , our new posterior over ratings is � ,,Z. , with
value defined as:

M ��� ,,Z. 	 " NPO4Q2:RTS ��� �VU �[W*\^] Y%_ � , �`X � ,,Z. �10 �32 " � 	

The (myopic) expected value of information associated
with query � is the expected improvement in decision qual-
ity one obtains after asking � :
acbed�fE�5g4hi���jj
 + 8 Z

k ������l��nm�
�o^m:<bp��� 8 Z�q�rtsubv�����j
(2)

5Other decision criteria can be used.

The myopic EVOI approach to active collaborative filter-
ing requires that we ask that query whose EVOI is maxi-
mal, as long as it is positive, or above some “query cost”
threshold.

It is important to note that this myopic approximation to
true expected value of information can be led astray. For
instance, if two queries could lead to a dramatic shift in our
ratings prediction for a user, but neither query individually
has any effect, myopic EVOI will be unable to discover
this potentially valuable pair of queries. Solutions to this
problem include using multistage lookahead, or more accu-
rately, modeling the entire interactive process as a sequen-
tial decision problem. We leave the study of these more
computationally demanding approaches to future work.

3.2 EVOI in the MCVQ Model

The computations involved in computing myopic EVOI in
the MCVQ model are reasonably straightforward. We de-
velop these in this section, but emphasize that the appli-
cation of EVOI to other CF models would proceed in an
analogous fashion. We assume � products, types (or
VQs), $ user attitudes toward products of a specific type
(or components), and rating set

� �4�	�
���
� � � . We assume a
trained MCVQ model with parameters: �4� � 2 " � 	 , for
*�� � � ��� ; �4� � �&% " '1	 , for ��� ��'�� $; and
�4��0 �32 " � 6 � 2 " �0� � �&% " '1	4" +",2*%�- , for *�� � � ��� �*'��5$ � ��� � . Note that the parameters + ,2*%)- are inde-
pendent of the user � , and that 0 �52 is independent of

� ��% .
given

� 2 " � , for any �
	��" � .
Expected value of information can be computed in the fash-
ion described above in the MCVQ model. The specifics of
the MCVQ model dictate only how to update ratings dis-
tributions given a response to a query. Assume a user �
has provided response � Y to query � . We then compute the
posterior for any *4+ �
�� ����!	 % � :
� 8 Z�
�����l � 	
�o<� l �nm
�o m h � �$�%����

 +-��� ����1<	
�2T +6 �� 7 8	 - 6 � ����� � -
���� l��nm�
�o^m:

 +-��� ����1 	
�2T +6 �� 7 8	 - 6 �)i+-%.�/0 -

� ����1 m
�2 3
+6 .��� � � ��� � -�.
�� 3 �7 8 Zm -�. 6 .�� ; ����1 m
�2<�7 8 Zm - 6 = � � ��� � -
��5

Given these posterior calculations we can compute EVOI
of any query using Eq. 2 above.

We evaluate the efficacy of this approach empirically by ex-
amining the change in model loss for the MCVQ model as
we update ratings based on responses to queries. Model
loss is defined as the difference between the user’s ac-
tual utility (rating) for the best item we could have recom-
mended and the actual utility for the item recommended by
the model. The model recommendation is the item with
highest mean rating (i.e., the item predicted to be best). In
this experiment, we fix 8 , the number of observed ratings,

0 50 100 150 200 250 300
0

20

40

60

80

100

120

Number of observed user ratings

Im
pr

ov
em

en
t i

n
m

od
el

 lo
ss

EVOI
Random

Figure 3: The total improvement in model loss (difference
between actual and predicted utility) for MCVQ for vary-
ing number of observed ratings of test users. For each test
user, the maximum improvement is 5 (ratings range from 1-
6), and the total improvement sums the improvement across
the set of 1000 test users. Each datapoint is an average of
5 test runs for each test user, with a random selection of
observed ratings on each run.

and randomly select the items to be observed for each test
user, holding out ratings of other items by this user. We
then compute the model loss for those observations by sub-
tracting the user’s true rating of the model’s highest ranked
held-out item (predicted utility) from the user’s rating of
her highest-ranked held-out item (highest utility). We eval-
uate the change in model loss due to a query � by observ-
ing the rating of item � , updating the model, and comparing
the loss of the prior and posterior model (where the poste-
rior model loss is defined over the reduced set of held-out
items). We compare the change in model loss using the
query with maximum EVOI with that obtained using ran-
dom queries.6

Fig. 3 shows that selecting the held-out item to query (or
observe) based on EVOI leads to significantly greater im-
provements in model loss than a random selection strategy,
particularly for small values of 8 . This dependence on 8
conforms with the intuition that the value of information
should decrease with increasing knowledge of the user, as
the posterior over ratings stabilizes. In fact, we could use a
threshold on EVOI as a form of “query cost”, so that if the
maximum EVOI value does not exceed the threshold, the
system would not query the user. Instead, it would make a
recommendation to the user. We note that these results in-
volve testing users drawn from the main data set. Results
using the sparse user set are qualitatively similar.

4 Bounding Mean Rating Change

The straightforward computation of the EVOI of a query
� in the MCVQ model requires ���)�
� 	 posterior com-

6Queries are restricted to held-out items, since these are the
only queries for which can can obtain actual “responses.”

putations. Since each unrated product is a potential
query, determining the query with maximum EVOI re-
quires ���)�
��� 	 posterior calculations. Since this process
must be engaged online, while interacting with the user,
this approach to active collaborative filtering is unlikely to
be feasible.

Fortunately, we can reduce the number of posterior calcu-
lations by bounding the impact a specific rating associated
with product � can have on the mean rating of product * .
We do this in a user independent fashion, allowing the com-
putation of these bounds offline (e.g., at the same time a
new model is being learned with a new batch of data). As
before, we assume a learned MCVQ model. We proceed in
several stages.
We first bound the difference in the posterior probability of
a rating � , Z. ��0 �32 " � 	," �4��0 �52 " � 6 0 � Y " � Y ��� �����
�� 	
given response ��Y to query � and the prior ��. ��0 �32 " � 	 .
We have� 8 Z� ��l � 	
�o# s � � ��l � 	
�o#

 +- �� ����1<	�
�2< +6 ��) � 8 Z����� � -
��5es ������� � -
��5 = 7 8	 - 6
� +- �� ����1 	
�2< +6 �� �

m 8 Z- 6 7 8	 - 6
where � Y ,,Z%�- is a bound on the term 6 � ,,Z. � � �&% " '1	��
� . � � �&% " '1	 6 for any user � . Notice that, as the MCVQ
model suggests, the impact of a query rating on our pre-
dictions for a user � is solely mediated by its impact on the
user’s attitude vector.
A bound can be derived by assuming a “worst case” distri-
bution over user attitudes, one that maximizes the impact
of the query rating on the target product rating. We have� � 8 Z����� � -
��5es ������� � -
��5 �

 � ��� ;	� 6 �� ����� � -
��5
 6 . ��� ;�� 6 . �������� � -
�� 3 s ������� � -
��5 �

 � ��� ;�� 6 � ;
 6 . � 6 . ������� � -
�� 3 ������� � -
��5�s ���G��� � -
��5 �

(3)

where and � - . are defined as follows:
�
 +-�.�/0 - ����1 m
�2 3 +6 .��� ������� � -%.
�� 3 �7 8 Zm -�. 6 .
� 6 .
�����1 m
�2T�7 8 Zm - 6 .

The user-dependent terms in this expression are the ele-
ments of the distributions �4� � ��% . 	 for each �
	 . A “worst
case user” requires us to set these distributions to maxi-
mize expression (3). We first note that depends only
the free variables �4� � �&% . " '�)� �
	 �" � , and can be min-
imized independently of the distribution �4� � ��% 	 . Clearly
minimizing will maximize expression (3) for any setting
of �4� � �&% 	 , and can be accomplished by setting �(. � � �&% . "'��% . 	#" � for '��% . "uO����GN���� - . + ,,ZY % . - . .
We are left to set the distribution �4� � �&% 	 to maximize
expression (3). Let � -�� " O����GNAO4Q - . � - . and � -�� "

O����tN���� - . � - . . The expression is maximized by assign-
ing positive probability in �4� � ��% 	 to only ' and to either'�� —in which case the change in �4� � ��% " '�	 is maximally
negative—or '� —in which case the change in �4� � ��% " '�	
is maximally positive. Thus, this reduces to two distinct
one-dimensional optimization problems (one for the max-
imum increase and one for the maximum decrease). The
maximum decrease in �4� � ��% 	 " ' can be found by maxi-
mizing the following expression w.r.t. ! " �4� � �&% "�'1	 :

 �"� -
 �	!#� - �$� �$�%! 	&� - � !'�%! (4)

Setting the derivative to zero, we obtain a positive solution
at

! " � - �()�+* ,� - �" � �(,� - � �"� - � � -
� - �-� - � (5)

Analogous expressions exist for the maximum increase.
We can thus set � Y ,,Z%�- to be the maximum (in absolute
value) of the expressions for maximum increase and de-
crease.
The � Y ,%Z%�- can in turn be used to derive bounds on the in-
fluence of a query response on the mean rating of a target
product * . Let . Y ,,Z2 denote the posterior mean of 0 �32 given
response � Y to query � , and . 2 its prior mean. We can ob-
tain a rough bound � Y , Z2 on 6 . Y , Z2 �-. 276 by noting that

� / m 8 Z	 s0/ 	 � � + 8 o21 + - ����1<	�
�2T + 6 �
m 8 Z- 6 7 8	 - 6

This bound is too crude to be useful, since it assumes that
all of the mass associated with different ratings � shifts in
the same direction in response to the query.
We can derive a much tighter bound by explicitly model-
ing the prior of 0 �52 and finding a worst-case distribution
�4��0 �32 	 that maximizes . Y ,%Z2 �+. 2 .7 This can be accom-
plished with a very compact linear program. We use vari-
ables ! ���	�#�	�!�3!#4 denoting the prior �4��0 �52 	 of each rating
� � � ; � � �#�#�	�#� � 4 , denoting the posterior over 0 �32 ; and 5 %�-
for each type-attitude pair �0�*' , denoting the actual change
in �4� � ��% " '�	 in response to the query. We impose stan-
dard simplex contraints on the variables ! , and � , . We also
impose the bounds �6� %�- �)5 %�- �7� %�- . Finally, we relate
the change in attitude distributions to the change in rating
distributions by imposing the following equality constraint
for each � � � :

g 8 s98 8
 + - ����1 	
�2< + 6 7 8- 6�: - 6
Maximizing the objective function ; , ��X � � , �<! , 	 subject
to these constraints bounds the change in mean rating. So
we set � Y ,,Z2 to the objective value obtained by solving this
LP.

7It isn’t hard to show that the maximal increase in mean rating
is identical in absolute terms to the maximal decrease, hence we
concern ourselves only with the maximal increase.

The LP for each � Y , Z2 is very compact, with $ ����� vari-
ables, and �4 $ ����� ��� constraints. We do note that
this bound can also be produced using a simple iterative
algorithm with complexity ���� $ ��	 (we omit details). In
practice, however, it appears that the direct LP formulation
can be solved very effectively.

With this procedure in place, we can compute the set of
terms � Y ,2 for each product * , query (product) � , and query
response (rating) � . While this computation is significant,
again we emphasize that it is performed offline given a sta-
ble learned model, and is user-independent. These terms
can be used to prune the number of posterior computations
needed to compute the query with maximum EVOI. Let * �
be the product with highest mean rating for user � . For a
specific query � , we can forego the computation of the pos-
terior ��./�10 �32 " � 6 0 � Y4" �#Y�	 (for each possible response
�#Y) if our bounds preclude the possibility of the mean of
0 �52 becoming higher than that of 0 �32�� . More precisely, if
we have

. 2 � � � , � . ��0 � Y " � 	&� Y ,2 ��� . 2 � � , ��. ��0 � Y " � 	&� Y ,2
(6)

then we need not compute the posterior over 0 �32 when
computing EVOI of � . As we will see, this can offer a
significant degree of pruning.

We empirically evaluate the amount of pruning obtained by
this approach using a procedure similar to the experiment
presented in the previous section. We use the same trained
MCVQ model as above. We observe 8 ratings of a given
test user � , and update the attitude distributions and pos-
terior over � S ��� � ����	 , the ratings of unobserved items. For
each possible query item � and target * + �

��(�)�!	 , we
compute � Y ,2 , as well as � Y ,2 � for each � . For each movie
* we can then apply Eq. 6 to determine if that movie can-
not possibly obtain a higher rating than the model’s current
top-rated movie after query � . The number of movies sat-
isfying this inequality describes the degree of pruning in
posterior computations.

Figure 4 plots the pruning of potential targets as a propor-
tion, calculated based on the ratio of number of unobserved
movies not satisfying Eq. 6 to potential targets (� � 8 � �).
The figure shows a large degree of pruning at the early
stages of (simulated) interaction with the user, but is fairly
substantial throughout the interaction period. This implies
that many items do not have the potential of ever surpass-
ing the estimated utility of the model’s top-ranked item,
and substantial computational savings can be obtained by
identifying these based on computations that can occur pri-
marily offline. Again, while we show results only for users
from the main subset, results from the sparse subset are
qualitatively similar.

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

Number of observed user ratings

P
ro

po
rt

io
n

of
 p

ot
en

tia
l t

ar
ge

ts
 p

ru
ne

d

Figure 4: The proportion of unobserved items for which
posterior distributions need not be computed is plotted for
varying number of observed ratings of test users. As before,
each datapoint an average of 5 test runs for each test user,
with a random selection of observed ratings on each run.

5 Prototype Queries

The bounds in the previous section restrict the number of
posterior computations over target products for each query-
rating pair to those that could possibly become optimal; this
reduces the ���)�
� ��	 problem to ���)�
� @ 	 , where @ � �
is the expected number of targets for which posteriors must
be computed. This depends on the degree of pruning pos-
sible for a specific problem, but as we’ve seen, @ appears
to be considerably less than � in practice.

We might also attempt to reduce the number of queries we
need to consider: considering 	�
$� queries reduces on-
line posterior computations to ���)��	c@ 	 . In this section we
describe a simple method for offline construction of a set of
	 prototype queries, with the property that the EVOI of any
query + � is within some bound � of some prototype
query � +�	 . By restricting attention to queries in 	 , we
reduce online complexity further, but guarantee � -optimal
querying behavior.

Intuitively, the difference in the impact of two potential
queries � and � 	 can be characterized by the difference
in the type distributions of each query, and the difference
in their rating parameters. For any product (i.e., potential
query) � , define �<Y to be a vector of length $ � with ele-
ments � ��� � Y " �'	 +4,Y %�- . For two queries � and � 	 , the fun-
damental distinction between � and � 	 can be characterized
by the $ � -distance ��� � � � 	 	 " 6 6 � Y ��� Y . 6 6 � between these
vectors.

The key fact to notice is that the difference in � Y ,%)- and

� Y . ,%�- (for any �0��' � �) is bounded by a continuous func-
tion � of ��� � � � 	 	 ; that is, if ��� � � � 	 	 ��� , then 6 � Y ,%�- �
� Y . ,%�- 6 ���(����� � ��'3� � 	 . We currently have some fairly crude
bounds that are independent of all terms except � , as well
as a somewhat more reasonable approximation �(����� � 	4"
�����<B��4� � 	 , where �4� � 	 is the probability of receiving re-

sponse � under query � .8 From this, we can bound the dif-
ference between the terms � Y ,2 and � Y . ,2 for each target *
with the same �(��� 	 . Finally, we obtain a bound on the dif-
ference in the expected mean rating change in target * due
to query � and query � 	 via ; , �4�10 � Y " � 	 �(����� �0�*'3� ��	 .
For example, we obtain

6 . Y2 � . Y .2 6 � ��� �

using �(����� � 	 " � � �<B��4� � 	 . Here . Y2 denotes the expected
value (mean rating) of product * after receiving a response
to query * .

This suggests an obvious method for constructing query
protoypes that reduce the number of queries one needs to
consider to guarantee that a query is chosen that has ap-
proximately optimal myopic EVOI. Given a learned model,
our aim is to construct a set of prototype queries 	 such
that, for any product * , there exists a product � +�	 such
that ��� � ��*�	 ��� . This is a straightforward clustering task.
If we restrict our attention to such a set and chose the query
within 	 that has maximum EVOI, we can guarantee that
we are acting �(��� 	 -optimally with respect to considering
the full set of potential queries.

We have not yet experimented with this approach, so we
cannot comment on its efficacy. However, we expect that
it can offer considerable savings. We emphasize again that
the construction of a set of prototype queries can be done
offline, allowing substantial online savings with respect to
the number of required posterior computations.

6 Concluding Remarks

We have proposed an active approach to collaborative fil-
tering, based on a probabilistic model of user preference
data. Our framework is quite general, considering the value
of queries that could most improve the quality of the rec-
ommendations made, based on the model’s predictions.
We have shown that offline pre-computation of bounds on
value of information, and of prototypes in query space, can
be used to dramatically reduce the required online com-
putation. We also have derived detailed bounds for a par-
ticular model, and empirically demonstrated the value of
our active approach using this model. While off-line com-
putations should also lead to considerable savings in other
probabilistic models, we expect the savings in MCVQ to be
greater due to the user-independent assignment of movies
to types.

Current directions of this work include improving the
bounds, approximate pruning of targets, and further stud-
ies of prototyping of queries. In addition, we are examin-
ing costs models for queries, including modeling the prob-
ability that a user can answer a given query. Finally, we

8We expect that much tighter bounds than the ones we have
derived currently are possible.

are considering extending the myopic approach to examine
multistage lookahead, and offline policy construction.

Acknowledgements

We thank Scott Helmer for his work on the movie database
and on exploring other probabilistic methods of collabora-
tive filtering. We also thank David Ross for his work on
the multiple cause vector quantization algorithm. This re-
search was supported by grants from NSERC and IRIS.

References

[Breese et al., 1998] Jack S. Breese, David Heckerman,
and Carl Kadie. Empirical analyis of predictive algo-
rithms for collaborative filtering. In Proceedings of the
Fourteenth Conference on Uncertainty in Artificial In-
telligence, pages 43–52, Madison, WI, 1998.

[Cohn et al., 1996] David A. Cohn, Zoubin Ghahramani,
and Michael I. Jordan. Active learning with statisti-
cal models. Journal of Artificial Intelligence Research,
4:129–145, 1996.

[Goldberg et al., 2000] Ken Goldberg, Theresa Roeder,
Dhruv Huptan, and Chris Perkins. Eigentaste: A con-
stant time collaborative filtering algorithm. Techni-
cal Report M00/41, IEOR and EECS Departments, UC
Berkeley, August 2000.

[Hofmann and Puzicha, 1999] Thomas Hofmann and Jan
Puzicha. Latent class models for collaborative filtering.
In Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence, pages 688–693, Stock-
holm, 1999.

[Konstan et al., 1997] Joseph A. Konstan, Bradley N.
Miller, David Maltz, Jonathan L. Herlocker, Lee R. Gor-
don, and John Riedl. Grouplens: Applying collaborative
filtering to usenet news. Communications of the ACM,
40(3):77–87, 1997.

[Nguyen and Haddawy, 1998] Hien Nguyen and Peter
Haddawy. The decision-theoretic video advisor. In
AAAI-98 Workshop on Recommender Systems, pages
77–80, Madison, WI, 1998.

[Pennock and Horvitz, 2000] David M. Pennock and Eric
Horvitz. Collaborative filtering by personality diag-
nosis: A hybrid memory- and model-based approach.
In Proceedings of the Sixteenth Conference on Uncer-
tainty in Artificial Intelligence, pages 473–480, Stan-
ford, 2000.

[Ross and Zemel, 2002] David Ross and Richard S.
Zemel. Multiple cause vector quantization. In Advances
in Neural Information Processing Systems, 2002. To ap-
pear.

