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Generally, when quantitative information is to be presented, some form of graphical presenta-
tion is used, often with a textual caption to ensure that the audience notices particular aspects
of the data.

This thesis presents the principles that should be followed by a system aiming to produce
such captions automatically. The process of caption generation is examined in the context
of the standard tasks in text generation. Most previous systems in this area produce textual
summaries intended to stand alone; the issues involved in producing a caption differ, as the text
must be coordinated with the graphic it is to accompany. The thesis also prezenis,@
prototype caption-generation system which follows these principles to generate single-sentence
captions for information graphics of the type that might appear in a newspaper article. Finally,
extensions to @puT that would bring it from a prototype to a full-fledged caption generation

system are proposed.
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Chapter 1

Introduction

1.1 Presentation of quantitative data

Presenting large amounts of quantitative data effectively is not an easy task. Depending on
the situation, the same data can be presented in a variety of ways—different messages may be
extracted from the data, or those messages may be presented using different techniques. The
author of the presentation may want simply to inform the audience, or he or she might have
the goal of persuading them of a particular fact. A skilful author will make sure that any data
included in a presentation is displayed in the most effective way, using appropriate techniques
so that the desired point is illustrated.

Choosing appropriate presentation techniques is a difficult and time-consuming task. For
example, every five years, the government of Canada performs a national census. The raw
data from this census is made available within months of its completion; Statistics Canada then
spends the next sevengarsproducing hundreds of publications which present a variety of
analyses of that raw data’( ).

Figuresl.1-1.3show various different presentations of quantitative information. FigjLire
is taken from the newspap&lSA Today Y. It is an example of the “USA

Snapshot” (*a look at the statistics that shape our lives”) which is printed on its front page each
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Monster cookies: Thin Mints cookies are tops to
Girl Scout cookie consumers.

Figure 1.1: Bar chart and caption fradSA Today(USA Today, 199)

day. The goal of this graphic is simply to inform the audience of some interesting fact; there is
no effort to persuade or convince. Notice that the caption concentrates on the value of only one
of the variables, while the graphic presents the rest of the data itself. The style of the graphic,
with its gimmick of using images of cookies to make up the bars, fits well with the casual tone
of its caption.

Figurel.2is adapted from an article in a Statistics Canada publicationr(s, 1999. The
article, written by a statistician, discusses the findings about aboriginal language use from the
most recent national censtig\s in the previous example, the presentation was created with the
simple goal of presenting a fact to the audience; once again, no attempt at persuasion is made.
In this case, though, the overall trend of the data is described, rather than a single data point
as in the preceding example. As well, the tone of both the graphic and the caption are quite
different, reflecting the difference between the respective contexts of the two presentations.

The third example, Figur&.3, shows a graph and caption adapted from a report to mutual

fund investors idelity Investments, 1998 The goal of this article is to convince investors

The “index of continuity” displayed in the graphic measures the vitality of a language by comparing the
number of those who speak a given language at home to those that learned it as their mother tongue. The lower
the score, the greater the decline.
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The index of continuity for Aboriginal languages has declined steadily over
the past 15 years.

Figure 1.2: Line graph and caption from Statistics Canada public&tiorn i )

that staying in the stock market is worth it in the long term (and that they should therefore
choose funds which invest in stocks). Notice that in this case, as in the first, the value of one
of the variables is singled out; however, here it is an entire trend which is singled out. In the
more complex data presented in this example, many other aspects of the data could have been
presented; however, in keeping with the goal of the article, the trends of the TSE 300 line were
emphasized. Sectioh.2 examines the issues of the textual components of presentations in

more depth.
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Each type of asset performs differently over time. Consider that $1 invested
in stocks represented by the TSE 300 Composite Stock Index, assuming all
dividends were reinvested, would have grown to $46.80, outpacing long-
term bonds and 3-month T-bills by a substantial margin. Note, however,
the greater short-term ups and downs.
Figure 1.3: Line graph and caption from mutual fund reporii ¢ )

1.2 The importance of text

The presentations in Figurésl—1.3contain graphs of the sort typically used when quantitative
information is to be presented. Figured and1.2 contain fairly simple data, so the text in the
caption is also straightforward. However, Figdr&is more complex. If we ignore the graph’s
caption and concentrate only on the lines on the graph, many different features of the data are
apparent. For example, the TSE 300 Index obviously had the largest increase over the time
period; similarly, the Consumer Price Index increased the least. Also, the growth of Long
Term Bond Index and of 3-month treasury bills are quite closely correlated until about 1990,

at which point the values diverge. As well, the Consumer Price Index has the smoothest line,
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while the TSE 300 has the most changes in slope. The feature of interest could also be the steep
decline in the TSE 300 in 1986-87, or its subsequent steep rise from 1994 on. Any one of these
features could be the message of the graph, depending on the context in which it appears and
the point that the author is using it to support.

The original graph upon which Figurk3 is based appeared in an article in a report to
mutual fund investors+ )3The title of the article was “History Shows
That Stock Markets Have Always Rebounded” , with the caption shown in the figure. The
title of the article in which the graphic appeared gives its context, and provides a suggestion of
the author’s motivation for including that information. Notice how the caption helps focus the
attention of the reader on exactly the aspect of the data that the author desires to emphasize:
the fact that the TSE 300 increased by far the most over the time period in question. Without
text, the graphic in Figuré.3still leaves itself open to several different interpretations.

According to Kosslyn1994), the text which accompanies an information graphic can serve
two purposes: to clarify unfamiliar terms and graphical notations, and to point out specific
features of the graph. This text does not necessarily have to be included directly above or below
the graphic itself; it can also appear in an article which makes reference to the contents of the
graphic. For the purposes of this thesis, we will concentrate on the latter function (pointing out
features of the graph), and for simplicity the generic term “caption” will be employed for both
forms of accompanying text.

Many authors have dealt with the question of choosing appropriate graphic techniques to
present statistical information in a variety of situations—among others, Zelaziy)(and
Kosslyn (1994. These books give advice to presenters on how to create an effective presenta-
tion of a variety of statistical data. Similar hard-and-fast rules for creating appropriate textual
presentations do not exist, and it is not clear that such rules would be useful.

The caption should complement the graphic without simply listing all of its features—un-
less, of course, that is what the user requires. Normally, though, the caption will concentrate

on one or two significant features of the data as a whole; often, some of the input data items
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will not appear in the caption at all. Choosing which data features to include in the output and
combining the selected data are not always straightforward tasks; they may be affected by many
factors, including the nature of the data, the domain, the form of the graphical presentation, and
the communicative goals of the user.

As well, the style of the caption may vary greatly depending on its intended audience.
Figurel.lis a classic example of the sort of graphic and caption that appear daily in the news-
paperUSA Todayits novel graphic and folksy caption are very different from the businesslike

presentation of Figuré.3and its accompanying text.

1.3 Automated generation of presentations

When a large number of presentations must be produced, such as by Statistics Canada, an au-
tomated or semi-automated system to create the presentations is very useful. The presentation
rules provided by such manuals as that of Zelazi?() can be used as the basis of such a sys-
tem. PostGraphe-( )ds one such system; it automatically produces an appropriate
graphic based on the data, a characterization of the context, and the desires of the presenter.

To produce full presentations, text should also be generated to accompany the graphics.
This text should follow the criteria outlined in the previous section. It should use the same gen-
eration criteria as the graphic, and should complement the graphic rather than simply restating
its content.

Sometimes, the user has available all of the data and knows what the trends are before the
caption is generated. In this case, the specific trends to concentrate on in the caption can be
specified beforehand. However, the user may not actually know the nature of the data before. In
such situations, the user should specify the general sort of thing to look for, and the generation
system will then use rules to choose the specific content of the caption.

The goal of this thesis is to present the factors that should influence the automatic generation

of text to accompany information graphics, and to build a system which takes into account those
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factors.

1.4 Outline of the thesis

Chapter2 presents some previous work in the automated generation of presentations of quan-
titative information. A number of related projects in this area are presented.

Chapter3 outlines the principles which should be followed by a caption-generation system
during the process of generating text to accompany a graphic. The tasks which such a system
should perform are described, along with other factors that the system should take into account
during the generation process.

Next, Chapterd describes GPUT, a particular implementation of a caption-generation
system. Itis implemented in Java, using CoGenTex’s RealRrao( ) for
its text realization. Chapteralso evaluates &PUT with the principles described in Chapter
Chapter5 provides annotated examples ok€UT’s input and output.

Finally, Chaptef6 outlines the contributions of this thesis and suggests future directions of

research.



Chapter 2

Related work

A variety of previous research projects have dealt with the issue of automatically generating
presentations of quantitative data. Some work has gone into pure graphical presentations; some
systems generate stand-alone textual summaries of the data; and others attempt to produce inte-

grated graphics-text presentations. The following sections describe a number of such projects.

2.1 Graphical presentations

2.1.1 Manuals and guidelines

Several authors have created manuals to help presenters to choose the most appropriate graph-
ical presentation technique in a variety of situations. For example, Stephen Koz, @
Harvard professor of psychology, provides a classification of graphic design techniques moti-
vated by principles of human visual perception and cognition. Gene Zelazny)(provides
another set of guidelines for presentations, aimed at the business community.

Edward Tufte’'s booksT( ; ) provide a different perspective on graphic
presentations. Tuftel083 presents a showcase of interesting information graphics from their
first use in the 18th century to the present day. He also provides a language for discussing

graphics and a theory of data graphics which describes principles that authors should follow in
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creating graphic presentations of data. In his following book, Tuff&)() extends this work
into other graphical presentations—of geometry, of maps, and of train schedules, for example.
Despite the theory of data graphics proposed in the first book, Tufte’s books are, as he says,

“celebration[s] of data graphics™( ) rather than prescriptive manuals.

2.1.2 APT

Jock Mackinlay (286 undertook one of the first projects to automatically produce effective
graphical presentations of relational information. His APT system automatically designed two-
dimensional static presentations of relational information. The core of the system is a precise
definition of graphical languages that describe the syntactic and semantic properties of graphi-
cal presentations.

Various graphic design techniques are codified with criteria for expressiveness and effec-
tiveness. Expressiveness criteria identify the techniques which that are capable of expressing
the desired information; effectiveness criteria identify the most techniques that are most effec-
tive, in a particular situation, at exploiting the capabilities of the output medium and the human
visual system. Designs are generated by a compositional algebra, which combines primitive
graphical languages using operators to form complex presentations.

The input to APT consists of a database of application-specific information, such as prop-
erties of cars, and a request from the user to present this information in a certain way. A typical
user input is the followingl( ). “Present the Price and Mileage relations. The
details about the set of Cars can be omitted”. Given this input, the system produces a graphical
design and an image rendered from the design. Figurehows a graph produced by APT for
this sample input. The specification that the details about the set of cars can be omitted makes
it possible to use this presentation technique; if the car makes and models had to be presented

as well, then this graph would not express all of the input.
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Figure 2.1: Sample APT output

2.1.3 Summary

Much of the previous work in this area consists of books containing guidelines for human
presenters. These guidelines are useful aids in the development of an automated presentation
system, but they do not provide an actual model which can easily be implemented.

One system which does implement an automated presentation tool is APT. Its codification
of the expressiveness of various graphical presentation techniques is useful; however, neither
APT nor the books of guidelines consider the issues of the text which is to accompany the

generated graphic.
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2.2 Stand-alone text

2.2.1 Ana

One of the earliest systems to produce automated summaries of quantitative data is Karen Ku-
kich’'s Ana ( ), which generates textual summaries of stock-market data. Kukich
gives the name “knowledge-based report generation” to the process followed by Ana; it has
three basic tenets. First, it assumes that domain-specific semantic, linguistic, and rhetorical
knowledge is required for a computer to produce intelligent and fluent text. Second, it assumes
that production-system languages, such as those used to build expert systems, are well-suited to
the task of representing and integrating the necessary language. Third, it assumes that “macro-
level knowledge units” (i.e., phrases and clauses rather than words) provide an appropriate
level of knowledge representation for generating summary reports.

The system has four components: a fact generator, a message generator, a discourse or-
ganizer, and a text generator. These act in series, with the output of one module serving as
the input to the next. The fundamental knowledge constructs in the system are of two types:
static knowledge structures-flimensional propositions) and dynamic knowledge structures
(production rules).

The fact generator and message generator together extract the interesting points from the
data, such as the fact that the market was “mixed”. They use approximately 120 domain-
specific inference rules created using a sample corpus to map the data into facts. Next, the
discourse organizer orders the messages, groups them into paragraphs, and assigns a priority
number to each message as a function of the topic and subtopic of a message. Ana has a default
ordering, with exception rules that ensure that higher priority is given to messages with special
significance (such as a record high). Finally, the text generator selects phrases from a lexicon
extracted from the text of stock market reports and combines those which capture the meaning
of the message and satisfy rhetorical constraints.

The output of Ana can be tailored syntactically by setting a variety of parameters to con-
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01/12 CLOSE 30 INDUS 1083.61
01/12 330PM 30 INDUS 1089.40

01/12 3PM 30 INDUS 1093.44
01/12 230PM 30 INDUS 1100.07
01/12 2PM 30 INDUS 1095.38

01/12 130PM 30 INDUS 1095.75
01/12 1PM 30 INDUS 1095.84
01/12 1230PM 30 INDUS 1095.75
01/12 NOON 30 INDUS 1092.35
01/12 1130AM 30 INDUS 1089.40
01/12 11AM 30 INDUS 1085.08
01/12 1030AM 30 INDUS 1085.36
01/11 CLOSE 30 INDUS 1083.79

(a) Sample data

after climbing steadily through most of the morning, the stock market was pushed downhill late in the
day. stock prices posted a small loss, with the indexes turning in a mixed showing yesterday in brisk
trading.

the Dow Jones average of 30 industrials surrendered a 16.28 gain at 4pm and declined slightly, finishing
the day at 1083.61, off 0.18 points.

(b) Generated text

Figure 2.2: Sample Ana input and output

trol the probability that specific syntactic rules are used during the text generation stage. For
example, if the user prefers reports with few subordinate participial clauses, the corresponding
parameter could be set to a low value. The same mechanism can also be used to tailor the
content of the presentation, such as by focusing on specific stocks.

A sample of the input to Ana is shown in FigueXa). This data consists of Dow Jones
stock quotes for a particular day in January 1983. An interpretation of this data generated by

Ana is shown in Figur@.2(b).

2.2.2 LFS

LFS ( )ds an experimental system which generates bilingual (English
and French) statistical reports on labour force statistics. The text planning process takes place

as follows. First, a structure called a “conceptual frame tree schema” is instantiated with input
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Seasonally Adjusted Estimates of Canadian Labour Force by Age and Sex (in 000s)

Month Total Males Fem Total Males Fem Total Males Fem
(ALL) (15--24yrs) (25yrs+)

11/1989 13600 7556 6044 2660 1408 1252 10940 6148 4792

10/1989 13538 7535 6003 2652 1399 12563 10886 6136 4750

09/1989 13528 7554 5974 2650 1407 1252 10878 6147 4731
Figure 2.3: Sample LFS raw input fragme&it( )

Overview: Estimates for November 1989 from Apercu: Les estimations tées de I'engéte de
Statistics Canada’s Labour Force Survey showStatistique Canada sur la population active pour

that the seasonally adjusted level of novembre 1989 indiquent que le niveau
employment rose by 32000 and that the level ofiésaisonnalis de I'emploi a augmeétde 32000 et
unemployment increased by 30000. The que le niveau de édmage a augmeaide 30000.

unemployment rate increased by 0.2t0 7.6.  Le taux de chmage a augmegtde 0.22 7.6.
(a) English (b) French
Figure 2.4: Sample LFS output

data (relational tables) to provide an initial characterization of the intended report content. This
tree is then traversed and modified by a process which determines the detailed content of the
final report.

The output of the text planning process is represented in a conceptual interlingua, which is
then converted to a different semantic net for each output language; this permits the production
of sentences which show deep differences between English and French. These nets are then
realized in the respective target languages by a process based éulgeMeaning-Text The-
ory ( ). There are four successive levels of representation between the conceptual
structures and the final texts: semantic nets, deep syntactic trees, shallow syntactic trees, and
morphological strings.

A sample of the raw input to LFS is shown in Figu&; Figure2.4 shows a portion of the

sample output presented by lordanskaja et’&iop).
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2.2.3 FOG

One of the few commercial systems for generating textual descriptions from numeric data is
FOG ( )74@a system which produces routine and special-
purpose forecasts directly from graphical weather depictions. FOG converts data to textual
forecasts in three stages.

The first step is to extract specific data, such as the surface air temperature in a specific
forecast area. This is done with the help of the Forecast Production Assistant (FPA), which
helps the forecaster develop a time series of weather depiction charts which are to be the input
to the system. FOG then uses a sampler program to extract the necessary information from
each of a set of preassigned sample points.

Next, the data is processed to extract significant events, where the significance of a weather
event is determined both by the needs of the meteorologist and by the other events occurring at
the same time. An expert system designed to mimic a meteorologist extracts these significant
events. Forecast areas are grouped by similarity in order to minimize the length of the text.
Depending on the type of forecast, different groupings are used: for marine forecasts, the
messages are ordered strictly by data salience (relative significance to the intended user), while
for public forecasts, the messages are grouped by temporal order and then by salience.

The final stage is linguistic processing, which has two major stages: text planning and text
realization. As in LFS, the text realization follows M&lik's Meaning-Text Theory; for this
example (taken from Goldberg and Driedgép94)), we will consider only the text-planning
stage. The table in Figurg.5@a) shows some sample data on wind speed. The left-hand
columns represent the data sampled from the FPA's graphical weather depictions. FOG then
classifies the data into wind direction and speed and “time-merges” them, as shown in the right-
hand columns. (When the sampled wind speed falls below 13 knots, it is classified simply as
light; the direction is no longer considered significant.) The dots in the middle of the table
represent data which is not relevant to this example.

Once the meaningful categories have been identified (as shown on the right-hand side of
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Sample Data Concepts
Time | Wind Direction | Wind Speed| Wind Direction | Wind Speed
6 a.m. 223 13 southwest 15-20
7 a.m. 235 17 (! (!
9a.m. 231 21 U [}
9 p.m. 280 12 (west) light
10 p.m. 307 11 (northwest) [}
11 p.m. 182 8 (south) [}
Midnight 246 10 (southwest) i}

(a) Sample data

“Winds southwest 15 to 20 knots diminishing to light late this evening.”

(b) Generated text

Figure 2.5: Sample FOG input and output

Figure2.5a)), the text planner must build concepts to describe transitions between the states. It
then outputs an interlingua representation of the concepts, grouped into sentence-sized chunks.
In the example, the two wind events are grouped together. The text generated for this example

is shown in Figure&.5b).

2.2.4 GOSSIP

The goal of GOSSIP{ )isito inform a security officer about the
operations performed by the users of a computer centre—for example, which files are used or
deleted and at what time. It can produce verbal or graphical reports concerning the behaviour
of the system or of particular users. GOSSIP comes from the same group of researchers that
produced LFS (Sectioh.2.2 and FOG (Sectio.2.3.

The input to GOSSIP is the audit trail produced by an operating system. A fragment of
such an audit trail is shown in Figuge6; it shows a particular user, “jessie”, logging in and
running various programs shortly before 1:00 AM. In this form, the data is difficult to read and
does not lend itself to immediate conclusions; it must therefore be summarized and interpreted.

The process used to plan the text in GOSSIP is similar to that employed by LFS. The
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ee(jessie, term32, success, [ ], login, [ ],

nt, 00:48:08, 00:48:08, 00:00:00, 0.000, 2373131)
ee(jessie, term32, success, [ ], dir, [ ],

nt, 00:48:23, 00:48:23, 00:00:00, 0.000, 2373131)
ee(jessie, term32, success, [ ], edit, [ ],

nt, 00:48:44, 00:53:29, 00:04:44, 56.816, 2373131)
ee(jessie, term32, success, [ 1, ¢, [ ],

nt, 00:53:57, 00:55:25, 00:01:28, 17.621, 2373131)

Figure 2.6: Sample GOSSIP input

The system was operating for 6 hours 36 minutes and 57 seconds. Usage was particularly intense be-
tween 16:32:03 and 18:54:29 with idle time only 27 cycles during this period. Seven users worked on the
system. Five of them used mostly compilers (C, Lisp, Fortran) and the Prolog interpreter. VLADIMIR
and LEO read numerous files. VLADIMIR was interested in system priority tables. LEO listed many
user files from his own group. He initiated large print jobs using these files. VLADIMIR failed to
change access parameters for system files. No modifications to system files were noted.

Figure 2.7: Sample GOSSIP output

user requests a particular report, and a “topic tree” is activated that defines the topics typically
addressed in that type of report. Initially, the topic tree is a collection of potential topics,
organized hierarchically. The tree is then traversed by a procedure which triggers a method on
each node to determine the content; the leaves are instantiated by looking for facts in the audit
database, while other topics compute their content from other already instantiated topics. The
text is also structured at this point: elementary messages which are compatible are grouped into
more complex messages (e.g., if several users spent time editing files, those actions would be
grouped together); messages which are not applicable to the particular situation are removed
(e.g., a user reading her own files may not be of interest); and new messages which result
from the content of existing messages are inserted (e.g., if a report of printing activity is to be
included, then a list of the files printed may be necessary). Finally, a semantic representation of
the individual messages is produced,; this is then sent to the linguistic component for realization.
As in LFS and FOG, the realization follows a process based on Meaning-Text Theory. An

example of the output of GOSSIP is shown in Figaré
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2.25 STREAK

Robin and McKeown (996 describe STREAK, an experimental system to generate sum-
maries of the events of basketball games in the style of the lead sentences of newspaper sports
reports.

Several characteristics of the corpus of basketball game summaries influenced the approach
taken. The complexity of the sentences in the corpus was great, with four to twelve simple fact-
s conveyed in a single sentence. While some concepts consistently appear in fixed locations
across reports, others appear wherever the form of the surrounding text allows. To be able to
add such “floating facts” wherever necessary, the facts must be expressible in a variety of lin-
guistic forms. Summaries may contain historical background facts to highlight the significance
of new reported facts. Summaries must also be concise, conveying as much information as
possible in a limited space.

To take into account these characteristics, STREAK uses a model of text generation which
relies heavily on revision: first a bare-bones summary is generated, and then additional infor-
mation is added opportunistically until there is no space left. A set of revision rules specify the
various ways a draft can be modified to accommodate a new piece of information; these rules
were derived empirically from a set of human-written sports summaries. The revision rules act
directly on the text plans.

The input to STREAK consists of two semantic nets, one representing the facts which must
be conveyed and one for the “floating facts” (optional additional information). Figy@shows
some sample output from STREAK, adapted from Robin and McKeaw#ad). The first draft
of the summary of a particular game is shown in Fig2ir&a). This first draft contains only
minimal information about the game: the location, main individual statistic (Barkley’s point
total), date, and game result. A series of complementary facts is added one at a time, resulting
in some of the words of the initial draft being deleted, displaced, or transformed. After this
process is completed, the sentence shown at the in Figg(®) is the final result.

The use of a corpus allowed STREAK to be empirically evaluated by comparing the gener-
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“Dallas, TX—Charles Barkley = “Dallas, TX—Charles Barkley tied a season high with 42 points
scored 42 points Sunday as the and Danny Ainge came off the bench to add 21 Sunday as the

Phoenix Suns defeated the Phoenix Suns handed the Dallas Mavericks their league worst
Dallas Mavericks 123—97." 13th straight home defeat 123—97."
(a) Initial draft (b) Final sentence

Figure 2.8: Sample STREAK output

ated texts to those already in the corpus. Two aspects of robustness were evaluated: coverage
and extensibility. To evaluate coverage, the generator was implemented on one year’s worth
of basketball summaries, and then the sentences from a different one-year sample that it could
produce were counted. Extensibility was measured by counting how many additional knowl-
edge structures were necessary to completely cover an additional year. The revision model
increased the overall realization coverage by 41 percentage points over a one-pass model, and
the extensibility by 14.6%.

The revision rules were also evaluated for cross-domain portability by examining a corpus
of stock-market reports (such as those used in Ana). It was found that about 70 per cent of
the revision rules also applied to this new domain, although Robin and McKeow)(do
not specify how many sentences in the corpus used rules other than those gathered from the

basketball sentences.

2.2.6 TREND

A more recent system is Sarah Boyd’s TRENID{ ). TREND detects and summarizes
short- and long-term trends in time-series data; the initial domain is currency exchange data. It
uses wavelets, a signal-processing technique originating in mathematics, to detect the trends.
The input to TREND consists of an “annual currency file”, which consists of a number of
lines each containing the date and the daily currency value. As well, the system user can use
a graphical interface to specify the settings of parameters that control the sort of information
extracted from the input data—the length of the trends to detect (short, long, or both), and

whether high and low volatility periods are included.
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The input and the settings of the user parameters are fed to a content determination module,
which performs the following three steps. First, the basic visual features of the data are iden-
tified (trends, low-volatility intervals, and high-volatility intervals); it is here that the wavelet
analysis is used. The settings of the user parameters determine which features are extracted
from a given data set. Once the visual features are extracted, any which overlap in time are
merged, using heuristics to select which of these features should be described. Finally, the
non-overlapping features are aggregated—for example, an increase immediately followed by
a decrease is identified as a peak. The output of this process is an Aggregated Visual Feature
Matrix (AVFM).

Next, the AVFM is fed into a module which performs the tasks of document structuring,
aggregation, and lexicalization. The schema begins by describing the overall yearly trend, and
then describes the other visual features in temporal order. The visual features are grouped in-
to sentences by an algorithm which puts features into the same sentence until an aggregated
feature is encountered, at which point a new sentence is started. Next, phrasal templates are se-
lected to describe each of the features; these templates take the form of functional descriptions
for FUF/SURGE [ Y6Finally, the templates are sent to FUF/SURGE
for realization.

The final output from TREND consists of the multi-sentence summary of the selected vi-
sual characteristics, as well as a graph of the data annotated to indicate the characteristics
described—for example, red arrows indicate long-term trends.

A sample of the input to TREND is shown in Figu?eS; this data represents the value
of the Australian dollar measured against the U.S. dollar during January 1997. Sample text
generated by TREND on the data for the full year is shown in Figut@ For this output, the
user requested that both short- and long-term trends be described, and that areas of low and

very high volatility should be included.
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0.7895, 02, 01, 97
0.7914, 03, 01, 97
0.7882, 06, 01, 97
0.7891, 0v, 01, 97
0.7796, 08, 01, 97
0.7780, 09, 01, 97
0.7818, 10, 01, 97
0.7783, 13, 01, 97
0.7810, 14, 01, 97
0.7767, 15, 01, 97
0.7791, 16, 01, 97
0.7800, 17, 01, 97
0.7774, 21, 01, 97
0.7756, 22, 01, 97
0.7716, 23, 01, 97
0.7720, 24, 01, 97
0.7722, 27, 01, 97
0.7690, 28, 01, 97
0.7700, 29, 01, 97
0.7657, 30, 01, 97

Figure 2.9: Sample TREND input

During 1997, the currency fell 17.47 percent to finish the year at 0.651. It remained mainly unchanged
between the 20th of February and the 30th of May and decreased considerably between the 30th of May
and the 7th of July before staying mainly unchanged until the 10th of September. It fell dramatically
between the 10th of September and the 31st of December.

Figure 2.10: Sample TREND output

2.2.7 Summary

The projects described in this section take a variety of approaches to producing text which
appropriately describes the input domain. All of them are tailored to a specific domain—
the stock market, labour force statistics, currency prices, or basketball scores; STREAK does
consider the possibility of being used in other domains as well, though. TREND and GOSSIP
also produce graphics, but the text is designed to stand on its own.

The various systems use different methods of actually producing the text. Some use a
phrasal lexicon or some other form of textual template to produce the text—Ana falls into this

category, and TREND partly does as well. Other systems use full-fledged linguistic realizers to
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produce the text. LFS, FOG, and GOSSIP use a similar one, an ancestor of RealPro; STREAK
uses FUF/SURGE, and TREND’s phrasal templates are also realized using this system.

Notice that text which is generated to stand on its own differs from text whose aim is to
accompany a graphic (see Sectibf.2for more on this issue). For example, often it is better
to mention only some of the message in the text, and to allow the audience to infer the rest from
inspection of the graphic. The techniques used in the projects in this section to select data to be
presented and to produce appropriate textual presentations from it can be applied to integrated
text and graphics systems; however, text which is generated to stand on its own will often be
too detailed or contain redundant information when paired with a graphic. Such other factors

should also be taken into account if integrated presentations are to be produced.

2.3 Integrated graphics and text

2.3.1 SAGE

The SAGE project at Carnegie-Mellon University concentrates on the automated generation
visualizations of complex data. The SAGE system is an expert system specialized in graphic
design. Most of the work on SAGE itself has gone into the automated generation of graphical
data visualizations; however, there have been several related projects which also aim to gener-
ate text. One, AutoBrief, is described in SectibB.3 Another project, described in Mittal et
al. ( ), presents techniques for producing captions for SAGE-generated graphics; howev-
er, this research has concentrated on producing captions that explain the graphical techniques
used in producing the graphics, rather than pointing out aspects of interest in the data being
displayed on them.

Roth, Mattis and Mesnard.£97) describe an application which uses SAGE to produce
coordinated text-graphics presentations in response to users’ questions. The domain of this
application is project management; managers often use project modelling systems to evaluate

a project under a number of hypothetical conditions, and will often need to ask the system
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guestions about the value of some variables under different conditions. Examples of typical

guestions include:
e Why did Bill Smith’s activities cost more than expected in the estimate?

e Why is the end date of the design approval activity later in this week’s schedule, as

compared to last week’s?

To allow these sorts of questions, the underlying data is represented in three models: a finan-
cial spreadsheet model, an “alternative additive model” (which represents the organizational
structure of the company), and a scheduling model (which represents the start and end time of
each activity in the project). These models are linked together to provide an integrated repre-
sentation of the data; for example, links are made from the departments in the organizational
hierarchy to the activities which those departments may perform.

The process of producing a response to a user’'s question proceeds as follows. First, the
content is selected from the underlying data in a two-stage process. All of the data in the model
which could possibly be relevant to the query is first extracted. That data is then analyzed to
derive further facts from it; these facts can also form the content of the presentation.

Next, a discourse component selects the assertions which will appear in the output and
orders them appropriately. Different components are used depending on the type of question
asked by the user; for examplguse identificatiolwonsists of a statement of the main cause-
effect relationship, any counteracting or reinforcing relationships, and the main dependency
that the causal relations are based on. The output of the discourse processor is an ordered
sequence of instantiated rhetorical predicates. These are then input to an external text realizer,
which smooths the resulting text by adding sentence transitions, making definite reference to
entities, and performing some forms of ellipsis.

So far, only the textual realization component has been described. However, some asser-
tions are better made in graphics than in natural language: for example, organizational relations

or the precedence of activities. As well, if facts are presented in natural language, then the user



CHAPTER 2. RELATED WORK 23

Aeme Co.
|
Adwvanced-FPlanning Cemgn Center Engineening C. Evaluation C.
[~ ] [ ] I [ —

> “Why did Acme-Co costs change from estimate-1 to estimate-2?”

(1) The increase in Acme-Co costs was due to increases in Engineering Center and Evaluation Center,
as shown by the gauges in Figure A.

(2) These increases were partially counteracted by a decrease in Design Center.

Figure 2.11: Sample SAGE output

must pay full attention to each fact; there is no way to present many facts in such a way that the
user can focus only on the interesting ones. For these reasons, SAGE also produces graphical
displays.

Several problems can arise if the text and graphics are generated independently. The se-
guential structure of information in the text and the graphical structure of that information
in a picture might not correspond; the text cannot refer to the graphical representations of
the domain objects that are being discussed; and the two presentations may contain redundant
information. The two generators therefore communicate with each other to increase the coordi-
nation in the final presentation. The two parts of the presentation are produced and coordinated
as follows. First, some discourse processing is done to create an idea outline that partitions
the relevant content into a logical sequence and possibly combines information from different
discourse segments as a single merged set. Next, the graphics generator produces its portion
of the output; finally, the text is produced, making explicit reference to the components of the
graphical presentation and omitting propositions that are already expressed in the graphics.

An example of a portion of a coordinated text and graphics display produced by this system
is shown in Figur@.11 The graphic and text are a portion of a more complete sample present-
ed by Roth, Mattis and Mesnard491); the full example from the paper includes several more

levels in the hierarchy of departments, which are also referenced in the full caption.



CHAPTER 2. RELATED WORK 24

2.3.2 PostGraphe and SelTex
PostGraphe

PostGrapheH )is a system that generates integrated graphics and text presenta-
tions from statistical data. The input to PostGraphe is in the form of a Prolog term specifying
the characteristics of the data to be presented, the goals of the user, and the data itself. A sam-
ple of the input formdtis shown in Figure.12 this example is taken from Coric ¢99. The

lines that specify candidates and non-candidates for keys control which of the variables may be
used as a relational key in preparing the presentation. The system generates a report containing
appropriate graphics and text that is based on the contents of this input file.

PostGraphe always generates a text-graphics pair for every message. The generation of
both components of the presentation is done in the same way, as follows. A planning algorithm
is used to generate a schema for each group of compatible inter-variable or intra-variable goals.
This schema is used for both graphics and text. To trim down the search space of potentially
compatible groups of goals, heuristics are used; as well, the user may manually limit the search
space by building sets of related goals in the input.

To choose the appropriate schema, a table is used which associates each possible user goal
with the schemata that can express it and a weight indicating how efficient each schema is
at presenting that goal. All of the knowledge used in schema selection is encoded in these
weights, in an approach similar to neural nets.

Figure2.13 adapted from Coriol(999, shows the result of running PostGraphe on the
input file in Figure2.12 The table at the top of the figure is the result of the intention of the
first section,presentation the line graph in the middle results from the first intention in the
second sectiorgomparison the text at the bottom results from the third intentiemplution

The text in this figure is the only sort that PostGraphe itself is capable of producing.

1The translation of all extracts from Fasciari@$¢) and Corio (999 from the original French is my own.
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data(’, names of variables

[year, company,profits],

% types of variables

[year/ [symbolic],

label,

dollar/[plural (profit)]],

% candidates for keys

[year, company],

% non-candidates for keys

[profits],

% author’s intentions

[ section 1
[presentation(year),
presentation(company),
presentation(profits)],
% section 2
[comparison([profits], [company]),
evolution(profits,year)]],

% the raw data

[[1987,°A,30],
[1988,°A°,35],
[1989,°A°,40],
[1990,°A,35],
[1987,°B’,160],
[1988,°B’,165],
[1989,°B’,140],
[1990,°B’,155],
[1987,°C’,50],
[1988,°C’,55],
[1989,°C’,60],
[1990,°C’,9511).

Figure 2.12: Sample PostGraphe input

SelTex

Marc Corio has recently completed a thesis( ) in which he implemented a module,
SelTex, to improve PostGraphe’s somewhat limited text-generation capabilities.

Corio performed an extensive corpus analysis of French text-graphics pairs, mostly from
Statistics Canada publications, and classified the types of text into 55 different codes. One
example of such a code is BAS1, which refers to a text that describes “[t]he lowest column, the
shortest bar or the smallest sector of the pie”.

He then grouped these codes by the intention with which they were most frequently asso-

ciated. For example, 50 per cent of the captions which fulfilled the intentigmesfentation
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year 1987 1988 1989 1990
company| profits profits profits profits
A 30 35 40 35
B 160 165 140 155
C 50 55 60 95
ENE
— T T ~ B profis
150 e o
120
C proilis
.-"--
aa- -
'--.
."-.
.-"-...
A I
- Apmils
20 T
1987 1938 1934 EED

From 1987 to 1989 the profits of company A increased from $30 to $40. Up to 1990 they decreased

from $40 to $35.
From 1987 to 1988 B's profits increased from $160 to $165. During 1 year they decreased by $25. Up

to 1990 they increased from $140 to $155.
From 1987 to 1990 C's profits increased from $50 to $95.

Figure 2.13: Sample PostGraphe output
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were of type TITREZ2, “Generic title including the description of two or more data items”.
Next, Corio produced a set of selection techniques to determine what sort of caption to
produce given the nature of the data and the basic intention selected by the user. These selection

techniques take the form of rules such as the following (for use withdhgparisorintention):

e Mention the highest data point if its value is at least 10% larger than the second and if

the number of points is greater than 2.

These rules were implemented in Prolog, as was the rest of PostGraphe. Some enhancements
were made to the input format of PostGraphe to enable users to specify various information
useful to SelTex.

SelTex contains 15 new textual schemata which are associated with the possible classifica-
tion codes. To select the appropriate schema, the following steps are followed. After the base
PostGraphe system is used to generate a graph (as described by Fasgizo SelTex is
called. The first step is to verify whether SelTex has a schema which can satisfy the desired
intentions. Once the schema has been obtained, the next step is to find the appropriate pred-
icate to execute in order to generate text using the schema. If all of the necessary conditions
are satisfied to generate text using the schema, a “message” is generated. Finally, this message
is passed to the text generator, which in this case is a Prolog rewriting of FRANA (a French
translation of Kukich’s Ana (Sectioh.2.1)).

The format of the input to SelTex is the same as that to PostGraphe, with a few additions
to control the text generation. FiguPel4shows an example of the output of SelTex, adapted
from Corio (1999. The main intention in this case was comparison of computer use between

provinces, with a secondary goal to concentrate specifically on the value for Quebec.

2.3.3 AutoBrief

AutoBrief ( )7is a system whose overall aim is to produce coordinated

multimedia explanations of large and complex datasets. The output it produces is designed to
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Alberta, British Columbia and Ontario have a higher rate of households with a computer, while Quebec
placed seventh with 24.0%.

Figure 2.14: Sample PostGraphe output (with SelTex)

help analysts in dealing with such datasets and in presenting the results of their analyses to
others.

AutoBrief combines features of two complementary previous approaches to automatic pre-
sentation design: hierarchical planning to achieve communicative goals, and task-based graphi-
cal design. The interface between these two components is a domain- and medium-independent
layer of communicative goals and actions.

The main test domain for AutoBrief, transportation scheduling, is described by Kerpedjiev
et al. (1997). In this domain, transportation analysts and planners use systems which produce
a number of schedules for moving commodities around. These schedules are analyzed for
lateness or bottlenecks, and the planners may then suggest workarounds. The goal of Auto-
Brief is to help the analysts in performing their task. AutoBrief creates multimedia summaries
of schedules, containing graphs, tables, and some textual information about the capabilities
available and the shortfalls.

AutoBrief has access to a knowledge base of information about the particular domain in
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which it is working. The input consists of the a set of domain-specific communicative goal-

s, such aknow-shortfalls(ensure that the user knows the value of ghertfalls attribute).

These goals are refined into domain- and medium-independent subgoals, which are in turn

achieved by domain- and medium-independent abstract actions. These abstract actions are
decomposed into medium-specific actions, which the medium-specific generators then use to

produce the final presentation. AutoBrief uses SAGE (Sediari) to produce its graphics

and FUF/SURGEK y@s its text realizer.

As an example of the process, the gkabw-shortfallscould be refined into the subgoal
know-attribute this subgoal is realized by the actiassert which can then be decomposed
into the graphical actioenable-lookup In other words, if the final presentation includes a
graphic on which the user can effectively look up the value ofsth@rtfallsattribute, then the
goal has been achieved.

Kerpedijiev et al. {997) describe the use of AutoBrief in the transportation scheduling do-
main; a series of papers from 1998 provide more detail about the inner workings of AutoBrief
and other possible applications for the system, using newspaper readership numbers as a source
of examples.

The content language which is used to represent the medium-independent subgoals and
the content of the medium-independent actions is described by Green et%l39( The
language represents what is to be asserted rather than the type of communicative acts to per-
form or the attitudes which the acts are intended to achieve. This language needs to be able
to represent complex descriptions of quantitative database attributes and to represent them
compositionally, with possible subtle differences in intention for the same data. It also must be
medium-independent, while still providing the necessary information for both medium-specific
generators.

Greenetal. [ ) describe how certain types of arguments that can be represented visu-
ally in information graphics can be generated from an underlying medium-independent repre-

sentation. Here, an “argument” is a presentation which, given knowledge of the user’s current
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Figure 2.15: Sample AutoBrief discourse plan

beliefs, aims to convince the user to accept a particular belief. This goal is then decomposed
as described above into medium-dependent communicative acts to produce the presentation.
Figure2.15 adapted from Green et al.1{98l), shows a possible medium-independent
discourse plan for the realization of a particular argument. The goal is to convince the user
that the Post-Gazette newspaper has more readers than the total number of readers of all other
newspapers that are distributed in a particular region {facatthe discourse plan). The user
currently knows that the New York Times has more readers than the Wall Street J&irnal (
and mistakenly believes that this means that the New York Times has the most readers in the
region R). This plan might be realized in text as in Figaré§a), or by the graphic and caption

shown in Figure2.16b). This output was presented by Green et ab9@l) as examples of

possible realizations of the discourse plan; it was not actually produced by AutoBrief.

2.3.4 Summary

The systems in this section employ various techniques to generate text-graphics presentations
of their data. The application of SAGE described here in detail is tied to a particular domain
(project management); PostGraphe and AutoBrief aim to be domain-independent.

The graphics and text are produced and coordinated in different ways. SAGE runs its text

and graphics generators concurrently so that they can communicate with each other to produce
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Although the New York Times is read by more people in Western PA than the Wall Street Journal, the
New York Times does not have the highest number of readers in the region. The Post-Gazette has more
readers than the total number of readers of all other newspapers in the five-county Western PA region.

(a) Text

Post-Gazetie

Total others NYT W5J

Number of readers

The Post-Gazette has more readers than the total number of all other newspapers
in the five-county Western PA region.

(b) Text and graphics
Figure 2.16: Possible realizations of AutoBrief discourse plan

coordinated output; AutoBrief decomposes its domain-specific goals into communicative acts
for each of its two generators, which then act independently; PostGraphe chooses its textual
and graphical schemata separately, using the same input to guide both choices.

Of the systems described here, only SAGE considers the issue of medium allocation—
that is, determining which output medium is best suited to generating each component of the
message. In the other multimedia systems, messages are realized in whichever medium is

capable of expressing them, without any consideration for coordination or redundancy.



Chapter 3

Principles of caption generation

3.1 Introduction

3.1.1 Whatis a caption?

Caption generation is the task of generating text designed to accompany an information graph-
ic. Such text does not necessarily have to appear as a caption in the final presentation (i.e.,
above, below, or beside the graphic). It could also appear in an article accompanying the
graphic, or could even be spoken in a presentation. However, for convenience, such text will
be referred to in this thesis as a “caption”, whatever position it takes in the final presentation.

A caption can serve two purposes: it can point out the relevant or interesting aspects of the
data presented in the graph, and it can explain the meaning of the various graphical techniques
used to produce the imag& ). This thesis focuses on text of the former type,
which describes the data in the graph rather than features of the graph itself. A system which
generates the latter sort of text is described by Mittal et 5.90); however, producing such
captions requires an intimate knowledge of the system producing the graphic which is being
explained, and the techniques useful with one particular system might be completely useless
in any other situation. Producing captions which describe the content of the graph, rather than

the form, is a more general question.

32
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3.1.2 Captions vs. stand-alone text

It is possible to produce text which summarizes quantitative information itself, without intend-
ing it to accompany a graphic of any sort; many of the systems described in CRaguter
of this type. However, the content of such stand-alone text is very different from text which
is designed from the outset to go along with a graphical presentation. In particular, text in a
caption is likely to mention only the general message which the author wants the audience to
understand and to omit many of the specific details that can be read directly from the graph.

This point is illustrated by Kerpedjiev et alL499, which describes the process of manual-
ly transforming a purely textual summary of some quantitative data into an integrated graphics-
text presentation. The original text, a portion of Bill Gates’s U.S. Senate testimony from March
1998, contains several quantitative assertions; one such assertion is shown i3 BigJréNo-
tice that the specific revenue increases of the two companies are spelled out explicitly in the
text, as there is no other way in this medium of providing the examples needed to support his
point. Messages of this type are often better presented with the use of graphics.¥Figoye
shows a possible multimedia presentation, adapted from Kerpedjiev ét2al) ©f the same
portion of the Gates testimony. In this case, the text contains only the main point which is being
made (that the revenues of many of the companies in question have soared), while the particu-
lar data values are shown only on the graph. This multimedia approach exploits the capabilities
of each medium produce a presentation which expresses the argument more efficiently than in
the original pure text version.

The focus of this thesis is the generation of text designadtompanygraphics, rather than
to stand alone. This means that, in contrast to the pure text systems described in S&ction
issues concerning the allocation of message components among the available media and the

production of presentations coordinated across the media must be considered.
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“[R]evenues from [sic] many of these companies have soared in recent years. (For example, Oracle’s
revenues rose from $1.2 billion in 1993 to $5.7 billion in 1997; over the same period, Sun’s revenues

rose from $4.3 billion to $8.6 billion.)”
(a) Original text

Revenues for many of these companies have soared in recent years.
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(b) Text and graphics presentation

Figure 3.1: Gates testimony, in text and text-graphics presentatiens« )
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3.2 Sources of information

The tasks and principles listed in the remainder of this chapter are derived from a variety of
sources. The list of generation tasks comes from Reiter and D#¥e)( who present an outline

of of a generalized text-generation architecture; this structure provides a useful framework
for talking about the particular necessities of caption generation and its similarities to and
differences from text generation as a whole.

An informal study of a number of information graphics and accompanying text from a va-
riety of newspapersithe Globe and MajlUSA Today, mutual fund reports, and other sources
provided data to help guide the creation of these principles. The formal corpus study of French
text-graphics pairs in Marc Corio’s thesis{ ) was also an excellent source of data.

The techniques used in the related research projects described in Chaygez anoth-
er source of information about and examples of automatically producing presentations from

guantitative data.

3.3 Tasks in caption generation

The goal of this thesis is to describe how to generate captions—that is, short pieces of text
which are associated with a graphic presentation of some quantitative data. Although the pro-
cess of caption generation follows the same steps as that of text generation as a whole, it differs
in some ways.

Reiter and Dale(997) describe an architecture for text generation which consists of six
basic tasks: content determination, discourse planning, sentence aggregation, lexicalization,
referring expression generation, and linguistic realization. The following sections outline how
each of these tasks should be addressed in a caption-generation system.

Throughout the section, the data shown in Figdirawill be used as an illustration. The
data represents fictional spending on healthcare in a number of Canadian provinces in two

different years.
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Province 1990 | 1998
Quebec 1400 | 1450
Alberta 1500 | 1400
British Columbia| 1610 | 1900
Ontario 1700| 1700
Maritimes 1575 | 1640

Figure 3.2: Sample data (healthcare spending)

3.3.1 Content determination

Content determination is “the process of deciding what information should be communicated

in the text” ( )/ For the purpose of this thesis, content determination will

be defined as the process of selecting the relevant information fromredicidual dataset in

the input. Combining these individual assertions into a single- or multi-sentence caption is the
task of discourse planning and sentence aggregation; these tasks are described in subsequent
sections.

The content selected to appear in a caption could include, among many other data features,
the following: the value of a variable at the start, finish, or some other specific point, the overall
or percentage increase or decrease, or the individual changes in the direction of a trend through-
out a dataset. In general, the caption should contain information which helps the audience of a
multimedia presentation to get the “right” impression from a graphic which forms part of that
presentation. Several factors influence the content selected from the input: the type of graphic
it is to accompany, the domain from which the underlying data is drawn, the features of the
data itself, and the needs of the system user.

It is crucial, when choosing the information to include in a caption, to keep in mind that the
final presentation will also include a graphical presentation of the data. It should complement
the graphic it is to accompany without simply enumerating all of the data points; rather, it
shouldinterpretthe graphic by emphasizing a particular aspect or aspects of the data. Specific
features should be included only if there is a reason for so doing: for example, if the user has

explicitly requested that the caption concentrate on those features, or if they are in some way
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unusual or interesting for the domain. Also, the message expressed by the text and by the
graphic should be the same, or at least compatible, since a presentation with a graphic and text
that are sending different messages will not be well understood.

The domain from which the data is drawn affects what sorts of features should be presented.
For example, in an article comparing the changes in healthcare funding during the past decade
using the sample data in FiguBe?, it may be more interesting that the final value for Alberta
was lower than its initial value; in an article comparing current funding across the provinces, it
might be more interesting that British Columbia currently spends the most.

The features of the data itself also have an influence on the content which appears in the
caption. Trivially, the values of the variables themselves will determine whether a caption
should talk about an increase or a decrease. Less trivial choices can also be influenced by the
data: for example, if the figures show an extremely large increase or decrease, such as that of
British Columbia, then that feature may appear in the caption even if none of the other factors
indicate that it should.

Finally, and most importantly, the needs of the user of the system should be taken into
consideration when choosing the data to include. If there is a particular point that the user
wants to drive home by using a graphic, then the caption should support that point, whether or
not the other factors lead to its inclusion. For example, the user input could specify that the
caption should concentrate on the value for the Maritimes, even if that variable does not have
any other particularly interesting characteristics.

It should be possible to extend a caption-generation system to incorporate new rules for
choosing content, so that appropriate text can be generated for a variety of purposes and data.
These rules can be as general or specific as required for the particular situation.

Existing systems perform the task of content determination in various ways. In STREAK
(Section2.2.5, for example, the input consists of two semantic nets, one representing the facts
which must be conveyed and one the “floating facts” which will be inserted if space permits;

the content determination is thus mainly performed before the system even gets the data to
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present, with some determination taking place as floating facts are selected for inclusion.

Several systems depend on the particular domain for which they were written. For example,
Ana (Section2.2.1) uses approximately 120 inference rules derived from a corpus to extract
“interesting messages” from the plain facts of stock market data. In FOG (S&ctidh the
process of choosing “significant events” is performed by an expert system which aims to mimic
the choices made by a meteorologist. Such domain-dependent systems could be made to work
in other domains, but it would require rewriting a number of rules (such as the 120 used in
Ana) to adapt to the new domain. The content selected by SAGE (S&cH#dhand GOSSIP
(Section2.2.4) consists of two types of information: messages extracted directly from the raw
data, and inferences made about the data. The process of making these inferences requires the
system to have knowledge of the sorts of inferences to make.

Other systems use domain-independent methods of determining content. TREND (Sec-
tion 2.2.9, for example, uses mathematical techniques from signal processing to detect trends
in time-series data such as currency exchange information. In PostGraphe (S&ttirihe
textual schemata are weighted according to how effective they are at expressing a particular
intention; the selected schemata then determine which messages are extracted from the data.

Of the integrated text-graphics systems, only SAGE specifically addresses the matter of
avoiding redundancy between the text and the generated graphic; however, there is no medium

allocation step before the presentation is produced.

3.3.2 Discourse planning

The goal of discourse planning is to structure the messages produced by the content determi-
nation process into a coherent text. In text generation as a whole, discourse planning often
consists of organizing whole sentences or paragraphs. However, captions most often consist
of a single sentence; in this case, therefore, the task of the discourse planner is to structure the
messages within a sentence. As well, there may be length restrictions on a caption; if informa-

tion must be deleted for space reasons, then the discourse planner should ensure that the most
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relevant information still appears in the final caption.

A simplistic form of structuring is to sort the messages by the magnitude of the value
extracted; in the example data, this would put Ontario first and Quebec last. Other possible
orderings include putting the most relevant message first (as determined by the user or by the
system, making use of data features), putting messages of the same type next to each other, or
placing messages which lend support after the message which they are supporting.

However, discourse planning does not consist just of putting the extracted messages into a
linear order; it can also involve grouping messages by similarity or even removing some of the
initial messages from the final content. For example, the messages in the example data might
be structured by mentioning only those with extreme values, such as the highest value (British
Columbia) or the sharpest decrease (Alberta). In such cases, the result is that some of the
messages are dropped from the final sentence plan entirely. Discourse planning can even take
the form of computing an average or total value and droppih@f the original component
values from the sentence plan.

Whichever structuring technique a caption-generation system uses, it must have access to
sufficient information about the individual messages in order to make appropriate decisions
about the best order to put them into. In other words, the output of the content determination
step must contain enough information about the messages it selects to enable the discourse
planner to organize them properly.

The same set of messages can be structured in potentially many different ways, depending
on the particular application. The discourse planning technique should be selected following
the same criteria which drove the content determination stage: namely, the type of graphic it is
to accompany, the domain, the features of the data, and the user’s requirements.

In some cases, the line between discourse planning and content determination can blur. For
example, in a caption which describes the correlation between the values of two variables, the
description of the correlation could be viewed either as the content itself or as a structuring of

the two individual messages in the discourse plan. These tasks may even be performed at the
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same time by the same component of the generation process.

As with the content determination rules, the rules of discourse planning can be as general
or as specific as the particular situation warrants. Simple rules, such as sorting by value, should
certainly be included. CoriolQ99 gives a number of more complex heuristics derived from a

corpus analysis; one such rule is the following:

e Mention the highest data point if its value is at least 10% larger than the second and if

the number of points is greater than 2.

A full caption-generation system should be capable of implementing rules at least as complex
as this. The rules used in a particular domain are best derived from a corpus of texts in the
domain and/or through consultation with human domain experts.

Discourse planning is not addressed at all in many of the existing systems; some systems
that do address it, however, are SelTex, Ana, FOG, GOSSIP, LFS, and STREAK. In SelTex
(Section2), rules such as the one described above actually form part of the content determina-
tion; there is no separate discourse planning step.

Ana’s (Section2.2.]) third module performs what Kukich calls the “uncomplicated task”
of grouping messages into paragraphs, ordering messages within paragraphs, and assigning a
priority number to each message. The priorities are assigned as a function of the topic and
subtopic of a message. The system has a default ordering built in, with some exception rules
that ensure that especially significant messages (such as an indicator hitting a record high) get
a higher priority.

FOG (Sectior2.2.3 uses two different techniques of ordering, depending on the type of
forecast which is to be produced. For marine forecasts, data salience is used to order the various
messages, where the salience of a piece of data is its relative significance to the intended user.
For public forecasts, the messages are first grouped by temporal order, and then by salience
within each temporal grouping.

In GOSSIP (Sectiof2.2.4), the following discourse planning technique is employed. First,

atree is created which represents the individual messages which can be expressed. This tree is
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then modified to combine messages which are compatible, to remove messages which are not
applicable, and to insert new messages which result from the content of existing ones. The tree
is then traversed in a top-down, depth-first manner to produce its texts. LFS (S2&ign

also uses this basic technique.

Discourse planning in STREAK (Sectiéh2.5 is somewhat different, due to its revision-
based architecture. Information is added to the bare-bones initial schema on the fly to support
or elaborate on the initial facts. It is the revision rules, which specify where and how such
additional content is to be inserted, that act as a discourse planner in determining the structure
of the content in the final output. Alone among the previous systems, STREAK incorporates
length restrictions on its generated text, adding only as many floating facts as will fit into the

allotted space.

3.3.3 Sentence aggregation

Sentence aggregation is the process of combining multiple messages into a single text plan.
Whereas discourse planning structures the abstract messages, sentence aggregation performs
the task of combining grouped messages into concrete text plans.

A simple caption-generation system can use a very simplistic form of aggregation: realizing
each message as a separate sentence, for example, or combining all of the selected messages
with a conjunction such as “and”.

Often the individual messages can be combined in various ways to produce more fluen-

t text; for example, to describe the three increasing datasets in the example data, the final
caption could have the form “the values for Quebec, British Columbia, and the Maritimes all
increased”, or even simply “all of the values increased”. Other aggregations of this form can
be done if all of the messages have common constituents of various types.

The domain or type of the data may also influence the possible aggregation techniques.
Sophisticated aggregations making use of such information are possible: for example, if a

system knows the provinces of Canada, then it could aggregate a list such as “Nova Scotia,
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New Brunswick, and Prince Edward Island” to simply “the Maritime provinces”. Forming sets
in this way requires domain knowledge.

Aggregation should be driven not only by the nature of the data and the messages selected
from it, but also by the needs of the user of the system. In the example above of multiple
increases, the user might want each individual item mentioned (“Quebec, British Columbia,
and the Maritimes”), or might prefer the more general statement in the second case, “all of the
values”; the system should support this sort of choice.

Selecting which of the possible aggregations should be performed on a particular caption
is a difficult task. One possible approach is to use a corpus of target texts to determine which
types of aggregations occur most frequently, and then to create rules which produce those
aggregations.

In many of the previous systems, sentence aggregation is combined with other steps in the
generation process. For example, the process of creating GOSSIP’s (Segtidopic tree,
described above under discourse planning, also performs the task of sentence aggregation. For
example, if several users spent time running programs and editing files, then these users would
be grouped together in the tree, with a single node storing the list of all the individual users.
GOSSIP also performs some aggregations as the modified tree is traversed to produce the text.

SAGE’s (Section2.3.]) text generator makes the text less awkward by adding sentence
transitions, making definite references to entities, and performing some forms of ellipsis. This
combines sentence aggregation functions with the lexicalization and realization tasks described

in the following sections.

3.3.4 Lexicalization and referring expression generation

The next stage in the generation process is lexical choice—choosing words to express the mes-
sages created by the previous processes. There are two types of lexical choice that a caption-
generation system must make: choosing words to describe the messages extracted from the

data (referring expression generation), and choosing words to express domain concepts (lex-
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icalization). Reiter and Dalel097) separate these two forms of lexical choice; however, the
two tasks are very closely related in caption generation, and will be dealt with together here.

Lexicalization is the stage in the generation process in which linguistic style enters the
picture. There are many different possible ways to express the change in Quebec’s value in the
example data: “Quebec healthcare spending increases”, “the value of healthcare spending in
Quebec rises”, “Quebec is spending more on healthcare”, and many others. If the value being
measured is from a different domain, then yet other patterns may be available. At least a set
of basic alternatives should be built into a caption-generation system so that it can generate its
sentences; more complex patterns and varied words can also be added as needed in a particular
situation.

While the data determines the general sort of assertion that should be made (e.qg., increase,
decrease, correlation), choosing among the alternative methods of expressing a particular trend
should be driven by the needs of the user. For example, if he or she desires a more informal
caption, then colloquial language such as “Quebec is spending more on healthcare” could be
selected in preference to the more formal “Healthcare spending increases in Quebec”. Creating
rules to choose among multiple possible techniques of expressing the same relation is best done
through an analysis of target texts.

In addition to describing the trends detected in the data, a caption-generation system must
choose words to identify a particular entity in the domain. In general text generation, this task
also includes issues of referring to an entity when it comes up in a discourse multiple times—
selecting appropriate pronouns or generating new “definite descriptions” when the context rules
out the use of a pronoun. However, in the majority of captions, any entity will be mentioned at
most once, so the crucial issue in caption generation is the selection of an appropriate lexical
item to refer to it.

These two types of lexical choice are of course very closely related. The form that is chosen
to describe the trends of the data constrains what sort of words can be used to describe the

data—for example, if the verb “increase” is selected to describe an upward trend in the value
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for Ontario, then the description of that variable itself must be realized as a noun phrase such
as “Ontario healthcare spending” or “healthcare spending in Ontario”. As well, the available
domain vocabulary can constrain the ways in which the trends can be realized—for example,
if the quantity being measured can only be expressed as a verb, then the trend cannot also be
expressed as a verb.

Beyond the above syntactic relationship between the two processes, there can sometimes
be an interaction between the lexicons used for the two tasks—this can occur when the entity
which is being described requires particular words to describe it. An example of this is in the
domain of weather forecasts, where a decrease in temperature would more likely be described
by a verb such as “cool down”, rather than simply “decrease”.

The lexical choice techniques used by previous systems vary. The systems which are tied
to specific domains also have available the domain vocabulary; the lexical choices they must
make consist largely of selecting appropriate words and phrases to describe the messages ex-
tracted from the data. For example, Ana’s (Secfich ]) text generator chooses and combines
phrases from its lexicon which capture the meaning of the message to be expressed and satisfy
rhetorical constraints, using domain-specific semantic, syntactic, and rhetorical knowledge.

STREAK (Sectior?.2.5 must choose among different patterns for realizing the messages
it discovers in basketball-game summaries; for example, the result of a game can be expressed
in the main verb (“Chicago beat Phoenix”) or as a prepositional phrase (“with a 99—84 triumph
over Denver”). The pattern to use is determined by the floating facts which must be added and
the revision rules which are used to add them.

The domain-independent approaches do not make a great deal of use of the domain knowil-
edge, other than to fill slots in the output forms. TREND (Secficgh6, for example, uses
templates and inserts appropriate verbs and adverbs into templates which are then sent to a
linguistic realizer. SelTex (Sectid?) follows a similar slot-filling method, although it uses an
adaptation of Ana to generate its texts.

Of the existing systems, only Ana considers matters of style in selecting lexical items to
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express the trends detected. It allows the user to specify constraints on the syntax of the gen-
erated text (such as a desire for few subordinate participial clauses), which are then used when

choosing phrases from the lexicon and combining them.

3.3.5 Linguistic realization

Once the lexical items have been chosen to express the concept of the message, the final step
is to convert the conceptual representation into text; this is the job of the linguistic realizer. As

in any other text-generation domain, the realization can be done by a special-purpose realizer
built for the particular system, or an existing realizer can be used as a “black box” at the end of
the generation process. Both approaches have merit.

If an existing realizer is chosen, then the result of the processing to this point must in be
the input language of the realization system, and so the representations at all other levels of the
system must provide all of the information that the realizer requires. If the input language of
the selected realizer does not fit well with the architecture of the rest of the system, then time is
wasted in conversion. If the realizer is particularly idisyncratic in its needs, then it could make
the implementation of the rest of the system awkward.

A large advantage of a “home-grown” realizer is that there are no constraints on the rep-
resentations that can be used at any of the other steps in the generation process; the realizer
can be written to understand whatever structure is most convenient to the desired method of
implementing the rest of the system. However, there is the equally large disadvantage that such
a special-purpose system must be built essentially from scratch—a potentially time-consuming
task and one which is tangential to the actual task of caption generation. Unless a great deal of
time is invested in the creation of the realizer, it may not be able to handle all of the syntactic
issues of the target language or languages, which may cause the captions to be inferior to those
generated by a system using an external text realizer.

A system may combine linguistic realization with the two lexical-choice process described

above if the format of the captions to be generated is simple enough that no external realizer
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IS necessary; in this case, it could follow a procedure like the phrasal lexicon approach of Ana
(Section2.2.1), or the template-filling of TREND (Sectiah2.9 (although TREND does send
its filled templates to an external realizer). A system may also perform all of the realization
steps at once if the output of the discourse planning and aggregation stages is already in a
format acceptable to the selected realizer.

Many of the previous systems have used existing text generators: STREAK (Seetign
TREND, and AutoBrief (Sectiofi.3.3 use FUF/SURGEX y@as afinal
step, while FOG (Sectiod.2.3, LFS (Section2.2.2), and GOSSIP (Section.2.4 all use a
system which later developed into RealPre( ),/and SelTex (Sectiop)

uses FRANA, a French derivative of Ana.

3.4 Other necessities

During the discussion of generation tasks in the preceding section, the need arose for several
other components of a caption-generation system: some knowledge of the domain from which

the data is drawn, a model of the system user and of the audience, and integration with the
system producing the graphics. The following sections describe each of these requirements in

more detalil.

3.4.1 Domain knowledge

A simplistic caption-generation system could be made to work using no more domain knowl-
edge than that which is necessary to give the proper names to the variables in the input data.
However, the captions created by such a system would be very generic, and potentially not
useful in the particular domain and application for which it was being used.

Knowledge of the domain from which the input data was drawn should guide a caption-
generation system through the entire process of producing its text, from the selection of “in-

teresting” messages to include in the output to the final realization of its caption in natural
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language.

In different domains, different features of the data may be of interest; for example, in one
case it may be of more interest to concentrate on the final value of a variable, while in another it
could be the individual changes in its value from start to finish that is the most relevant feature.

The same data may even have different meanings depending on what domain it comes from,
or even the perspective that is taken. In the example data presented inFigjdioe example,
the increase in spending in British Columbia could be viewed as good if the author’s goal is to
encourage more spending. In an article which advocated cutting government spending, on the
other hand, the decrease in Alberta’s spending might instead be highlighted.

The domain can also have an effect on how the messages are ordered once they have been
selected. For example, in the FOG system (Seci@n3, messages are ordered strictly by
salience when marine weather forecasts are being created; however, for public forecasts, mes-
sages are first grouped by temporal order and then by salience.

Once the messages have been extracted from the input data and organized as needed, the
domain model should also be used in selecting an appropriate method of presenting the in-
formation textually. This procedure has two facets: appropriate words and phrases should be
selected to describe the domain elements, and domain-specific ways of expressing the mes-
sages extracted from the data may also be necessary.

The first task, describing the domain elements, can be done very simply by providing a
mapping between the variables in the input data and lexical items which can be used to describe
them. However, it might also be necessary to select among alternative descriptions of the
same element in different situations; in such cases, the domain model should provide rules for
making those choices.

Selecting appropriate lexical items to present the messages extracted from the data could
be done in a largely domain-independent way, using words such as “increase” or “decrease”.
However, often there are words or phrases which are typically used in some domains to describe

trends. For example, in the stock market domain for which Ana (Seétidr) was written,
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phrases like “surrender a gain” and “posted a loss” are common, while in weather forecasts
(FOG), winds “diminish to light”. Such differences should also be part of a system’s knowledge
of its domains.

There are several possible ways that the necessary domain knowledge could be included in
a caption-generation system. Probably the most straightforward method is to “hard-code” the
necessary information into the system itself; this is the approach taken by the previous domain-
specific systems, such as Ana, GOSSIP (Seadi@n), FOG, and STREAK (Sectio.2.5.

This is the simplest way to ensure that the system has access not only to appropriate vocabulary,
but also to rules for choosing messages and for selecting among different possible methods
of realizing those messages. However, including the domain information in a system in this
way makes it much more difficult to extend the system to work in new domains if necessary
(although Robin and McKeown £99 claim that a large number of the rules developed for the
basketball-game domain ended up applying to other domains as well).

An alternative approach is to specify the domain information entirely in the input. This is
certainly more flexible, and allows for the system to be used in any possible domain; this is the
approach taken by SelTex (Sectign However, while it is fairly straightforward to include
the necessary lexical items in the input, encoding the necessary selection rules is much more
complex and could well prove impossible for more complex domains.

A third possible approach, a hybrid which combines the above two, would be to provide
a set of many possible rules for content selection within the system, and then to define the
necessary domains in terms of those rules; the vocabulary could also be specified in the input
as in the above approach. This allows for more complex rules to be specified on a per-domain
basis and for the domain to be described on the fly instead of hard-coding it into the system.
However, selecting an appropriate set of possible rules could prove quite complex, as could
defining any new domains in terms of these rules.

A number of previous systems, such as Ana, FOG, and the project-management application

of SAGE (Sectior2.3.]), are tied to particular domains; naturally, they make use of a great
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deal of domain knowledge throughout the generation process. Ana even has as one of its
basic tenets that domain-specific semantic, linguistic, and rhetoric knowledge is required for
a computer to produce intelligent and fluent text. Such previous systems use their domain
knowledge throughout the process.

The domain-independent systems still require some knowledge of the domain. The domain
knowledge in SelTex, for example, consists of a lexicon and a characterization of the data’s
relational structure (i.e., the units of the variables and which can and cannot be used as re-
lational keys); it is specified entirely in the input file. AutoBrief (Sectibf.3 specifies its
high-level goals in a domain-dependent manner and then decomposes these goals into domain-

independent subgoals, using domain-specific knowledge to interpret the high-level goals.

3.4.2 User model

The final form and content of an automatically generated caption should not be a function
simply of the data on which it is based and of the domain from which that data is drawn; the
purpose for which the caption is being generated should also guide its generation.

When speaking of a “user model” in the context of captions, it is important to remember
that there are two possible “users” of a caption-generation system: the graphic designer or
journalist who requires a caption to include in a presentation, and the eventual target audience
of that presentation. The needs of both of these users should be considered.

The user who is actually producing the caption will usually have some idea of what he
or she wants the caption to express—for example, which data values to emphasize or which
aspects of the data to concentrate on. He or she might know enough to be able to specify the
precise techniques from the system’s repertoire which should be used in producing the caption.
In this case, the system may simply produce a presentation using the specified techniques and
not need to consider the audience. However, the system user will not always be skilled at
creating presentations; he or she might not always know the exact technique to choose in order

to produce the right effect.
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Instead of such specific techniques, the input from the system user could also consist of
more abstract communicative goals for the caption (“intentions”, in the language of Fasciano
( )): for example, the user could want to persuade the audience that a particular company
is doing well compared to its competitors. In some cases, the user of the system might not
even know or care what the actual trends are in the data, but should still be able to specify what
the system should look for in the data and what it should do with what it finds. These abstract
goals must be mapped into specific presentation techniques.

In this case, it is crucial for the system to consider the audience of the presentation. They
are the ones who will be viewing the final presentation, and the system should ensure that
the result will have the right effect on them. The whole generation process should be geared
towards having an appropriate effect on the audience; whatever goals the system user specifies,
the generation process should meet those goals in creating the caption.

The system should have a library of possible presentation techniques which can be used in
creating its captions—these techniques can be applied at all of the steps listed in the preceding
sections, from the initial selection of content to the final textual realization step. They can spec-
ify which aspects of a dataset should be considered “interesting”, how to combine information
from different datasets in various contexts, and the word and sentence structures that should
be used to express the final assertions; the techniques may be domain-dependent or domain-
independent. A caption-generation system should have a variety of such techniques—as many
as are required to produce the particular types of text that are required.

The possible different techniques which a caption-generation system might use should be
derived from a corpus of texts of the sort the system aims to produce. The data and communica-
tive goals used to produce the corpus texts should both be considered when deriving rules to
use; any other available contextual information could also be useful in determining the reasons
behind the choice of presentation technique.

The existing systems take a variety of approaches to selecting among the various presen-

tation techniques. For example, PostGraphe and SelTex (Setfio use a table which
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associates each possible user goal (sudoagarison with the schemata that can express it

and a weight indicating the efficiency of each schema at expressing that intention. A planning
algorithm then selects appropriate schemata to realize all of the user’s goals. SelTex’s various
textual presentation techniques and the heuristics which choose one over another were gathered
from an analysis of a variety of text-graphics pairs.

AutoBrief (Section2.3.3 also uses a planning process to refine and decompose the us-
er's domain-specific communicative goals into medium-specific actions. It is not clear how
the rules used to perform this decomposition were derived; however, they aim to specify the
techniques which are most commonly used to achieve particular goals.

Ana’s (Sectior2.2.]) fourth module performs this task; it selects phrases from the lexicon
that capture the meaning of the messages and satisfy rhetorical constraints. The user may
specify constraints on the system which determine the complexity and rhetorical structure of

the generated text; the selection of phrases from the lexicon is guided by these constraints.

3.4.3 Integration with graphics

The eventual goal for a caption is to be presented alongside a graphic in order to point out
important features of the data displayed on the graphic. So far, this chapter has described only
the choices that must be made inside the text-generation component; however, a full caption-
generation system should also consider the features of the graphic the captions are generated
to accompany.

There are two aspects to this issue: the assertions to be made must be allocated among the
available output media, and the various components of the resulting presentation must be well-
integrated. Zelaznyl©969), in a book aimed at business presenters, advocates first selecting
the textual message which is to be presented, and then producing a graphic which supports that
message. This is good advice for manually created captions, as people are good at choosing
appropriate words to express the message they want to present; however, in an automated

system, it is better to produce the various components of the presentation together, guided by a
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common goal.

Choosing how to allocate a particular message across the available media is a difficult task.
Generally, it is known that graphics are superior for showing quantitative relationships and for
presenting large amounts of statistical information, while text has the advantage of being able
to stress particular aspects of the data; however, specific rules which can guide an automated
system are not so easily stated.

The general question of allocating different components of a message among the available
media has not been solved. According to Roth and Hefléy ), most systems use domain-
specific heuristics for making such selections, using criteria such as the number of relational
facts to be presented or whether the information consists of physical attributes or abstract ac-
tions. The effectiveness with which each medium realizes the purpose of a presentations should
also be considered.

Once the messages have been allocated among the available media, the task still remains
to produce a coherent presentation from the individual pieces. If a graph-generation system
and a caption-generation system use the same representation of the data, context, and user
goals, it is unlikely that the final presentation will be completely unacceptable even if there
iS no interaction between the two systems. However, better results can be obtained if there
is communication between the graphics component and the text component. For instance, if
one of the goals is not possible to satisfy with graphics, then the graphics component could
communicate to the text component that it should emphasize that particular aspect of the data.
Also, the graphics generator could omit some information if it knows that it is already being
mentioned in the caption.

As well, if there is communication between the two components, then the text can explicitly
refer to physical features of the graphic (such as “the top line” or “the red bar”)—this enhances
the integration across the media. The graphics generator could even indicate to the textual
component that some part of the generated image may be difficult to understand, and a note

to explain the graphic itself would be added to the caption. Making sure that the graphics and
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text generators produce compatible results could also be the task of an overall coordinating
component, as in AutoBrief (Sectidh3.3. This component would translate the user’s goals
into specific tasks for the two generators, making sure that the tasks are compatible.

Of the existing systems which generate integrated text-graphics presentations, only SAGE
(Section2.3.]) considers medium allocation; essentially, as much as possible is expressed in
graphics, and the remaining ideas are generated in the text. In AutoBrief, the user specifies
medium-independent goals which are translated into medium-dependent goals for the text and
graphics generators. However, there is as yet no attempt made to distribute the messages to be
generated between the medium-specific generators; each medium will express as much of the
content as it is capable of expressing.

PostGraphe’s (Sectioh 3.2 graphics generator and SelTex both use the same input data;
however, once again, there is no effort made to allocate the messages across the media. If
there is a graphical schema which will realize the intention, then it is used; if there is a textual
schema which will also realize the intention, then it is used too. The textual schemata come
from an analysis of a corpus of text-graphics pairs, so it is likely that they will mention the
correct sort of information and not be overly redundant; however, there is no explicit allocation

of components of the message to different output media.

3.5 Summary

A full caption-generation system should provide a framework in which a variety of rules can
be implemented. Specifically, it should allow for rules to guide all of the generation tasks—
content determination, discourse planning, sentence aggregation, lexicalization, referring ex-
pression generation, and lexical choice. These rules should be based on knowledge of presen-
tation techniques, of the domain of the data, and of the goals of the user. Any particular system
might implement only a skeletal version of any of these components; however, the system

should be designed in such a way that it is straightforward to add new rules or new knowledge
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to produce different sorts of captions as the need arises.

A full caption-generation system should work with the component which is producing the
graphics in order to create well-integrated graphics presentations; they may communicate di-
rectly, or some overall process may control the two generators. Various portions of the message
should be allocated to the two media by some process which considers the capabilities of each
medium to ensure that the result is coherent and does not contain any redundancies.

To perform these tasks, the caption-generation system should have knowledge of a variety
of textual presentation techniques and rules to guide the choice among them in order to have
the proper effect on the audience. It should also have some information about the domain from
which the input data comes, to guide both its choice of information to present and the words

and phrases it uses to present the selected information.



Chapter 4

CAPUT: A caption generation system

Chapter3 outlined the theory underlying caption generation and the requirements for a sys-
tem which generates such captions. Moving from the theoretical to the practical, this chapter
describes @PuUT, a particular implementation of a caption generator.

CApuUT! is a system designed to generate single-sentence summaries of statistical data con-
tained in an input file. The summaries generated are suitable for use as captions for graphics
generated from the same input dataPO T was implemented in Java 1.41(

), with CoGenTex’s RealPra.{ )as the linguistic realizer.

4.1 Generation algorithm

The following is a sketch of the procedurea@uUT follows to generate a caption. Later, a
particular Java implementation of this procedure is discussed.

The input to Q\PUT is contained in a file that specifies a variety of information about the
desired form and content of the caption. There may also be any number of datasets in the
file, each of which can also have its own descriptive information. A simple tree is created to

represent the content of the input file, with a root node and one leaf node for each individual

1The name is not an acronym as such; thep@efers to captions, of course, ana could be thought of as a
reference to the University of Toronto if some explanation must be given.

55
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Figure 4.1: Initial tree structure—one node per dataset

dataset in the input. Descriptive information is attached at the appropriate level—to the root
for common information, and to the leaves for information which differs across datasets. An
example of an initial tree is shown in Figudel.

This initial tree contains all of the information in the input file, in the order in which it
was listed. However, quite often a successful caption will only mention some of the input data
items, and it may sort or group the information which it does mention in a variety of ways. The
next step in the generation process is to sort and group the datasets to produce a representation
of the content of the final caption to be generated,; this is accomplished by modifying the initial
tree.

The modification of the tree may include the following steps: ordering the datasets, group-
ing the datasets, calculating totals or averages, or removing datasets that will not participate in
the final caption. The criteria used to reshape the tree depend on both the nature of the data and
the specification of the desired caption. This process advances in a top-down fashion, starting
at the root of the tree and continuing until there are no more groupings to be made.

For example, if the data for British Columbia, the Maritimes and Quebec increased, that for
Ontario remained constant, and Alberta’s data decreased, and the selected grouping technique
was to combine datasets with like parity, then the grouping would look like that shown in
Figure4.2 after this portion of the process is complete.

After the tree has been modified, the next step is to generate a text plan for the caption. The
plan is created from the tree in a bottom-up fashion; each subtree generates a plan fragment
which represents its content, and these fragments are then combined at the parents until the

root node has the complete text plan.
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Figure 4.2: Revised tree structure—datasets sorted and aggregated

The final step is to send the text plan to the linguistic realizer. Currently, there is no auto-
matic generation of the graphic which the caption is to accompany, so the outpabofrCs

simply the English version of the caption.

4.2 Implementation

The procedure described above was implemented in a Java prototype. This section describes
various features of the current Java implementation & Cr: the important classes, and the

other components such as the format of the input file and the lexicon and the text realizer used.

4.2.1 Important classes

CapPuUT was implemented in Java 1.4(( )/ The tasks of modifying the

tree and producing the text plan from the result are performed by a number of different Java

classes; for example, a particular class extracts the information from the datasets, while another
groups the datasets in the tree, and still another combines the information from the tree into

a text plan. In a particular caption-generation setting, specific subclasses which perform their

respective tasks in a particular way are used to ensure that the content and form of the caption
are appropriate to the situation. The following sections provide details of the main classes

used; AppendiA provides a hierarchy of all of the classes in the current implementation.
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TreeNode

Central to QPUT'’s caption-generation process is its tree of information. It is created from the
initial input file, and all of the subsequent processes act on this tree to produce the final caption.
All of the nodes of this tree are instances of the TreeNode class.

There are two distinct sorts of TreeNodes: LeafNodes and ParentNodes. As their names
suggest, these two types of nodes play two different roles in the tree; LeafNodes are at the
edge, while ParentNodes form the interior of the tree. A LeafNode contains a single dataset
and the context information associated specifically with that dataset.

ParentNodes also contain context information; any information attached to a ParentNode
implicitly applies to all children of that parent. As well, ParentNodes have a number of as-
sociated objects that help to reshape the subtree rooted at the node and to produce a text plan
representing that subtree. Every ParentNode must have an Aggregator, and it may have a Mes-
sageExtractor and a Template as well; if a particular ParentNode does not have one of these,
then it uses the object attached to its parent. This means that the root node of thedtiesve

all of these objects. These component classes are described below.

Field

Field is the abstract superclass of any sort of real-world context information which can be
attached to a node in the tree. Information attached to a ParentNode is inherited by its children
and can be overridden by information explicitly attached to the child. Each Field subclass fills
a specific slot on the node—for example, the Action class fillsattteon slot. Currently, the
subclasses of Field are Subject, Action, and DirectOBject.

If more than one Field wants to fill the same slot on a node, then all of the Fields are stored
temporarily on that node. Then, when the information from the node is actually needed, all

of the other information about the nature of the desired caption is used to help choose the

2Confusingly, an instance of DirectObject can also represent an indirect object; this name was chosen to avoid
clashing with the built-in java.lang.Object class.
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Field Parameter Value

[consume] verb CONSUME
noun CONSUMPTION
direct DIRECT

[Canada] noun CANADA
adjective CANADIAN1

[watermelon]| noun WATERMELON

Figure 4.3: Three example Fields
appropriate Field to use. For example, if the input specifies that the action should be realized
as a noun, but one of the possible Actions specifies only a verb form, then that Action can be
eliminated from consideration. This resolution is performed by the particular instance of Field
itself whenever it is necessary, so that (for example) Subjects know how to resolve conflicts for
thesubjectslot. If necessary, subclasses of the particular types of Field can also be created in
order to make more sophisticated choices.

The Field instances contain the information needed to lexicalize the concept they represent
in a variety of surface forms—the specification of the [consume] Action, the [Canada] Subject,
and the [watermelon] DirectObject are shown in Figdra The direct field on [consume]
indicates that it takes a direct object. Note that the parameter values such as CONSUME are

RealPro lexicon entries, not actual words.

Dataset

A Dataset object contains the points constituting one dataset. It also contains a number of
methods which serve to extract various information from the dataset, for use in grouping the
datasets and generating the text plan. For example, there are methods to return the highest
value in the set or the difference between its initial and final values. Additional methods can

be added as required by other system components.
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Action: [eat]

Subject: [Canada]

Object: [watermelon]
Complements: [between [1990, 1998]]

Figure 4.4: Sample ActionSpec

ActionSpec

An ActionSpec represents a single action that is the subject of one of the datasets—for example,
the consumption of watermelons in Canada. In its simplest form, an ActionSpec has a subject,
a verb, and an (optional) object, which may be direct or indirect; each of these components is

an instance of a Field subclass. ActionSpec is a convenient way of encapsulating the context
information associated with a Dataset for use further on. An ActionSpec is created from each

LeafNode during the time that the text plan is being created. Figdrehows the ActionSpec

for the above example of watermelons in Canada.

An ActionSpec can also have an unlimited number of prepositional complements; these
may be specified in the input file along with the other descriptive information, or may be
added based on the aspect of the data on which the caption is concentrating. For example,
if the caption is considering the time period from 1990 to 1998, a complement representing
“between 1990 and 1998” would be added to the ActionSpec, as in FHglire

An ActionSpec can be realized in a variety of ways; the example above, the consumption of
watermelons in Canada between 1990 and 1998, might become the text “Canadians eat water-
melons between 1990 and 1998” or the noun phrase “Canadian consumption of watermelons
between 1990 and 1998”. The form that is chosen is determined by the selected Template at
the time that the text plan is being generated. The Template will add to this text plan any rele-
vant information about the value of the action being measured, such as whether it increased or
decreased, to produce the final text plan; see the description of Template od3fagenore
information.

The information associated with several Datasets can be combined into one ActionSpec if

they are compatible—that is, if they differ in exactly one of their components. For example, a
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single ActionSpec could represent “American and Canadian consumption of watermelons” or
“Canadian consumption of watermelons and grapefruit”’. See Segtifor examples of this

process.

Aggregator

Aggregator is an abstract class which is never directly instantiated; it is the subclasses of Ag-
gregator that do the actual work. An instance of an Aggregator subclass is attached to every
ParentNode in the tree. An Aggregator has two main functions: to sort and group the children
of the ParentNode with which it is associated, and to create a single text plan based on the in-
formation in the children of that node and corresponding to the subtree rooted at its associated
ParentNode.

Different subclasses of Aggregator can perform very different transformations on the tree.
For example, the ParityAggregator groups the children by the “parity” of the change in their
values (whether the values increased, decreased, or remained the same), as it Higuneks
4.2. The ComparisonAggregator sorts the nodes and then uses heuristics to determine which
elements to mention (for example, the highest or lowest value). The TotalAggregator and
AverageAggregator compute total or average values, respectively, of the variables represented
in the datasets. The Aggregator stores information about the choices it makes at this stage so
that the following stage can produce the appropriate text.

When producing the text plan from the subtree with which it is associated, an Aggregator
will extract information from each of its child nodes and combine them in whichever way is
appropriate. The information from the child nodes could consist of fragments of text plans
which are then combined using simple conjunctions such as “and” or “but”; the Aggregator
might also use the ActionSpecs or the data from its children to produce a text plan from scratch.
Which of these alternatives is used depends on the type of Aggregator and possibly on the
nature of the data. It may use the information stored in the previous step to guide this choice;

for example, if one child node remains, it must know whether it had the highest or lowest value,
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or was the only input to begin with, or had some other property which caused it to remain in
the tree after the first pass.

The type of Aggregator to use on the root node is specified in the input file. Any new
internal nodes created during the process of reshaping the tree are given an Aggregator of a

type determined by the original Aggregator.

MessageExtractor

Like Aggregator, MessageExtractor is an abstract class whose subclasses do the work. A Mes-
sageExtractor extracts information from Datasets; this information is then used by the Aggre-
gator to group and sort the Datasets. Different subclasses of MessageExtractor extract different
information; for example, an IncreaseDecreaseKey extracts the difference between the starting
and finishing values of a dataset, while a SingleValueKey uses a single point from the dataset.
See Chaptes for examples of various MessageExtractors being used.

A MessageExtractor also performs the task of choosing an appropriate Trend object to be

used in the creation of the text plans. Each type of MessageExtractor has its own procedure
for selecting a Trend; it uses the information from the datasets, and may also query the Ag-
gregator for information about the choices it made to guide this process. For example, an
IncreaseDecreaseKey chooses an IncreaseDecreaseTrend if there was only one child node to
start with; this would result in sentences stating that something “increased” or “decreased”.
It chooses an IncreaseDecreaseCompareTrend if there were multiple children which are being
compared, which results in sentences containing phrases like “increased the most”. A subclass
of MessageExtractor can perform arbitrarily complicated operations to choose an appropriate
Trend.

The final task of a MessageExtractor is to attach the appropriate prepositional complements
to the ActionSpecs, so that this information can be included if necessary in the final caption.
The IncreaseDecreaseKey adds the starting and ending dates of the data in the dataset, for

instance, while the PercentageChangeKey also inserts the percentage increase or decrease.
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Trend

A Trend represents the trend that was detected in a particular Dataset by the MessageExtractor.
Once again, Trend is an abstract class; it is the subclasses of Trend that implement the actual
process of describing the trend. For example, a SingleValueTrend describes the fact that a
single point or a set of single points had the highest or lowest values, resulting in generated
text of the form “Canadian watermelon consumption had the highest value”.

Trends can generate text plans in the form of a verb phrase (e.g., “increased the most”), an
adverb (e.g., “less often”), or an adjective (e.g., “more”). Specific types of Trends might not be
able to generate all of these forms; if it cannot produce the requested form, the Trend will throw
an exception to indicate that the type of caption specified in the input cannot be realized. The
selected Template determines which sort of text plan the Trend should create and integrates the
result with the text plan from the ActionSpec.

The type of Trend to use is not specified in the input; rather, it is selected by the Mes-
sageExtractor based on the data and possibly the state of the Aggregator, as specified in the

description of the MessageExtractor class.

Template

A Template converts a set of ActionSpecs and a Trend into a text plan. Different subclasses of
Template will put the information together in different ways. For example, if the action that
was measured was Canadian watermelon consumption and it increased, then a NounTemplate
would realize it as “Canadian consumption of watermelon increased”, with the action as a
noun phrase and the trend as a verb. By contrast, a VerbTemplate would produce “Canadians
eat more watermelons” on the same input; in this case, the action is a verb phrase and the trend
is the adjective “more”.

The input file specifies the type of Template to use in generating the caption. Syntactic in-
formation about the final caption form can also be specified as arguments to the Template—for

example, the input could request a caption in the past tense or the progressive mood. Examples
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template: NounTemplate

extractor: SingleValueKey

aggregator: ComparisonAggregator
context: buy DirectObject( WATERMELON )

context: australia
1998 1250

context: canada
1998 1500

“Canadian consumption of watermelon in 1998 has the highest value.”

Figure 4.5: A sample €rPuT input file and its output

of the use of different Templates with various arguments are presented in Chapter

4.2.2 Other components

In addition to the classes described above and their subclasses;T@hcludes a number of
other components. The input to the system comes from an input file in a particular format; the
system has access to a lexicon; and it uses an external realizer to produce the final form of the

text. This section describes each of these componentaptC

Input file

The input file specifies the data from which the caption is to be generated, as well as a variety
of information to guide the choices made during the generation process. A sample input file
and its corresponding output are shown in Figl®e

There are two parts to an input file: the preamble and the individual datasets. The preamble,
which gives the specification for the type of caption which should be generated, has four fields.
If any of these fields is omitted, then a generic default is used.tdin@latefield determines
which template should be used for the caption—for example, whether the action which is being
measured should be realized as a noun or as a verb phrase.

Theextractorfield specifies which aspect of the data to use for grouping or sorting. In the

example, a SingleValueKey is specified; this uses the value at a single point, rather than some
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other aspect of the data such as the overall increase or decrease.

The keywordaggregatordeclares which Aggregator should be used to group the datasets
and to combine their assertions. A ComparisonAggregator, specified in this example, uses
heuristics to choose the highest or lowest values, depending on the characteristics of the data.

Finally, thecontextdield provides a list of contexts to guide lexical choice. These contexts
can be named concepts from the lexicon, sudbug$n the example—see the following section
for a discussion of the lexicon. They may also be the specifications of individual Fields, such
as thewatermelonDirectObject. All of the contexts listed at this point in the input file are
attached to the root ParentNode of the initial tree.

The second section of the input file consists of the individual datasets. Each dataset has
its own list of contexts, which can once again be either named concepts from the lexicon or
the specifications of Fields. These contexts are attached to the LeafNode corresponding to a
particular dataset. Each dataset also specifies a ligt gf pairs which describe the data.

All of the classes (such as Template or Aggregator) that can be directly specified in an input
file are instantiated by the same process. First, an instance of the desired class is created, and
then any specified arguments are passed to that instance. So that this can be done, all such
classes inherit from BasicObject, a class which provides methods for setting the parameters
once the class has been created; the classes must also provide a no-argument constructor so

that they can be dynamically instantiated.

Lexicon

CapuT’s knowledge of the lexicon of the domains about which it is generating captions comes
from a list of “contexts” which it reads in on startup. These contexts specify appropriate lexical
items to use in a particular context—for example, the context in Figuiehows the appro-

priate words to use when the topic is consumer purchases or Canada. Any words in all-capitals
specify entries that appear in RealPro’s lexicon (see the following section for more on Real-

Pro), while words in lower case are unknown to RealPro. If a word is not in RealPro’s lexicon,



CHAPTER4. CAPUT:. A CAPTION GENERATION SYSTEM 66

// purchasing context
buy {
Action( CONSUME, CONSUMPTION, DIRECT )
Action( BUY, DIRECT )
Action( PURCHASE1, DIRECT )
}
// Canadian context
canada {
Subject ( CANADA, CANADIAN1 )
}

Figure 4.6: Sample lexical knowledge base concgmischasingandcanada

then its syntactic category must be specified in the text plan when it is used so that the caption
can be realized.

When the file is read, the lexical items are instantiated using the same method as the classes
specified in the input file (see the previous section). As well, each lexicon context (such as
canadg is stored in a hash table under its name so that the lexical items in that context can be
retrieved if the context is specified in the input file.

Each context in the list specifies one or more lexical items. When one of these contexts is
specified in an input file, the associated lexical items are attached to the appropriate TreeNode.
If there is more than one item attempting to fill the same slot during the generation process—
such as with the three Actions listed under “buy”—then the conflict is resolved as specified

above in the description of the Field class.

Text realizer

CaPUT uses CoGenTex’s RealPro text realizen\( ) for the final step
of linguistic realization. RealPro is a fast, portable linguistic realizer implemented in C. It
developed out of the text realizers used by systems such as LFS, FOG, and GOSSIP (see
Chapter2).

The input to RealPro is the Deep-Syntactic Structure—"DSyntS” for short. This structure

is based on MeEuk’s Meaning-Text Theoryl\( ). A DSyntS is an ordered tree
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L 1L
boy blary
ATTR
THI= 1

“This boy sees Mary.”

Figure 4.7: An example of DSyntS

SEE [ ] (
I BOY [ article:def ] (
ATTR THIS1 [ 1]
)

IT Mary [ class:proper_noun ]

)
Figure 4.8: ASCII representation of sample DSyntS

with labelled nodes and arcs. Every node is labelled with an uninflected lexeme from the target
language (in this case, English); there are no non-terminal nodes. The arcs are labelled with
syntactic relations such asibjectrather than semantic relations liesgent No function words

are represented in the tree (thus “deep” syntactic structure); it consists only of meaning-bearing
lexemes. The input to RealPro fully determines the output, but it specifies it at an abstract level.
An example of a DSyntS (adapted froms( )Yis shown in Figuret.7.

Note that if the featurguestion:+is added to the verb amiimber:pl to theboy node, then

the resulting text is “Do these boys see Mary?” This illustrates that function words do not
need to be included in the input DSyntS and that syntactic issues are handled automatically.
Figure4.8 shows the ASCII representation of the DSyntS of Figlg for the remainder of

this thesis, the ASCII representation will be used whenever DSyntS is displayed.

The tree structure of DSyntS is based on the notion of syntactic dependency. Broadly s-
peaking, each lexeme in the sentence “depends” on exactly one other lexeme; in other words,
the dependent lexeme is present in the sentence because of the presence of the lexeme it de-
pends on. There is exactly one lexeme which is not dependent on any other; in a full sentence,

this will always be the main verb. This independent lexeme forms the root of the tree.
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As the sentence is generated, the DSyntS is transformed into a Surface-Syntactic Structure
(SSyntS); here, the abstract dependency relations used in the input ssidbjexgare trans-
formed into concrete relations suchmsdicative The next step is to transform the SSyntS into
a Deep-Morphological Structure (DMorphS). This is done by using rules of ordering of gover-
nors and their dependents and of dependents at the same level, and by adding default features
to the lexemes. Then a Surface-Morphological Structure (SMorphS) is created by converting
the abstract lexemes into their surface representations. Next, a graphical component adds ab-
stract punctuation and formatting instructions to the SMorphS to produce the Deep-Graphic
Structure (DGraphS). Finally, formatters transform the DGraphS into formatting instructions
for the targeted output medium, which is currently one of ASCII, HTML, or RTF.

RealPro can be run in the background as a generation server; DSyntS can then be sent to
it, and it will generate the text on the fly. RealPro comes with a Java interface, which allows
DSyntS to be created and sent to the server programmatically. This is how RealPro is used in
CAPUT.

The main class in the Java API to RealPro is C&jntNode, which represents a deep-
syntactic node with or without dependents. A DSyntS is represented in Java by a number
of CGT_SyntNodes arranged in a tree structure; it can be manipulated as needed during the
generation process to produce an appropriate plan for the final text. Once the final DSyntS has
been created, the root CG3yntNode is sent to the server for realization via the G&alizer-
SocketClient class, which connects to a running RealPro server, sends the DSyntS, and returns

the string of generated English text.

4.3 CAPUT and generation principles

Chapter3 described a set of principles which a caption-generation system should follow. This
section examines APUT in the context of those principles. WhileaABuUT does not implement

all of the principles outlined in that chapter, it does consider a number of them and can be
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extended to be more comprehensive in the future.

4.3.1 Generation tasks

Section3.3 presented Reiter and Dale’s997) list of generation tasks, and proposed how
each task should be addressed by a system to generate captions for information graphics. This

section considers APUT’s approach to each of these tasks.

Content determination

Content determination consists of selecting the relevant information from each dataset in the in-
put. In CaPUT, this task is performed by the specific type of MessageExtractor specified by the
system user in the input file. The various types of MessageExtractors currently implemented
in CAPUT choose different information from the datasets—for example, the absolute increase
or decrease in value, the percentage change from start to finish, or the value of a variable at a
specific point.

In the present implementation,ABUT does not have any knowledge about the effect of
selecting different features from the data or any rules to choose among the possibilities. Itis the
user who must specify the MessageExtractor in the input, so it is the user alone who considers
issues such as the graphic the caption is to accompany, the domain of the data, and the desired
effect on the audience. In future versions of the system, these issues can be considered—see
Section6.3.2for proposed implementations.

The set of MessageExtractors imRUT can easily be extended to allow the generation
process to concentrate on new aspects of the data. A new MessageExtractor requires that a
programmer specify the following: a “key” which can be used by the Aggregators to sort and
group the data; one or more new types of Trend which will produce appropriate output from
the data selected by the MessageExtractor; and a procedure for creating an appropriate Trend
object given a dataset and the state of the Aggregator.

This basic method of determining content—extracting information of a particular type from
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each dataset—is, of course, not novel. However, the fact that it is done by special-purpose
classes instead of by a built-in part of the system means that it is more flexible than other
methods which build the selection rules into the core of the system itself. This method is
domain-independent in general, and domain-specific classes can be created to implement rules

such as the 120 used by Ana (Sectibi.]) in the stock market domain.

Discourse planning

Discourse planning is the process of structuring the messages produced by the content deter-
mination step into a coherent text. IMEuT, this task is performed by the Aggregators during
the process of converting the initial tree into a representation of the content of the caption.

The type of discourse planning performed on a particular caption is determined by the type
of the Aggregator on each parent node. The top-level Aggregator is specified by the user in the
input file, while the type of any sub-Aggregators is determined by the type of the original. As
in content determination, therefore, it is currently the task of the user to decide what form of
planning is to be done; there is no consideration of the other factors. Once again, Settton
presents possible enhancements x® CT to allow the system to perform these tasks.

The various Aggregators currently implemented inPOT perform a wide variety of ag-
gregations on the descendants of the node with which they are associated. The simplest Aggre-
gator, a BasicAggregator, does not modify the tree at all, while a SortAggregator simply sorts
the children by the value of their sort key. A ParityAggregator groups the children by the parity
(positive, negative, or zero) of its sort key, while a TotalAggregator computes totals grouped
by a specified field.

This framework allows for aggregation rules as complex as required to be included. For
example, Corio’s 1999 rules about which element(s) to mention in a comparison (e.g., the
highest, highest two, or lowest) are implemented in the ComparisonAggregator. To add new
rules would require the creation of a new Aggregator subclass, and possibly the addition of new

methods to other classes, especially Dataset and MessageExtractor, so that the new Aggregator
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could access the sort of information it needs in order to structure the children of the node it is
attached to.

It is possible that certain Aggregators do not interact well with particular MessageExtrac-
tors. For example, it makes no sense to use a TotalAggregator with a PercentageChangeKey;
this would produce a caption that talked about the total percentage increase or decrease across
datasets, a meaningless value. Aggregators or MessageExtractors can verify that they are com-
patible before attempting to produce a caption, and possibly output a message to the user or
fall back to a generic implementation if the incompatibility is profound.

This method of discourse planning is inspired by that used in GOSSIP (Setcfch
and LFS (Sectior2.2.2. The nodes in GOSSIP’s topic trees contain more and more varied
information than those in A&PUT’s trees. For example, the nodes may have labels such as
res-cons(resource consumption) amt-period (interactive period during the session), while
the arcs connecting the nodes represent conceptual links such as aspect, agent, or action. In
the case of @PuUT, the data to be represented is less structured than the audit trails used by

GOSSIP, so the simple tree of datasets and dataset groupings is sufficient.

Sentence aggregation

Sentence aggregation translates a set of conceptually-grouped messages which are the output
of the discourse planner into a single overall text plan. This task is executed on the second pass
through the modified tree, when the actual text plan is being created.

The Aggregator on each parent node performs the task of combining the information in
each of its child nodes into a text plan. How this is accomplished is determined by the type of
the Aggregator. For example, a BasicAggregator or SortAggregator will simply combine the
DSyntS produced by each of its children with the conjunction “and”, while a ParityAggregator
will perform more elaborate transformations.

The more sophisticated Aggregators may attempt to combine the ActionSpecs from each

of their children into a single ActionSpec; currently, this is possible only if the ActionSpecs
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differ in exactly one feature. An example of this process is given in Sebti®dn

Sentence aggregation follows a similar process in all of the preceding systems which ad-
dress this issue; concepts are grouped together if they are sufficiently similar. When the data
itself is more complex, then the meaningimilar changes, as in GOSSIP (Sectidr.);
however, the idea remains the same, an@Cr will still be able to perform aggregation given

suitable classes to perform the comparisons.

Lexicalization and referring expression generation

Lexical choice, choosing words to describe the messages extracted from the data, is performed
on the second pass through the tree, after it has been reshaped during the first pass. There
are two sorts of choices that must be made in this step: choosing words to describe both the
trends themselves (lexicalization) and the domain elements which make up the trends (referring
expression generation).

The description of the trends is performed by several different componentsAniC The
Trend selects the appropriate manner to express the features of the data; the type of Trend to
use is selected by the chosen MessageExtractor, using the features of the data and the state of
the Aggregator. For example, if the MessageExtractor measures a single value and it appears
in the caption because its value was among the highest, then the eventual text produced would
be of the form “... had the highest value”. The Template specifies the overall syntactic form of
the caption and integrates the results of the other processes into a single text plan. The type of
Template to use is specified by the user in the input file.

In the current system, each Trend has at most one way to realize its information in the
context of a given Template. In other words, if the message to be expressed is that the value of
a variable had the largest increase and the Template specifies that the Trend should be realized
as a verb, then the verb phrase “increase the most” will always be generated. In the future, the
user should be able to specify features which would allow the system to choose among a larger

variety of ways to express a message.
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In addition to the trends detected in the data, the data itself must be described appropriately
in the caption. As is the case when describing the trends, the Template specifies the desired
part of speech for each component; the individual subclasses of Field then provide the required
lexical items. This process is mediated by the ActionSpecs, which gather all of the context
information (Field subclasses) associated with each grouping of datasets.

Some selection is done among the possible lexical items which could be used to describe
an entity; if there is more than one possible word to describe it, then the conflict is resolved
by the Field subclasses themselves, using the rest of the information about the caption to guide
the choice. This process could be extended in future versions to provide more alternatives and
more sophisticated methods of distinguishing between them.

The possible domain vocabulary can be specifiedAr@r’s lexicon, or the lexical items
may be directly indicated in the input file. New items can be added very simply to the input file,
or if they are to be used multiple times, to the lexical knowledge base. Words with irregular
forms (such as the verb “to eat”) must also be added to RealPro’s lexicon if they are not already
there, so that sentences using them will be syntactically correct. The capabilities of the lexical
items could be extended if needed in order to enable more complex selection processes among
them.

Both of these forms of lexical choice take place at the same time\wUC, each time that
a text plan fragment must be created for a message. The Template specifies the slots that must
be filled, and the ActionSpecs and Trends together provide the text plan fragments to fill those
slots. Additional syntactic information can be specified in the input file to further guide the
generation process—for example, the required tense of the verb in the final caption.

The approach to describing the trends is more flexible than that used by some of the previ-
ous systems; for example, TREND (Sectib.6 uses very inflexible templates to produce its
texts. Others are more flexible; STREAK (Sectibf.5, for example, chooses among differ-
ent parts of speech to express its facts depending on how they are to be inserted into the output,

in a process similar to that employed byUT.
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When it comes to describing domain entities, only STREAK among the previous systems
chooses from among a set of alternatives; its choice depends mostly on the syntactic role that
the entity is to play in the output. Other systems either have the domain vocabulary built in (as
in FOG (Sectior?2.2.3 or Ana (Sectior2.2.1), for example) or else specify it in the input to
the system (SelTex, Secti@).

Linguistic realization

CaPuUT uses RealPro for the final realization step, which means that many intermediate results
are stored as DSyntS. However, it is not tied to RealPro; any other linguistic realizer could be
used as well. A Java interface to the realizer would be required in order to integrate it with
the rest of @QrPuT; all of the methods in @uUT which create DSyntS would then have to be
rewritten to use this new representation. However, the process of creating and reshaping the
tree is not at all dependent on the form of the output and would not be affected by a change in
linguistic realizer.

RealPro developed from the text realization systems used in LFS, FOG, and GOSSIP (Sec-
tions 2.2.2-2.2.4); these systems use a representation similarly based on Meaning-Text the-
ory for the input to the realizer. Other systems also use existing realizers, including SAGE
(Section2.3.7), AutoBrief (Section2.3.3, and STREAK (Sectio2.2.9, all of which employ
FUF/SURGE. Some of these (e.g., STREAK) use the input language of the selected realizer
throughout the generation process; others, such as AutoBrief, use an internal conceptual rep-
resentation which is then translated into the appropriate form for the actual realization step.
CaprurT follows this latter paradigm, as it was more straightforward to implement the process

of modifying the tree on custom-built structures.

4.3.2 Other necessities

In addition to the generation tasks described above, a caption-generation system also has other

requirements: knowledge of the domain of discourse, a model of the audience, and the ability
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to be integrated with a graphics generator. This section describes1 approach to these

requirements.

Domain knowledge

The domain knowledge of £&PUT currently consists only of a domain-specific lexicon, which
specifies words appropriate for use in a variety of predefined domains. For example, when
the data has to do with the consumption of food, words such as “consumption” and “eat” are
appropriate.

The current implementation of domains could be extended to contain more information;
for example, domains could specify appropriate Aggregators or MessageExtractors to use, or
particular language which can be used to describe the trends. A weather domain, for instance,
could indicate to the system that words like “hot” and “cold” are to be preferred when talking
about extremes, rather than the generic “high” and “low”.

This use of a domain only as a lexicon is similar to the approach taken by SelTex (Sec-
tion 2), although it is somewhat more flexible. Ideally, the domain model should be extended
until CAPUT is capable of domain-specific reasoning similar to that employed by the domain-

dependent systems such as Ana (Sedianl) or SAGE (Sectior?.3.7).

User model

The only user that €PUT currently deals with explicitly is the actual user of the program—the
person who is producing the caption. This user can specify a variety of constraints on the style
and content of the caption, within the limits of what is implemented APCT. CAPUT relies
on this user or on some other external source to guide the selection of Aggregator, Template,
and MessageExtractor; if none is specified, then it uses a generic default.

The components of &PuT do have some knowledge of their own. For example, the Com-
parisonAggregator uses heuristics developed in Carg9) to select the appropriate element

or elements to concentrate on when a caption comparing several values is to be produced. How-
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ever, this knowledge is implicit in the rules themselves, rather than explicitly represented in a
form which CapuT reasons about. Other than the knowledge implicit in the implementation
of some of its components,ABUT does not have any information about the effect of any of its
presentations on the audience.

The goal of @QPUT is to generate textual summaries of data that are suitable for presenta-
tion alongside a graphic produced from that same input data. Given this, itis possible that some
overall coordinating system will process the top-level goals and transform them into specific
goals which can then be expressed as input parametersfo1Cas well as specific goals for
the graphics system; this is the technique used by AutoBrief (Seztiod. If so, then QPuUT
would not have to consider issues of the user model. The planning models used in SelTex (Sec-
tion 2) and AutoBrief are probably the best method of integrating presentation knowledge into
CAPuUT; this model lends itself well to planning the graphical component of the presentation

as well. Integration with graphics is discussed more fully in the following section.

Integration with graphics

CarPuUT was designed to produce just the text portion of an integrated multimodal presentation.
It does not explicitly consider issues of medium allocation and coordination across media,
although (as mentioned above) it has some implicit knowledge in its rules for content selection
(which were derived partly from actual text-graphics pairs).

A skilled user could use £PUT as a tool in the process of preparing presentations, pos-
sibly alongside a system which generates graphics automatically, or with the graphics being
produced by hand. If the graphics and the data use the same underlying data, it is likely that
the caption will not be bad.

However, better results could be obtained KFELT were integrated with some graphics
generator. The model could be that of AutoBrief, with a top-level controlling program driving
the two individual generators; the two generators could also run in parallel and communicate

with each other, as in SAGE (Secti@rB.1). Section6.3.2discusses integration with a graphics
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generator in more detail.

4.4 Summary

This chapter has presented €T, a particular implementation of a caption-generation system.
CapPUT has several novel features. It creates an initial tree representing the input data, and then
chooses the content of its captions by modifying this treeP@r is made up of a number of
abstract classes, the subclasses of which produce a variety of behaviour. New subclasses can
easily be added if new types of captions are required.

CapPuUT addresses all of the principles described in Chaptersome degree. Although it
does not currently incorporate any presentation knowledge of its own, such knowledge is easily
added. @PuUT can also be integrated with a graphics generation system to produce coordinated
multimedia presentations; all that is needed is an intermediate layer to convert the end-user’s

rhetorical goals into settings ofAPUT's input parameters.



Chapter 5

Examples

This chapter presents several examples which demonstrate the capabilitresiof. @ he first
few examples produce simple enumerations of the features of the input data, while the later
examples perform more involved manipulations to produce text that is more like a caption than

asummatry.

5.1 Example 1: Basic

Example 1 shows a very simple caption. The input fite this example is shown in Figutel,
and Figures.2 shows a graph of the data.

The first step in the caption-generation process is to read in the input and create the initial
tree to represent it. The tree created for this example is shown in Figiire

Once the tree is created from the input, the next step is to use the chosen Aggregator and
MessageExtractor to reshape it. However, in this case, the user has specified a BasicAggrega-
tor, which does not modify the tree. So, in this case, the first pass through the tree does not
change anything.

The next step is to generate the fragments of DSyntS for each of the subtrees, using the

1The data for all examples is fictional.

78
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template: VerbTemplate

extractor: IncreaseDecreaseKey
aggregator: BasicAggregator

context: spend DirectObject( healthcare )

context: quebec
1990 1400

1998 1450
context: alberta
1990 1500

1998 1400
context: british_columbia
1990 1610

1998 1900
context: ontario
1990 1700

1998 1700
context: maritimes

1990 1575
1998 1640

Figure 5.1: Sample input file

MessageExtractor and the Template. We will concentrate the “Quebec” node for this example,
but the same process takes place on the other nodes of the tree as well.

First, an ActionSpec is created from the information in the dataset on the “Quebec” node.
This ActionSpec is shown in Figufg4. At this point, the entries in this ActionSpec are not
yet lexicalized; they represent only concepts.

An appropriate Trend object is also created for use in the generation of the DSyntS; the
type of this Trend is selected by the MessageExtractor and is determined by the nature of the
data. In this case, the MessageExtractor is an IncreaseDecreaseKey and the data for Quebec
shows an increase, so an IncreaseDecreaseTrend with a positive direction is created.

Once the ActionSpec and the Trend have been created, they are passed to the Template
for conversion into DSyntS. The Template in this case is a VerbTemplate, which realizes the
action as a main clause and the Trend as an adverb or adjective. The Template first converts

the ActionSpec into the DSyntS shown in Figiré. It then creates an adverb from the Trend
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Figure 5.3: Initial tree for Example 1

Action: [spend]

Subject: [Quebec]

Object: [healthcare]
Complements: [between [1990, 1998]]

Figure 5.4: Action specification of “Quebec” node

1933
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SPEND [ ] (

I QUEBEC [ ]

III healthcare [ class:common_noun article:no-art ]

ATTR BETWEEN1 [ ] (

ITI 1990 [ class:numeral ] (
COORD AND2 [ ] (
ITI 1998 [ class:numeral ]

)))

“Quebec spends on healthcare between 1990 and 1998.”

Figure 5.5: DSyntS fragment for “Quebec” action

SPEND [ ] (
I QUEBEC [ ]
III healthcare [ class:common_noun article:no-art ]
ATTR BETWEEN1 [ ] (
IT 1990 [ class:numeral ] (
COORD AND2 [ ] (
II 1998 [ class:numeral ]

)
ATTR MORE1 [ rheme:+ ]

)

“Quebec spends more on healthcare between 1990 and 1998.”

Figure 5.6: DSyntS fragment for “Quebec” action (Trend added)

object and attaches that to the generated DSyntS to create the structure ib figure

A similar process creates DSyntS fragments for each of the other nodes in the tree. Finally,
the aggregator must combine these fragments into a single DSyntS; the BasicAggregator does
this in the simplest possible way, by putting “and” between each of them. The DSyntS for the

final caption is shown in Figure.7.

5.2 Example 2: Grouping by parity

Obviously, there is a great deal of redundancy in the caption generated in Example 1; this
redundancy could be removed by judicious grouping of the nodes in the tree. This involves
choosing a different type of aggregator, a ParityAggregator. For this example, the data is the
same; only the preamble of the input file has changed, as shown in Figumdotice that the

only difference between this one and Example 1 is in the choice of aggregator.
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SPEND [ ] (
I QUEBEC [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (
II 1990 [ class:numeral ] (
COORD AND2 [ ] (
ITI 1998 [ class:numeral ]
)))
ATTR MORE1 [ rheme:+ ]
COORD AND2 [ ] (
II SPEND [ ] (
I ALBERTA [ ]
III healthcare [ article:no-art class:common_noun J
ATTR BETWEEN1 [ ] (
IT 1990 [ class:numeral ] (
COORD AND2 [ ] (
II 1998 [ class:numeral ]
)))
ATTR LESS1 [ rheme:+ ]
COORD AND2 [ 1 (
II SPEND [ ] (
I BRITISH_COLUMBIA [ 1]
III healthcare [ article:no-art class:common_noun J
ATTR BETWEEN1 [ ] (
ITI 1990 [ class:numeral ] (
COORD AND2 [ 1 (
IT 1998 [ class:numeral ]
)))
ATTR MORE1 [ rheme:+ ]
COORD AND2 [ ] (
II SPEND [ ] (
I ONTARIO [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (
II 1990 [ class:numeral ] (
COORD AND2 [ ] (
II 1998 [ class:numeral ]
)))
ATTR THE_SAME [ rheme:+ ]
COORD AND2 [ ] (
II SPEND [ ] (
I MARITIMES [ ]
IITI healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ 1 (
II 1990 [ class:numeral ] (
COORD AND2 [ ] (
II 1998 [ class:numeral ]
)))
ATTR MORE1 [ rheme:+ ]
1IN
“Quebec spends more on healthcare between 1990 and 1998, Alberta spends less on healthcare between

1990 and 1998, British Columbia spends more on healthcare between 1990 and 1998, Ontario spends
the same on healthcare between 1990 and 1998 and the Maritimes spend more on healthcare between
1990 and 1998."

Figure 5.7: Final DSyntS for Example 1
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template: VerbTemplate

extractor: IncreaseDecreaseKey
aggregator: ParityAggregator

context: spend DirectObject( healthcare )

Figure 5.8: Input file preamble for Example 2
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Figure 5.9: Revised tree for Example 2

The initial tree for Example 2 is the same as the one for the previous example (see Fig-
ure 5.3); however, this time, when the aggregator is run, it reshapes the tree by sorting the
nodes by the amount of change and then grouping nodes with like parity (increase, decrease,
or no change). The result of this grouping is shown in Figuge

Now that the tree has been revised, the next step is to generate the DSyntS from each
subtree. For the subtrees with one element, the process is exactly as in the previous example;
the interesting subtree is the “Increase” tree with its three leaves.

Since the tree was grouped by a ParityAggregator, the system knows that all of the nodes
in each subtree have the same Trend; it can therefore create a single ActionSpec for the whole
subtree and apply the Trend to that. The ActionSpec for the “Increase” subtree is shown in
figure5.10 Notice that, since all three actions differ in only one field of the ActionSpec, it was
possible to create a single specification to cover all three of them. This is not always possible;

see Example 6 for a case in which the ActionSpecs cannot be combined.

Action: [spend]

Subject: [BritishColumbia], [Maritimes], [Quebec
Object: [healthcare]

Complements: [between [1990, 1998]]

Figure 5.10: Action specification of “Increase” subtree
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SPEND [ ] (
I BRITISH_COLUMBIA [ ] (
COORD AND2 [ ] (
II MARITIMES [ ] (
COORD AND2 [ ] (
II QUEBEC [ ]
NN
ATTR MORE1 [ rheme:+ ]
III healthcare [ class:common_noun article:no-art ]
ATTR BETWEEN1 [ ] (
II 1990 [ class:numeral ] (
COORD AND2 [ ] (
IT 1998 [ class:numeral ]
NN

“British Columbia, the Maritimes and Quebec spend more on healthcare between 1990 and 1998”

Figure 5.11: DSyntS fragment for “Increase” subtree

This ActionSpec creates a corresponding DSyntS which has all three of the specified sub-
jects, to which the Trend is then applied as in Example 1; the result of this process is shown in
Figure5.11

Finally, the ParityAggregator combines the fragments from each of its subtrees into a final
DSyntS, shown in Figure.12 Notice that ParityAggregator uses “but”, rather than “and”, to

combine the DSyntS.

5.3 Example 3: Changing the Template

Examples 1 and 2 both used a VerbTemplate; this Template realizes the ActionSpec as a verb
and the Trend as an adjective or adverb. By contrast, NounTemplate realizes the action as a
noun phrase and the Trend as a verb. Fidufe shows the preamble of the input file for
Example 3. The only difference between this input file and the file in Example 2 is in the
Template.

The process of generating this caption proceeds in the same way as described in Example
2 until the time comes for the Template to create DSyntS fragments from the subtrees. This

time, the ActionSpec for the “Increase” subtree (Figbire) is realized as a noun phrase as
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SPEND [ ] (
I BRITISH_COLUMBIA [ ] (
COORD AND2 [ ] (
II MARITIMES [ ] (
COORD AND2 [ ] (
II QUEBEC [ ]
NN
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (
II 1990 [ class:numeral ] (
COORD AND2 [ ] (
II 1998 [ class:numeral ]
)))
ATTR MORE1 [ rheme:+ ]
COORD BUT [ ] (
II SPEND [ ] (
I ONTARIO [ ]
III healthcare [ article:no-art class:common_noun J
ATTR BETWEEN1 [ ] (
IT 1990 [ class:numeral ] (
COORD AND2 [ ] (
ITI 1998 [ class:numeral ]
)
ATTR THE_SAME [ rheme:+ ]
COORD BUT [ ] (
ITI SPEND [ ] (
I ALBERTA [ ]
III healthcare [ article:no-art class:common_noun J
ATTR BETWEEN1 [ ] (
ITI 1990 [ class:numeral ] (
COORD AND2 [ ] (
ITI 1998 [ class:numeral ]
)))
ATTR LESS1 [ rheme:+ ]
)))))

“British Columbia, the Maritimes and Quebec spend more on healthcare between 1990 and 1998, On-
tario spends the same on healthcare between 1990 and 1998 but Alberta spends less on healthcare
between 1990 and 1998."

Figure 5.12: Final DSyntS for Example 2

template: NounTemplate

extractor: IncreaseDecreaseKey
aggregator: ParityAggregator

context: spend DirectObject( healthcare )

Figure 5.13: Input file preamble for Example 3
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SPENDING [ ] (
ATTR BRITISH_COLUMBIAN1 [ ] (
COORD AND2 [ ] (
II MARITIME [ ] (
COORD AND2 [ ] (
II QUEBECOIS [ ]
NN
III healthcare [ class:common_noun article:no-art ]
ATTR BETWEEN1 [ ] (
ITI 1990 [ class:numeral ] (
COORD AND2 [ ] (
ITI 1998 [ class:numeral ]
))))

“British Columbian, Maritime, and Quebecois spending on healthcare between 1990 and 1998”

Figure 5.14: DSyntS fragment for “Increase” subtree—noun phrase

INCREASEL [ 1 (
I SPENDING [ ] (
ATTR BRITISH_COLUMBIAN1 [ ] (
COORD AND2 [ ] (
II MARITIME [ ] (
COORD AND2 [ ] (
II QUEBECOIS [ ]
D))
III healthcare [ class:common_noun article:no-art ]
ATTR BETWEEN1 [ ] (
IT 1990 [ class:numeral ] (
COORD AND2 [ ] (
ITI 1998 [ class:numeral ]
)))))

“British Columbian, Maritime, and Quebecois spending between 1990 and 1998 on healthcare increas-
eS”

Figure 5.15: DSyntS fragment for “Increase” subtree—noun phrase (Trend added)

shown in Figurés.14 The Trend is then realized as a verb and the DSyntS generated from the
ActionSpec is attached as the verb’s subject, resulting in the structure shown in Fitfure
The fragments from the three subtrees are combined using “but”, as in the previous section,

resulting in the DSyntS shown in Figubela
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INCREASEL [ 1 (
I SPENDING [ ] (
ATTR BRITISH_COLUMBIAN1 [ ] (
COORD AND2 [ ] (
II MARITIME [ ] (
COORD AND2 [ ] (
II QUEBECO0IS [ 1
))))
III healthcare [ article:no-art class:common_noun |
ATTR BETWEEN1 [ ] (
IT 1990 [ class:numeral ] (
COORD AND2 [ ] (
II 1998 [ class:numeral ]
NN
COORD BUT [ ] (
II REMAIN [ ] (
ATTR THE_SAME [ ]
I SPENDING [ ] (
ATTR ONTARIO [ ]
IITI healthcare [ article:no-art class:common_noun J
ATTR BETWEEN1 [ ] (
IT 1990 [ class:numeral ] (
COORD AND2 [ ] (
II 1998 [ class:numeral ]
NN
COORD BUT [ ] (
II DECREASELl [ ] (
I SPENDING [ 1 (
ATTR ALBERTAN1 [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (
ITI 1990 [ class:numeral ] (
COORD AND2 [ ] (
ITI 1998 [ class:numeral ]
DINDNN

“British Columbian, Maritime and Quebecois spending between 1990 and 1998 on healthcare increas-
es, Ontario spending between 1990 and 1998 on healthcare remains the same but Albertan spending
between 1990 and 1998 on healthcare decreases.”

Figure 5.16: Final DSyntS for Example 3
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template: NounTemplate

extractor: IncreaseDecreaseKey
aggregator: ComparisonAggregator

context: spend DirectObject( healthcare )

Figure 5.17: Input file preamble for Example 4
-

(British Columbia |

Figure 5.18: Revised tree for Example 4

5.4 Example 4. Comparing values

All of the preceding examples mention all of the values in the input; however, a good caption
generally concentrates on just an “interesting” subset of the values: for example, the highest or
the lowest value. The ComparisonAggregator implements the rules described by Carip (
that specify how the characteristics of the input data should determine which aspects of it are
mentioned in the output. The input file preamble for Example 4 is shown in Figare it
differs from the input in Example 3 only in the choice of aggregator.

Once again, the initial tree is the same as in the previous examples (EigiwreOnce
the initial tree has been created, the aggregator—in this case, a ComparisonAggregator—takes
over. This aggregator uses the values of the data to select which dataset(s) should appear in the
final caption. Since the value for British Columbia, which has the highest increase, increases
more than 10% more than that for the next dataset (the Maritimes), the ComparisonAggregator
decides that the B.C. dataset should be the only one in the final caption. The aggregator also
stores the fact that the British Columbia dataset was chosen because it was the highest; this
allows an an appropriate Trend to be selected later on. The revised tree is shown irbFigure

The other difference between Example 4 and the others is that a different Trend is chosen—

one which reflects the fact that the remaining dataset not only increased, but had the highest
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INCREASEL [ ] (
ATTR the_most [ class:adverb rheme:+ ]
I SPENDING [ ] (
ATTR BRITISH_COLUMBIAN1 [ ]
III healthcare [ article:no-art class:common_noun J
ATTR BETWEEN1 [ ] (
IT 1990 [ class:numeral ] (
COORD AND2 [ ] (
IT 1998 [ class:numeral ]
)))))

“British Columbian spending between 1990 and 1998 on healthcare increases the most.”

Figure 5.19: Final DSyntS for Example 4

template: NounTemplate

extractor: SingleValueKey( O )
aggregator: ComparisonAggregator

context: spend DirectObject( healthcare )

Figure 5.20: Input file preamble for Example 5

increase. The final DSyntS generated byrOT on Example 4 is shown in Figute19

5.5 Example 5: Changing the MessageExtractor

In all of the preceding examples, it was the increase or decrease in data values that was used to
sort the datasets and to choose an appropriate Trend to express. However, sometimes the user
may want to concentrate on specific values rather than the overall change in value.
Figure5.20shows the input file preamble for Example 5. The extractor field has changed
from an IncreaseDecreaseKey to a SingleValueKey; the parameter to the SingleValueKey indi-
cates that we are interested in the first value in each dataset. Eigiirehows a graph of the
data used in this comparison.
In this case, the values of all of the datasets are sufficiently close together that the Compar-

isonAggregator chooses to keep all of them in the final caption, shown in Figeeé

Notice the singular verb “has” in the final caption; unfortunately, RealPro does not consider subjects of this
form to be plural.
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Figure 5.21: Graph of the sample data

HAVEL [ ] (
II VALUE2 [ article:indef ] (
ATTR similar [ class:adjective ]
)
I SPENDING [ ] (
ATTR ONTARIO [ 1 (
COORD AND2 [ ] (
II BRITISH_COLUMBIAN1 [ ] (
COORD AND2 [ ] (
II MARITIME [ ] (
COORD AND2 [ ] (
II ALBERTAN1 [ ] (
COORD AND2 [ ] (
II QUEBECOIS [ ]
NI
III healthcare [ class:common_noun article:no-art ]
ATTR IN1 [ ] (
II 1990 [ class:numeral ]
)))

“Ontario, British Columbian, Maritime, Albertan and Quebecois spending in 1990 on healthcare has a
similar value.”

Figure 5.22: Final DSyntS for Example 5
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template: VerbTemplate( aspect:cont )
extractor: IncreaseDecreaseKey
aggregator: ComparisonAggregator
context: food

context: quebec DirectObject( orange )
1990 1400

1998 1450

context: alberta DirectObject( orange )
1990 1500

1998 1400

context: british_columbia DirectObject( apple )
1990 1610

1998 1900

context: ontario DirectObject( orange )
1990 1700

1998 1700

context: maritimes DirectObject( apple )

1990 1575
1998 1640

Figure 5.23: Input file for Example 6

5.6 Example 6: Various syntactic changes

The preceding examples show the major changes that can be made in generating a caption.
However, Q\PUT can also make finer-grained choices, as the following example demonstrates.

The input file for Example 6 is in Figurg.23 There are several differences between this
example and the others. First, the VerbTemplate is given a parameter, which will affect the
form of the generated verb. Also, the context has been changed from one of spending to one
dealing with food, and the objects (apple or orange) are attached to the individual datasets
instead of to the caption specification as a whole.

The initial stages of processing this file follow those of Example 2 exactly, up to the point
where the revised tree is created (Fighr®); the differences appear when generating DSyntS
from that revised tree. Firstly, not all of the datasets in the subtree of increasing datasets can be

combined into a single action specification, as they differ in too many fields; rather, they end
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Action: [consume] Action: [consume]

Subject: [British Columbia], [Maritimes] | Subject: [Quebec]

Object: [apple] Object: [orange]

Complements: [between [1990, 1998]] Complements: [between [1990, 1998]]

Figure 5.24: Action specifications for Example 6

up in two separate ActionSpecs, as shown in FiguB. Also, the lexical entry for the verb
consumespecifies that it takes a direct object, as opposed to the prepositional obgpetraf
The object in the action specification is therefore realized as a direct object (a child of type
“I”in the DSyntS), and the Trend as an adjective modifying the object. The ActionSpecs for
the “Increase” subtree and the corresponding Trend object are realized as the DSyntS shown in
Figure5.25

Another thing to note in the generated DSyntS in this case is that the specified attributes on
the VerbTemplate have been passed on to the verbs in the DSyntS, so that the realization is in
the present progressive rather than the simple present.

Similar actions take place to create DSyntS fragments in the other subtrees, and then the

final DSyntS (Figuré.26) is produced by combining these fragments using “But”.

5.7 Example 7: Computing totals

Example 6 lists the increase and decrease for each province and for each type of fruit separately.

However, sometimes the desired content of a caption is the average or total value, rather than

the individual values. This is where the TotalAggregator and AverageAggregator are useful.
The input file for Example 7 is shown in Figuse27. The data section of this file resembles

that of Example 6, except that several of the provinces have been changed so that interesting

totals can be computed. As well, the Template has been changed back to a NounTemplate, the

MessageExtractor is a SingleValueKey, and the aggregator is now a TotalAggregator. Notice

3The use of “between” in this caption seems strangap@r's handling of start and end dates could be
improved.
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CONSUME [ aspect:cont ] (
I BRITISH_COLUMBIA [ ] (
COORD AND2 [ ] (
II MARITIMES [ ]
)
IT orange [ article:no-art class:common_noun ] (
ATTR MORE2 [ 1]
)
ATTR BETWEEN1 [ ] (
IT 1990 [ class:numeral ] (
COORD AND2 [ ] (
IT 1998 [ class:numeral ]
)))
COORD AND2 [ ] (
II CONSUME [ aspect:cont ] (
I QUEBEC [ ]
IT apple [ article:no-art class:common_noun ] (
ATTR MORE2 [ ]
)
ATTR BETWEEN1 [ ] (
IT 1990 [ class:numeral ] (
COORD AND2 [ ] (
II 1998 [ class:numeral ]
2)))))

“British Columbia and the Maritimes are consuming more apple between 1990 and 1998 and Quebec is
consuming more orange between 1990 and 1998."

Figure 5.25: DSyntS for the “Increase” subtree

the argument to TotalAggregator; this indicates that it will compute a subtotal for each object
that was consumed.

The initial tree for this input file is shown in FiguEe28 During the tree-modification pro-
cess, a TotalAggregator behaves much like a ParityAggregator; that is, it creates new subtrees
grouped by characteristics of the data. In this case, the TotalAggregator groups by object, so
nodes with the same object are put together. The result of this grouping process is shown in
Figure5.29

It is during the process of generating the DSyntS that the TotalAggregator actually com-
putes the totals for each of its subtrees. We will consider only the “apple” subtree for this
example; the same procedure takes place in the “orange” subtree as well.

The ActionSpec for this subtree is shown in Figir&Q Notice that the “Subject” slot
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CONSUME [ aspect:cont ] (
I BRITISH_COLUMBIA [ ] (
COORD AND2 [ ] (
II MARITIMES [ ]
))
ITI orange [ article:no-art class:common_noun ] (
ATTR MORE2 [ 1]
)
ATTR BETWEEN1 [ ] (
ITI 1990 [ class:numeral ] (
COORD AND2 [ ] (
IT 1998 [ class:numeral ]
)))
COORD AND2 [ ] (
IT CONSUME [ aspect:cont ] (
I QUEBEC [ ]
IT apple [ article:no-art class:common_noun ] (
ATTR MORE2 [ ]
)
ATTR BETWEEN1 [ ] (
ITI 1990 [ class:numeral ] (
COORD AND2 [ ] (
IT 1998 [ class:numeral ]
)))))
COORD BUT [ ] (
IT CONSUME [ aspect:cont ] (
I ONTARIO [ ]
ITI apple [ article:no-art class:common_noun ] (
ATTR THE_SAME_AMOUNT_OF [ ]
)
ATTR BETWEEN1 [ ] (
ITI 1990 [ class:numeral ] (
COORD AND2 [ ] (
IT 1998 [ class:numeral ]
D))
COORD BUT [ ] (
IT CONSUME [ aspect:cont ] (
I ALBERTA [ ]
ITI apple [ article:no-art class:common_noun ] (
ATTR LESS2 [ ]
)
ATTR BETWEEN1 [ ] (
IT 1990 [ class:numeral ] (
COORD AND2 [ ] (
IT 1998 [ class:numeral ]
)))))))

“British Columbia and the Maritimes are consuming more orange between 1990 and 1998 and Quebec
is consuming more apple between 1990 and 1998, Ontario is consuming the same amount of apple
between 1990 and 1998 but Alberta is consuming less apple between 1990 and 1998."

Figure 5.26: Final DSyntS for Example 6
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template: NounTemplate
extractor: SingleValueKey
aggregator: TotalAggregator( object )

context:

context:

1990
1998

context:

1990
1998

context:

1990
1998

context:

1990
1998

context:

1990
1998

food

ontario DirectObject( apple )
1400
1450

alberta DirectObject( apple )
1500
1400

ontario DirectObject( orange )
1610
1900

maritimes DirectObject( apple )
1700
1700

maritimes DirectObject( orange )
1575
1640

Figure 5.27: Input file for Example 7
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Figure 5.28: Initial tree for Example 7
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[Dntariuj iAlhEna: [Mar’ttimesj (Dntariu] [Maritimesj

Figure 5.29: Revised tree for Example 7



CHAPTERS5. EXAMPLES 96

Action: [eat]
Subject:

Object: [apple]
Complement: [in 1998]

Figure 5.30: Action specification of “apple” node
CONSUMPTION [ ] (
ITI apple [ article:no-art class:common_noun ]
ATTR IN1 [ ] (
II 1998 [ class:numeral ]
)

“Consumption of apple in 1998”

Figure 5.31: DSyntS for the “apple” subtree

is empty; this is a result of the grouping by object that took place in the previous step. This
ActionSpec is converted to the DSyntS shown in FighfeL

The TotalAggregator then sums up the value in all of the datasets in its subtree; in this case,
since a SingleValueKey was specified, it sums the final value from each dataset. It then creates
a TotalTrend object to express the total value. The final DSyntS produced by this subtree is
shown in Figures.32

A similar process takes place to produce a DSyntS fragment from the “orange” datasets,
and the two fragments are then combined using “and” to produce the final DSyntS shown in

Figure5.33 A similar process takes place when an AverageAggregator is used.
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HAVEL [ ] (
II VALUE2 [ article:indef ] (
ATTR TOTAL [ 1]
ATTR O0OF1 [ ] (
II 4550.0 [ class:numeral ]
)
I CONSUMPTION [ ] (
IT apple [ article:no-art class:common_noun ]
ATTR IN1 [ ] (
ITI 1998 [ class:numeral ]
)))

“Consumption of apple in 1998 has a total value of 4550.0.”

Figure 5.32: DSyntS for the “apple” subtree

HAVEL [ ] (
II VALUE2 [ article:indef ] (
ATTR TOTAL [ ]
ATTR OF1 [ ] (
IT 3540.0 [ class:numeral ]
)
I CONSUMPTION [ ] (
II orange [ article:no-art class:common_noun ]
ATTR IN1 [ ] (
IT 1998 [ class:numeral ]
)
COORD AND2 [ ] (
II HAVEL [ ] (
II VALUE2 [ article:indef ] (
ATTR TOTAL [ ]
ATTR OF1 [ ] (
IT 4550.0 [ class:numeral ]
))
I CONSUMPTION [ ] (
IT apple [ article:no-art class:common_noun ]
ATTR IN1 [ ] (
IT 1998 [ class:numeral ]
)))))

“Consumption of orange in 1998 has a total value of 3540.0 and consumption of apple in 1998 has a
total value of 4550.0."

Figure 5.33: Final DSyntS for Example 7



Chapter 6

Conclusion

6.1 Summary

This thesis has presented the principles underlying the automated generation of captions for
information graphics. A caption-generation system should address the generation tasks of con-
tent determination, discourse planning, sentence aggregation, lexicalization, referring expres-
sion generation, and linguistic realization. It should also have knowledge of various presen-
tation techniques and of the domains about which it is generating, and should model both the
user of the system and the eventual target audience of the presentation. A system to generate
captions for graphics should be integrated with the system which is generating the graphic-
s themselves, so that the final generated text and graphics complement each other and make
appropriate reference across media.

CAPUT is a prototype system which attempts to follow these principles. It is implemented
in Java, and it uses CoGenTex’s RealPro text realizer for the text realizatgrut@enerates
captions by creating an initial tree representation of its input, then reshaping that tree into a
representation of the content of the final caption, and finally generating a sentence plan from
the tree and sending it to RealPro for realizatiomPQT is composed of a number of abstract

classes, with specific behaviour implemented in the subclasses of these classes. Captions which

98
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use new styles or which concentrate on new aspects of the data can be generated by creating

new subclasses which implement the desired behaviour.

6.2 Contributions

6.2.1 Principles of caption generation

This thesis provides a description of the requirements for a system which is to generate text
to accompany information graphics. Each task in a generalized text-generation architecture is
examined from the perspective of caption generation. The factors that influence the processing
at each stage are outlined.

Various possible approaches to implementing each of the generation tasks in a caption-ge-
neration system are provided; the methods used to address these tasks in existing systems are
also outlined.

The other necessary components of a caption-generation system are presented: knowledge
of the domain, knowledge of presentation techniques and of their effects on the audience, and
a method of integrating the captions with the graphics which they are to accompany. Possible
ways of implementing these components of a system are also suggested.

A distinction is made between text which summarizes quantitative data on its own and text
which is designed to accompany information graphics. The content selected to appear in the
text and the methods used to present it differ between these two cases, so different strategies
must be employed in caption-generation systems than in systems which aim to generate stand-

alone text.

6.2.2 CAPUT

CAPUT is a prototype implementation of a caption-generation system which attempts to ad-

dress the principles outlined in ChapgerAlthough it does not directly address all of the listed
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requirements, it can be extended to address more of these with little difficulty.

It uses a tree-based method of content determination and discourse planning which is sim-
ilar to the “topic trees” employed by GOSSIP and LFS. In this method, an initial unstructured
tree of all of the information extracted from the raw data is modified top-down, sorting and
grouping the datasets and potentially removing some of them, until the final tree represents the
message structure of the text to be generated. This approach was taken because in the captions
studied, some subset of the possible messages from the graph appeared, often sorted or grouped
in some way; it was logical to mirror this structure in the process of producing these messages.
Tree modification is a useful technique for this sort of generating domain, when coupled with
sufficiently sophisticated rules guiding the processes of grouping the messages and producing
text from the resulting tree.

The object-oriented nature ofABUT is another strong point. All of the work in the system
is performed by special-purpose subclasses of general abstract superclasses. All of the knowl-
edge is represented in a procedural fashion, rather than a declarative one. In other words, the
various components do not just specify what is to be done; they actually contain methods to
perform the necessary actions. This means that potentially very complicated behaviour can
be added to the system, and selected only when necessary by specifying the class which im-
plements the desired behaviour. Any component in the system, down to those implementing
the lexicon, can be subclassed if desired to obtain specific behaviour; this is potentially a very
powerful feature for future development.

CapuT is domain-independent, but capable of implementing very complex domain-specific
behaviour simply by creating the necessary subclasses and then specifying them. At present,
its use of domain knowledge is limited to selecting appropriate words to describe its data, but

the domain model can be extended to influence all of the steps in the generation process.
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6.3 Future directions

6.3.1 Short-term enhancements to @rPUT

CAPUT should be extended to produce a wider variety of caption types. One source of new

types is the list provided by Corid £99; possible extensions include:

e Explicitly mentioning variables which particularly interest the user—for example, the

value in Quebec might be of special interest even if it is not the highest or lowest.

e Rather than concentrating only on an overall increase or decrease, using the data to
choose between techniques such as mentioning only the last value, the trend of the data

as a whole, or a trend in a sub-interval of time.
e Detecting correlation, non-correlation, convergence, and divergence of variables.

In addition to these schemata, a further corpus analysis of texts from other sources could reveal
even more potential types of presentations.

In addition to providing a wider variety of captions, a useful end in itself, the process of im-
plementing the classes necessary to produce these caption types may well reveal inadequacies
in the current design of &~ UT; indeed, this has occurred several times during the development
process up to this point. Any problems revealed during this process can then be fixed to make
CAPUT more robust in the future.

Another possible short-term goal is to increase the number of domains about wirciTC
can generate captions. For the most part, this would be a simple task, requiring only additions to
the lexical knowledge base or the specification of appropriate words in the input file. However,
once again, testing A&PUT on a wider variety of domains may reveal inadequacies which,
when rectified, will result in a stronger overall system which will be able to deal with even

more domains.
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6.3.2 Longer-term goals

The work listed in the previous section involves only short-term enhancements to makea C

more robust and general-purpose; however, there are also a number of potential longer-term
enhancements that lead to other possible areas of research. The following are some of the
possible future research areas in whichPOT could play a part. Note that many of them

interact with one another.

Use of a user model to select presentation techniques

As it currently stands, €PUT has no knowledge itself of the rhetorical impact of various
presentation techniques; all it knows is the techniques themselves. Other systems such as Post-
Graphe or AutoBrief allow the user of the system to express goals or intentions, stmim-as
parisonor presentationwhich are then transformed into specific schemata for the generated
text. Such integration would be valuable im@UT as well.

Existing research and guidelines on the selection of presentation techniques to produce an
appropriate effect should be used to help in creating appropriate guidelines for the selection
among textual presentation techniques.

In addition to rules governing the selection of a presentation technique, the set of goals
which the user can specify should also be determined. A starting point might be Zelazny’s
“intentions”, which are also used in PostGraphe/SelTex. However, these intentions govern the
selection of graphical techniques; when text is to be generated, additional intentions might also
be necessary to capture the full set of possible presentation goals.

There are two possible ways to integrate such a method of choosing between presentation
techniques into @PUT. First, the mapping between intended effect and presentation technique
could be “hard-coded” into @&PUT, so that it selects an appropriate type of Aggregator and
other objects to use in its generation. An alternative is a pre-processing step, in which some
other program reads the user’s goals and creates the appropriate inputuo © produce the

required sort of output.
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Use of domain knowledge

CapPuUT’s use of domain knowledge in the current implementation is limited to using appro-
priate words to talk about the quantity being measured in the data—for example, “Canadian
watermelon consumption”. However, if the domain representation contains more complex in-
formation, much more interesting things can be done with that information.

The representation of a domain might include typical words and phrases used to talk about
it in a variety of situations. For example, the phrasal lexicon for the stock market domain of
Kukich ( ), includes phrases such as “mixed”, “heavy trading”, and other stock-specific
terms. The lexicon used in FOG:( )70n the other hand,
contains entries like “winds diminishing to light” and other phrases typically used in weather
reports.

But beyond even specifying the terms to talk about a particular domain, the specification
for a domain could also include rules about what features should be considered “interesting”
and should appear in text referring to that domain. This information could describe, for exam-
ple, the thresholds beyond which an increase or decrease is significant, or could specify other
particular patterns in the data which are worthy of mention.

Integrating such domain knowledge intadRUT requires multiple steps. First, the appro-
priate information should be obtained, either from consultation with domain experts or from a
careful examination of typical texts from the domain—or, ideally, both. Thepud will have
to be extended to represent this knowledge in a way which can easily be used during the gener-
ation process. A possible method of doing this is to produce domain-specific subclasses of the

important classes used during the process, but other representations may also be developed.

Automatic selection of presentation techniques

As noted above, £rPUT does not do any selection of presentation techniques on its own, but
instead relies on the user or some external system to select the appropriate techniques. In future,

the process of choosing among presentation techniques should be made more automatic.
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The current system requires the user to specify precisely the technique to use and the par-
ticular aspects of the data to concentrate on. On the other extreme, the user could specify
nothing at all about the desired features of the caption; it would then beaepCto choose
an appropriate presentation technique from its library of techniques.

If the user of the system gives no guidance at all, them@r could perform a variety of
tests in an attempt to determine which aspects of the data are the most salient or important; that
is, whether the absolute increase of a single item is “more interesting” than the correlation or
non-correlation of several of the variables, or some other characteristic.

To make such a choice automatically requires that the system be able to rate the salience
of various characteristics of the data so that it can pick the one which is most worthy of note.
This is a complex task, and one which certainly varies depending on the domain from which
the data is drawn. For example, the different types of trend could be given varying weights
depending on their nature and the magnitude or other measurements, and these weights would
determine what appears in the final caption.

Although this enhancement was motivated by a scenario in which the user gives the system
no guidance as to what presentation technique to choose, a similar method could be used with
some user participation. For example, if a scheme of weights is used to select a technique, then

the system user could specify revised weights to tailor the caption to a particular situation.

Integration with graphics generation

While CAPUT was designed to produce texts which can accompany information graphics, no
work was done here on the generation of such graphics. A future applicationraf1ds to
integrate it with a graphics generator in order to produce well-integrated presentations.

Before any media-specific generation can be done, the various components of the message
must be allocated among the available media. This will ensure that each medium expresses the
facts that it is best at; for example, the text should contain only the highlights of the message,

while the graphic can provide support and background.
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Once generation begins, the graphics- and text-generation systems should as a minimum
use the same underlying representations so that the choices they make are compatible. Ei-
ther both could take the same input, or there could be an overall controlling system which
translates the user’s input into specific goals for the two independent generation systems (as in
AutoBrief).

For even more integrated results, the two systems should be able to communicate with
each other; this will ensure that the caption complements the graphic without being redundant.
If some important aspect of the data is already adequately expressed by the choices made in
one medium, then the generator for the other medium could ignore that aspect to concentrate
on others. This inter-generator communication can also allow the text generator to produce
captions which explicitly refer to particular aspects of the graphic (as in SAGE), either because

of their interest or because the particular graphical technique used is easy to misunderstand.

Text to replace graphics

CAPUT is a system designed to generate text to accompany graphics; a number of the previous
systems generated only text with no consideration of graphics. A slightly different take on the
same issue is to generate textréplacea graphic; for example, when the reader is visually
impaired or when a set of pictures is to be indexed for searching.

The issues here vary greatly from those involved in generating text to accompany a graphic.
The main difference is that, when the text and image are displayed together, the reader can be
relied on to look at the image to fill in any details not mentioned in the text. When the graphicis
to be replaced by words, on the other hand, the generated text is all that the user has available.
The text must therefore describe all aspects of the image, rather than just highlighting some
aspects of particular interest (as is often done with captions).

Every graphic in a well-designed document is there for a reason, whether it simply enhances
the desired mood or it is crucial to the message the document is trying to convey. Determining

the function of a specific image and how best to explain that function in words is not a trivial
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task. This process is the exact inverse of Zelazny®=() advice to presenters, in which he
suggests that they first select a textual “message” and then produce a graphic to accompany it,
with the message itself possibly not appearing explicitly in the final presentation.

A patrticular area where this sort of work is applicable is on the World Wide Web, where
good style demands that authors provide alternative text for every image on a Web page so that
it can be understood even by readers not using a graphical browser. Well-designed Web pages

of this sort provide an excellent corpus for beginning a study of text used to replace graphics.
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Appendix A

Hierarchy of classes in Q\PUT

The following is the hierarchy of the Java classes in the current implementationrafiC

e class mef.thesiActionSpec

¢ class mef.thesiBasicObject

class mef.thesidggregator

class mef.thesi8verageAggregator
class mef.thesiBasicAggregator

class mef.thesi€omparisonAggregator
class mef.thesiBarityAggregator

class mef.thesi$otalAggregator

R G R S

class mef.thesiBield

x class mef.thesiAction
x class mef.thesiBirectObject
x class mef.thesiSubject

class mef.thesislessageExtractor
x class mef.thesimcreaseDecreaseKey
- class mef.thesiBercentageKey
x class mef.thesiSingleValueKey

class mef.thesifemplate

x class mef.thesitlounTemplate
x class mef.thesiSerbTemplate

e class mef.thesi€omplement

e class mef.thesi€ontexts
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class mef.thesiPataset
class mef.thesigput

class mef.thesislain

class mef.thesiBoint

class java.lang.Throwable

— class java.lang.Exception

x class java.lang.RuntimeException
- class mef.thesiBicompatibleException

class mef.thesifreeNode

— class mef.thesikeafNode
— class mef.thesiBarentNode

class mef.thesisrend

class mef.thesi8verageTrend

class mef.thesiBicreaseDecreaseTrend
x class mef.thesiBicreaseDecreaseCompareTrend
- class mef.thesiBercentageCompareTrend
x class mef.thesiBercentageTrend

class mef.thesiSingleValueTrend
class mef.thesigotalTrend
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