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Abstract

Phase-based methods have been successfully used in many areas of computer vi-

sion, such as stereo matching and optical 
ow estimation. Because of the many

desirable properties of phase, phase-based methods have some advantages over other

methods. Phase-based methods provide measurements of binocular disparity at a

set of scales and spatial orientations, and at a set of pre-shifts. However, current

computer vision techniques combine these estimates in a somewhat ad hoc way, as-

suming that left and right images are simple translations of one another. Phase-based

binocular measurements are also thought to comprise the �rst stage of disparity pro-

cessing in the primary visual cortex. However, the subsequent stages that combine

the measurements to �nd a unique disparity map are unknown.

The goal of this thesis is to formulate the estimation of binocular disparity from

a collection of phase-based measurements. Using a Bayesian probabilistic approach,

the goal is to compute a probability distribution over disparities given a set of phase-

based measurements. The main contributions of this thesis concern the development

of the likelihood function. Additional contributions concern the combination of the

likelihood functions from di�erent channels. We investigated two prior models for this

purpose. The �rst approach assumes an uninformative prior of the disparity �eld.

The resulting algorithm combines the measurements by taking the product of the

likelihood functions over scales and orientations. The second approach uses a multi-

scale Markov model, which takes into account the spatial coherence of typical disparity

�elds. The latter approach allows us to avoid both the problems associated with

coarse-to-�ne methods, and the iterative nature of existing MRF based approaches.
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Chapter 1

Introduction

One important function of the human vision system is to construct a representation

of a three-dimensional scene from the two two-dimensional images obtained by the

left and right eyes. Although with other monocular cues and prior knowledge, one

can still tell the relative distance of objects with one eye closed, having two images

allows one to infer depth information more accurately for many tasks. For example,

putting a pen into its cap is a trivial task with two eyes open. However one may

�nd it challenging with one eye closed. This ability of �nding the depth information

encoded within multiple images is called stereo vision. In particular, it is called

binocular stereopsis when dealing with a pair of images.

Researchers have been interested in computationally implementing stereo vision

for the past thirty years. Computational stereo vision has many potential appli-

cations, such as robot navigation, the control of autonomous land vehicles and the

automation of factory assembly lines. Unfortunately, like most problems in computer

vision, the stereo problem has proven to be more diÆcult than originally anticipated.

In remaining sections of this chapter, we introduce the principles underlying the
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CHAPTER 1. INTRODUCTION 2

recovery of stereoscopic depth, the complications associated with it, and some existing

techniques that are commonly used. We also outline the main contributions of this

thesis, namely, the development of a Bayesian phase-based method for estimating

binocular disparity.

1.1 Theoretical Basis

Binocular stereopsis uses a pair of images taken by cameras from di�erent viewpoints.

In the special but most common case, the two images are taken by two parallel

cameras. These cameras have

� the same vertical position, the same orientation, and

� identical focal lengths.

In what follows, we assume that the images are taken by such a camera pair. Assume

that a point in the 3-D world (we call it a scene point hereafter) is projected to both

image planes of the camera pair, 1 and we know the exact location of the image point

on the image planes. Given the positions of the center of projection of the cameras,

as illustrated in Fig. 1.1, we can determine the location of the scene point. This

technique, called triangulation, forms two rays that go through the respective image

points and centers of projections. The intersection is the location of the scene point.

The primary task of a stereopsis algorithm is to establish point correspondences.

That is, for each point in one image, �nd a point in the other image, such that they

are the projections of the same scene point. Solving the correspondence problem is

1A scene point may not be projected to both image planes if there exists occlusion. We discuss

occlusion later in this chapter.
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left right

Scene point

Center of Projection Center of Projection

Figure 1.1: Triangulation. Given two image points that are the projection of the same
scene point on di�erent image planes, we can determine the three-dimensional location of
the scene point. (After [Nal93].)

sometimes called stereo matching, because it involves matching points in two di�er-

ent images. It might appear that the establishment of correspondence requires that

an entire image be searched for every point in the other image. Fortunately, such a

two-dimensional search is unnecessary due to a powerful constraint: the epipolar con-

straint [KWS75]. As illustrated in Fig. 1.2, given an image point A, its corresponding

point B in the other image is constrained to lie on the epipolar line, which is the

projection of the straight line that goes through the scene point and point A.

In parallel camera con�gurations, the epipolar lines coincide with the horizontal

scan lines of the images and are parallel [Nal93]. For a scene point A, as shown in

Fig. 1.3, assume that its corresponding image pointm in one image is at (u; v), and its

corresponding image point m0 in the other image is at (u0; v0). The projection points

m and m0 have the same vertical position such that v = v0. Binocular disparity is a
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left right

Scene point

Center of Projection Center of Projection

A B

Figure 1.2: The epipolar constraint. (After [Nal93].)

term encountered frequently in stereopsis. In the parallel camera setting, the disparity

denotes the displacement between the two corresponding image points, whose value

d is de�ned as

d = u0 � u (1.1)

Given the camera calibration, we can derive the depth measure z of A from the

disparity value d (Figure 1.4):

z =
ft

d
(1.2)

where f is the camera focal length, and t is the distance between the two cameras.

Since disparity encodes important depth information, it becomes the primary task of

stereo vision to �nd the disparity map of the image pair. In this thesis, when we talk

about stereo vision, we are referring mainly to the estimation of the disparity map.
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(u,v) (u,v) (u',v')

epipolar line

 u  u  u'

v=v'

m'm

left image right image

Figure 1.3: Epipolar constraint in parallel camera con�gurations. m0 in the right image
corresponds to m in the left image. m and m0 are on the epipolar line and have the same
vertical position.

C’ (camera)(camera)  C

f f

o

u u’

m’m

t

left image plane right image plane

A (scene point)

o

Figure 1.4: Given the camera calibration and disparity value, we can derive the depth
measure z of the scene point A. t is the distance between the two cameras. f is the focal
length.
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In the general case, the cameras may not be in such ideal positions, but one can

use the camera model to map the two images into a common recti�cation plane in

which the epipolar lines are horizontal.

1.2 Correspondence Establishment

The task of matching points between the two images is known as the correspondence

problem. This seemingly easy task is complicated by several factors:

� Perspective Projection: When projected to the image planes, a surface in a 3-D

scene may undergo geometric deformations between left image and right images.

� Uniform brightness: Many images contain large regions of uniform brightness.

The matching is often ambiguous for these regions.

� Discontinuity and occlusion: Many stereo scenes contain discontinuities in depth

at object boundaries, discontinuities in surface orientation, and steeply sloping

surfaces. Discontinuities often cause half occlusion, that is, some points in one

image may not have corresponding points in the other image. This is illustrated

in Fig. 1.5.

� Noise: The sources of noise include the quantization error, noise from the cam-

eras, lighting variation between images, specular re
ection, etc. Because of the

noise, the feature (such as intensity, edge, and zero-crossing) values for corre-

sponding points in the left and right images often di�er.

Because of the di�erent sources of intensity variation, most scene points will have

some di�erence in image intensity between the two images. And because of occlusion,
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Center of Projection Center of Projection

Invisible for left cameraInvisible for right camera

right image planeleft image plane

Figure 1.5: Discontinuity at object boundaries often causes half occlusion, that is, some
scene points are visible from one viewpoint while invisible from the other viewpoint. (Af-
ter [Nal93].)

there may be regions of half occluded points that appear in only one image and

consequently have no match at all. For years, people have o�ered many solutions

to the correspondence problem. However there are no satisfactory algorithms that

adequately address all of the complications. In what follows, we introduce some

existing techniques and compare their advantages and disadvantages.

The existing techniques can be classi�ed as Phase-Based, Intensity-Based, and

Feature-Based. We begin with a brief introduction of these methods.

1.2.1 Intensity-Based Methods

A straightforward approach to establishing correspondence along epipolar lines is to

match points on the basis of their image intensities. It assumes that scene points

have the same intensity in each image. However as we mention above, the image

intensity corresponding to a 3-D point may not remain the same in the two images.
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xl xl xr

y y

Left image Right image

epipolar line

Figure 1.6: Window-based method. The window in the right image slides along the
conjugate epipolar line to �nd the best match.

In addition, as several points in each image along the epipolar line may have the

same intensity, establishing correspondence by matching intensities on a point-by-

point basis may not be feasible, unless there is some form of smoothness constraint

that limits the solution space [GLY95]. So instead of matching point-by-point, it has

been common to use a window-based method as illustrated in Fig. 1.6. This method

assumes that the disparities are, ideally, constant within a small window. As shown

in Fig. 1.6, consider a small window centered at a point in the left image. Then along

the eipolar line at the same vertical position in the right image, we slide a window of

the same size and �nd the location where the two windows have the best match. The

displacement between the left and right windows is considered the disparity at the

window centers. The matching process uses a simple correlation scheme to measure

the quality of match; that is, the more the two regions in the windows are correlated,

the more likely they ought to be matched.

A problem associated with this window-based approach is that the size of the

correlation windows must be carefully chosen, because it assumes constant disparity

within the window. If the size is too small (the extreme case is that the window is
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one pixel), it may not capture enough image structure, and thus may be too sensitive

to noise and have many false matches. A large window (the extreme case is that the

window has the same size as the image) may result in a disparity map with a loss of

�ne detail because, for a large window, the assumption of constant disparity is often

violated. In an adaptive matching window approach, Kanade and Okutomi [KO93]

proposed that the size and shape of the matching window be chosen adaptively on

the basis of a local evaluation of the variation in both the intensity and the previously

estimated disparity. The idea of an adaptive window is that one can smooth the noise

without smoothing over sharp variations in disparity.

Another approach is to use a coarse-to-�ne multi-scale (multi-resolution) matching

scheme. One can apply this approach to the intensity-based methods as well as phase-

based and feature-based methods. With this approach, an initial guess of disparity is

provided from a coarser scale. Then the images at the next �ner scale are pre-shifted

(warped) by the initial guess of disparities so that they are in rough alignment and

with smaller disparities. This approach not only reduces ambiguous matching, but

also reduces computation. However, this approach has a fundamental weakness. A

poor estimate at the coarse scale leads to incorrect estimate at the �ne scale, from

which the algorithm cannot recover. A more detailed description of this approach

can be found in Section 2.2 and elsewhere [MP77, Nis84, Bar89].

1.2.2 Feature-Based Methods

In the feature-based approach, the image pair is �rst preprocessed by an operator

to extract features that are stable under the change of viewpoint. The matching

process is then applied to the attributes associated with the detected features. The
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features one can use may be edges, line segments, curve segments, etc. One of the

most important and widely used features is the edge. There exist many operators for

�nding edges in an image. For example, one can use the r2G operator followed by

a detection of zero-crossings [Cas96]. The edge-based method is not useful in image

regions without edges, and cannot generally get a dense disparity map since edges

are often sparse in an image. This is also true for other features such as corners and

line segments. Hence, edge-based methods or other feature-based methods are often

used in conjunction with intensity-based methods.

1.2.3 Phase-based Methods

Phase-based methods estimate disparity from the phase information in band-pass

�ltered versions of the binocular images. In particular, disparity is de�ned as the

shift necessary to align the phase values of the two signals.

Phase has several desirable properties [FJJ91]. One advantage is that phase is

amplitude invariant, and therefore, these techniques are robust even when there exist

lighting variations between the two images. Phase has also been shown to be robust

when the left and right images are near aÆne deformations of one another [FJ93],

which commonly exist when viewing 3D surfaces that are not frontoparallel.

One of the main advantages of phase techniques is that phase is predominantly

linear [FJ93]. As a consequence the estimation of disparity can be reduced to the

displacement of (nearly) linear functions. In this way, it is possible to obtain dense

disparity maps with sub-pixel accuracy, without requiring explicit sub-pixel signal

reconstruction. However, phase is only uniquely de�ned over one wavelength of a

band-pass signal, and therefore phase-based measurements from a single band-pass
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�lter (channel) can only uniquely determine disparities up to half a wavelength. Thus,

in practice, it is common to pre-shift the images using a set of plausible pre-shifts

or using an initial disparity estimate from another channel at a coarser scale where

wavelengths are longer, and hence they can measure larger disaprities, at the cost of

poorer spatial resolution.

Finally, it is also interesting to note that neurophysiological research has shown

that the �rst stages of disparity processing in the primary visual cortex in cats,

primates, and in the visual wulst in owls are thought to use a phase-based measure-

ment [DOF91, WF93]. This model is often referred to an energy model. In short,

the energy model involves the cross-correlation of band-pass signals from the two

eyes, from di�erent (shifted) retinal positions, much like the phase-based disparity

measurements of [JJ94, Fle94].

1.3 Thesis and Contributions

Phase-based methods provide measurements of binocular disparity at a set of scales

and spatial orientations, and at a set of pre-shifts. Current computer vision techniques

combine these estimates in a somewhat ad hoc way, assuming that left and right

images are simple translations of one another. Phase-based binocular measurements

are also thought to comprise the �rst stage of disparity processing in the primary

visual cortex. However, the subsequent stages that combine the measurements to

�nd a unique disparity map are unknown.

The goal of this thesis is to formulate the estimation of binocular disparity from

a collection of phase-based measurements. Using a Bayesian probabilistic approach,

the goal is to compute a probability distribution over disparities given a set of phase-
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based measurements. Using Bayes' rule, this posterior distribution can be expressed

as the product of a likelihood function and a prior density function. The likelihood

function speci�es the probabilistic relation between the phase-based measurements

and the underlying disparity �eld, and the prior model speci�es our prior belief in

the structure of disparity �elds.

The main contributions concern the development of the likelihood function. Ad-

ditional contributions concern the use of a multi-scale prior model. This resulting ap-

proach allows us both to avoid the problems associated with coarse-to-�ne methods,

and the iterative nature of existing Markov Random Field (MRF) based approaches.

Contributions related to the likelihood function include:

� Identi�cation and modeling of the sources of variability in phase-based mea-

surements as they arise from �lter outputs. (Section 4.1 and Section 4.2)

� Empirical derivation of the form of the likelihood function for single phase-based

measurements at multiple scales/orientations. We �t the form of the likelihood

with a parameter model invariant in scale. (Section 4.3 and Section 4.4)

� Formulation of a joint likelihood function for a measurements at di�erent pre-

shifts for a single scale/orientation. (Section 4.5)

Initial step towards multi-scale combination:

� Implementation of the [FWH96, Fle94] method of summing binocular phase

measurements over channels. (Section 2.5.2)

� Implementation of the simplest way to combine the measurement over scales and

orientations, taking the product of the joint likelihood function across scales and
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orientations. By doing so, we assume the independence of the measurements at

di�erent scales and orientations, and the uniform prior over the disparity map.

(Section 5.1)

� Development of an algorithm based on a multi-scale prior model that prefers

smooth disparity �elds and small disparities. Implementation and testing of it

against other algorithms. The new algorithm has many potential advantages

over existing MRF-based approaches. Currently, many MRF-based algorithms

incorporate smoothness models that require iterative procedures, with coarse-

to-�ne propagation of estimates. They are usually slow to converge and are

therefore not suitable for real-time applications. The multi-scale algorithm here

does not assume coarse-to-�ne and it is computed in �xed time in terms of the

number of pixels. (Section 5.4)

Our main goal for the multi-scale combination is to show the feasibility of using

phase-based measurements in a Bayesian approach. Therefore, it is not our major

concern to achieve a signi�cant improvement over existing stereo matching methods

at this early stage, nor do we provide in-depth comparison of our results with those

from other existing methods. Nevertheless, the methods show potential for further

improvement.

This thesis is organized as follows. Chapter 2 describes the phase-based technique

on which our algorithm is based. Chapter 3 introduces the Bayesian approach in

computer vision, as well as the likelihood function and prior model used in this

approach. It especially focuses on the Markov Random Field (MRF) as a prior model

and dicusses the choice of prior models. In Chapter 4, we explicitly model the sources

of variability of the phase-based measurements. Using these models of variability, we
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empirically determine the likelihood function with a parameter model. Chapter 5

shows how to combine the likelihood functions obtained at di�erent scales to reach

an optimal estimate of disparity.



Chapter 2

Phase-Based Methods

This chapter reviews several important phase-based methods, namely, phase-di�erence,

phase-correlation and the local weighted phase-correlation method. Phase-based

methods have found application in image matching, including stereo matching and

optical 
ow estimation. Despite the existence of numerous techniques that are phase-

based, they all share a common feature, that is, they exploit the phase behavior in

band-pass �ltered versions of di�erent views of a 3-D scene [FJ90, FJJ91, San88,

Wen94, JJ94, Fle94].

Researchers have discovered many desirable properties of these techniques. The

obvious advantage of phase-based methods over intensity-based ones is that phase

is amplitude invariant, hence the measurement is robust even if there exist lighting

variations resulting from, for example, surfaces with specular re
ection. Another rea-

son to use phase is that phase is predominantly linear [FJ93] in space. The phase

linearity is important since it is easy to estimate the displacement of linear functions.

In terms of the quality of disparity map, in phase-based methods, matching can ex-

ploit all phase values such that a dense set of estimates can be extracted by making

15
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full use of the available signal. Disparity estimates are obtained with sub-pixel ac-

curacy, without requiring explicit sub-pixel signal reconstruction or sub-pixel feature

detection and localization.

One of the most important advantages of phase-based approaches is the stability

of band-pass phase behavior with respect to image deformations that typically exist

between the left and right image [FJ93]. The stability of phase behavior means that

a small aÆne deformation of the image causes a similar deformation of the phase.

Although phase deformations do not exactly match input deformations, they are

usually close enough to provide reasonable measurements for stereo matching and

other vision applications.

One might be tempted to place more importance upon the amplitude than phase,

since amplitude exhibits some recognizable structure. However, while the amplitude

speci�es the magnitude and signi�cance of the band-pass �lter output, it is the phase

information that speci�es the local structure of the response. This property of phase is

particularly important in addressing the stereo matching and optical 
ow estimation.

Neurophysiological data also imply the importance of phase information. For exam-

ple, Ohzawa et al. [ODF90, FWH96] suggested that disparity sensitivity of neurons

in the visual cortex might be a result of interocular phase shifts.

Central to phase-based methods are the �lters that decompose the images into

band-pass signals. In this chapter, we will �rst discuss the quadrature-pair �lters

that can be used to extract phase. Then we review the phase-di�erence and phase-

correlation methods. After outlining the advantages and disadvantages of these two

methods, we then introduce a method proposed by Fleet in [Fle94] that combines

desirable properties of both methods.
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2.1 Quadrature Filters

A pair of �lters is said to be in quadrature phase if they have the same amplitude

spectra, but di�er in phase by 90Æ, that is, they are Hilbert transforms of each other.

The Hilbert transform is given by

g(x) =
1

�

Z 1

�1

f(y)

y � x
dy (2.1)

As an example, Fig. 2.1A shows one �lter of a quadrature �lter pair, whose impulse

response is second derivative of a Gaussian(G2), Fig. 2.1B is an approximation to the

Hilbert transform of G2, which is usually called H2 [FA91]. G2 and H2 have the same

frequency response as shown is Fig. 2.1C, but their phase responses di�er by 90Æ.

In practice, we may use band-pass �lters tuned to di�erent orientations and scales

to compute the disparity. One way to design and implement the oriented �lters is to

use the steerable �lter [FA91]. See appendix A for details.

2.2 Phase-Di�erence Methods

Existing phased-based methods can generally be classi�ed into two categories: phase-

di�erence [JJ94, FJJ91] and phase-correlation methods [KH75]. In phase-based meth-

ods, disparity is de�ned as the shift necessary to align the phase values of band-pass

�ltered versions of two signals.

Let Il(x) be the left input signal and Ir(x) be the right input signal.1 Assume

that they are �ltered by complex-valued �lters, such as a quadrature pair �lter. Let

the complex-valued responses of a single band-pass �lter be L(x) for the left signal

1Here the left and right signals are in 1-D because we assume they are on the epipolar lines.
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Spatial frequency

Spatial position

Spatial position

A B

C

0

0

0

Figure 2.1: G2 and H2 �lters and their frequency and phase responses. Fig. A shows a
G2 �lter, whose impulse response is second derivative of Gaussian, Fig. B is the Hilbert
transform of G2, which is usually called H2. G2 and H2 have the same frequency response
shown is Fig. C.
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and R(x) for the right signal. In what follows, we express L and R in terms of local

amplitude and phase:

L(x) = Al(x)e
i�l(x); R(x) = Ar(x)e

i�r(x) (2.2)

where Al(x) and Ar(x) are amplitudes and �l(x) and �r(x) are phases. L(x) and

R(x) could be outputs of 2-D �lters, but here they are treated as a function of position

x along the epipolar line.

The local image disparity, at a speci�c location x, is de�ned to be the shift d(x)

such that

�l(x� d(x)

2
) = �r(x+

d(x)

2
) (2.3)

Because phase is only uniquely de�ned in the interval (��; �], this approach can only

measure disparities up to half a wavelength. If the disparity is too large then the

computed phase di�erence can be wrong by a multiple of 2�. From �ltered outputs

with short wavelengths we can only measure small disparities. With large wavelengths

we can measure large disparities; however we are unable to detect �ne details in d(x),

because large wavelength means large �lter support, which causes the loss of spatial

resolution.

In order to use �lters tuned to higher frequencies, so that we can achieve a more

detailed disparity map, we need to use coarse and �ne estimates. For example, it is

common to use some form of coarse-to-�ne control strategy [MP77, JJ89]. An initial

guess of disparity is provided from a coarse scale where the �lters output has a larger

wavelength (the wavelength should be more than twice the largest expected disparity).

Then the images at the next �ner scale are pre-shifted (warped) by the initial guess of

disparities so that they are in rough alignment and with smaller disparities. We can
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then use �lters tuned to higher frequencies to determine how much further alignment

is needed to bring them into exact match.

Assume that at a certain scale, the initial guess is suÆciently good and the �lter

outputs have frequencies close to the frequency !0 to which the �lter is tuned to.

Then the shift required to bring the left and right signals into match is given by

ed0(x) � [�l(x)� �r(x)]2�
!0

(2.4)

where [	]2� denotes the principal part of 	 that lies between �� and �. However, if

the outputs are not purely sinusoidal, then the disparity estimates ed0(x) will not be
exact since the phase is not purely linear and the frequency is not constant.

In [FJJ91], Fleet suggests that we adopt a more general model. Instead of using

the tuning frequency of the �lter output, we should use the local frequency of the

band-pass signal at each spatial location, i.e. the instantaneous frequency. The

instantaneous frequency is de�ned as

�!l =
d�l(x)

dx
; �!r =

d�r(x)

dx
(2.5)

Replacing !0 in Eq. (2.4) by the average instantaneous frequency between the left

and right signals, we obtain an new estimate of the shift

ed1(x) � [�l(x)� �r(x)]2�
!

(2.6)

where ! = 1
2
(�!l + �!r).

[FJJ91] gives an estimate of the disparity error of Eq. (2.6). Assume that left and

right �lter outputs are shifted versions of one another with disparity d(x) = Æ, then

the phase di�erence in Eq. 2.6 is

��(x) = �l(x)� �r(x) = �(x +
Æ

2
)� �(x� Æ

2
) (2.7)
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If �(x) is smooth, we can rewrite �(x + Æ
2
) and �(x� Æ

2
) as Taylor series about x:

�(x +
Æ

2
) = �(x) +

Æ

2
�

0

(x) +
�

00

(x)

2
(
Æ

2
)2 +O(Æ3�

000

(x))

�(x� Æ

2
) = �(x)� Æ

2
�

0

(x) +
�

00

(x)

2
(
Æ

2
)2 +O(Æ3�

000

(x)) (2.8)

So ��(x) = Æ�
0

(x)+O(Æ3�
000

(x)). Then the disparity error �(x) for the new estimate

ed1(x) is given by

�(x) = O
�
Æ3�

000

(x)

�0(x)

�
(2.9)

2.3 Measurement of Phase Di�erences

There are several ways to measure phase di�erences. For example, one can take the

complex-valued product of left output and the complex conjugate of the right [JJ89]:

C(x) = L(x)R�(x) = Al(x)Ar(x)[cos��(x) + i sin��(x)] (2.10)

where ��(x) = �l(x)��r(x). The real and imaginary part of C(x) can be computed

directly from the real-valued �lter outputs:

AlAr cos�� = Re[L]Re[R] + Im[L]Im[R] (2.11)

AlAr sin�� = Im[L]Re[R]� Re[L]Im[R] (2.12)

In the discussion so far, we assumed the phase �(x) is smooth and stable. However,

the phase signals are occasionally very sensitive to spatial position and variation in

scale [FJ93]. This instability occurs in the neighborhoods of phase singularities,

where the amplitude of the signal goes through the origin in the complex plane. It is

necessary that the singularity neighborhoods be detected so that incorrect disparity

estimate can be avoided. This can be done with constraints on the instantaneous

frequency and the amplitude derivative of the �lter output [FJ93].
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2.4 Global Phase-Correlation

Phase-correlation methods use Fourier phase for signal registration. They assume

that in a small local area, one image is simply a shifted version of the other image.

Ir(x) = Il(x� d) (2.13)

By using the Fourier shift theorem, taking the Fourier transform of both sides of

Eq. (2.13), yields Îr(!) = Îl(!)e
�i!d, where Îl(!) = Al(!)e

i	l(!), and Îr(!) =

Ar(!)e
i	r(!). Al(!) and Ar(!) are the amplitude spectra, while 	l(!) and 	r(!)

are the phase spectra. !d = 	l(!) � 	r(!), which represents the di�erence in the

phases of the respective Fourier coeÆcients at each frequency !.

Taking the product of the left Fourier spectra and the complex conjugate of the

right, and then dividing by the product of their amplitude spectra, we obtain

Îl(!)Î
�
r (!)

Al(!)Ar(!)
=
Al(!)Ar(!)e

i(	l(!)�	r(!))

Al(!)Ar(!)
= ei!d (2.14)

where Î�r (!) is the complex conjugate of Îr(!). The inverse Fourier transform of ei!d

is Æ(x + d), where Æ(�) is the Dirac delta function. So the phase-correlation methods

measure disparity by �nding peaks in

F�1
�
Îl(!)Î

�
r (!)

Al(!)Ar(!)

�
(2.15)

In practice, the disparity is measured locally, that is, by using the windowed

regions of the left and right images instead of the whole original images. The size of

the window must be larger than the expected displacement so that there is suÆcient

information in two windows that can be used for matching.

The phase-correlation method determines the disparity based on the consistency

of information at di�erent scales and orientations. It does not require a coarse-to-�ne
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control strategy and it can work even when the band-pass signals are shifted by more

than half a wavelength of the lowest frequencies in the signal.

Fleet showed [Fle94] that one can view the phase-correlation methods as using

a voting scheme to �nd the disparity. The inverse Fourier transform is the recon-

struction of a function by summing up all the sinusoids weighted by their amplitudes.

So the inverse Fourier transform is a sum of phase-shifted sinusoidal functions. Ide-

ally, there will be a single disparity at which peaks coincide across a wide range of

frequencies to form a unique peak.

2.5 Local Weighted Phase-Correlation

So far, we have discussed the phase-di�erence method and the phase correlation

method. Both methods have their advantages and disadvantages. Phase-di�erence

methods have many desirable properties. In recent years, the use of local wavelet �l-

ters and the stability constraints greatly improve the robustness of the measurement.

However, the phase-di�erence method usually requires some form of coarse-to-�ne

control strategy, which is often regarded as unsatisfactory. If a poor estimate is ob-

tained at the coarsest scale, the next �ner scale will have a poor initial guess, which

will bring the two images into false registration and the rest of the process may con-

verge to the incorrect disparity. In addition, there is growing evidence to indicate

that the correspondence search in human stereo vision may not be a coarse-to-�ne

process [MDA94].

The major advantage of the phase-correlation method is that the voting scheme it

uses to determine the disparity is based on the consistency of information at di�erent

scales and orientations. It does not require a coarse-to-�ne control strategy and it
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works even when the band-pass signals are shifted by more than half the wavelength

of the lowest frequency. Some researchers have found fundamental weaknesses in

using the Fourier methods to measure the relative phase shift between the left and

right images [KH75, Sto86]. The wrap around e�ect is inevitable since a window-

based scheme is used here. Note that this problem cannot be easily solved by using

di�erent windowing function [Sto86].

Fleet [Fle94] proposed the Local Weighted Phase-Correlation method that com-

bines the robustness of phase-di�erence methods and the voting scheme of phase-

correlation methods. This method uses a measurement of local phase-di�erence pro-

posed in [JJ94]. In this section, we �rst introduce this measurement and discuss some

of its important properties. Then we describe how this measurement is utilized in the

Local Weighted Phase-Correlation method.

2.5.1 The Measurement of Local Phase-di�erence

In 2.2, in order to compute the phase di�erence, we directly take the normalized

product of left and right outputs as in Eq. (2.10). Here we introduce a di�erent

method proposed in [JJ94] to measure the local phase di�erence. Assume that the

left and right signals have been brought into rough alignment by a pre-shift � of one

signal, for example, the right one. We need to know how much more alignment is

needed to bring them into an exact match. To do so, we can �nd a complex scalar

z to minimize the squared di�erence between the left and the shifted version of the

right signal, i.e., Z
W (x)jL(x)� zR(x + �)j2dx (2.16)
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whereW (x) is a small, localized Gaussian window. Motivated by this purpose, Jenkin

and Jepson proposed a new measurement of local phase di�erence [JJ94]

C(x; �) =
W (x)
 [L(x)R�(x + �)]q

W (x)
 jL(x)j2
q
W (x)
 jR(x)j2

(2.17)

where 
 is the convolution operator. The introduction of the localized window pro-

vides more stable measurement, which we will discuss later. One can show that the

phase of C(x; �) corresponds to the phase of z, which minimizes Eq. (2.16). There

are several important properties of this measurement.

First, the phase of C(x; �), as the phase of C(x) in Eq. (2.10) is a phase di�erence

that encodes the shift required to match the phases of the left and right band-pass

signals. In addition, the peaks in the real part of C(x; �) can be used as votes for

candidate disparities � between left and right �lter outputs at location x.

The second important property of C(x; �) is that its magnitude provides a con�-

dence measure for the goodness of �t between the phase-shifted left and right signals.

At some location x0, C(x0; �) can be rewritten as the local spatial average of vectors

inside the localized window (ignoring the window weights for convenience)

C(x0; �0) �
P
AlAre

j��qP
A2
l

qP
A2
r

(2.18)

where each vector in the localized window has magnitude AlAr and phase ��.

P
AlAre

j�� will be large in magnitude when the phases among all vectors have no

or little variation. If the phases, ��, among these vectors vary signi�cantly (that is,

the vectors are in the singularity regions), the vectors will cancel each other when

they are summed up. In this way the magnitude of C(x; �) depends on the local

consistency of the phase di�erence within the window. On the other hand, when all

phase di�erences are the same, the magnitude of Eq. (2.18) depends on the cross-
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correlation of the amplitudes of the left and right �lter outputs. So the magnitude of

C(x0; �) depends both on the local stability (consistency), and the cross-correlation

of the amplitudes of the left and right �lter outputs. One can see that the localized

window serves as a means to alleviate the e�ect of phase instability to the singularity

regions [FJ93].

The real part of C(�; x) can be used to vote for candidate disparities between

left and right �lter outputs at some location x. We expect a peak value at the true

disparity. However, the peaks may also occur elsewhere besides the true disparity.

Fig. 2.2 shows the real part of C(�; x) at some location x for a stereogram pair. The

true disparity is known to be �1 pixel, but there are also peaks elsewhere. These

peaks, which are called false peaks, occur because phase signals cycle between ��
and � as a function of spatial position [FWH96]. The peak occurs when the phase

di�erence ��(x) is zero. If the left phase signal at location x is �l(x), then the phase

at the location x+� is expected to be almost the same, where � is the wavelength of

the �lter output. So the left phase signal will usually equal the right phase signal at

several spatial locations, which causes the false peaks. The false peaks sometimes may

be larger than the peaks at the true disparity (correct peaks). From Eq. (2.18), one

can see that the value of the peak depends on the value of the left and right amplitudes.

When the amplitudes are larger at the false peak than at the correct peak, the false

peak is larger than the peak at true disparity. The existence of false peaks means

the binocular measurement alone cannot be used as ideal disparity detector. In next

section, we describe a multi-scale approach proposed by Fleet in [Fle94] to overcome

the e�ect of the false peaks.



CHAPTER 2. PHASE-BASED METHODS 27

-20 -15 -10 -5 0 5 10 15 20
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

τ

Figure 2.2: The real part of C(�; x) at some location x for a pair a stereogram. The true
disparity is known to be �1 pixel, but there are also peaks elsewhere. These peaks are
called false peaks.

2.5.2 Disparity from Local Weighted Phased-Correlation

The local weighted phased-correlation method borrows its ideas from the phase-

di�erence and phase-correlation methods. The Fourier transforms in phase-correlation

are replaced with a set of quadrature-pair �lters tuned in di�erent orientation and

scale with constant octave bandwidth. The �lter outputs are used to compute the

voting functions described above, with a series of pre-shifts. The resulting voting

functions are then summed across di�erent orientations and scales, from which the

disparity measurements are extracted.

We have implemented this method as follows. First, we construct a three-scale

Gaussian pyramid from the original images, sub-sampled at each level by a factor

of 2 horizontally and vertically. Three quadrature-pair �lters are applied at each

scale, tuned to orientations 0o, +45o, and �45o. Let Cs;j(x; �) denote the binocular

measurements obtained from the �lter outputs of each scale and orientation using
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Eq. (2.17), where subscript s refers to the sth scale, and j refers to the jth �lter. The

use of these measurements, as in[Fle94], involves a simple summation

S(x; �) =
X
j;s

Cs;j(x; �) (2.19)

At each scale, the range of x is di�erent by a factor of 2 both vertically and hori-

zontally from its next �ner scales. The range of pre-shift � is also di�erent by a factor

of 2, since the disparity is linearly scalable over scales. To perform the summation,

we have to interpolate in x to bring the measurements back to the resolution of the

original image. We also need to interpolate Cs;j(x; �) in � for all the scales except the

�nest ones.

In [Fle94], Fleet shows that C(x; �) is expected to be band-pass in � and low-pass

in x. Thus the interpolation in x is done by linear interpolation. The interpolation in

� cannot be done by linear interpolation since C(x; �) is band-pass in � . Otherwise,

this may result in aliasing error and cause the missing of peaks. This is illustrated in

Figure 2.3, where simple linear interpolation may cause the peak value to appear in

an incorrect pixel position.

One way to overcome this problem is demodulating the band-pass signal so that it

becomes low-pass before the interpolation. The centre frequency of Cs;j(x; �) is close

to the �lter's tuning frequency. One can demodulate the signal by multiplying it with

a sinusoidal signal with the �lter's tuning frequency. This results in a low-pass signal.

Then one can linearly interpolate the low-pass signal, followed by modulation to undo

the initial demodulation. Figure 2.3 shows that the demodulation and modulation

method improves the accuracy of measurement.

Given the S(x; �), near the true disparity we expect to �nd a zero in its imaginary

part and a peak in its real part. The summation of C(x; �) over multiple scales can
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Figure 2.3: (A) Real part of a curve of binocular measurement at some position. (B)
Modulate the curve in (A) and perform the interpolation. (C) Demodulate the curve in (B)
and we obtain an interpolated version of curve in (A). (D) Perform the linear interpolation
without demodulation and modulation. One may notice that it misses some peaks.

e�ectively eliminate the false peaks that occur on a single scale. An example taken

from the random dot stereogram is shown in Fig. 2.4. One can see it also enhances

the peak near the correct disparity. The expected interval between false peaks is

approximately the wavelength of the �lters applied on the scale. Thus the false peaks

at di�erent scale occur at di�erent disparities. Summation over enough scales yields

a prominent peak only at the true disparity.

Summation over orientations also helps to enhance the correct peak and attenuate

false peaks. When input images contain textured elements, such as a textured surface

or random dot stereograms, the chance of false peaks is high. In this case, the �lters
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Figure 2.4: Each curve in (A), (B) and (C) is the real part of the binocular measure for a
position x at a di�erent scale, with (A) the coarsest scale and (C) the �nest scale. Curve
in (D) is the summation of curves across the scales. When peaks coincide across scales, the
summation enhances the peak while at other disparities the peaks cancel each other.
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tuned to di�erent orientations provide nearly independent responses. Therefore, false

peaks are expected to occur at di�erent disparities and can be cancelled through

summation.

The algorithm has been tested on several real image pairs and some of the results

are shown here. Fig. 2.5 shows the standard image pair of the Pentagon building as

seen from the air. Fig. 2.6 is the recovered disparity map with half pixel resolution2.

Fig. 2.7 shows frame 2 and frame 4 of the SRI tree sequence. Fig. 2.8 shows the

disparity estimates using these two frames with half pixel resolution. Fig. 2.9 is the

disparity map with the sub-pixel resolution obtained using linear interpolation of the

zero-crossing in the imaginary part of S(x; �).

The method we discuss above is one simple way to utilize the binocular measure-

ments from di�erent scales and orientations and it achieves reasonably good result.

It has also been used to model the neural encoding of binocular disparity [FWH96].

2.6 Discussion

The local weighted phase-correlation is an e�ective way to eliminate the false match-

ing by summing of information over scales. However there are some problems with

it. First, it gives every scale and orientation the same weight when performing the

2This means the binocular measurements are obtained every half pixel. One can shift an image

by a value �d less than one pixel through interpolation. Take linear interpolation as example, if the

original image is I(x; y), shifting the image by �d results a new image Î(x; y):

Î(x; y) = I(x+ 1; y)�d+ I(x; y)(1��d)

One can use cubic or spline interpolation to achieve more accurate result. We use cubic interpolation

in our experiment.
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Left Right

Figure 2.5: The standard image pair of the Pentagon building as seen from the air.

 Range: [−4.5, 4.5] 
 Dims: [256, 256] 

Figure 2.6: The recovered disparity map from the Pentagon image pair with half pixel
resolution.
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Left Right

Figure 2.7: The SRI tree sequences: frame 2 and frame 4.

 Range: [−0, 4.5] 
 Dims: [220, 220] 

Figure 2.8: SRI tree sequences: Disparity estimates using the local weighted phase-
correlated method with half pixel resolution.
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Figure 2.9: SRI tree sequences: Disparity estimates using the local weighted phase-
correlated method. The sub-pixel resolution is obtained using linear interpolation of the
zero-crossing in the imaginary part of S(x; �).

summation. However, note that the coarse scales have to be interpolated before being

added to the �ne scales. The interpolation does not provide any new information,

because the interpolated results are derived from known information. It may not be

appropriate to give the values from the interpolation the same weight as the original

values at the �ne scale. In addition, there is no physiological evidence for summation

over scale and orientation in the visual system to build disparity detectors. Never-

theless, this method indicates the promise of the multi-scale and multi-orientation

approach. The problem is how to e�ectively use the measurements at di�erent scales

and orientations.

The other way of pooling information over scales is the coarse-to-�ne approach.

We have already discussed the weakness of this approach. A poor estimate at coarse

scale will provide an incorrect initial guess for the estimate at �ne scale, which can

let the process converge to incorrect disparity. In this thesis, we investigate how to
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appropriately utilize information at di�erent scales in the Bayesian approach.

2.7 Biological Vision

Besides the many advantages of phase-based methods for stereo matching over other

methods, Neurophysiological research has also shown that phased-based measure-

ments comprise the �rst stage of disparity processing in the primary visual cortex

of many mammals and in the visual wulst of the owl [DOF91, WF93]. Therefore,

phase-based methods are not only important for computer vision research, they also

play important role in modeling the biological stereopsis. The binocular measurement

introduced in this chapter is particularly interesting, since it has been used to model

the response of V1 neurons to disparities [FWH96].

Despite the success of phase-based method in modeling the early stage of disparity

processing, the subsequent stages that combine the measurements to �nd a unique

disparity map are unknown. The commonly used coarse-to-�ne control strategy in

computer vision may not be suitable for modeling this process. That is because with

the coarse-to-�ne approach, a poor estimate at the coarse scale leads to incorrect

estimate at the �ne scale, from which the algorithm cannot recover. There is also

evidence against the use of coarse-to-�ne control strategy in biological vision [MDA94].

In [FWH96], the second stage of disparity processing is modeled as linear pooling,

similar to the summation approach in the local weight phase-correlation method.

However, there is little evidence for pooling over scale or orientation in the primary

visual cortex. It is our hope that the Bayesian approach to information pooling,

which is investigated in this thesis, may be helpful to understanding the second stage

of disparity processing in biological visual system.



Chapter 3

Bayesian Approach

In this chapter, we introduce the Bayesian approach as a framework to solve computa-

tional vision problems, especially in the context of binocular stereopsis. In computer

vision, the most often encountered question is how to infer the scene properties from

the given image data. The image data is usually a 2-D representation of the scene.

However the representation is often ambiguous, due to the fact that images are 2-D

and often corrupted by noise. The Bayesian approach provides a formal framework

to solve the ambiguity. One needs both a prior model and a likelihood function to

apply the Bayesian approach. In this chapter, we brie
y introduce some existing

techniques of deriving the likelihood function. We also discuss the Markov Random

Field (MRF), which is one of the most popular prior models used in computer vision.

3.1 The Bayesian Formulation of Vision Problem

The basic idea behind the Bayesian approach is to balance the information provided

by the image data with the prior expectation of the scene. Let the image data be I,

36
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and the scene properties of interest be S (e.g., object motion, surface shape, disparity

etc.) In a Bayesian approach, we assume that scenes have some common statistical

properties, which are represented by the prior probability distribution P (S). P (S)

encodes our expectation about the scene. For example, if we expect that the surfaces

of the scenes are generally smooth, then we would assign a low prior probability to a

scene with steep slopes or creases.

We can think of the image data as a projection � (image formation function) that

maps scene S to an image plus the noise N (model of error):

I = �(S) +N (3.1)

The image formation function is often irreversible. For example, a 2-D image of

a 3-D scene does not contain the depth information of the scene. Thus we may

not be able to uniquely interpret the scene given the image data. In addition, the

noise in the process of image formation makes the information provided by the image

data unreliable. The degree of certainty of an interpretation can be characterized as

P (SjI), the probability of scene S conditioned on image observation I, which is called

posterior probability distribution.

Bayes' rule gives a way to compute the posterior probability, that is

P (SjI) = P (IjS)P (S)
P (I)

(3.2)

For the given image data, P (I) has a �xed value that does not depend on S and we

treat it as normalization constant. Then

P (SjI) / P (IjS)P (S) (3.3)

where P (S) is the prior probability we mention above. P (IjS) is referred to as the

likelihood function for S. P (IjS) depends on the image formation function � and the
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noise N. If the image data is uncorrupted by noise and errors, the image formation

function � will project S to a unique I = I. For other image I
0 6= I, P (I

0jS) will be
zero. However, due to the noise, the resulting image data I may have a value other

than I and we may not know what it will be. In this case, P (IjS) will be non-zero
when I 6= I. The noise has the e�ect of broadening the distribution of the likelihood

function P (IjS) and makes the information provided by the image data less reliable.

For this reason, we may view the likelihood function as a way to explicitly model the

noise and errors.

The computation of P (SjI) from P (S) and P (IjS) is called Bayesian inference. It

provides a way to combine the prior knowledge and obtained data to make inferences

about the world. From the above description, we can �nd the advantages of the

Bayesian approach:

� It allows the use of statistical prior knowledge about the world (the prior prob-

ability distribution). This e�ectively constrains the solution space.

� It uses explicit models of noise and errors (the likelihood function). This re
ects

our knowledge about the process of image formation and the characteristics of

the noise.

The Bayesian approach has been successfully applied in many vision problems,

including stereopsis [Bar89, GLY95, Bel95, LB95], which we discuss in the following

section.
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3.2 Bayesian Approach to Stereopsis

In the context of stereo matching, we wish to infer the disparity map D(x) from the

given left image Il(x) and right image Ir(x)
1. Within the Bayesian paradigm, one

infers D by considering the posterior probability P (DjIl; Ir). One approach is to �nd

the most probable D:

D̂ = argmax
D

P (DjIl; Ir) (3.4)

This is the so called maximum a posteriori (MAP) estimate. If we know the prior

model P (D) and likelihood function P (Il; IrjD), we can apply Bayes' rule to obtain

the posterior probability

P (DjIl; Ir) = P (Il; IrjD)P (D)

P (Il; Ir)
(3.5)

In some approaches, instead of using the probability directly, the following energy

functions are used

ES = �log(P (Il; IrjD)P (D)) = ED + EP (3.6)

where ED = � logP (Il; IrjD), EP = � logP (D). The problem now is to choose D

such that ES has minimum energy.

In order to use Bayesian approach in stereo matching, we need to de�ne

� The prior model P (D), where D is the disparity map. The prior model contains

assumptions about the scene geometry.

� The likelihood function P (Il; IrjD), which re
ects the noisiness and ambiguity

in the image formation.

1For notation convenience, we use Il and Ir to refer to the left and right images. This does not

imply we only use the image intensity as image feature. In fact, we can use other features (such as

phase, edges, zero-crossings) extracted from both images
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3.2.1 Likelihood Function

The form of the likelihood function depends on the image data. In [GLY95], for

example, intensity is used to derive the likelihood function. To simplify the presen-

tation, we assume that there is no occlusion in the scene and that the surfaces in the

scene are Lambertian. By assuming additive Gaussian white noise in the images, the

likelihood function can be written as

P (Il; IrjD) =
1

(2�v2)N�M
e�ED (3.7)

where

ED =
1

4v2
X
x;y

(Il(x; y)� Ir(x+D(x; y); y))2 (3.8)

where Il and Ir are the image intensities, v is the standard deviation of the Gaussian

noise. D(x; y) is the disparity at location (x; y), N � M is the size of the image.

Although this function is developed under the assumption of Lambertian illumination

and uses intensity as the image feature, it can be rewritten by replacing Il and Ir

with general feature function Fl and Fr. Fl and Fr can be any image features that

are viewpoint invariant, such as edges, texture, or �lter outputs:

ED =
1

4v2
X
x;y

(Fl(x; y)� Fr(x+D(x; y); y))2 (3.9)

As we have discussed in previous chapter, phase has many desirable properties and

it may be a good candidate for stereo matching purpose. Instead of directly using

phase, we use the phase-based binocular measurements described in Section 4.5, as

they provide a reliable way to measure the goodness of �t between the phase-shifted

left and right signals. The derivation of the likelihood function using the binocular

measurements is discussed in Chapter 4.
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3.3 MRF as Prior Model

In recent years, Markov random �elds (MRF) have been popular prior models of scene

structure. The MRF model is an extension of the one-dimensional Markov process. It

has attracted much attention in the image processing and computer vision community

since the publication of the highly in
uencial paper by Geman and Geman [GG84].

The main advantage of the MRF model is that it provides a general and natural

model for the interaction between spatially related random variables.

We focus our discussion of MRFs in the context of low-level image processing and

computer vision. Consider digital images de�ned on a two-dimensional M �N pixel

lattice. Let D denote the image and let Dij be the pixel at position (i; j). The pixel

values may be the intensity of a grey level image, or may be a multivariate value

containing the intensity at di�erent wavelengths. In stereopsis, it may also be the

disparity at the location of the pixel. A Markov Random Field can be used to describe

the global properties of an image in terms of local properties. The local property can

be expressed by a conditional distribution

P (Dij = dijjdst; (s; t) 6= (i; j)) = P (Dij = dijjdst 2 Rij; (s; t) 6= (i; j)) (3.10)

where Rij is the set of pixels in the neighborhood of pixel at (i; j). The meaning of the

above equation is that the distribution of pixel values Dij given the whole image only

depends on the pixels in its neighborhood Rij. Fig. 3.1 shows the �rst and second

order neighborhoods that are often used in image processing.

The local interaction between pixels is de�ned through the energy function U(Rij).

The joint distribution for a whole imageD = d can be expressed as the following Gibbs
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Figure 3.1: A: First order neighborhood. B: Second order neighborhood.

distribution

P (D = d) =
1

Z
exp(

X
i;j

�U(Rij)) =
1

Z
exp(�V (d)) (3.11)

where V (d) is the sum of energies at every pixel in the entire image.

To use the MRF model, the most important task is to de�ne an appropriate energy

function U(x). U(x) has a direct impact on the performance of an algorithm in that

it contains prior knowledge of the model, which, through Bayes' rule, helps to make

decisions from a set of noisy measurements. If the prior knowledge or assumptions of

the model do not re
ect what the real world is, they will lead to distorted decisions.

One of the commonly used models is the quadratic model, whose energy function

is de�ned as

U(Rij) = �
X

(k;l)2Rij

[D(i; j)�D(k; l)]2 (3.12)

The use of the quadratic model in stereopsis can be found in [Bar89, GLY95,
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Bel95]. The quadratic model imposes a smoothness constraint on the scene geometry.

For a smooth surface, the term [D(x; y)�D(k; l)]2 is generally smaller than for a rough

surface, which means the smooth surface has a lower energy ED (de�ned in Eq. (3.9))

and higher probability.

It is interesting to note that the quadratic model is closely related to the regular-

ization criterion proposed by Poggio, et al [PTK85], which is

E =
Z Z

f[(Il(x; y)� Ir(x+D(x; y); y))]2 + �(rD)2gdxdy (3.13)

where Il and Ir are intensity functions in the left and right images, D is the disparity

map, and rD is the gradient of disparity. (rD)2 is interpreted as rD � rD, or the

square of the magnitude of the disparity gradient. � is the regularization parameter.

The goal of a regularization algorithm for stereopsis is to �nd a disparity map D such

that E has minimum value. The term �(rD)2 serves as the smoothness constraint ,

where a small � may result in a noisy solution while large � may lead to a solution

that is over smoothed.

Despite the relation between the Baysian approach and the regularization tech-

nique, we argue that the Bayesian approach is more 
exible than the standard regular-

ization approach because it can readily be modi�ed to incorporate prior assumptions

appropriate for di�erent domains. In the real world, scenes usually have quite di�er-

ent structure. It is hard to capture all the quantities of these structures by only one

model. Both the regularization technique and the MRF model using above energy

function assume that there is only one smooth and continuous surface in the scene,

and the surface changes are small compared to the viewer distance. This is obviously

not the case in the real world. Most scenes actually contain several surfaces with the

disparity function discontinuous at the object boundary. The surfaces may also have
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steep slopes and creases. By taking the Bayesian approach, one can easily change the

prior model that best �ts the structure of the given scene without major modi�cation

to the algorithm.

3.4 Piecewise Smooth Functions

So far we have been discussing quadratic energy functions for the prior model. By

using this form of prior model, we assume a simple world consisting of only one

smooth surface. However most scenes actually contain several surfaces, with dispar-

ity discontinuities at the object's boundaries. The quadratic model 
attens steeply

sloping surfaces, over-smooths surface ceases and over-smooths discontinuities at the

object boundaries [Bel95]. In this section, we discuss other possible models that may

overcome these problems.

[GLY95] compared several prior models. Although they are 1-D models such that

each pixel has only two neighbors, they can be extended to 2-D cases. Besides the

quadratic model, there is one that is based on work on visual reconstruction [GG91],

whose energy function Ueff is given by

Ueff (D) = 
 �X
l

ln(1 + e[
��(Dl+1�Dl)
2]) (3.14)

where � and 
 are parameters to be estimated. The third model has an energy

function

Ueffa(D) = �
X
l

q
jDl+1 �Dlj (3.15)

It is argued in [GLY95] that Ueff encourages a staircase-like disparity function while

Ueffa encourages a single disparity discontinuity. In other words, Ueff would over-

smooth the object boundaries, similar to the quadratic model. Fig. 3.3 shows the
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Figure 3.2: Di�erent energy functions. A:
p
x; B: x; C: ln(1 + e) � ln(1 + e1�x

2

); D: x2.
Here x represents the disparity change between neighboring pixels. One can see that

p
x

has the largest derivative at x � 0.

e�ective probability distributions corresponding to the two di�erent models. Note

that for the quadratic model, the probability decreases rapidly with the increase of

the disparity, which means it assigns very low probability to large disparity di�erence.

This works �ne on a smooth surface but fails at the object boundaries, where large

disparity di�erences occur. In order to preserve object boundaries without the e�ect

of over-smoothing, we need a model that tolerates large disparity changes. The

distribution of square root model has a longer tail, which means it not only encourages

smooth surfaces, but it also allows for large disparity changes. Therefore, the square

root model may be a better choice to model piecewise smoothness.
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Figure 3.3: The pdf of prior models. Solid line: quadratic model exp(�x2=�); Dash line:
square root model exp(�px=�). The square root model has a longer tail than the quadratic
model, which encourages larger disparity.

3.5 Computational Complexity

Given the prior model and the likelihood function, one can use Eq. (3.5) to obtain

the posterior probability for a disparity map D. The Maximum A Posterior Estimate

(MAP) can be then used to �nd the desired disparity map D�

D� = argmax
D

P (DjIl; Ir) (3.16)

In practice, this straightforward approach incurs tremendous computational over-

head. If the image size is N �M , and the disparity takes the value from �dmax to

dmax, then the Bayesian approach with a MRF prior model requires that we �nd a dis-

parity map from (2dmax)
N�M candidate maps that maximizes Eq. (3.16). To obtain

the optimal solution by an exhaustive search method, the computational complexity

is an exponential O((2dmax)
N�M), which in most cases is computationally prohibitive.
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One has turn to sub-optimal solutions, such as stochastic relaxation [GG84, Bar89],

which is often described as simulated annealing due to its conceptual similarity to a

physical process called annealing. Appendix B provides details about this algorithm.

Simulated annealing is an iterative algorithm, which converges to the desired result

after a number of iterations. However, the convergence would be rather slow if the

images have large size and the disparity resolution is too �ne. In addition, the number

of iterations varies with di�erent images. One may be unable to predict the running

time of the algorithm. This makes the algorithm impractical for real time application.

In recent years, researchers found that the MRF model can be replaced by a multi-

scale stochastic model, which can eliminate the iterative procedures while achieving

compatible results, with much less computation [BS94, LKWT93]. [LKW94] has

developed a theoretical framework to justify the model. More details about the multi-

scale model are given in Chapter 5.



Chapter 4

Likelihood Function

In this chapter, our task is to �nd a likelihood function that characterizes the infor-

mation provided by the image data. In order to derive the likelihood function, we

need to explicitly model the sources of variability (uncertainty) for the image data.

The image data we use are the phase-based binocular measurements (Eq. (2.17))

discussed in Section 2.5. Besides the desirable properties of binocular measurements,

it is also interesting to note that neurophysiological research has shown that the �rst

stages of disparity processing in the primary visual cortex in cats, primates, and in the

visual wulst in owls are thought to use a phase-based measurement. Understanding

the statistical properties of binocular measurement not only enables us to use it within

the Bayesian framework in computer vision, it also helps us to understand how the

measurement might be used in biological vision.

There are several sources of variability of binocular measurements. In this chapter,

we identify and model these sources so that we can derive the likelihood function.

We investigate how these sources a�ect the likelihood function in di�erent pre-shifts

� , scales �, and orientations �. Finally, we derive a joint likelihood function using

48
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the family of binocular measurements at di�erent pre-shifts for a single scale and

orientation.

4.1 Variability of Binocular Measurement

Ideally, according to Eq. 2.17, when the left and right signals are perfectly matched

locally at a location x0 with a pre-shift � , the binocular measurement C(x0; �) should

equal one. In practice this is not always the case, owing to:

� Noise: The sensor may introduce noise into the images, for example, quantiza-

tion error, noise in the imaging system, etc.

� Smooth but non-constant Surface: The binocular measurements were derived

from an assumption of a constant disparity �eld. However in natural images,

this is rarely the case. This results in disparities that are not constant within

the Gaussian window used in Eq. 2.17. The left and right images are no longer

perfectly shifted version of each other within the window, and it is not possible

to bring them into match everywhere with a simple shift. This decreases the

cross-correlation of the two images and makes the magnitude of C smaller than

one.

� Variation in the instantaneous frequency: For measurement of disparities from

local phase-di�erences as explained in Section 2.2, the variation of the instan-

taneous frequency is a source of measurement error. One can see this from

Eq. (2.6), which requires the estimation of the average instantaneous frequency

between the left and right signals to compute the shift. The local variation of

instantaneous frequency depends on the local image structure.
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� Discontinuities: Discontinuities not only cause non-constant disparities within

the Gaussian window, they also cause occlusion. It is impossible to establish

correspondence when occlusion happens. Therefore the information that the

binocular measurements provide cannot be used to determine the disparity re-

liably.

� Deformation/Scale change: The perspective projection may cause signi�cant

geometric deformation and contrast variation between left and right views.

Because of these factors, the binocular measurements C(x; �) will not always equal

one even when the disparity d(x) at location x is equal the pre-shift � . Given this

nature of uncertainty, we may wonder what information we can obtain from the

binocular measurements and what behavior we should expect from them. With a

Bayesian approach, we may characterize the variability of C with a likelihood function

p(CjD). Since C is obtained at di�erent pre-shifts � , scales �, and orientations �,

we also want to know how p(CjD) depends on � , � and �, given the disparity. In

the remainder of this chapter, we �rst model several sources of variability and apply

these models in real images to derive the likelihood function.

4.2 Models of Variability Sources

Among the sources of variability we mention above, the deformation/scale change

and discontinuity are generally diÆcult to model and we leave it for future research.

Here we only model the noise, the non-constant disparities and the variation in in-

stantaneous frequency.

As a �rst step, we can use real images to model the variation of instantaneous
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frequency. According to Eq. (2.5), a pure sinusoidal signal has constant instantaneous

frequency. The �lter outputs of real images are not purely sinusoidal. In this case,

the instantaneous frequency depends on the local image structure and is not constant.

In the absence of other sources of variability, the two images are simply translated

version of each other, and therefore the left image and right image are identical

when they are brought to perfect match. When not aligned perfectly, binocular

measurements depend on the local behavior of instantaneous frequency. The larger

the di�erence between disparity D and pre-shift � , the greater the variance of the

binocular measurement [FJ93].

The noise is commonly modeled as additive white noise [GLY95]; here, we simply

add non-zero, Gaussian white noise to one of the images. In this way, one should

expect a higher signal-to-noise ratio (SNR) at coarser scales, because of the di�er-

ence in the power spectra between natural images and white noise images. Usually,

natural images have power that decreases with frequency (e.g., the 1=f 2-like power

spectrum [Cas96]). But white noise does not have a decreasing power spectrum with

frequency. Therefore, signal-to-noise ratios typically decrease as frequency increases.

This means that the measurements at �ner scales are generally expected to be more

noisy. Typically, in 8 bit images noise is about 2� 4% of the average image intensity.

Since most images in our experiment have an average image intensity of about 100,

here we assume Gaussian white noise that is mean-zero with a standard deviation of

2 gray levels for 8 bit gray scale images.

To model the non-constant disparity, one needs a model for surface properties.

The surfaces of natural scenes can usually be represented by a fractal model [Bel95],

that is, a 1=f 2-like process. Here, to generate a smooth, but non-constant disparity
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map, we generate a synthetic fractal disparity map, which we refer to as "displacement

noise", and then we warp one of the two images accordingly using cubic interpolation.

The question is how much displacement noise we should add to properly model this

e�ect. According to Eq. (1.2), the distance from the surface to the image plane can

be determined from the disparity d:

z =
ft

d

where f is the camera focal length, t is the distance between two cameras, z is the

distance from the surface to the image plane. Assume that the average distance from

the surface to the image place is �z, which corresponds to the average disparity �d.

A change of distance �z causes a corresponding change of disparity �d, where the

relation between �z and �d can be expressed as

�d � z = ( �d+�d) � (�z +�z) = ft

which can be rewritten as
�d

�d+�d
=

�z +�z

�z
(4.1)

The term �z+�z
�z

represents the "roughness" of the surface, which may be a slope,

crease, or stochastic process (Fig. 4.1). It may be reasonable to assume that �z+�z
�z

is

between 90 � 95% if the surface is smooth. Then the choice of �d depends on the

average disparity �d. For example, if the average disparity is 4 pixels, �d is between

0:2 � 0:4 pixel. The value of �d increases with �d. One can have a raw estimation

of the average disparity before adding the displacement noise. Normally, the average

disparities in our experiments are between 3�6 pixels and we have used displacement

noise with variance of 0:2.
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∆ z
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Figure 4.1: The roughness of a surface. �z is the average distance to the image plane, �z
is the change of the surface. The roughness of the surface can be represented by �z+�z

�z .

The displacement noise should form a smooth surface without occlusion. Let D(x)

be the disparity at location x, according to [GLY95], all surfaces visible to both the

left and the right cameras have jD(x+ 1)�D(x)j � 1. Therefore, the easiest way to

avoid occlusion is to limit the range of disparity between �0:5 and 0:5 pixel.

4.3 Empirical Likelihood Derivation

In this section, we study the e�ect of these sources of measurement uncertainty on

the binocular measurements. Toward this end, we use these models to statistically

generate binocular images from which measurement data are collected. From this

data, with knowledge of true disparities, we �nd an empirical likelihood function.

Ideally, we want to gather the measurements from many di�erent and independent



CHAPTER 4. LIKELIHOOD FUNCTION 54

natural image patches, so that the results fairly re
ect the statistical properties of

the images in the world. Because the neighborhood pixels in an image are generally

highly correlated, it is not feasible to compute the measurements densely over an

entire image and use these measurements for statistical analysis. Instead, we should

sample many independent patches from the images and obtain one measurement from

each patch. To ensure the patches are independent from each other, the size of the

patch should be no less than the �lter support. For example, if the �lter support is

5 pixels, the size of the patch is at least 5� 5 pixels.

As the �rst step of simulation, we use real images as they incorporate natural

variations of instantaneous frequency. But for now, we assume no noise and constant

disparity D(x), so the left and right images are identical. We can rewrite the pre-shift

� as

� = D(x) + �� (4.2)

where �� is the distance from the true disparity. In this case, as in all others that

follow, we can, without great loss of generality, assume D(x) = 0, since the measure-

ments only depend on the di�erence �� . Thus the binocular measurement can be

obtained using Eq. (2.17) at di�erent values of � = �� . Fig. 4.2 shows the distribu-

tions of the real part of the binocular measurements for �lters tuned to orientation

� = 0Æ and wavelength � = 9:2 pixels, at 6 di�erent value of �� . One may notice

that at �� = 0, the real part of the measurements is equal to 1, a result expected

from Eq. (2.17).

The distribution of Re[C(x;D(x)+��)] begins to spread out when �� increases.

A wider peak of the curve means the left and right signals are less correlated. When

�� is large enough, the distribution becomes almost uniform, which means the left
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Figure 4.2: The distribution of real part of C(x;��) with di�erent �� . The �lters are
tuned to wavelength of � = 9:2 pixels with 0Æ orientation. The only source of variability is
the variation of instantaneous frequency.

and right signals are grossly unregistered and the local measurement contains little

useful information. The spreading out of the distribution of Re[C(x;��)] means that

its variance generally increases with the increase of �� until the distribution becomes

almost uniform. Fig. 4.4 shows the curve of the standard deviation of Re[C(x;��)]

as a function of �� .

From Fig. 4.2, one can also see that, as �� increases from 0, the mean value of

Re[C(x;D(x) + ��)] gradually decreases, eventually turning negative, then moving

back to 0. This phenomena is illustrated in Fig. 4.3, which shows the mean value of

the real part of C(x;��) at di�erent �� . The behavior of the mean value can be

explained by Eq. (2.18), which we rewrite here

C(x0; �) = C(x0; D(x) + ��) �
P
AlAre

j��qP
A2
l

qP
A2
r
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The real part of C(x0; D(x) + ��) is

Re[C(x;D(x) + ��)] �
P
AlAr cos(��)qP

A2
l

qP
A2
r

When �� = 0, the left and right signals are in perfect match. Therefore �� = 0,

which means Re[C(x;��)] is 1. When �� = 0 increases, so does the phase di�erence

��. Then the change of Re[C(x;��)] almost follows the change of the cosine function

cos(��). However, when �� continues to increase, the left and right signals become

misaligned to a large degree. The cross-correlation of the signals gradually reduces

to zero, which makes the value of Re[C(x;��)] also close to zero.

From Fig. 4.3, one can �nd that the wavelength of the mean value curve of

Re[C(x;��)] for the white noise inputs is approximately equal to the �lter's tun-

ing wavelength, while the curve for the real image has a longer wavelength. This

shows the e�ect of the instantaneous frequency for the binocular measurement and

further supports the use of real images in the simulation. The wavelength of the mean

value curve depends on the average instantaneous frequency of the �lter output. The

instantaneous frequency of the �ltered white noise is higher than that of the �ltered

pink noise. That is because the average instantaneous frequency is equal to the mean

Fourier frequency, while the mean Fourier frequency of �ltered pink noise (real image)

is lower than �ltered white noise, since the real image has a 1=f 2-like power spectrum.

Therefore the curve for the real image has a longer wavelength.

For completeness, Fig. 4.6 and Fig. 4.5 show the mean value curve of the imag-

inary and amplitude component of the binocular measurements, respectively. The

imaginery part of C(x0;��) is

Im[C(x;��)] �
P
AlAr sin(��)qP

A2
l

qP
A2
r
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Figure 4.3: An empirical measurement of mean value of real part of C(x;��) vs. �� . The
�lter output has a wavelength of about 4.6 pixels. The solid curve is for a typical pair of
real images; the dash curve is for synthetic white noise images. The curve for the synthetic
image pair has a broader peak than that of real image.

The imaginary part of the binocular measurement is zero when the left and right

signals are perfectly matched, because the phase di�erence �� is zero. When the

phase di�erence �� increases with an increase of �� , the change of Im[C(x;��)]

should approximate sin(��). However, when �� continues to increase, the cross-

correlation
P
AlAr begins to decrease because the two signals become unregistered

to a large degree. Therefore, Im[C(x;��)] is a sinusoid-like curve with a decreasing

amplitude as �� increases.

The expected value of the amplitude component is the combined result of the real

and imaginary part. Fig. 4.7 shows the mean value curve of the phase component of

the binocular measurement. One can �nd that it has a peak value � at about 1=3

of the wavelength � the �lters are tuned to. If the input signals are white noise, we

can expect a peak value near 1=2�, since the average instantaneous frequency of the
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Figure 4.4: The standard deviation � of the real part C(x0;��) vs. �� for the Gaussian
white noise inputs and real image. The solid curve is for a typical pair of real images;
the dash curve is for synthetic white noise images. Note that the curve of the white noise
image has a steeper slope than that of real image, it is "saturated" approximately 1=4 of
the wavelength of the �lter output, while the curve of real image is "saturated" at a larger
wavelength.
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Figure 4.5: An empirical measurement of the expected value of the amplitude component
of C(x;��) vs. �� for a typical real image pair. The �lter output has a wavelength of
about 4.6 pixels.
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Figure 4.6: An empirical measurement of mean value of imaginary part of C(x;��) vs.
�� for a typical real image pair. The �lter output has a wavelength of about 4:6 pixels.
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Figure 4.7: An empirical measurement of mean value of phase component of C(x;��) vs.
�� for a typical real image pair. The �lter output has a wavelength of about 4:6 pixels.
The curve has peak value � at about 1=3 of the wavelength.
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�lter output is close to the tuning frequency of the �lter. However, in the case of real

images, the average instantaneous frequency of the �lter output is smaller than the

tuning frequency of the �lters, due to the 1=f 2-like power spectrum of real images.

Therefore, we should expect a peak between 1=3� and 1=4� [FJ93].

Until now we have only considered the noiseless case where all variability of C

is due to instantaneous frequency. Now, if we take the variation of disparity into

account, the left and right images are no longer a translated version of each other.

We cannot bring the two images into perfect match everywhere with a single pre-shift.

This phenomenon can be simulated by warping one of the images with the synthetic

fractal disparity map Df described in the last section. For a given location x, without

pre-shifting the two original images, the true disparity is now Df (x). To obtain the

value of C(x;��), we must use a pre-shift given by � = Df(x) + �� . Since now

the pre-shifts are di�erent at each pixel location, we can no longer bring two images

into perfect match with a single constant shift. Therefore, we have to perform the

pre-shift individually for each pixel to compute its C(x;��). This is a slow process

if the image is large. Fortunately, for the reason we discuss early in this chapter,

the computation of the binocular measurements is performed in small patches of the

image. It is unnecessary to compute the measurement at one location x using the

whole image. We can shift the small patch centered at location x by Df(x)+�� and

apply Eq. (2.17) on it. The size of the patch is larger than the Gaussian window in

Eq. (2.17) to ensure the independence of the measurements.

Fig. 4.8 shows the distribution of Re[C(x;��)] for �lters tuned to orientation

� = 0Æ and wavelength � = 9:2 pixels. Note that at �� = 0, the real part of the

measurements are no longer always 1. Instead, it forms a peak near 1 and most the



CHAPTER 4. LIKELIHOOD FUNCTION 61

-1 0 1
0

50

100

150

-1 0 1
0

2

4

-1 0 1
0

1

2

-1 0 1
0

1

2

-1 0 1
0

1

2

-1 0 1
0

0.5

1

λ =9.2

∆ τ =0.22  λ∆ τ =0 ∆ τ =0.43  λ

∆ τ =0.87  λ
∆ τ =1.1 λ

∆ τ =0.65  λ

Figure 4.8: The probabilistic distribution of real part of C(x;��) with di�erent �� . The
�lters tune to wavelength of � = 9:2 pixels with 0Æ orientation. The sources of variability
include the variation of instantaneous frequency and the non-constant disparities.

values are between 0:9 and 1. This demonstrates the e�ect of non-constant dispari-

ties on the measurements. Non-constant disparities within the Gaussian window in

Eq. (2.17) reduce the cross-correlation between the two local amplitude and phase

components of the �lter output. Thus, the magnitudes of the measurements will not

all have unit magnitude.

Finally, in addition to non-constant disparities and local variations in instanta-

neous frequency, we now incorporate image noise into the model. As discussed in

Section 4.2, one should expect a higher signal-to-noise ratio (SNR) at coarser scales

than at �ner scales. That means for di�erent scales, the noise has di�erent e�ects.

However, here the measurement variability caused by the image noise is small com-

pared to the e�ect of instantaneous frequency and disparity noise. Fig. 4.9, Fig. 4.10

and Fig. 4.11 show the distribution of Re[C(x;��)] with �lters tuned to orienta-
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tion � = 0Æ with wavelength � = 4:6, 9:2 and 18:4 pixels. Generally, note that the

distributions are similar across scales.

Fig. 4.12 shows the measurements with orientation � = 45Æ and �lter wavelength

� = 4:6 pixels. Note that the distributions look di�erent from those at 0Æ orientation

in Fig. 4.10. The reason is that the e�ective wavelengths that the �lters are tuned to,

along the epipolar lines, are di�erent (remember that we compute the measurement

along the epipolar lines). Assuming the wavelength that the �lter is tuned to at

orientation 0Æ is �, the e�ective wavelength along the epipolar line is also �. However,

if we steer the same �lter to orientation �, we get an e�ective wavelength of �= cos(�)

along the epipolar line, which is larger than �. Fig 4.13 shows the mean value curves

with the same �lter wavelengths but di�erent orientations at 0Æ and 45Æ. The curve

with � = 45Æ has a longer wavelength than the one with � = 0Æ orientation, because

the former has a longer e�ective �lter wavelength.

4.4 Fitting of the Likelihood Function

We have seen the distributions of the measurements at di�erent scales and orienta-

tions, with di�erent pre-shifts �� . These histograms serve as empirical likelihood

functions p(C(x;D +��)jD), where D is the disparity. In the above analysis, with-

out loss of generality, we used D = 0 to obtain p(C(x;�� j0). This is because the

curve of p(C(x;D+��)jD) depends only on �� , which is the di�erence between the

disparity and the pre-shift � . Since the shape of the distribution curves vary with

the value of �� , it seems that we need to individually �t the curve for each �� .

However, this results in many curves and becomes impractical. It is also diÆcult to

deal with continuous values of �� using this approach. Fortunately, although these
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Figure 4.9: The distribution of real part of C(x;D(x) + ��) with di�erent �� at scale 0.
The �lters are tuned to a wavelength of � = 4:6 pixels with 0Æ orientation. The sources
of variability include the variation of instantaneous frequency, non-constant disparities and
noise.
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Figure 4.10: The distribution of the real part of C(x;��) with di�erent �� . The �lters
are tuned to a wavelength of � = 9:2 pixels with 0Æ orientation. The sources of variability
include the variation of instantaneous frequency, non-constant disparities and noise.
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Figure 4.11: The distribution of the real part of C(x;��) with di�erent �� . The �lters
are tuned to a wavelength of � = 18:4 pixels with 0Æ orientation. The sources of variability
include the variation of instantaneous frequency, non-constant disparities and noise.
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Figure 4.12: The probabilistic distribution of the real part of C(x;��) with di�erent �� .
The �lters are tuned to a wavelength of � = 4:6 pixels with 45Æ orientation, with the e�ective
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variation of instantaneous frequency, non-constant disparities and noise.
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Figure 4.13: An empirical measurement of mean value of the real part of C(x;��) as a
function of �� . The �lters are tuned to wavelength of about 4:6 pixels. The solid curve
is for a typical pair of real images with �lters tuned to 0Æ orientation; the dash curve is
for the same pair of real images with �lters tuned to 45Æ orientation. The curve with 45Æ

orientation has a longer wavelength because the �lters have a longer e�ective wavelength
along the epipolar lines.
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curves may seem quite di�erent, they can be �tted in the same parameterized forms.

More over, the parameters will be functions of �� , which means that we can describe

the behavior of all distributions with only the parameters of the curves and �� .

The distributions shown in Fig. 4.9- 4.11 can be characterized by a Beta distribu-

tion [Muk96]. A random variable is said to have a Beta distribution with parameter

a, b (a > 0; b > 0), if its probability distribution function is given by

f(x; a; b) =

8<
:

1
B(a;b)

xa�1(1� x)b�1; 0 < x < 1; a > 0; b > 0

0; otherwise
(4.3)

where B(a; b) is the Beta function

B(a; b) =
Z 1

0
ta�1(1� t)b�1dt; (a; b > 0) (4.4)

Because C(x0; �0 ���) ranges from �1 to 1, Eq. (4.3) can be rewritten as

f(x; a; b) =

8<
:

1
2B(a;b)

(x+1
2
)a�1(1� x+1

2
)b�1; �1 < x < 1; a > 0; b > 0

0; otherwise
(4.5)

To estimate the parameters of the Beta distribution, one can use the method of

moments (MM) [Muk96] to obtain a raw estimate, and then use the raw estimate as an

initial value to iteratively solve a set of equations derived by the Maximum Likelihood

Estimate (MLE) method to get a more accurate estimate. In our experiment, we

found that the estimates by the method of moment along are almost as good as the

optimal estimates found by the iterative ML method. Therefore, we use method of

moment to estimate the parameters. The details are given in Appendix C. Fig. 4.14

shows the Beta distributions �tted to the empirical distribution curves.

In order to see how the distribution changes with the pre-shift, we can examine

the curves formed by a and b values at di�erent pre-shifts. Fig. 4.15 to Fig. 4.20

show the a, b values of the Beta distribution as functions of �� at di�erent scales
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Figure 4.14: Fitting of the Beta distributions to the empirical distribution curves of the
six cases shown in Fig. 4.9.

with orientation 0Æ for three natural images. Only the curves for the positive �� are

shown. The curves of the negative �� are symmetrically related to them. Fig. 4.21

and Fig. 4.22 show the a, b curves at di�erent scales with orientation 45Æ. One may

notice that these curves show similar characteristics for di�erent images and di�erent

scales, although in our experiment we use di�erent curves at di�erent scales for higher

accuracy.

These curves are useful because with them we can obtain the parameters of Beta

distribution at any �� through the interpolation of the curves. Let p(C(x; �)jD) be

the likelihood function for measurement C(x; �) at pre-shift � , then p(C(x; �)jD) can

be modeled as

p(C(x; �)jD) = f(C(x; �); a(� �D); b(� �D)) = f(C(x; �); a(��); b(��)) (4.6)

where f(C(x; �); a(��); b(�� �D)) is the Beta distribution parameterized by a and
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Figure 4.15: The a curve for the "road" image pair. The �lters have orientation of 0Æ.
Scale 0, 1 and 2 correspond to �lter wavelength of 4:6, 9:2 and 18:4 pixels, respectively.

b. a(��) and b(��) are the a and b values at �� through the cubic interpolation of

the a, b curves.

4.5 Joint Likelihood Function

In the previous section, we derived the likelihood function for the measurement at each

individual �� . In practice, we obtain a sequence of binocular measurements, with

di�erent pre-shifts, at each image location. To make better use of the measurements,

instead of using a single measurement, we can combine the measurements to estimate

the likelihood function. Let p(C(x)jD) denote the joint likelihood function. Unlike

the likelihood function p(C(x; �)jD) for an individual measurement, there is no �

term in the joint likelihood function because it denotes a family of measurements

with di�erent value of � .
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Figure 4.16: The b curve for the "road" image pair. The �lters have orientation of 0Æ.
Scale 0, 1 and 2 correspond to �lter wavelength of 4:6, 9:2 and 18:4 pixels, respectively.
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Figure 4.17: The a curve for the "wall" image pair. The �lters have orientation of 0Æ.
Scale 0, 1 and 2 correspond to �lter wavelength of 4:6, 9:2 and 18:4 pixels, respectively.
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Figure 4.18: The b curve for the "wall" image pair. The �lters have orientation of 0Æ. Scale
0, 1 and 2 correspond to �lter wavelength of 4:6, 9:2 and 18:4 pixels, respectively.
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Figure 4.19: The a curve for the "room" image pair. The �lters have orientation of 0Æ.
Scale 0, 1 and 2 correspond to �lter wavelength of 4:6, 9:2 and 18:4 pixels, respectively.
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Figure 4.20: The b curve for the "room" image pair. The �lters have orientation of 0Æ.
Scale 0, 1 and 2 correspond to �lter wavelength of 4:6, 9:2 and 18:4 pixels, respectively.
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Figure 4.21: The a curve for the "road" image pair. The �lters have orientation of 45Æ.
Scale 0, 1 and 2 correspond to �lter wavelength of 4:6, 9:2 and 18:4 pixels, respectively. The
e�ective wavelength is �= cos(45Æ) along the epipolar line, where � is the �lter wavelength.
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Figure 4.22: The b curve for the "road" image pair. The �lters have orientation of 45Æ.
Scale 0, 1 and 2 correspond to �lter wavelength of 4:6, 9:2 and 18:4 pixels, respectively. The
e�ective wavelength is �= cos(45Æ) along the epipolar line.

The simple way to combine the individual likelihood functions is to take the

product of them by assuming independence:

P (C(x)jD) =
Y
��

p(C(x;D +��)jD) (4.7)

From Section 4.4, we know that p(C(x;D +��)jD) is Beta distribution parame-

terized by �� , a and b, which we rewrite here as

p(C(x; �)jD) = f(C(x; �); a(� �D); b(� �D)) = f(C(x; �); a(��); b(��))

Therefore Eq. (4.7) becomes

p(C(x)jD) =
Y

�Dwin����Dwin

f(C(x; d+��); a(��); b(��)) (4.8)

where �Dwin de�nes the range of �� . It is unnecessary to use all the possible values of

�� because when �� is large enough, the probability distribution of Re[C(x;D(x)+
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��)] becomes an almost uniform distribution. In practice, we �nd that choosing dwin

as one wavelength of �lter output achieves satisfactory results.

Sometimes we need to construct a likelihood function at the pre-shift where we

do not have binocular measurement. Note that although we obtain the binocular

measurements at pre-shift � with �xed interval �d, that is

� 2 f�dmax; � � � ;�2�d;��d; 0;�d; 2�d; � � � ; dmaxg

we can still estimate the likelihood function at any disaprity that is not equal to one

of the above pre-shifts. For a disparity d 2 � , we have the measurement C(x; ��D) =

C(x;��) and we can use Eq. (4.7) to compute the likelihood value. Now consider

a disparity D =2 � , that is, D = D0 + �s, where D0 2 � , while �s represents the

sub-pixel accuracy, 0 < �s < �d. In this case, we do not have the measurement

C(x; � �D) = C(x;�� +�s), since we obtain the measurement at � = D0+�� . To

estimate the likelihood function with the measurement at D0 + �� , we can rewrite

Eq. (4.7) as

p(C(x)jD) =
Y

�dwin����dwin

p(Re[C(x;D0 +��)]jD)

=
Y

�dwin����dwin

p(C(x;D +�� ��s)jD))

=
Y

�dwin����dwin

f(C(x;D +��); a(�� ��s); b(�� ��s)) (4.9)

f(C(x;D + ��); a(�� � �s); b(�� � �s)) is a Beta distribution with parameters

a and b. In Section 4.4, we have the curves of a and b with di�erent �� values.

Because these curves are smooth, one can interpolate the a and b curves to obtain

the a(�� ��s) and b(�� ��s).

The de�nition of p(C(x)jD) in Eq. (4.8) assumed that the noise in each mea-

surement Re[C(x;D +��)] is independent at each �� . However, in fact, the values
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of Re[C(x;D + ��)] with di�erent �� are correlated. The reason for the correla-

tion is the initial linear �lters. Even for white noise, and uncorrelated inputs, we

expected to see a sinusoidal relation among the values of Re[C(x;D +��)] with dif-

ferent �� . The curve implies that the values of Re[C(x;D + ��)] near disparity D

follow a certain pattern even though they are at di�erent �� , which invalidates the

independence assumption. The dependence of these values means that the product of

p(C(x;D+��)jD) will have a sharp peak at the true disparity, or at other pre-shifts

where false peaks of binocular measurements occurs (that is, where the pre-shifts are

mistaken as true disparity due to the periodic nature of phase). One simple way to

overcome this problem is to raise p(C(x)jD) to the power of some value �. This e�ec-

tively smooths out p(C(x)jD), which otherwise has very sharp peaks. Fig. 4.23 shows

the e�ect of raising p(C(x)jD) to di�erent values of �. The value of � is normally

chosen between 1
8
and 1

16
. We use a value of 1

12
in our experiments.

4.6 Summary of Results

In this chapter, we developed likelihood functions from binocular measurements. We

�rst identi�ed and modeled the sources of variability in the binocular measurements.

Then we empirically derived the form of the likelihood function at di�erent scales

and orientations. To make it practical to use the likelihood functions, we �t the

form of likelihood functions by a Beta distribution, which is invariant at di�erent

scales. Finally, a joint likelihood function is formulated from a sequence of likelihood

functions at di�erent pre-shifts for a single scale and orientation.
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Figure 4.23: Raising p(C(x)jD) to some value � has the e�ect of smoothening the curve
which otherwise has very sharp peaks. p(C(x)jD) is computed every 0.25 pixel.



Chapter 5

Multi-scale Model for Stereo

Matching

In the previous chapter, we discussed how to compute the likelihood function for the

observed binocular measurements. Given the likelihood functions at di�erent scales

and orientations, we can now investigate how to combine them in an optimal way.

This is not only of interest to computer vision, it is also related to biological vision. It

has been shown that the �rst stages of disparity estimate in the primary visual cortex

in cats, primates, and in the visual wulst in owls are thought to use the phase-based

binocular measurement described in Section 2.4.1. However, the subsequent stages

that combine the measurements to �nd a disparity map are unknown. In [FWH96],

Fleet et al suggest the linear pooling of the binocular measurements across scales and

orientations as the second stage of processing. The primary problem of linear pooling

is that it gives every scale and orientation the same weight. It also requires a large

number of channels to attenuate false peaks and accentuate true peaks. However,

coarse scales have to be interpolated before being added to the �ne scales. Since the

76
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interpolated results are derived from the known information, the interpolation does

not provide any new information. Therefore it may not be appropriate to give the

values from the interpolation the same weight as the original values at the �ne scales.

The derivation of likelihood functions from the binocular measurements gives us

a probabilistic basis for combining the phase-based measurements. It enables us to

incorporate the measurements into a Bayesian framework so that we may �nd an

optimal way to combine information across scales and orientations.

In this chapter, we consider two ways of combining measurement information

across scales and orientations. First we �rst try the simplest way, that is, we assume

independence of measurements of di�erent scales and orientations. We can then

take their products over scales and orientations. As a second approach, we exploit

the spatial coherence of typical disparity �elds by adopting a multi-scale Markov

prior. We show how to correctly propagate information over scales in this multi-scale

Bayesian framework. The experimental results are provided for both methods. Our

purpose is to show the feasibility of using phase-based measurements in a Bayesian

approach. Therefore, we do not expect a signi�cant improvement over other stereo

matching methods at this early stage. Although our algorithms seem to work well,

there is no in-depth comparison of our results with those from other existing methods.

However, the methods we discuss here show potential for further improvement.

5.1 Direct Pooling

If we assume that the measurements are independent at di�erent scales and orienta-

tions, and we adopt an uninformative prior (e.g. ignoring smoothness assumption),

we come up with a simplest way to combine the information. This involves the mul-
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tiplication of the likelihood functions across scales and orientations. This approach is

somewhat similar to the linear pooling of measurements in [FWH96] and may seem to

be nothing signi�cant. However, we claim that the new approach has some advantage

over the old one, because it is constructed step by step, with the underlying assump-

tions being made explicit. Recall that we �rst identify the sources of variability of

binocular measurements and have explicit models for the sources. We then derive the

likelihood functions using the models of measurement variability. Finally, with the

independence assumption, we multiply the likelihood functions as a way to combine

the information. By building the model in this way, we are able to isolate the e�ects

of individual assumptions and test them through experiments. This is particularly

important for a biological vision model because we may be able to verify the correct-

ness of the assumptions with neurophysiological data. Therefore, the multiplication

model may be a better alternative to the summation model.

The multiplication method can be regarded as a Bayesian approach with un-

informative prior and the independence assumption of noise at di�erent scales and

orientations. We already know the joint likelihood function p(C(�; x; �; �)jD) at some

pre-shift � , location x, scale � and orientation �. The Bayesian approach requires us

to obtain the posterior probability in the form of p(Dj �C), where �C is the set of all

measurements. By using the Bayes' rule introduced in Chapter 3, we have

p(Dj �C) / p(C(�; x; �; �)jD)p(D)

By the assumption of uninformative prior, p(D) is constant. And by the independence

assumption of noise at di�erent scale and orientations, we can multiply the likelihood
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functions across scales and orientations. This results in

p(Dj �C) /Y
�i

Y
�j

p(C(�; x; �; �)jD) (5.1)

In order to multiply the joint likelihood functions, we need to construct the joint

likelihood functions so that they have same number of disparities across scale and

orientations. The range of disparity is smaller at coarser scale. Therefore fewer

measurements are obtained at an image location at coarse scale. We can use the

technique in Section 4.5 to construct the likelihood function where no measurement is

obtained, so that the likelihood functions at all scales have same number of disparities.

The size of the image is also smaller at coarser scale, which results in fewer likelihood

functions at coarser scale. This can be overcome by the linear interpolation of the

likelihood functions, so that all scales have the same number of likelihood functions.

Once we get the posterior distributions, we have several ways to �nd the disparity

map, such as MAP (Maximum A Posterior estimate) introduced in Section 3.2, and

MPM (Maximum Posterior Marginal) [MMP87]. Here we use MAP, which is

D̂ = argmax
D

P (Dj �C)

However, since the posterior distribution is multi-modal, that is, there may be

more than one peak in the distribution, simply choosing the disparity with the largest

peak may lose some useful information. One way to use make better use of the

posterior probability is to produce a con�dence map, which is a histogram of the

values of the posterior. Given a disparity with its corresponding posterior value, a

broad peak in the histogram near the value means a low con�dence for that disparity,

while a sharp peak means a high con�dence for that disparity.
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5.2 Experimental Results

We have implemented the direct pooling method as follows. Similar to the local

weighted phase-correlated method, we construct a three-scale Gaussian pyramid from

the original images, sub-sampled at each level by a factor of 2 horizontally and ver-

tically. Three quadrature-pair �lters are applied at each scale, tuned to orientations

0o, +45o, and �45o. The binocular measurements are obtained at every scale and

orientation. Then we compute the likelihood function and joint likelihood functions

using Eq. (4.6) and Eq. (4.9). Finally, the joint likelihood functions are combined

using Eq. (5.1) to get the posterior probabilities. We �nd the disparity map using

MAP.

Some disparity estimates are shown in Fig. 5.1, Fig. 5.3 and Fig. 5.4. Fig. 5.1 is

the disparity map of a standard image pair of the Pentagon building as seen from the

air (see Fig. 2.5). Fig. 5.3 is the disparity map of the lamp/head sequence (Fig. 5.2),

which has a disparity range up to 12 pixels. Fig. 5.4 shows the disparity estimates

using frame 2 and 4 from the SRI tree sequence, which is also used to test the lo-

cal weighted phase-correlation method in Section 2.5. For the SRI tree sequence,

compared to the local weight phase-correlation method, the algorithm described here

reveals more details of the depth information without making the estimation nois-

ier. The results indicate that the multiplication of the likelihood functions across

scales and orientations can server as a better alternative to the direct summation of

measurements.

The disparity maps are computed with half pixel resolution. To achieve higher

sub-pixel resolution, one can use these disparity maps as raw estimations, and then

construct likelihood functions at a smaller sub-pixel interval near the raw disparity
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Figure 5.1: Disparity estimate of Pentagon image pair using the product of likelihood
functions across scales/orientations. The disparity map has half pixel resolution.

to �nd a peak, which has higher resolution. This process can be repeated until the

desired resolution is achieved.

5.3 Multi-scale Stochastic Model

The direct pooling of measurements in the previous section assumes uninformative

prior of the disparity �elds. However, disparity �elds of natural scenes often have some

kind of the spatial coherence, which can be used to obtain a more reliable estimation

method. As introduced in Chapter 3, the MRF prior is commonly used for this

purpose. In the multi-scale approach, we can combine information across scales using

a multi-scale MRF prior within a Bayesian framework. The multi-scale models have

been used in a broad range of problems such as image segmentation [BS94], optical


ow estimation [LKW94] and classi�cation of texture [CC85], etc. In [LKWT93], it

has been shown that the multi-scale models can be used to exactly or approximately
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Figure 5.2: The lamp/head sequence.

Figure 5.3: Disparity estimate of lamp/head sequence using the product of likelihood
functions across scales/orientations. The disparity map has half pixel resolution.
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 Range: [−0, 4.5] 
 Dims: [220, 220] 

Figure 5.4: Disparity estimate of the SRI tree sequence (frame 2 and frame 4) using the
product of likelihood functions across scales/orientations. The disparity map has half pixel
resolution.

represent MRFs. Generally, the multi-scale model is composed of a series of random

�elds progressing from coarse to �ne scale. Each �eld is assumed to only depend

on the previous coarser scale, and points in each �eld are conditionally independent

given their coarser scale neighbors. Therefore, the series of �elds form a Markov

tree in scale. This leads to a scale-recursive model [LKWT93] with computationally

tractable properties.

In the case of 2-D signals, the multi-scale model is often described by the qudatree

shown in Fig. 5.5 in which each node has four descendants. Di�erent levels of the tree

correspond to di�erent scale of the �elds. For notation convenience, given a node in

the tree at a location s, let s� be the location of its parent node, s� the location of

its child node. For a disparity Ds at node s, it can be shown [LKWT93, LD93] that
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Figure 5.5: The multi-scale model is often described by the qudatree in which each node
has four descendants.

its relation with its parent nodes, that is, the evolution of the process from coarse

scale to �ne scales, can be expressed by the scale-recursive multi-scale model:

Ds = ADs� +B! (5.2)

where ! is an independent, zero-mean white noise process, and B is the magnitude

of the white noise process. The term ADs� represents the interpolation of the coarse

scale to match the sampling grid of the �ne scale, where A depends on the particular

application and process being modeled. For example, A = 2 if the scene property is

disparity because the disparity is linearly scaled by the ratio of down sampling. We

always assume A = 2 as what follows. B! represents new information added as the

process evolves from one scale to the next.

With Eq. (5.2), the MRF can be transformed into a Markov chain over scales.

The Markov chains are formed by the parent and child nodes in the quadtree. It can

be expressed as [IB96]

p(Ds�jDs) = Z exp(�1

2
B�1(Ds� � 2Ds)

2) (5.3)
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p(DsjDs�) = Z exp(�1

2
B�1(Ds� � 2Ds)

2) (5.4)

where Z is the normalization constant. The above equations de�ne the transition

probability functions for the Markov chain over scales. This model represents the

quadratic model discussed in Section 3.4 in multiple scales. It is not surprising that

it su�ers the same weakness as the quadratic model at a single scale. From Eq. (5.3),

it is easy to see that the transition probability decreases rapidly with the increase of

the disparity, which means it assigns very low probability to large disparity di�erence.

This works well on smooth surfaces but fails on the object boundaries, where large

disparity di�erences occur.

In order to preserve the object boundary without the e�ect of over-smoothness,

we need a model that tolerates occasional large disparity changes. The square root

model discussed in Section 3.4 may be a better choice because it encourages piece-

wise smoothness while it allows the existence of large disparity di�erence. To see this,

recall that the curve for this model in Fig. 3.3 has a longer tail than the quadratic

model. Therefore, in the multi-scale model, we can replace Eq. (5.3) with a more

"robust" model

p(Ds�jDs) = Z exp(�B�1
q
(Ds� � 2Ds)) (5.5)

p(DsjDs�) = Z exp(�B�1
q
(Ds� � 2Ds)) (5.6)

where Z is the normalization constant.

Similar to the MRF model, with the multi-scale model, we need to compute the

posterior probabilities combining measurements at all scales and orientations, while

taking the prior into account. In the next section, we show how to accomplish this

using Bayesian belief propagation over scale, to yield an algorithm that is both simple
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and eÆcient.

5.4 Belief Propagation

The graph in Fig. 5.5, which represents the multi-scale model described above, is a

Bayesian network [Wei99, Wei97, Pea88]. In general, a Bayesian Network represents

statistical dependencies of variables by a graph. The representation consists of nodes

that correspond to random variables and, roughly speaking, arcs that correspond to

probabilistic dependencies between the variables. More precisely, the lack of arcs

between two nodes represents conditional independence. Fig. 5.6 shows a simple

Bayesian network with six nodes. Three of them have observed variables and the

other three have hidden variables.

If a Bayesian network is singly connected (i.e., a network without loops), there

exist eÆcient local information passing schemes to calculate the posterior probability

at each node. [Pea88] derived a such scheme for a singly connected Bayesian network

and showed that the algorithm is guaranteed to converge to the correct posterior

probability. In order to propagate information correctly, it is important to avoid

"double counting", a situation in which the same information is passed around the

network multiple times and mistaken for new information. However, for networks

with loops, the propagation of information is much harder because the existence of

loops may cause the information to circulate around the loops. As an example, the

conventional MRFs are Bayesian networks that contain loops. This explains why it

is hard to use them for inference. The convergence is often very slow and may even

converge incorrectly if an improper propagation scheme is used.

The multi-scale Markov prior model used here is a tree model without loops, which
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Figure 5.6: A Bayesian network with six nodes, with three observed nodes (�a, �b and �c) and
three hidden nodes (a, b and c).

Cs1

Csα

Cs2

s1d s2d

sαd

Figure 5.7: A Bayesian network with six nodes. The observed nodes, Cs1, Cs2 and Cs3,
are the binocular measurements. The hidden nodes, ds1, ds2 and ds3 are the disparities.



CHAPTER 5. MULTI-SCALE MODEL FOR STEREO MATCHING 88

implies the existence of a simple propagation scheme. To derive the correct form of

belief propagation, we begin with a simple graph as shown in Fig. 5.6. The variables

of the hidden nodes are a, b and c, for which there are corresponding observations �a,

�b and �c respectively. Let us suppose, for instructional purpose, our goal is to compute

the posterior probability p(bj�a;�b; �c). From the graph, because of the conditional

independence, the joint distribution p(a; b; c; �a;�b; �c) can be factored into

p(a; b; c; �a;�b; �c) = p(bja)p(aj�a)p(�a)p(bjc)p(cj�c)p(�c)p(�bjb)

Since p(aj�a)p(�a) = p(�aja)p(a), p(cj�c)p(�c) = p(�cjc)p(c), the above equation can also be

written as

p(a; b; c; �a;�b; �c) = p(bja)p(�aja)p(a)p(bjc)p(�cjc)p(c)p(�bjb)

Then

p(bj�a;�b; �c) =
Z
c

Z
a

p(a; b; c; �a;�b; �c)

p(�a;�b; �c)
dadc

= kp(bj�b)
Z
a
p(bja)p(�aja)p(a)da

Z
c
p(bjc)p(�cjc)p(c)dc

= kp(bj�a)p(bj�b)p(bj�c)

where k is a normalization constant that does not depend on a, b and c, and

p(bj�a) =
Z
a
p(bja)p(�aja)p(a)da

p(bj�c) =
Z
c
p(bjc)p(�cjc)p(c)dc

We can apply a similar technique to the disparity estimation to obtain the propagation

rule from the child nodes to parent node (Fig. 5.7)

p(Ds�jCs1; Cs2; Cs�) = kp(Ds�jCs1)p(Cs�jDs�)p(Ds�jCs2) (5.7)

where

p(Ds�jCs1) =
X

Ds12�Dmax;:::;Dmax

p(Ds�jDs1)p(Cs1jDs1)p(Ds1) (5.8)
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p(Ds�jCs2) =
X

Ds22�Dmax;:::;Dmax

p(Ds�jDs2)p(Cs2jDs2)p(Ds2) (5.9)

Cs1, Cs2 and Cs� are the binocular measurement at node s1,s2 and s� respectively.

Ds�, Ds1 and Ds2 are the disparities. p(Ds1)and p(Ds2) are the prior probabilities

of Ds1 and Ds2. p(Cs1jDs1), p(Cs2jDs2) and p(Cs�jDs�) are the likelihood functions

obtained using techniques discussed in Chapter 4. There are several possible choices

for p(D). In the case of the human vision system, when people observe a target,

normally they will verge the eyes to the target, so that the disparity �eld will have

minimum value, that is, close to zero. Therefore, we can assume that the disparity

�eld is a Gaussian distribution with zero mean. However, for a given pair of images

taken from camera, the mean value of the disparity �eld may not be zero and can

be any value in the range of the disparity. In this case, we can assume a uniform

distribution of disparity, that is, the disparity at each pixel location is equally likely

to be any one of the values in the disparity range �Dmax; :::; Dmax, Eq. (5.8) and

Eq. (5.9) become

p(Ds�jCs1) =
X

Ds12�Dmax;:::;Dmax

p(Ds�jDs1)p(Cs1jDs1) (5.10)

p(Ds�jCs2) =
X

Ds22�Dmax;:::;Dmax

p(Ds�jDs2)p(Cs2jDs2) (5.11)

p(Ds�jCs1) and p(Ds�jCs2) are called prediction probabilities which are, in general,

computed from the posterior p(Cs1jDs1)p(Ds1) and p(Cs2jDs2)p(Ds1) with the tran-

sition probabilities p(Ds�jDs1) and p(Ds�jDs2). In the case that Ds1 and Ds2 are

uniform distributions, they can also be computed directly from likelihood functions

p(Cs1jDs1) and p(Cs2jDs2).

For notational convenience, let Est denote the prediction probability distribution

from node s to t, which is computed from the posterior probability at node s. Let
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Figure 5.8: A Bayesian network, which is a simple dyadic tree. Each node has the likelihood
function pre-computed.

Ls denote the likelihood function at s, and let Qs denote the posterior probability

distribution at s. Eq. (5.7) can then be written as

Qs� = Es1s�Ls�Es2s� (5.12)

Now we can apply the propagation rule to the quadtree model. To simplify the

presentation, we base our discussion on the dyadic tree as shown in Fig 5.8. The result

can be easily extended to the quadtree model. In Fig 5.8, each node has the likelihood

function already computed (i.e. L1,L2,...L6). With the transition probability known,

the propagation on the tree can be divided into two phases:

� Upward propagation

� Downward propagation

When designing the information propagation scheme, in order to avoid double

counting, it is important to ensure that no nodes receive their own information. That
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is, their own likelihood functions should not be passed back to them. Therefore, we

may need a mechanism that keeps track of the 
ow of information in the graph. One

way to achieve this is to keep a copy of the prediction probability from the child

node (which encodes the information from the child node) at each node, instead of

direct multiplication with the likelihood function. In this way, we know which part

of information comes from which node during the downward propagation.

The details of scheme are described below: We �rst use the simple dyadic tree

shown in Fig. 5.8 as example. The upward propagation is shown in Fig. 5.9. At node

5, we obtain the prediction probability distribution E15 and E25 from nodes 1 and 2.

Instead of multiplying them with L5, we keep a copy of E15 and E25 at node 5. At

node 7, the prediction probabilities E57 and E67 are computed from E15L5E25 and

E36E6E46 using Eq. (5.10).

The downward propagation is where we should pay attention to double counting.

When passing information from node 7 to node 5, the prediction probability E75 is

computed from E67L7. Note that it should not be computed from E57L7E67, The

reason is that E57 contains the information from node 5 and we should not send it

back to node 5! Similarly, when we pass information from node 5 to node 1, the

prediction probability E51 should be computed from E25L5E75. It is easy to see that

when the posterior probability at node 1 is updated to L1E51, it contains information

from node 2 to node 7. None of them are counted twice.

The complete propagation scheme is summarized in the following:

1. Compute the likelihood functions L at each node of the tree, using techniques

discussed in Chapter 4.

2. Upward propagation: Let s be a node in the tree, let Rs be the set of nodes
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Figure 5.9: A upward propagation in the dyadic tree, with the double counting being
taken into account. The prediction probabilities are stored in each node, instead of direct
multiplication.
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Figure 5.10: A downward propagation in the dyadic tree, with the double counting being
taken into account. ) denotes the process of computing the prediction probability from
the posterior probability, given the transition probability. The prediction probabilities are
stored in each node, instead of direct multiplication. This downward propagation scheme
is such that no node receives its own information.
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that are children of node s. Compute the prediction probabilities Ets for all

nodes t 2 Rs using Eq. 5.10, and store the results in node s.

3. Downward propagation: Let s be the parent of node t. Compute the prediction

probability Est from
Q

k2Rs;k 6=tEksQsEus, where Eks is the prediction probabil-

ities computed and stored in node s during the upward propagation, Eus is the

prediction probability from node u to s, which is the parent node of s, Qs is the

posterior probability of s.

In order to widely spread the beliefs, during the downward propagation, one can

propagate the belief to more nodes at �ner scales. This can help to smooth the

disparity �eld even when there are large regions where the measurements are noisy.

The propagation of information using above scheme is non-iterative, which is a

clear advantage over the MRF model. If the original image size is N pixels, the

maximum number of scales is logN . The number of propagations between scales

is proportional to N . Therefore the total run time of the propagation scheme is

O(N logN), a signi�cant improvement over the MRF model.

5.5 Experimental Results

We implemented the multi-scale propagation algorithm using the same Gaussian pyra-

mid in the direct pooling method. The complete algorithm is summarized in the

following:

1. Obtain the binocular measurements at every scale and orientation.

2. Compute the likelihood function and joint likelihood functions using Eq. (4.6)

and Eq. (4.9).
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3. Upward propagation and downward propagation: use the propagation scheme

summarized at the end of Section 5.3 to compute the posterior probabilities.

The propagation is performed separately at each orientation. The �nal posterior

probabilities are obtained by multiplication of the posterior probabilities from

all three orientations.

4. Use MAP to get the disparity map.

The algorithm has been tested on several real and synthetic image pairs. The

disparity map is obtained using MAP from the posterior. All disparity maps have

half pixel resolution. To achieve higher sub-pixel resolution, one can use the method

discussed in Section 5.1. For the purpose of comparison, we show the disparity maps

of the SRI tree sequence using a quadratic transition function in Fig. 5.14 and a square

root transition function in Fig. 5.15. The quadratic model is given by Eq. (5.3) and

Eq.(5.4), while the square root model is given by Eq. (5.5) and Eq.(5.6). The quadratic

model has better overall quality than the square root model, due to the fact that the

quadratic model is a good model to smooth the disparity �eld, even though it may

work poorly at object boundaries. The square root model may be a better model at

the object boundary, at the expense of a noisier disparity �eld. However, here we

deal with multi-modal distributions, where multiple disparities have high probability

at a point. Since we propagate the evidence for all these probabilities, it may be �ne

to have a simple quadratic (Gaussian) distribution for the neighborhood interaction.

The probability density functions of both models are shown in Fig. 5.11. The value

of B in Eq. (5.3 - 5.6) should be chosen such that the detail of the scene is kept while

the errors are smoothed out. If B is too large, it may lead to the loss of detail. While

if B is too small, it may not be able to smooth out the errors. In practice, we found
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Figure 5.11: The probability density functions for the square root model and the quadratic
model. The quadratic model is given by Eq. (5.3) and Eq.(5.4), while the square root model
is given by Eq. (5.5) and Eq.(5.6). We choose B = 15 for the quadratic model and B = 1
for the square root model.

that B = 15 for the quadratic model and B = 1 for the square root model achieve

best balance.

Fig. 5.16 shows the disparity map for the SRI tree with information spreading to

more nodes at the �ner scale during the downward propagation. One may note that

there are fewer large regions of errors, due to the smoothing e�ect of more widely

spread information.

Fig. 5.13 is the disparity map of the lamp/head sequence

The disparity estimates from the pentagon image pair and the lamp/head se-

quence are shown in Fig. 5.12 and Fig. 5.13, respectively. They are estimated using

the quadratic model and a widely spread downward propagation. Notice that the

disparity map recovers more details of the depth scene than the local weighted phase
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Figure 5.12: Disparity estimate of the Pentagon image pair using the multi-scale Stochas-
tic model. The transition function is a quadratic model with a widely spread downward
propagation. The disparity map has half pixel resolution.

correlation method, but without making the estimates noisier. The result is compat-

ible with the direct pooling method.

The multi-scale model is our initial attempt to combine information. Currently

it does not have explicit occlusion detection and handling. However, the SRI tree

sequence, as well as many other stereo pairs contain occluded regions, which will

inevitably cause incorrect matching for our algorithm. One can see that there are

several obvious false matches in some region near the trunk of the tree, due to oc-

clusion. One of the advantages of the new algorithm is that it may be possible to

incorporate an occlusion detection mechanism into the model. [Bel95, GLY95] pro-

vide some work on the detection of occlusion within Bayesian framework, which may

help us improve the algorithm.
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Figure 5.13: Disparity estimate of the lamp/head sequence using the multi-scale Stochas-
tic model. The transition function is a quadratic model with a widely spread downward
propagation. The disparity map has half pixel resolution.

Figure 5.14: Disparity estimate of the SRI tree sequence (frame 2 and frame 4) using the
multi-scale Stochastic model. The transition function is a quadratic model. The disparity
map has half pixel resolution.
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Figure 5.15: Disparity estimate of the SRI tree sequence (frame 2 and frame 4) using the
multi-scale Stochastic model. The transition function is a square root model. The disparity
map has half pixel resolution.

Figure 5.16: Disparity estimate of the SRI tree sequence (frame 2 and frame 4) using the
multi-scale Stochastic model. The transition function is a quadratic model with a widely
spread downward propagation. The disparity map has half pixel resolution.
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5.6 Summary

In this chapter, we investigated two ways to combine information from di�erent

channels. The simple way is to take the product of the likelihood functions across

scales and orientations by assuming the independence of measurements and a uniform

prior model. This approach is similar to the local weighted correlation method by

Fleet [Fle94].

A more sophisticated way is to exploit the spatial coherence of the measurements

by using a multi-scale Markov prior model. This results in a Bayesian network without

loops. A propagation scheme is designed to avoid the double counting of information,

which typically happens in Bayesian network with loops. The resulting algorithm

is non-iterative and does not su�er from the problem associated with coarse-to-�ne

control strategies.



Chapter 6

Conclusions and Future Work

As discussed in chapter 2, Phase-based methods for stereo matching have many ad-

vantages over other methods. Neurophysiological research has also shown that phase-

based measurements comprise the �rst stage of disparity processing in the primary

visual cortex of many mammals and in the visual wulst of the owl. Therefore, phase-

based methods are not only important for computer vision research, they also play

important role in modeling biological stereopsis. Despite the success of phase-based

method in modeling the early stage of disparity processing, the subsequent stages

that combine the measurements to infer a unique disparity map are unknown. The

commonly used coarse-to-�ne control strategy in computer vision may not be suitable

for modelling this process. That is because, with the coarse-to-�ne approach, a poor

estimate at the coarse scale leads to incorrect estimate at the �ne scale, from which

the algorithm cannot recover. There is also evidence against the use of coarse-to-�ne

control strategy in biological vision [MDA94].

In this thesis, we formulate phase-based disparity estimate with Bayesian ap-

proach. We use Bayesian framework to determine the optimal way to combine the
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results of phase-based method in di�erent channels. This can potentially be useful

to model the second stage of disparity processing in primary visual cortex. Current

computer vision techniques combine these estimates in a somewhat ad hoc way, as-

suming that left and right images are simple translation of one another. However,

this assumption is valid only when the 3-D surfaces are frontopararell. The Bayesian

approach is more 
exible because it can be applied to a broad range of surfaces. This

is achieved through the use of di�erent prior models for di�erent kinds of surfaces.

In order to incorporate the phase-based method into a probabilistic framework, we

provide the Phase-based method a probabilistic basis.

6.1 Conclusions

The phase-based measurement used in this thesis in the binocular measurement. The

main contribution of this thesis is the development of a likelihood function for the

binocular measurement for use in a Bayesian framework. The related works we have

done include:

� Identi�cation and modeling the sources of variability in the binocular measure-

ments.

� Empirical derivation of the form of the likelihood function for the binocular

measurements at di�erent scales and orientations.

� Fitting the form of the likelihood function by a Beta distribution, which is

invariant in scale but di�erent across orientation.

� Formulation of a joint likelihood function for measurements at di�erent pre-
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shifts for a single scale and orientation.

We have also completed some initial work related to the combination of measure-

ments across scales and orientations:

� Implementation of the simplest way to combine the measurement over scales and

orientations, by taking the product of the joint likelihood function across scales

and orientations. By doing so, we assume the independence of the measurements

at di�erent scales and orientations, and the uniform prior over disparity maps.

Compare this implementation to the local weighted phased-correlation method

by Fleet [Fle94].

� Development of an algorithm based on a multi-scale Markov prior model that

prefers smooth disparity �elds and small disparities. Design and implementation

of an information propagation scheme for the multi-scale model that avoids the

"double counting" of information. Implementation and testing of the above

algorithm and the local weighted phase-correlation algorithm.

We developed the new algorithm in order to show the feasibility of using the

Bayesian approach with phase-based measurements. Therefore the performance is not

our major concern. However, the new algorithm has shown many potential advan-

tages over existing MRF-based approaches. Currently, many MRF-based algorithms

incorporate smoothness models that require iterative procedures, with coarse-to-�ne

propagation of estimates. They are usually slow to converge and are therefore not

suitable for real-time applications. The multi-scale algorithm here does not assume

coarse-to-�ne and it is computed in �xed time in terms of the number of pixels.
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6.2 Future Work

The sources of variability in the binocular measurement include noise, smooth but

non-constant surface, variation in the instantaneous frequency, discontinuities at ob-

ject boundary, and deformation/scale change. We only model the �rst three sources.

How to explicitly model of discontinuities at object boundary, and Deformation/Scale

change remains for future research.

Currently, when we derive the joint likelihood function, we �rst assume the in-

dependence of the measurements at di�erent pre-shift and take the product of the

likelihood functions to form the joint likelihood function. However, since the mea-

surements are, in fact, correlated, the joint likelihood function derived in this way has

sharper peaks than they should have. The simple approach to overcome this problem

is to raise the joint likelihood function to the power of some value. We may want a

more elegant way to deal with the correlation.

The multi-scale model does not explicitly take the discontinuities and occlusion

into account. There is work on how to detect and handle the discontinuities and

occlusion within the Bayesian framework with MRF as prior model [Bel95, GLY95].

There is also similar work on detection and tracking of motion discontinuities [BJ99].

Psychophysical evidence [GLY95, GB88] also indicates that the human visual system

takes advantage of the occluded regions for obtaining depth information. However,

how to incorporate occlusion detection mechanism in the multi-scale prior model

needs further research. We may also need a better propagation function that supports

the piece-wise smoothness and preserves the object boundary and depth discontinu-

ities.
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Appendix A

A.1 Steerable Filters

Oriented �lters have found extensive use in many computer vision and image-processing

task, such as edge detection, texture analysis, image compression and motion anal-

ysis, etc. We also use oriented �lters in our algorithm of stereo matching for the

reasons given in section 2.5.2. In many tasks, it is useful to be able to tune the

orientation of the �lters to arbitrary orientation. It is a tedious work to design �lters

of all orientations and it takes a lot of space to store the kernels of the �lters. One

natural question arises: is it possible to design a set of �lters of di�erent orientation

and use them as basis functions to synthesize �lters with arbitrary orientation?

It has been proved possible to do so with the concept of "steerable �lters" intro-

duced in [FA91]. The term "steerable �lters" is used to describe a class of �lters in

which a �lter of arbitrary orientation is synthesized as linear combination of a set of

"basis �lters"(Fig. A.1). Formally

f �(x; y) =
MX
j=1

kj(�)f
�j(x; y) (A.1)
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or in polar coordinates

f �(r;�) =
MX
j=1

kj(�)gj(r;�) (A.2)

where r =
p
x2 + y2 and � = arg(x; y). � is the orientation the �lter is tuned to.

To design a steerable �lter, besides the design of the basis �lters, we also need

to know the minimum number of basis �lters that are suÆcient for steering and the

coeÆcients for the basis �lters. As an example, we show the design of a steerable

quadrature �lter pair based on the frequency response of the second derivative of a

Gaussian (G2). This is the steerable �lter we use in our stereo matching algorithm.

The second derivative of a Gaussian is f(x; y) = G0Æ

2 = (4x2 � 2)e�(x
2+y2). The

superscript 0Æ indicates that its orientation is 0Æ. As shown in [FA91], three basis

�lters are suÆcient for steering. The orientations of the basis �lters are 0Æ,60Æ and

120Æ. The coeÆcients are de�ned by

kj(�) =
1

3
[1 + 2 cos(2(� � �j))] (A.3)

Thus a G2 �lter with orientation � can be obtained by

G�
2 = k1(�)G

0Æ

2 + k2(�)G
60Æ

2 + k3(�)G
120Æ

2 (A.4)

The Hilbert transform of G2, i.e. H2, can be approximated as a polynomial times

a Gaussian. One can use a least squares �t to �nd the polynomial. Given in [FA91],

the approximation of H2 is

H2 = (�2:205x+ 0:9780x3)e�(x
2+y2) (A.5)

The same technique is used to �nd the basis �lters and the coeÆcients to steer H2.

SinceH2 has higher order than G2, it takes four basis �lters as interpolation functions.
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Figure A.1: Steerable Filter Architecture. A bank of basis �lters �rst processes the input
image. The outputs are then multiplied by a set of gain maps followed by a summation.
This results in an output image that is the equivalent of one �ltered by a certain orientation.

Note that all the basis �lters for G2 and H2 are in the form of a polynomial in x and

y times a Gaussian, thus they are x-y separable. For example, G60Æ

2 can be written as

G60Æ

2 = 1:843xye�(x
2+y2) = 1:843xe�x

2 � ye�y2 (A.6)

Thus one can implement G60Æ

2 by �rst applying the one-dimensional �lter 1:843xe�x
2

horizontally to the input image and then ye�y
2

vertically. The x-y separable property

of these �lters signi�cantly reduces the computational cost.
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B.1 Stochastic Relaxation

It is well known that the global optimization problem posed by the MRF model

is non-trivial. If the image size is N � M , and the disparity takes the value from

�dmax to dmax, then the Bayesian approach with a MRF prior model requires us to

�nd a disparity map from (2dmax)
N�M candidate maps that minimizes the energy

function ED. To obtain the optimal solution by an exhaustive search method, the

computational complexity is an exponential O((2dmax)
N�M), which in most cases

is computationally prohibitive. One has to turn to sub-optimal solutions, such as

stochastic relaxation [GG84], which is often described as simulated annealing due to

its conceptual similarity to a physical process called annealing.

Simulated annealing is an iterative algorithm widely used in many applications

involving combinatorial optimization, including the famous NP complete problems

such as travelling salesperson problem, Hamilton circuits, etc. For convenience, we

describe this algorithm here in the context of stereo matching. Let the function to be

minimized be E(D), where D is the disparity map. The algorithm can be described

as follows:
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1. Begin with a random disparity map D0 and an initial temperature parameter

T = T0.

2. At step k, perturb Dk by D̂k+1 = Dk + �D and compute �E = E(D̂k+1) �
E(Dk).

3. if �E < 0, accept the change, that is, Dk+1 = Dk + �D. If �E > 0, accept

the change only with probability p = e��E=T .

4. Decrease T according to some temperature schedule.

5. If the energy becomes stable and the temperature is very low, then stop; oth-

erwise go to step 2.

The perturbation function can be realized in many ways. For example, disparity

can be randomly increase or decrease by one, or an entirely new disparity map can

be randomly chosen from some �xed range. A number of temperature schedules are

available. The one used by Geman and Geman [GG84] is

T (k) =
C

log(1 + k)
; 1 � k � K (B.1)

where T (k) is the temperature during the kth iteration, K is the total number of

iterations. In general, a more slow cooling schedule is more likely to attain a �nal

state close to a global optimum.

One can perform simulated annealing directly on a pair of stereo images, but

the convergence would be rather slow if the images have large size and the disparity

range is large. In recent years, many algorithms have been developed to speed up the

computation of MRF. A more eÆcient method is to use the coarse-to-�ne strategy.

One obtains a series of images with di�erent resolution by blurring and sub-sampling
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the original images. At a coarse level where the image has low resolution, the size of

image and the range of disparity are small. Therefore simulated annealing can achieve

fast convergence. The result obtained at the coarse level can be used as the starting

point for the next �ner level to speed up the convergence at that level. Note that by

doing so, we still use the iterative algorithm on each scale, only with improved initial

estimation to speed up the convergence. In recent years, researchers found that the

MRF model can be replaced by a multi-scale stochastic model, which can eliminate

the iterative procedures while achieve compatible or even better results, with much

less computation [BS94, LKW94]. [LKWT93] has developed a theoretical framework

to justify the model.
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C.1 Parameter Estimate of Beta Distribution

A random variable X is said to have a Beta distribution with parameters a, b (a >

0; b > 0), if its probability distribution function is given by

f(x; a; b) =

8<
:

1
B(a;b)

xa�1(1� x)b�1; 0 < x < 1; a > 0; b > 0

0; otherwise
(C.1)

where B(a; b) is the Beta function

B(a; b) =
Z 1

0
ta�1(1� t)b�1dt; (a; b > 0) (C.2)

Because C(x0; �0 ���) ranges from �1 to 1, Eqn. (C.1) can be rewritten as

f(x; a; b) =

8<
:

1
2B(a;b)

(x+1
2
)a�1(1� x+1

2
)b�1; �1 < x < 1; a > 0; b > 0

0; otherwise
(C.3)

To estimate the parameters of the Beta distribution, one can use the method of

moments (MM) to have a raw estimate, then use the raw estimate as an initial value

to iteratively solve a set of equations derived by the Maximum Likelihood Estimate

(MLE) method to get more a accurate estimate.

The �rst and second moment of the Beta distribution is

�1 = E(X) =
a

a+ b
; �2 = E(X2) =

a(a + 1)

(a+ b)(a + b+ 1)
(C.4)

116



APPENDIX C. 117

For a Beta distribution in the form of Eq. (C.3) the �rst and second moment become

�01 = 2�1 � 1 =
a� b

a+ b
; �02 = 4�2 � 4�1 + 1 =

(a� b)2 + (a + b)

(a+ b)(a + b+ 1)
(C.5)

Solving the above equations, we obtain

a =
(�01�

0
2 � �01 + �02 � 1)

2(�021 � �02)
; b =

(��01�02 + �01 + �02 � 1)

2(�021 � �02)
(C.6)

where �01 = E(X 0) and �02 = E(X 02), X 0 is a random variable that has the distribution

given in Eq. (C.3).

Usually the parameters estimated by the method of moment are not very accurate.

To obtain a more accurate estimate, we can use the Maximum Likelihood Estimate

(MLE). Given n samples x1; x2; :::xn, the MLE of a and b of a Beta distribution is:

�dB(a; b)
db

n

B(a; b)
+

nX
i=1:::n

ln((1� xi)=2) = 0

�dB(a; b)
da

n

B(a; b)
+

nX
i=1:::n

ln((1 + xi)=2) = 0 (C.7)

where B(a; b) is the Beta function. The above nonlinear equations can not be solved

in closed form; an iterative method for �nding the roots has to be employed. We

could use the initial value obtained by the method of moment to start the iterative

procedure. In our experiment, we found that the estimates by the method of moment

along are almost as good as the optimal estimates found by the iterative ML method.

Therefore, we use method of moment to estimate the parameters.



Vita

Experiences Assistant Engineer

1994 - 1996

Engineering Department

Winger Electronics Corporation

China

Education Master of Science

1998 - 2000

Dept. Of Computing and Information Science

Queen's Unviversity

Bachelor of Electrical Engineering

1989 -1993

Dept. Of Electrical Engineering

Zhejiang University

China

118


