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Generally, when quantitative information is to be presented, some form of graphical presenta-


tion is used, often with a textual caption to ensure that the audience notices particular aspects


of the data.


This thesis presents the principles that should be followed by a system aiming to produce


such captions automatically. The process of caption generation is examined in the context


of the standard tasks in text generation. Most previous systems in this area produce textual


summaries intended to stand alone; the issues involved in producing a caption differ, as the text


must be coordinated with the graphic it is to accompany. The thesis also presents CAPUT, a


prototype caption-generation system which follows these principles to generate single-sentence


captions for information graphics of the type that might appear in a newspaper article. Finally,


extensions to CAPUT that would bring it from a prototype to a full-fledged caption generation


system are proposed.
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Chapter 1


Introduction


1.1 Presentation of quantitative data


Presenting large amounts of quantitative data effectively is not an easy task. Depending on


the situation, the same data can be presented in a variety of ways—different messages may be


extracted from the data, or those messages may be presented using different techniques. The


author of the presentation may want simply to inform the audience, or he or she might have


the goal of persuading them of a particular fact. A skilful author will make sure that any data


included in a presentation is displayed in the most effective way, using appropriate techniques


so that the desired point is illustrated.


Choosing appropriate presentation techniques is a difficult and time-consuming task. For


example, every five years, the government of Canada performs a national census. The raw


data from this census is made available within months of its completion; Statistics Canada then


spends the next severalyearsproducing hundreds of publications which present a variety of


analyses of that raw data (Corio, 1999).


Figures1.1–1.3show various different presentations of quantitative information. Figure1.1


is taken from the newspaperUSA Today(USA Today, 1999). It is an example of the “USA


Snapshot” (“a look at the statistics that shape our lives”) which is printed on its front page each


1
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Monster cookies:Thin Mints cookies are tops to
Girl Scout cookie consumers.


Figure 1.1: Bar chart and caption fromUSA Today(USA Today, 1999)


day. The goal of this graphic is simply to inform the audience of some interesting fact; there is


no effort to persuade or convince. Notice that the caption concentrates on the value of only one


of the variables, while the graphic presents the rest of the data itself. The style of the graphic,


with its gimmick of using images of cookies to make up the bars, fits well with the casual tone


of its caption.


Figure1.2 is adapted from an article in a Statistics Canada publication (Norris, 1998). The


article, written by a statistician, discusses the findings about aboriginal language use from the


most recent national census.1 As in the previous example, the presentation was created with the


simple goal of presenting a fact to the audience; once again, no attempt at persuasion is made.


In this case, though, the overall trend of the data is described, rather than a single data point


as in the preceding example. As well, the tone of both the graphic and the caption are quite


different, reflecting the difference between the respective contexts of the two presentations.


The third example, Figure1.3, shows a graph and caption adapted from a report to mutual


fund investors (Fidelity Investments, 1998). The goal of this article is to convince investors


1The “index of continuity” displayed in the graphic measures the vitality of a language by comparing the
number of those who speak a given language at home to those that learned it as their mother tongue. The lower
the score, the greater the decline.
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The index of continuity for Aboriginal languages has declined steadily over
the past 15 years.


Figure 1.2: Line graph and caption from Statistics Canada publication (Norris, 1998)


that staying in the stock market is worth it in the long term (and that they should therefore


choose funds which invest in stocks). Notice that in this case, as in the first, the value of one


of the variables is singled out; however, here it is an entire trend which is singled out. In the


more complex data presented in this example, many other aspects of the data could have been


presented; however, in keeping with the goal of the article, the trends of the TSE 300 line were


emphasized. Section1.2 examines the issues of the textual components of presentations in


more depth.
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Each type of asset performs differently over time. Consider that $1 invested
in stocks represented by the TSE 300 Composite Stock Index, assuming all
dividends were reinvested, would have grown to $46.80, outpacing long-
term bonds and 3-month T-bills by a substantial margin. Note, however,
the greater short-term ups and downs.


Figure 1.3: Line graph and caption from mutual fund report (Fidelity Investments, 1998)


1.2 The importance of text


The presentations in Figures1.1–1.3contain graphs of the sort typically used when quantitative


information is to be presented. Figures1.1and1.2contain fairly simple data, so the text in the


caption is also straightforward. However, Figure1.3is more complex. If we ignore the graph’s


caption and concentrate only on the lines on the graph, many different features of the data are


apparent. For example, the TSE 300 Index obviously had the largest increase over the time


period; similarly, the Consumer Price Index increased the least. Also, the growth of Long


Term Bond Index and of 3-month treasury bills are quite closely correlated until about 1990,


at which point the values diverge. As well, the Consumer Price Index has the smoothest line,
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while the TSE 300 has the most changes in slope. The feature of interest could also be the steep


decline in the TSE 300 in 1986–87, or its subsequent steep rise from 1994 on. Any one of these


features could be the message of the graph, depending on the context in which it appears and


the point that the author is using it to support.


The original graph upon which Figure1.3 is based appeared in an article in a report to


mutual fund investors (Fidelity Investments, 1998). The title of the article was “History Shows


That Stock Markets Have Always Rebounded” , with the caption shown in the figure. The


title of the article in which the graphic appeared gives its context, and provides a suggestion of


the author’s motivation for including that information. Notice how the caption helps focus the


attention of the reader on exactly the aspect of the data that the author desires to emphasize:


the fact that the TSE 300 increased by far the most over the time period in question. Without


text, the graphic in Figure1.3still leaves itself open to several different interpretations.


According to Kosslyn (1994), the text which accompanies an information graphic can serve


two purposes: to clarify unfamiliar terms and graphical notations, and to point out specific


features of the graph. This text does not necessarily have to be included directly above or below


the graphic itself; it can also appear in an article which makes reference to the contents of the


graphic. For the purposes of this thesis, we will concentrate on the latter function (pointing out


features of the graph), and for simplicity the generic term “caption” will be employed for both


forms of accompanying text.


Many authors have dealt with the question of choosing appropriate graphic techniques to


present statistical information in a variety of situations—among others, Zelazny (1996) and


Kosslyn (1994). These books give advice to presenters on how to create an effective presenta-


tion of a variety of statistical data. Similar hard-and-fast rules for creating appropriate textual


presentations do not exist, and it is not clear that such rules would be useful.


The caption should complement the graphic without simply listing all of its features—un-


less, of course, that is what the user requires. Normally, though, the caption will concentrate


on one or two significant features of the data as a whole; often, some of the input data items
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will not appear in the caption at all. Choosing which data features to include in the output and


combining the selected data are not always straightforward tasks; they may be affected by many


factors, including the nature of the data, the domain, the form of the graphical presentation, and


the communicative goals of the user.


As well, the style of the caption may vary greatly depending on its intended audience.


Figure1.1is a classic example of the sort of graphic and caption that appear daily in the news-


paperUSA Today; its novel graphic and folksy caption are very different from the businesslike


presentation of Figure1.3and its accompanying text.


1.3 Automated generation of presentations


When a large number of presentations must be produced, such as by Statistics Canada, an au-


tomated or semi-automated system to create the presentations is very useful. The presentation


rules provided by such manuals as that of Zelazny (1996) can be used as the basis of such a sys-


tem. PostGraphe (Fasciano, 1996) is one such system; it automatically produces an appropriate


graphic based on the data, a characterization of the context, and the desires of the presenter.


To produce full presentations, text should also be generated to accompany the graphics.


This text should follow the criteria outlined in the previous section. It should use the same gen-


eration criteria as the graphic, and should complement the graphic rather than simply restating


its content.


Sometimes, the user has available all of the data and knows what the trends are before the


caption is generated. In this case, the specific trends to concentrate on in the caption can be


specified beforehand. However, the user may not actually know the nature of the data before. In


such situations, the user should specify the general sort of thing to look for, and the generation


system will then use rules to choose the specific content of the caption.


The goal of this thesis is to present the factors that should influence the automatic generation


of text to accompany information graphics, and to build a system which takes into account those







CHAPTER 1. INTRODUCTION 7


factors.


1.4 Outline of the thesis


Chapter2 presents some previous work in the automated generation of presentations of quan-


titative information. A number of related projects in this area are presented.


Chapter3 outlines the principles which should be followed by a caption-generation system


during the process of generating text to accompany a graphic. The tasks which such a system


should perform are described, along with other factors that the system should take into account


during the generation process.


Next, Chapter4 describes CAPUT, a particular implementation of a caption-generation


system. It is implemented in Java, using CoGenTex’s RealPro (Lavoie and Rambow, 1997) for


its text realization. Chapter4 also evaluates CAPUT with the principles described in Chapter3.


Chapter5 provides annotated examples of CAPUT’s input and output.


Finally, Chapter6 outlines the contributions of this thesis and suggests future directions of


research.







Chapter 2


Related work


A variety of previous research projects have dealt with the issue of automatically generating


presentations of quantitative data. Some work has gone into pure graphical presentations; some


systems generate stand-alone textual summaries of the data; and others attempt to produce inte-


grated graphics-text presentations. The following sections describe a number of such projects.


2.1 Graphical presentations


2.1.1 Manuals and guidelines


Several authors have created manuals to help presenters to choose the most appropriate graph-


ical presentation technique in a variety of situations. For example, Stephen Kosslyn (1994), a


Harvard professor of psychology, provides a classification of graphic design techniques moti-


vated by principles of human visual perception and cognition. Gene Zelazny (1996) provides


another set of guidelines for presentations, aimed at the business community.


Edward Tufte’s books (Tufte, 1983; Tufte, 1990) provide a different perspective on graphic


presentations. Tufte (1983) presents a showcase of interesting information graphics from their


first use in the 18th century to the present day. He also provides a language for discussing


graphics and a theory of data graphics which describes principles that authors should follow in


8
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creating graphic presentations of data. In his following book, Tufte (1990) extends this work


into other graphical presentations—of geometry, of maps, and of train schedules, for example.


Despite the theory of data graphics proposed in the first book, Tufte’s books are, as he says,


“celebration[s] of data graphics” (Tufte, 1983) rather than prescriptive manuals.


2.1.2 APT


Jock Mackinlay (1986) undertook one of the first projects to automatically produce effective


graphical presentations of relational information. His APT system automatically designed two-


dimensional static presentations of relational information. The core of the system is a precise


definition of graphical languages that describe the syntactic and semantic properties of graphi-


cal presentations.


Various graphic design techniques are codified with criteria for expressiveness and effec-


tiveness. Expressiveness criteria identify the techniques which that are capable of expressing


the desired information; effectiveness criteria identify the most techniques that are most effec-


tive, in a particular situation, at exploiting the capabilities of the output medium and the human


visual system. Designs are generated by a compositional algebra, which combines primitive


graphical languages using operators to form complex presentations.


The input to APT consists of a database of application-specific information, such as prop-


erties of cars, and a request from the user to present this information in a certain way. A typical


user input is the following (Mackinlay, 1986): “Present the Price and Mileage relations. The


details about the set of Cars can be omitted”. Given this input, the system produces a graphical


design and an image rendered from the design. Figure2.1shows a graph produced by APT for


this sample input. The specification that the details about the set of cars can be omitted makes


it possible to use this presentation technique; if the car makes and models had to be presented


as well, then this graph would not express all of the input.
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Figure 2.1: Sample APT output


2.1.3 Summary


Much of the previous work in this area consists of books containing guidelines for human


presenters. These guidelines are useful aids in the development of an automated presentation


system, but they do not provide an actual model which can easily be implemented.


One system which does implement an automated presentation tool is APT. Its codification


of the expressiveness of various graphical presentation techniques is useful; however, neither


APT nor the books of guidelines consider the issues of the text which is to accompany the


generated graphic.
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2.2 Stand-alone text


2.2.1 Ana


One of the earliest systems to produce automated summaries of quantitative data is Karen Ku-


kich’s Ana (Kukich, 1983), which generates textual summaries of stock-market data. Kukich


gives the name “knowledge-based report generation” to the process followed by Ana; it has


three basic tenets. First, it assumes that domain-specific semantic, linguistic, and rhetorical


knowledge is required for a computer to produce intelligent and fluent text. Second, it assumes


that production-system languages, such as those used to build expert systems, are well-suited to


the task of representing and integrating the necessary language. Third, it assumes that “macro-


level knowledge units” (i.e., phrases and clauses rather than words) provide an appropriate


level of knowledge representation for generating summary reports.


The system has four components: a fact generator, a message generator, a discourse or-


ganizer, and a text generator. These act in series, with the output of one module serving as


the input to the next. The fundamental knowledge constructs in the system are of two types:


static knowledge structures (n-dimensional propositions) and dynamic knowledge structures


(production rules).


The fact generator and message generator together extract the interesting points from the


data, such as the fact that the market was “mixed”. They use approximately 120 domain-


specific inference rules created using a sample corpus to map the data into facts. Next, the


discourse organizer orders the messages, groups them into paragraphs, and assigns a priority


number to each message as a function of the topic and subtopic of a message. Ana has a default


ordering, with exception rules that ensure that higher priority is given to messages with special


significance (such as a record high). Finally, the text generator selects phrases from a lexicon


extracted from the text of stock market reports and combines those which capture the meaning


of the message and satisfy rhetorical constraints.


The output of Ana can be tailored syntactically by setting a variety of parameters to con-
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01/12 CLOSE 30 INDUS 1083.61
01/12 330PM 30 INDUS 1089.40
01/12 3PM 30 INDUS 1093.44
01/12 230PM 30 INDUS 1100.07
01/12 2PM 30 INDUS 1095.38
01/12 130PM 30 INDUS 1095.75
01/12 1PM 30 INDUS 1095.84
01/12 1230PM 30 INDUS 1095.75
01/12 NOON 30 INDUS 1092.35
01/12 1130AM 30 INDUS 1089.40
01/12 11AM 30 INDUS 1085.08
01/12 1030AM 30 INDUS 1085.36
01/11 CLOSE 30 INDUS 1083.79


(a) Sample data


after climbing steadily through most of the morning, the stock market was pushed downhill late in the
day. stock prices posted a small loss, with the indexes turning in a mixed showing yesterday in brisk
trading.
the Dow Jones average of 30 industrials surrendered a 16.28 gain at 4pm and declined slightly, finishing
the day at 1083.61, off 0.18 points.


(b) Generated text


Figure 2.2: Sample Ana input and output


trol the probability that specific syntactic rules are used during the text generation stage. For


example, if the user prefers reports with few subordinate participial clauses, the corresponding


parameter could be set to a low value. The same mechanism can also be used to tailor the


content of the presentation, such as by focusing on specific stocks.


A sample of the input to Ana is shown in Figure2.2(a). This data consists of Dow Jones


stock quotes for a particular day in January 1983. An interpretation of this data generated by


Ana is shown in Figure2.2(b).


2.2.2 LFS


LFS (Iordanskaja et al., 1992) is an experimental system which generates bilingual (English


and French) statistical reports on labour force statistics. The text planning process takes place


as follows. First, a structure called a “conceptual frame tree schema” is instantiated with input
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Seasonally Adjusted Estimates of Canadian Labour Force by Age and Sex (in 000s)
Month Total Males Fem Total Males Fem Total Males Fem


(ALL) (15--24yrs) (25yrs+)
...


...
...


...
...


...
...


...
...


...
11/1989 13600 7556 6044 2660 1408 1252 10940 6148 4792
10/1989 13538 7535 6003 2652 1399 1253 10886 6136 4750
09/1989 13528 7554 5974 2650 1407 1252 10878 6147 4731
...


...
...


...
...


...
...


...
...


...


Figure 2.3: Sample LFS raw input fragment (Boyd, 1999)


Overview: Estimates for November 1989 from
Statistics Canada’s Labour Force Survey show
that the seasonally adjusted level of
employment rose by 32000 and that the level of
unemployment increased by 30000. The
unemployment rate increased by 0.2 to 7.6.


(a) English


Aperçu: Les estimations tiŕees de l’enqûete de
Statistique Canada sur la population active pour
novembre 1989 indiquent que le niveau
désaisonnaliśe de l’emploi a augmenté de 32000 et
que le niveau de cĥomage a augmenté de 30000.
Le taux de cĥomage a augmenté de 0.2̀a 7.6.


(b) French


Figure 2.4: Sample LFS output


data (relational tables) to provide an initial characterization of the intended report content. This


tree is then traversed and modified by a process which determines the detailed content of the


final report.


The output of the text planning process is represented in a conceptual interlingua, which is


then converted to a different semantic net for each output language; this permits the production


of sentences which show deep differences between English and French. These nets are then


realized in the respective target languages by a process based on Mel’čuk’s Meaning-Text The-


ory (Mel’ čuk, 1988). There are four successive levels of representation between the conceptual


structures and the final texts: semantic nets, deep syntactic trees, shallow syntactic trees, and


morphological strings.


A sample of the raw input to LFS is shown in Figure2.3; Figure2.4shows a portion of the


sample output presented by Iordanskaja et al. (1992).







CHAPTER 2. RELATED WORK 14


2.2.3 FOG


One of the few commercial systems for generating textual descriptions from numeric data is


FOG (Goldberg, Drieger and Kittredge, 1994), a system which produces routine and special-


purpose forecasts directly from graphical weather depictions. FOG converts data to textual


forecasts in three stages.


The first step is to extract specific data, such as the surface air temperature in a specific


forecast area. This is done with the help of the Forecast Production Assistant (FPA), which


helps the forecaster develop a time series of weather depiction charts which are to be the input


to the system. FOG then uses a sampler program to extract the necessary information from


each of a set of preassigned sample points.


Next, the data is processed to extract significant events, where the significance of a weather


event is determined both by the needs of the meteorologist and by the other events occurring at


the same time. An expert system designed to mimic a meteorologist extracts these significant


events. Forecast areas are grouped by similarity in order to minimize the length of the text.


Depending on the type of forecast, different groupings are used: for marine forecasts, the


messages are ordered strictly by data salience (relative significance to the intended user), while


for public forecasts, the messages are grouped by temporal order and then by salience.


The final stage is linguistic processing, which has two major stages: text planning and text


realization. As in LFS, the text realization follows Mel’čuk’s Meaning-Text Theory; for this


example (taken from Goldberg and Driedger (1994)), we will consider only the text-planning


stage. The table in Figure2.5(a) shows some sample data on wind speed. The left-hand


columns represent the data sampled from the FPA’s graphical weather depictions. FOG then


classifies the data into wind direction and speed and “time-merges” them, as shown in the right-


hand columns. (When the sampled wind speed falls below 13 knots, it is classified simply as


light; the direction is no longer considered significant.) The dots in the middle of the table


represent data which is not relevant to this example.


Once the meaningful categories have been identified (as shown on the right-hand side of
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Sample Data Concepts
Time Wind Direction Wind Speed Wind Direction Wind Speed
6 a.m. 223 13 southwest 15-20
7 a.m. 235 17 ⇓ ⇓
9 a.m. 231 21 ⇓ ⇓


...
...


...
...


...
9 p.m. 280 12 (west) light
10 p.m. 307 11 (northwest) ⇓
11 p.m. 182 8 (south) ⇓


Midnight 246 10 (southwest) ⇓


(a) Sample data


“Winds southwest 15 to 20 knots diminishing to light late this evening.”


(b) Generated text


Figure 2.5: Sample FOG input and output


Figure2.5(a)), the text planner must build concepts to describe transitions between the states. It


then outputs an interlingua representation of the concepts, grouped into sentence-sized chunks.


In the example, the two wind events are grouped together. The text generated for this example


is shown in Figure2.5(b).


2.2.4 GOSSIP


The goal of GOSSIP (Carcagno and Iordanskaja, 1993) is to inform a security officer about the


operations performed by the users of a computer centre—for example, which files are used or


deleted and at what time. It can produce verbal or graphical reports concerning the behaviour


of the system or of particular users. GOSSIP comes from the same group of researchers that


produced LFS (Section2.2.2) and FOG (Section2.2.3).


The input to GOSSIP is the audit trail produced by an operating system. A fragment of


such an audit trail is shown in Figure2.6; it shows a particular user, “jessie”, logging in and


running various programs shortly before 1:00 AM. In this form, the data is difficult to read and


does not lend itself to immediate conclusions; it must therefore be summarized and interpreted.


The process used to plan the text in GOSSIP is similar to that employed by LFS. The
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ee(jessie, term32, success, [ ], login, [ ],
nt, 00:48:08, 00:48:08, 00:00:00, 0.000, 2373131)


ee(jessie, term32, success, [ ], dir, [ ],
nt, 00:48:23, 00:48:23, 00:00:00, 0.000, 2373131)


ee(jessie, term32, success, [ ], edit, [ ],
nt, 00:48:44, 00:53:29, 00:04:44, 56.816, 2373131)


ee(jessie, term32, success, [ ], c, [ ],
nt, 00:53:57, 00:55:25, 00:01:28, 17.621, 2373131)


Figure 2.6: Sample GOSSIP input


The system was operating for 6 hours 36 minutes and 57 seconds. Usage was particularly intense be-
tween 16:32:03 and 18:54:29 with idle time only 27 cycles during this period. Seven users worked on the
system. Five of them used mostly compilers (C, Lisp, Fortran) and the Prolog interpreter. VLADIMIR
and LEO read numerous files. VLADIMIR was interested in system priority tables. LEO listed many
user files from his own group. He initiated large print jobs using these files. VLADIMIR failed to
change access parameters for system files. No modifications to system files were noted.


Figure 2.7: Sample GOSSIP output


user requests a particular report, and a “topic tree” is activated that defines the topics typically


addressed in that type of report. Initially, the topic tree is a collection of potential topics,


organized hierarchically. The tree is then traversed by a procedure which triggers a method on


each node to determine the content; the leaves are instantiated by looking for facts in the audit


database, while other topics compute their content from other already instantiated topics. The


text is also structured at this point: elementary messages which are compatible are grouped into


more complex messages (e.g., if several users spent time editing files, those actions would be


grouped together); messages which are not applicable to the particular situation are removed


(e.g., a user reading her own files may not be of interest); and new messages which result


from the content of existing messages are inserted (e.g., if a report of printing activity is to be


included, then a list of the files printed may be necessary). Finally, a semantic representation of


the individual messages is produced; this is then sent to the linguistic component for realization.


As in LFS and FOG, the realization follows a process based on Meaning-Text Theory. An


example of the output of GOSSIP is shown in Figure2.7.
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2.2.5 STREAK


Robin and McKeown (1996) describe STREAK, an experimental system to generate sum-


maries of the events of basketball games in the style of the lead sentences of newspaper sports


reports.


Several characteristics of the corpus of basketball game summaries influenced the approach


taken. The complexity of the sentences in the corpus was great, with four to twelve simple fact-


s conveyed in a single sentence. While some concepts consistently appear in fixed locations


across reports, others appear wherever the form of the surrounding text allows. To be able to


add such “floating facts” wherever necessary, the facts must be expressible in a variety of lin-


guistic forms. Summaries may contain historical background facts to highlight the significance


of new reported facts. Summaries must also be concise, conveying as much information as


possible in a limited space.


To take into account these characteristics, STREAK uses a model of text generation which


relies heavily on revision: first a bare-bones summary is generated, and then additional infor-


mation is added opportunistically until there is no space left. A set of revision rules specify the


various ways a draft can be modified to accommodate a new piece of information; these rules


were derived empirically from a set of human-written sports summaries. The revision rules act


directly on the text plans.


The input to STREAK consists of two semantic nets, one representing the facts which must


be conveyed and one for the “floating facts” (optional additional information). Figure2.8shows


some sample output from STREAK, adapted from Robin and McKeown (1996). The first draft


of the summary of a particular game is shown in Figure2.8(a). This first draft contains only


minimal information about the game: the location, main individual statistic (Barkley’s point


total), date, and game result. A series of complementary facts is added one at a time, resulting


in some of the words of the initial draft being deleted, displaced, or transformed. After this


process is completed, the sentence shown at the in Figure2.8(b) is the final result.


The use of a corpus allowed STREAK to be empirically evaluated by comparing the gener-
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“Dallas, TX—Charles Barkley
scored 42 points Sunday as the
Phoenix Suns defeated the
Dallas Mavericks 123—97.”


(a) Initial draft


“Dallas, TX—Charles Barkley tied a season high with 42 points
and Danny Ainge came off the bench to add 21 Sunday as the
Phoenix Suns handed the Dallas Mavericks their league worst
13th straight home defeat 123—97.”


(b) Final sentence


Figure 2.8: Sample STREAK output


ated texts to those already in the corpus. Two aspects of robustness were evaluated: coverage


and extensibility. To evaluate coverage, the generator was implemented on one year’s worth


of basketball summaries, and then the sentences from a different one-year sample that it could


produce were counted. Extensibility was measured by counting how many additional knowl-


edge structures were necessary to completely cover an additional year. The revision model


increased the overall realization coverage by 41 percentage points over a one-pass model, and


the extensibility by 14.6%.


The revision rules were also evaluated for cross-domain portability by examining a corpus


of stock-market reports (such as those used in Ana). It was found that about 70 per cent of


the revision rules also applied to this new domain, although Robin and McKeown (1996) do


not specify how many sentences in the corpus used rules other than those gathered from the


basketball sentences.


2.2.6 TREND


A more recent system is Sarah Boyd’s TREND (Boyd, 1999). TREND detects and summarizes


short- and long-term trends in time-series data; the initial domain is currency exchange data. It


uses wavelets, a signal-processing technique originating in mathematics, to detect the trends.


The input to TREND consists of an “annual currency file”, which consists of a number of


lines each containing the date and the daily currency value. As well, the system user can use


a graphical interface to specify the settings of parameters that control the sort of information


extracted from the input data—the length of the trends to detect (short, long, or both), and


whether high and low volatility periods are included.
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The input and the settings of the user parameters are fed to a content determination module,


which performs the following three steps. First, the basic visual features of the data are iden-


tified (trends, low-volatility intervals, and high-volatility intervals); it is here that the wavelet


analysis is used. The settings of the user parameters determine which features are extracted


from a given data set. Once the visual features are extracted, any which overlap in time are


merged, using heuristics to select which of these features should be described. Finally, the


non-overlapping features are aggregated—for example, an increase immediately followed by


a decrease is identified as a peak. The output of this process is an Aggregated Visual Feature


Matrix (AVFM).


Next, the AVFM is fed into a module which performs the tasks of document structuring,


aggregation, and lexicalization. The schema begins by describing the overall yearly trend, and


then describes the other visual features in temporal order. The visual features are grouped in-


to sentences by an algorithm which puts features into the same sentence until an aggregated


feature is encountered, at which point a new sentence is started. Next, phrasal templates are se-


lected to describe each of the features; these templates take the form of functional descriptions


for FUF/SURGE (Elhadad and Robin, 1996). Finally, the templates are sent to FUF/SURGE


for realization.


The final output from TREND consists of the multi-sentence summary of the selected vi-


sual characteristics, as well as a graph of the data annotated to indicate the characteristics


described—for example, red arrows indicate long-term trends.


A sample of the input to TREND is shown in Figure2.9; this data represents the value


of the Australian dollar measured against the U.S. dollar during January 1997. Sample text


generated by TREND on the data for the full year is shown in Figure2.10. For this output, the


user requested that both short- and long-term trends be described, and that areas of low and


very high volatility should be included.
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0.7895, 02, 01, 97
0.7914, 03, 01, 97
0.7882, 06, 01, 97
0.7891, 07, 01, 97
0.7796, 08, 01, 97
0.7780, 09, 01, 97
0.7818, 10, 01, 97
0.7783, 13, 01, 97
0.7810, 14, 01, 97
0.7767, 15, 01, 97
0.7791, 16, 01, 97
0.7800, 17, 01, 97
0.7774, 21, 01, 97
0.7756, 22, 01, 97
0.7716, 23, 01, 97
0.7720, 24, 01, 97
0.7722, 27, 01, 97
0.7690, 28, 01, 97
0.7700, 29, 01, 97
0.7657, 30, 01, 97
· · ·


Figure 2.9: Sample TREND input


During 1997, the currency fell 17.47 percent to finish the year at 0.651. It remained mainly unchanged
between the 20th of February and the 30th of May and decreased considerably between the 30th of May
and the 7th of July before staying mainly unchanged until the 10th of September. It fell dramatically
between the 10th of September and the 31st of December.


Figure 2.10: Sample TREND output


2.2.7 Summary


The projects described in this section take a variety of approaches to producing text which


appropriately describes the input domain. All of them are tailored to a specific domain—


the stock market, labour force statistics, currency prices, or basketball scores; STREAK does


consider the possibility of being used in other domains as well, though. TREND and GOSSIP


also produce graphics, but the text is designed to stand on its own.


The various systems use different methods of actually producing the text. Some use a


phrasal lexicon or some other form of textual template to produce the text—Ana falls into this


category, and TREND partly does as well. Other systems use full-fledged linguistic realizers to







CHAPTER 2. RELATED WORK 21


produce the text. LFS, FOG, and GOSSIP use a similar one, an ancestor of RealPro; STREAK


uses FUF/SURGE, and TREND’s phrasal templates are also realized using this system.


Notice that text which is generated to stand on its own differs from text whose aim is to


accompany a graphic (see Section3.1.2for more on this issue). For example, often it is better


to mention only some of the message in the text, and to allow the audience to infer the rest from


inspection of the graphic. The techniques used in the projects in this section to select data to be


presented and to produce appropriate textual presentations from it can be applied to integrated


text and graphics systems; however, text which is generated to stand on its own will often be


too detailed or contain redundant information when paired with a graphic. Such other factors


should also be taken into account if integrated presentations are to be produced.


2.3 Integrated graphics and text


2.3.1 SAGE


The SAGE project at Carnegie-Mellon University concentrates on the automated generation


visualizations of complex data. The SAGE system is an expert system specialized in graphic


design. Most of the work on SAGE itself has gone into the automated generation of graphical


data visualizations; however, there have been several related projects which also aim to gener-


ate text. One, AutoBrief, is described in Section2.3.3. Another project, described in Mittal et


al. (1998), presents techniques for producing captions for SAGE-generated graphics; howev-


er, this research has concentrated on producing captions that explain the graphical techniques


used in producing the graphics, rather than pointing out aspects of interest in the data being


displayed on them.


Roth, Mattis and Mesnard (1991) describe an application which uses SAGE to produce


coordinated text-graphics presentations in response to users’ questions. The domain of this


application is project management; managers often use project modelling systems to evaluate


a project under a number of hypothetical conditions, and will often need to ask the system
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questions about the value of some variables under different conditions. Examples of typical


questions include:


• Why did Bill Smith’s activities cost more than expected in the estimate?


• Why is the end date of the design approval activity later in this week’s schedule, as


compared to last week’s?


To allow these sorts of questions, the underlying data is represented in three models: a finan-


cial spreadsheet model, an “alternative additive model” (which represents the organizational


structure of the company), and a scheduling model (which represents the start and end time of


each activity in the project). These models are linked together to provide an integrated repre-


sentation of the data; for example, links are made from the departments in the organizational


hierarchy to the activities which those departments may perform.


The process of producing a response to a user’s question proceeds as follows. First, the


content is selected from the underlying data in a two-stage process. All of the data in the model


which could possibly be relevant to the query is first extracted. That data is then analyzed to


derive further facts from it; these facts can also form the content of the presentation.


Next, a discourse component selects the assertions which will appear in the output and


orders them appropriately. Different components are used depending on the type of question


asked by the user; for example,cause identificationconsists of a statement of the main cause-


effect relationship, any counteracting or reinforcing relationships, and the main dependency


that the causal relations are based on. The output of the discourse processor is an ordered


sequence of instantiated rhetorical predicates. These are then input to an external text realizer,


which smooths the resulting text by adding sentence transitions, making definite reference to


entities, and performing some forms of ellipsis.


So far, only the textual realization component has been described. However, some asser-


tions are better made in graphics than in natural language: for example, organizational relations


or the precedence of activities. As well, if facts are presented in natural language, then the user
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> “Why did Acme-Co costs change from estimate-1 to estimate-2?”
(1) The increase in Acme-Co costs was due to increases in Engineering Center and Evaluation Center,
as shown by the gauges in Figure A.
(2) These increases were partially counteracted by a decrease in Design Center.


Figure 2.11: Sample SAGE output


must pay full attention to each fact; there is no way to present many facts in such a way that the


user can focus only on the interesting ones. For these reasons, SAGE also produces graphical


displays.


Several problems can arise if the text and graphics are generated independently. The se-


quential structure of information in the text and the graphical structure of that information


in a picture might not correspond; the text cannot refer to the graphical representations of


the domain objects that are being discussed; and the two presentations may contain redundant


information. The two generators therefore communicate with each other to increase the coordi-


nation in the final presentation. The two parts of the presentation are produced and coordinated


as follows. First, some discourse processing is done to create an idea outline that partitions


the relevant content into a logical sequence and possibly combines information from different


discourse segments as a single merged set. Next, the graphics generator produces its portion


of the output; finally, the text is produced, making explicit reference to the components of the


graphical presentation and omitting propositions that are already expressed in the graphics.


An example of a portion of a coordinated text and graphics display produced by this system


is shown in Figure2.11. The graphic and text are a portion of a more complete sample present-


ed by Roth, Mattis and Mesnard (1991); the full example from the paper includes several more


levels in the hierarchy of departments, which are also referenced in the full caption.
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2.3.2 PostGraphe and SelTex


PostGraphe


PostGraphe (Fasciano, 1996) is a system that generates integrated graphics and text presenta-


tions from statistical data. The input to PostGraphe is in the form of a Prolog term specifying


the characteristics of the data to be presented, the goals of the user, and the data itself. A sam-


ple of the input format1 is shown in Figure2.12; this example is taken from Corio (1999). The


lines that specify candidates and non-candidates for keys control which of the variables may be


used as a relational key in preparing the presentation. The system generates a report containing


appropriate graphics and text that is based on the contents of this input file.


PostGraphe always generates a text-graphics pair for every message. The generation of


both components of the presentation is done in the same way, as follows. A planning algorithm


is used to generate a schema for each group of compatible inter-variable or intra-variable goals.


This schema is used for both graphics and text. To trim down the search space of potentially


compatible groups of goals, heuristics are used; as well, the user may manually limit the search


space by building sets of related goals in the input.


To choose the appropriate schema, a table is used which associates each possible user goal


with the schemata that can express it and a weight indicating how efficient each schema is


at presenting that goal. All of the knowledge used in schema selection is encoded in these


weights, in an approach similar to neural nets.


Figure2.13, adapted from Corio (1999), shows the result of running PostGraphe on the


input file in Figure2.12. The table at the top of the figure is the result of the intention of the


first section,presentation; the line graph in the middle results from the first intention in the


second section,comparison; the text at the bottom results from the third intention,evolution.


The text in this figure is the only sort that PostGraphe itself is capable of producing.


1The translation of all extracts from Fasciano (1996) and Corio (1999) from the original French is my own.
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data(% names of variables
[year,company,profits],
% types of variables
[year/[symbolic],
label,
dollar/[plural(profit)]],


% candidates for keys
[year,company],
% non-candidates for keys
[profits],
% author’s intentions
[% section 1
[presentation(year),
presentation(company),
presentation(profits)],


% section 2
[comparison([profits],[company]),
evolution(profits,year)]],


% the raw data
[[1987,’A’,30],
[1988,’A’,35],
[1989,’A’,40],
[1990,’A’,35],
[1987,’B’,160],
[1988,’B’,165],
[1989,’B’,140],
[1990,’B’,155],
[1987,’C’,50],
[1988,’C’,55],
[1989,’C’,60],
[1990,’C’,95]]).


Figure 2.12: Sample PostGraphe input


SelTex


Marc Corio has recently completed a thesis (Corio, 1999) in which he implemented a module,


SelTex, to improve PostGraphe’s somewhat limited text-generation capabilities.


Corio performed an extensive corpus analysis of French text-graphics pairs, mostly from


Statistics Canada publications, and classified the types of text into 55 different codes. One


example of such a code is BAS1, which refers to a text that describes “[t]he lowest column, the


shortest bar or the smallest sector of the pie”.


He then grouped these codes by the intention with which they were most frequently asso-


ciated. For example, 50 per cent of the captions which fulfilled the intention ofpresentation
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year 1987 1988 1989 1990
company profits profits profits profits
A 30 35 40 35
B 160 165 140 155
C 50 55 60 95


From 1987 to 1989 the profits of company A increased from $30 to $40. Up to 1990 they decreased
from $40 to $35.
From 1987 to 1988 B’s profits increased from $160 to $165. During 1 year they decreased by $25. Up
to 1990 they increased from $140 to $155.
From 1987 to 1990 C’s profits increased from $50 to $95.


Figure 2.13: Sample PostGraphe output
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were of type TITRE2, “Generic title including the description of two or more data items”.


Next, Corio produced a set of selection techniques to determine what sort of caption to


produce given the nature of the data and the basic intention selected by the user. These selection


techniques take the form of rules such as the following (for use with thecomparisonintention):


• Mention the highest data point if its value is at least 10% larger than the second and if


the number of points is greater than 2.


These rules were implemented in Prolog, as was the rest of PostGraphe. Some enhancements


were made to the input format of PostGraphe to enable users to specify various information


useful to SelTex.


SelTex contains 15 new textual schemata which are associated with the possible classifica-


tion codes. To select the appropriate schema, the following steps are followed. After the base


PostGraphe system is used to generate a graph (as described by Fasciano (1996)), SelTex is


called. The first step is to verify whether SelTex has a schema which can satisfy the desired


intentions. Once the schema has been obtained, the next step is to find the appropriate pred-


icate to execute in order to generate text using the schema. If all of the necessary conditions


are satisfied to generate text using the schema, a “message” is generated. Finally, this message


is passed to the text generator, which in this case is a Prolog rewriting of FRANA (a French


translation of Kukich’s Ana (Section2.2.1)).


The format of the input to SelTex is the same as that to PostGraphe, with a few additions


to control the text generation. Figure2.14shows an example of the output of SelTex, adapted


from Corio (1999). The main intention in this case was comparison of computer use between


provinces, with a secondary goal to concentrate specifically on the value for Quebec.


2.3.3 AutoBrief


AutoBrief (Kerpedjiev et al., 1997) is a system whose overall aim is to produce coordinated


multimedia explanations of large and complex datasets. The output it produces is designed to
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Alberta, British Columbia and Ontario have a higher rate of households with a computer, while Quebec
placed seventh with 24.0%.


Figure 2.14: Sample PostGraphe output (with SelTex)


help analysts in dealing with such datasets and in presenting the results of their analyses to


others.


AutoBrief combines features of two complementary previous approaches to automatic pre-


sentation design: hierarchical planning to achieve communicative goals, and task-based graphi-


cal design. The interface between these two components is a domain- and medium-independent


layer of communicative goals and actions.


The main test domain for AutoBrief, transportation scheduling, is described by Kerpedjiev


et al. (1997). In this domain, transportation analysts and planners use systems which produce


a number of schedules for moving commodities around. These schedules are analyzed for


lateness or bottlenecks, and the planners may then suggest workarounds. The goal of Auto-


Brief is to help the analysts in performing their task. AutoBrief creates multimedia summaries


of schedules, containing graphs, tables, and some textual information about the capabilities


available and the shortfalls.


AutoBrief has access to a knowledge base of information about the particular domain in
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which it is working. The input consists of the a set of domain-specific communicative goal-


s, such asknow-shortfalls(ensure that the user knows the value of theshortfallsattribute).


These goals are refined into domain- and medium-independent subgoals, which are in turn


achieved by domain- and medium-independent abstract actions. These abstract actions are


decomposed into medium-specific actions, which the medium-specific generators then use to


produce the final presentation. AutoBrief uses SAGE (Section2.3.1) to produce its graphics


and FUF/SURGE (Elhadad and Robin, 1996) as its text realizer.


As an example of the process, the goalknow-shortfallscould be refined into the subgoal


know-attribute; this subgoal is realized by the actionassert, which can then be decomposed


into the graphical actionenable-lookup. In other words, if the final presentation includes a


graphic on which the user can effectively look up the value of theshortfallsattribute, then the


goal has been achieved.


Kerpedjiev et al. (1997) describe the use of AutoBrief in the transportation scheduling do-


main; a series of papers from 1998 provide more detail about the inner workings of AutoBrief


and other possible applications for the system, using newspaper readership numbers as a source


of examples.


The content language which is used to represent the medium-independent subgoals and


the content of the medium-independent actions is described by Green et al. (1998a). The


language represents what is to be asserted rather than the type of communicative acts to per-


form or the attitudes which the acts are intended to achieve. This language needs to be able


to represent complex descriptions of quantitative database attributes and to represent them


compositionally, with possible subtle differences in intention for the same data. It also must be


medium-independent, while still providing the necessary information for both medium-specific


generators.


Green et al. (1998b) describe how certain types of arguments that can be represented visu-


ally in information graphics can be generated from an underlying medium-independent repre-


sentation. Here, an “argument” is a presentation which, given knowledge of the user’s current
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Figure 2.15: Sample AutoBrief discourse plan


beliefs, aims to convince the user to accept a particular belief. This goal is then decomposed


as described above into medium-dependent communicative acts to produce the presentation.


Figure2.15, adapted from Green et al. (1998b), shows a possible medium-independent


discourse plan for the realization of a particular argument. The goal is to convince the user


that the Post-Gazette newspaper has more readers than the total number of readers of all other


newspapers that are distributed in a particular region (factT in the discourse plan). The user


currently knows that the New York Times has more readers than the Wall Street Journal (Q),


and mistakenly believes that this means that the New York Times has the most readers in the


region (R). This plan might be realized in text as in Figure2.16(a), or by the graphic and caption


shown in Figure2.16(b). This output was presented by Green et al. (1998b) as examples of


possible realizations of the discourse plan; it was not actually produced by AutoBrief.


2.3.4 Summary


The systems in this section employ various techniques to generate text-graphics presentations


of their data. The application of SAGE described here in detail is tied to a particular domain


(project management); PostGraphe and AutoBrief aim to be domain-independent.


The graphics and text are produced and coordinated in different ways. SAGE runs its text


and graphics generators concurrently so that they can communicate with each other to produce
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Although the New York Times is read by more people in Western PA than the Wall Street Journal, the
New York Times does not have the highest number of readers in the region. The Post-Gazette has more
readers than the total number of readers of all other newspapers in the five-county Western PA region.


(a) Text


The Post-Gazette has more readers than the total number of all other newspapers
in the five-county Western PA region.


(b) Text and graphics


Figure 2.16: Possible realizations of AutoBrief discourse plan


coordinated output; AutoBrief decomposes its domain-specific goals into communicative acts


for each of its two generators, which then act independently; PostGraphe chooses its textual


and graphical schemata separately, using the same input to guide both choices.


Of the systems described here, only SAGE considers the issue of medium allocation—


that is, determining which output medium is best suited to generating each component of the


message. In the other multimedia systems, messages are realized in whichever medium is


capable of expressing them, without any consideration for coordination or redundancy.







Chapter 3


Principles of caption generation


3.1 Introduction


3.1.1 What is a caption?


Caption generation is the task of generating text designed to accompany an information graph-


ic. Such text does not necessarily have to appear as a caption in the final presentation (i.e.,


above, below, or beside the graphic). It could also appear in an article accompanying the


graphic, or could even be spoken in a presentation. However, for convenience, such text will


be referred to in this thesis as a “caption”, whatever position it takes in the final presentation.


A caption can serve two purposes: it can point out the relevant or interesting aspects of the


data presented in the graph, and it can explain the meaning of the various graphical techniques


used to produce the image (Kosslyn, 1994). This thesis focuses on text of the former type,


which describes the data in the graph rather than features of the graph itself. A system which


generates the latter sort of text is described by Mittal et al. (1998); however, producing such


captions requires an intimate knowledge of the system producing the graphic which is being


explained, and the techniques useful with one particular system might be completely useless


in any other situation. Producing captions which describe the content of the graph, rather than


the form, is a more general question.


32
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3.1.2 Captions vs. stand-alone text


It is possible to produce text which summarizes quantitative information itself, without intend-


ing it to accompany a graphic of any sort; many of the systems described in Chapter2 are


of this type. However, the content of such stand-alone text is very different from text which


is designed from the outset to go along with a graphical presentation. In particular, text in a


caption is likely to mention only the general message which the author wants the audience to


understand and to omit many of the specific details that can be read directly from the graph.


This point is illustrated by Kerpedjiev et al. (1998), which describes the process of manual-


ly transforming a purely textual summary of some quantitative data into an integrated graphics-


text presentation. The original text, a portion of Bill Gates’s U.S. Senate testimony from March


1998, contains several quantitative assertions; one such assertion is shown in Figure3.1(a). No-


tice that the specific revenue increases of the two companies are spelled out explicitly in the


text, as there is no other way in this medium of providing the examples needed to support his


point. Messages of this type are often better presented with the use of graphics. Figure3.1(b)


shows a possible multimedia presentation, adapted from Kerpedjiev et al. (1998) of the same


portion of the Gates testimony. In this case, the text contains only the main point which is being


made (that the revenues of many of the companies in question have soared), while the particu-


lar data values are shown only on the graph. This multimedia approach exploits the capabilities


of each medium produce a presentation which expresses the argument more efficiently than in


the original pure text version.


The focus of this thesis is the generation of text designed toaccompanygraphics, rather than


to stand alone. This means that, in contrast to the pure text systems described in Section2.2,


issues concerning the allocation of message components among the available media and the


production of presentations coordinated across the media must be considered.
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“[R]evenues from [sic] many of these companies have soared in recent years. (For example, Oracle’s
revenues rose from $1.2 billion in 1993 to $5.7 billion in 1997; over the same period, Sun’s revenues
rose from $4.3 billion to $8.6 billion.)”


(a) Original text


Revenues for many of these companies have soared in recent years.


(b) Text and graphics presentation


Figure 3.1: Gates testimony, in text and text-graphics presentations (Kerpedjiev et al., 1998)
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3.2 Sources of information


The tasks and principles listed in the remainder of this chapter are derived from a variety of


sources. The list of generation tasks comes from Reiter and Dale (1997), who present an outline


of of a generalized text-generation architecture; this structure provides a useful framework


for talking about the particular necessities of caption generation and its similarities to and


differences from text generation as a whole.


An informal study of a number of information graphics and accompanying text from a va-


riety of newspapers (The Globe and Mail, USA Today), mutual fund reports, and other sources


provided data to help guide the creation of these principles. The formal corpus study of French


text-graphics pairs in Marc Corio’s thesis (Corio, 1999) was also an excellent source of data.


The techniques used in the related research projects described in Chapter2 were anoth-


er source of information about and examples of automatically producing presentations from


quantitative data.


3.3 Tasks in caption generation


The goal of this thesis is to describe how to generate captions—that is, short pieces of text


which are associated with a graphic presentation of some quantitative data. Although the pro-


cess of caption generation follows the same steps as that of text generation as a whole, it differs


in some ways.


Reiter and Dale (1997) describe an architecture for text generation which consists of six


basic tasks: content determination, discourse planning, sentence aggregation, lexicalization,


referring expression generation, and linguistic realization. The following sections outline how


each of these tasks should be addressed in a caption-generation system.


Throughout the section, the data shown in Figure3.2 will be used as an illustration. The


data represents fictional spending on healthcare in a number of Canadian provinces in two


different years.
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Province 1990 1998
Quebec 1400 1450
Alberta 1500 1400
British Columbia 1610 1900
Ontario 1700 1700
Maritimes 1575 1640


Figure 3.2: Sample data (healthcare spending)


3.3.1 Content determination


Content determination is “the process of deciding what information should be communicated


in the text” (Reiter and Dale, 1997). For the purpose of this thesis, content determination will


be defined as the process of selecting the relevant information from eachindividual dataset in


the input. Combining these individual assertions into a single- or multi-sentence caption is the


task of discourse planning and sentence aggregation; these tasks are described in subsequent


sections.


The content selected to appear in a caption could include, among many other data features,


the following: the value of a variable at the start, finish, or some other specific point, the overall


or percentage increase or decrease, or the individual changes in the direction of a trend through-


out a dataset. In general, the caption should contain information which helps the audience of a


multimedia presentation to get the “right” impression from a graphic which forms part of that


presentation. Several factors influence the content selected from the input: the type of graphic


it is to accompany, the domain from which the underlying data is drawn, the features of the


data itself, and the needs of the system user.


It is crucial, when choosing the information to include in a caption, to keep in mind that the


final presentation will also include a graphical presentation of the data. It should complement


the graphic it is to accompany without simply enumerating all of the data points; rather, it


shouldinterpret the graphic by emphasizing a particular aspect or aspects of the data. Specific


features should be included only if there is a reason for so doing: for example, if the user has


explicitly requested that the caption concentrate on those features, or if they are in some way
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unusual or interesting for the domain. Also, the message expressed by the text and by the


graphic should be the same, or at least compatible, since a presentation with a graphic and text


that are sending different messages will not be well understood.


The domain from which the data is drawn affects what sorts of features should be presented.


For example, in an article comparing the changes in healthcare funding during the past decade


using the sample data in Figure3.2, it may be more interesting that the final value for Alberta


was lower than its initial value; in an article comparing current funding across the provinces, it


might be more interesting that British Columbia currently spends the most.


The features of the data itself also have an influence on the content which appears in the


caption. Trivially, the values of the variables themselves will determine whether a caption


should talk about an increase or a decrease. Less trivial choices can also be influenced by the


data: for example, if the figures show an extremely large increase or decrease, such as that of


British Columbia, then that feature may appear in the caption even if none of the other factors


indicate that it should.


Finally, and most importantly, the needs of the user of the system should be taken into


consideration when choosing the data to include. If there is a particular point that the user


wants to drive home by using a graphic, then the caption should support that point, whether or


not the other factors lead to its inclusion. For example, the user input could specify that the


caption should concentrate on the value for the Maritimes, even if that variable does not have


any other particularly interesting characteristics.


It should be possible to extend a caption-generation system to incorporate new rules for


choosing content, so that appropriate text can be generated for a variety of purposes and data.


These rules can be as general or specific as required for the particular situation.


Existing systems perform the task of content determination in various ways. In STREAK


(Section2.2.5), for example, the input consists of two semantic nets, one representing the facts


which must be conveyed and one the “floating facts” which will be inserted if space permits;


the content determination is thus mainly performed before the system even gets the data to
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present, with some determination taking place as floating facts are selected for inclusion.


Several systems depend on the particular domain for which they were written. For example,


Ana (Section2.2.1) uses approximately 120 inference rules derived from a corpus to extract


“interesting messages” from the plain facts of stock market data. In FOG (Section2.2.3), the


process of choosing “significant events” is performed by an expert system which aims to mimic


the choices made by a meteorologist. Such domain-dependent systems could be made to work


in other domains, but it would require rewriting a number of rules (such as the 120 used in


Ana) to adapt to the new domain. The content selected by SAGE (Section2.3.1) and GOSSIP


(Section2.2.4) consists of two types of information: messages extracted directly from the raw


data, and inferences made about the data. The process of making these inferences requires the


system to have knowledge of the sorts of inferences to make.


Other systems use domain-independent methods of determining content. TREND (Sec-


tion 2.2.6), for example, uses mathematical techniques from signal processing to detect trends


in time-series data such as currency exchange information. In PostGraphe (Section2.3.2), the


textual schemata are weighted according to how effective they are at expressing a particular


intention; the selected schemata then determine which messages are extracted from the data.


Of the integrated text-graphics systems, only SAGE specifically addresses the matter of


avoiding redundancy between the text and the generated graphic; however, there is no medium


allocation step before the presentation is produced.


3.3.2 Discourse planning


The goal of discourse planning is to structure the messages produced by the content determi-


nation process into a coherent text. In text generation as a whole, discourse planning often


consists of organizing whole sentences or paragraphs. However, captions most often consist


of a single sentence; in this case, therefore, the task of the discourse planner is to structure the


messages within a sentence. As well, there may be length restrictions on a caption; if informa-


tion must be deleted for space reasons, then the discourse planner should ensure that the most
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relevant information still appears in the final caption.


A simplistic form of structuring is to sort the messages by the magnitude of the value


extracted; in the example data, this would put Ontario first and Quebec last. Other possible


orderings include putting the most relevant message first (as determined by the user or by the


system, making use of data features), putting messages of the same type next to each other, or


placing messages which lend support after the message which they are supporting.


However, discourse planning does not consist just of putting the extracted messages into a


linear order; it can also involve grouping messages by similarity or even removing some of the


initial messages from the final content. For example, the messages in the example data might


be structured by mentioning only those with extreme values, such as the highest value (British


Columbia) or the sharpest decrease (Alberta). In such cases, the result is that some of the


messages are dropped from the final sentence plan entirely. Discourse planning can even take


the form of computing an average or total value and droppingall of the original component


values from the sentence plan.


Whichever structuring technique a caption-generation system uses, it must have access to


sufficient information about the individual messages in order to make appropriate decisions


about the best order to put them into. In other words, the output of the content determination


step must contain enough information about the messages it selects to enable the discourse


planner to organize them properly.


The same set of messages can be structured in potentially many different ways, depending


on the particular application. The discourse planning technique should be selected following


the same criteria which drove the content determination stage: namely, the type of graphic it is


to accompany, the domain, the features of the data, and the user’s requirements.


In some cases, the line between discourse planning and content determination can blur. For


example, in a caption which describes the correlation between the values of two variables, the


description of the correlation could be viewed either as the content itself or as a structuring of


the two individual messages in the discourse plan. These tasks may even be performed at the
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same time by the same component of the generation process.


As with the content determination rules, the rules of discourse planning can be as general


or as specific as the particular situation warrants. Simple rules, such as sorting by value, should


certainly be included. Corio (1999) gives a number of more complex heuristics derived from a


corpus analysis; one such rule is the following:


• Mention the highest data point if its value is at least 10% larger than the second and if


the number of points is greater than 2.


A full caption-generation system should be capable of implementing rules at least as complex


as this. The rules used in a particular domain are best derived from a corpus of texts in the


domain and/or through consultation with human domain experts.


Discourse planning is not addressed at all in many of the existing systems; some systems


that do address it, however, are SelTex, Ana, FOG, GOSSIP, LFS, and STREAK. In SelTex


(Section2), rules such as the one described above actually form part of the content determina-


tion; there is no separate discourse planning step.


Ana’s (Section2.2.1) third module performs what Kukich calls the “uncomplicated task”


of grouping messages into paragraphs, ordering messages within paragraphs, and assigning a


priority number to each message. The priorities are assigned as a function of the topic and


subtopic of a message. The system has a default ordering built in, with some exception rules


that ensure that especially significant messages (such as an indicator hitting a record high) get


a higher priority.


FOG (Section2.2.3) uses two different techniques of ordering, depending on the type of


forecast which is to be produced. For marine forecasts, data salience is used to order the various


messages, where the salience of a piece of data is its relative significance to the intended user.


For public forecasts, the messages are first grouped by temporal order, and then by salience


within each temporal grouping.


In GOSSIP (Section2.2.4), the following discourse planning technique is employed. First,


a tree is created which represents the individual messages which can be expressed. This tree is
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then modified to combine messages which are compatible, to remove messages which are not


applicable, and to insert new messages which result from the content of existing ones. The tree


is then traversed in a top-down, depth-first manner to produce its texts. LFS (Section2.2.2)


also uses this basic technique.


Discourse planning in STREAK (Section2.2.5) is somewhat different, due to its revision-


based architecture. Information is added to the bare-bones initial schema on the fly to support


or elaborate on the initial facts. It is the revision rules, which specify where and how such


additional content is to be inserted, that act as a discourse planner in determining the structure


of the content in the final output. Alone among the previous systems, STREAK incorporates


length restrictions on its generated text, adding only as many floating facts as will fit into the


allotted space.


3.3.3 Sentence aggregation


Sentence aggregation is the process of combining multiple messages into a single text plan.


Whereas discourse planning structures the abstract messages, sentence aggregation performs


the task of combining grouped messages into concrete text plans.


A simple caption-generation system can use a very simplistic form of aggregation: realizing


each message as a separate sentence, for example, or combining all of the selected messages


with a conjunction such as “and”.


Often the individual messages can be combined in various ways to produce more fluen-


t text; for example, to describe the three increasing datasets in the example data, the final


caption could have the form “the values for Quebec, British Columbia, and the Maritimes all


increased”, or even simply “all of the values increased”. Other aggregations of this form can


be done if all of the messages have common constituents of various types.


The domain or type of the data may also influence the possible aggregation techniques.


Sophisticated aggregations making use of such information are possible: for example, if a


system knows the provinces of Canada, then it could aggregate a list such as “Nova Scotia,
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New Brunswick, and Prince Edward Island” to simply “the Maritime provinces”. Forming sets


in this way requires domain knowledge.


Aggregation should be driven not only by the nature of the data and the messages selected


from it, but also by the needs of the user of the system. In the example above of multiple


increases, the user might want each individual item mentioned (“Quebec, British Columbia,


and the Maritimes”), or might prefer the more general statement in the second case, “all of the


values”; the system should support this sort of choice.


Selecting which of the possible aggregations should be performed on a particular caption


is a difficult task. One possible approach is to use a corpus of target texts to determine which


types of aggregations occur most frequently, and then to create rules which produce those


aggregations.


In many of the previous systems, sentence aggregation is combined with other steps in the


generation process. For example, the process of creating GOSSIP’s (Section2.2.4) topic tree,


described above under discourse planning, also performs the task of sentence aggregation. For


example, if several users spent time running programs and editing files, then these users would


be grouped together in the tree, with a single node storing the list of all the individual users.


GOSSIP also performs some aggregations as the modified tree is traversed to produce the text.


SAGE’s (Section2.3.1) text generator makes the text less awkward by adding sentence


transitions, making definite references to entities, and performing some forms of ellipsis. This


combines sentence aggregation functions with the lexicalization and realization tasks described


in the following sections.


3.3.4 Lexicalization and referring expression generation


The next stage in the generation process is lexical choice—choosing words to express the mes-


sages created by the previous processes. There are two types of lexical choice that a caption-


generation system must make: choosing words to describe the messages extracted from the


data (referring expression generation), and choosing words to express domain concepts (lex-







CHAPTER 3. PRINCIPLES OF CAPTION GENERATION 43


icalization). Reiter and Dale (1997) separate these two forms of lexical choice; however, the


two tasks are very closely related in caption generation, and will be dealt with together here.


Lexicalization is the stage in the generation process in which linguistic style enters the


picture. There are many different possible ways to express the change in Quebec’s value in the


example data: “Quebec healthcare spending increases”, “the value of healthcare spending in


Quebec rises”, “Quebec is spending more on healthcare”, and many others. If the value being


measured is from a different domain, then yet other patterns may be available. At least a set


of basic alternatives should be built into a caption-generation system so that it can generate its


sentences; more complex patterns and varied words can also be added as needed in a particular


situation.


While the data determines the general sort of assertion that should be made (e.g., increase,


decrease, correlation), choosing among the alternative methods of expressing a particular trend


should be driven by the needs of the user. For example, if he or she desires a more informal


caption, then colloquial language such as “Quebec is spending more on healthcare” could be


selected in preference to the more formal “Healthcare spending increases in Quebec”. Creating


rules to choose among multiple possible techniques of expressing the same relation is best done


through an analysis of target texts.


In addition to describing the trends detected in the data, a caption-generation system must


choose words to identify a particular entity in the domain. In general text generation, this task


also includes issues of referring to an entity when it comes up in a discourse multiple times—


selecting appropriate pronouns or generating new “definite descriptions” when the context rules


out the use of a pronoun. However, in the majority of captions, any entity will be mentioned at


most once, so the crucial issue in caption generation is the selection of an appropriate lexical


item to refer to it.


These two types of lexical choice are of course very closely related. The form that is chosen


to describe the trends of the data constrains what sort of words can be used to describe the


data—for example, if the verb “increase” is selected to describe an upward trend in the value
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for Ontario, then the description of that variable itself must be realized as a noun phrase such


as “Ontario healthcare spending” or “healthcare spending in Ontario”. As well, the available


domain vocabulary can constrain the ways in which the trends can be realized—for example,


if the quantity being measured can only be expressed as a verb, then the trend cannot also be


expressed as a verb.


Beyond the above syntactic relationship between the two processes, there can sometimes


be an interaction between the lexicons used for the two tasks—this can occur when the entity


which is being described requires particular words to describe it. An example of this is in the


domain of weather forecasts, where a decrease in temperature would more likely be described


by a verb such as “cool down”, rather than simply “decrease”.


The lexical choice techniques used by previous systems vary. The systems which are tied


to specific domains also have available the domain vocabulary; the lexical choices they must


make consist largely of selecting appropriate words and phrases to describe the messages ex-


tracted from the data. For example, Ana’s (Section2.2.1) text generator chooses and combines


phrases from its lexicon which capture the meaning of the message to be expressed and satisfy


rhetorical constraints, using domain-specific semantic, syntactic, and rhetorical knowledge.


STREAK (Section2.2.5) must choose among different patterns for realizing the messages


it discovers in basketball-game summaries; for example, the result of a game can be expressed


in the main verb (“Chicago beat Phoenix”) or as a prepositional phrase (“with a 99–84 triumph


over Denver”). The pattern to use is determined by the floating facts which must be added and


the revision rules which are used to add them.


The domain-independent approaches do not make a great deal of use of the domain knowl-


edge, other than to fill slots in the output forms. TREND (Section2.2.6), for example, uses


templates and inserts appropriate verbs and adverbs into templates which are then sent to a


linguistic realizer. SelTex (Section2) follows a similar slot-filling method, although it uses an


adaptation of Ana to generate its texts.


Of the existing systems, only Ana considers matters of style in selecting lexical items to
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express the trends detected. It allows the user to specify constraints on the syntax of the gen-


erated text (such as a desire for few subordinate participial clauses), which are then used when


choosing phrases from the lexicon and combining them.


3.3.5 Linguistic realization


Once the lexical items have been chosen to express the concept of the message, the final step


is to convert the conceptual representation into text; this is the job of the linguistic realizer. As


in any other text-generation domain, the realization can be done by a special-purpose realizer


built for the particular system, or an existing realizer can be used as a “black box” at the end of


the generation process. Both approaches have merit.


If an existing realizer is chosen, then the result of the processing to this point must in be


the input language of the realization system, and so the representations at all other levels of the


system must provide all of the information that the realizer requires. If the input language of


the selected realizer does not fit well with the architecture of the rest of the system, then time is


wasted in conversion. If the realizer is particularly idisyncratic in its needs, then it could make


the implementation of the rest of the system awkward.


A large advantage of a “home-grown” realizer is that there are no constraints on the rep-


resentations that can be used at any of the other steps in the generation process; the realizer


can be written to understand whatever structure is most convenient to the desired method of


implementing the rest of the system. However, there is the equally large disadvantage that such


a special-purpose system must be built essentially from scratch—a potentially time-consuming


task and one which is tangential to the actual task of caption generation. Unless a great deal of


time is invested in the creation of the realizer, it may not be able to handle all of the syntactic


issues of the target language or languages, which may cause the captions to be inferior to those


generated by a system using an external text realizer.


A system may combine linguistic realization with the two lexical-choice process described


above if the format of the captions to be generated is simple enough that no external realizer
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is necessary; in this case, it could follow a procedure like the phrasal lexicon approach of Ana


(Section2.2.1), or the template-filling of TREND (Section2.2.6) (although TREND does send


its filled templates to an external realizer). A system may also perform all of the realization


steps at once if the output of the discourse planning and aggregation stages is already in a


format acceptable to the selected realizer.


Many of the previous systems have used existing text generators: STREAK (Section2.2.5),


TREND, and AutoBrief (Section2.3.3) use FUF/SURGE (Elhadad and Robin, 1996) as a final


step, while FOG (Section2.2.3), LFS (Section2.2.2), and GOSSIP (Section2.2.4) all use a


system which later developed into RealPro (Lavoie and Rambow, 1997), and SelTex (Section2)


uses FRANA, a French derivative of Ana.


3.4 Other necessities


During the discussion of generation tasks in the preceding section, the need arose for several


other components of a caption-generation system: some knowledge of the domain from which


the data is drawn, a model of the system user and of the audience, and integration with the


system producing the graphics. The following sections describe each of these requirements in


more detail.


3.4.1 Domain knowledge


A simplistic caption-generation system could be made to work using no more domain knowl-


edge than that which is necessary to give the proper names to the variables in the input data.


However, the captions created by such a system would be very generic, and potentially not


useful in the particular domain and application for which it was being used.


Knowledge of the domain from which the input data was drawn should guide a caption-


generation system through the entire process of producing its text, from the selection of “in-


teresting” messages to include in the output to the final realization of its caption in natural
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language.


In different domains, different features of the data may be of interest; for example, in one


case it may be of more interest to concentrate on the final value of a variable, while in another it


could be the individual changes in its value from start to finish that is the most relevant feature.


The same data may even have different meanings depending on what domain it comes from,


or even the perspective that is taken. In the example data presented in Figure3.2, for example,


the increase in spending in British Columbia could be viewed as good if the author’s goal is to


encourage more spending. In an article which advocated cutting government spending, on the


other hand, the decrease in Alberta’s spending might instead be highlighted.


The domain can also have an effect on how the messages are ordered once they have been


selected. For example, in the FOG system (Section2.2.3), messages are ordered strictly by


salience when marine weather forecasts are being created; however, for public forecasts, mes-


sages are first grouped by temporal order and then by salience.


Once the messages have been extracted from the input data and organized as needed, the


domain model should also be used in selecting an appropriate method of presenting the in-


formation textually. This procedure has two facets: appropriate words and phrases should be


selected to describe the domain elements, and domain-specific ways of expressing the mes-


sages extracted from the data may also be necessary.


The first task, describing the domain elements, can be done very simply by providing a


mapping between the variables in the input data and lexical items which can be used to describe


them. However, it might also be necessary to select among alternative descriptions of the


same element in different situations; in such cases, the domain model should provide rules for


making those choices.


Selecting appropriate lexical items to present the messages extracted from the data could


be done in a largely domain-independent way, using words such as “increase” or “decrease”.


However, often there are words or phrases which are typically used in some domains to describe


trends. For example, in the stock market domain for which Ana (Section2.2.1) was written,
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phrases like “surrender a gain” and “posted a loss” are common, while in weather forecasts


(FOG), winds “diminish to light”. Such differences should also be part of a system’s knowledge


of its domains.


There are several possible ways that the necessary domain knowledge could be included in


a caption-generation system. Probably the most straightforward method is to “hard-code” the


necessary information into the system itself; this is the approach taken by the previous domain-


specific systems, such as Ana, GOSSIP (Section2.2.4), FOG, and STREAK (Section2.2.5).


This is the simplest way to ensure that the system has access not only to appropriate vocabulary,


but also to rules for choosing messages and for selecting among different possible methods


of realizing those messages. However, including the domain information in a system in this


way makes it much more difficult to extend the system to work in new domains if necessary


(although Robin and McKeown (1996) claim that a large number of the rules developed for the


basketball-game domain ended up applying to other domains as well).


An alternative approach is to specify the domain information entirely in the input. This is


certainly more flexible, and allows for the system to be used in any possible domain; this is the


approach taken by SelTex (Section2). However, while it is fairly straightforward to include


the necessary lexical items in the input, encoding the necessary selection rules is much more


complex and could well prove impossible for more complex domains.


A third possible approach, a hybrid which combines the above two, would be to provide


a set of many possible rules for content selection within the system, and then to define the


necessary domains in terms of those rules; the vocabulary could also be specified in the input


as in the above approach. This allows for more complex rules to be specified on a per-domain


basis and for the domain to be described on the fly instead of hard-coding it into the system.


However, selecting an appropriate set of possible rules could prove quite complex, as could


defining any new domains in terms of these rules.


A number of previous systems, such as Ana, FOG, and the project-management application


of SAGE (Section2.3.1), are tied to particular domains; naturally, they make use of a great
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deal of domain knowledge throughout the generation process. Ana even has as one of its


basic tenets that domain-specific semantic, linguistic, and rhetoric knowledge is required for


a computer to produce intelligent and fluent text. Such previous systems use their domain


knowledge throughout the process.


The domain-independent systems still require some knowledge of the domain. The domain


knowledge in SelTex, for example, consists of a lexicon and a characterization of the data’s


relational structure (i.e., the units of the variables and which can and cannot be used as re-


lational keys); it is specified entirely in the input file. AutoBrief (Section2.3.3) specifies its


high-level goals in a domain-dependent manner and then decomposes these goals into domain-


independent subgoals, using domain-specific knowledge to interpret the high-level goals.


3.4.2 User model


The final form and content of an automatically generated caption should not be a function


simply of the data on which it is based and of the domain from which that data is drawn; the


purpose for which the caption is being generated should also guide its generation.


When speaking of a “user model” in the context of captions, it is important to remember


that there are two possible “users” of a caption-generation system: the graphic designer or


journalist who requires a caption to include in a presentation, and the eventual target audience


of that presentation. The needs of both of these users should be considered.


The user who is actually producing the caption will usually have some idea of what he


or she wants the caption to express—for example, which data values to emphasize or which


aspects of the data to concentrate on. He or she might know enough to be able to specify the


precise techniques from the system’s repertoire which should be used in producing the caption.


In this case, the system may simply produce a presentation using the specified techniques and


not need to consider the audience. However, the system user will not always be skilled at


creating presentations; he or she might not always know the exact technique to choose in order


to produce the right effect.
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Instead of such specific techniques, the input from the system user could also consist of


more abstract communicative goals for the caption (“intentions”, in the language of Fasciano


(1996)): for example, the user could want to persuade the audience that a particular company


is doing well compared to its competitors. In some cases, the user of the system might not


even know or care what the actual trends are in the data, but should still be able to specify what


the system should look for in the data and what it should do with what it finds. These abstract


goals must be mapped into specific presentation techniques.


In this case, it is crucial for the system to consider the audience of the presentation. They


are the ones who will be viewing the final presentation, and the system should ensure that


the result will have the right effect on them. The whole generation process should be geared


towards having an appropriate effect on the audience; whatever goals the system user specifies,


the generation process should meet those goals in creating the caption.


The system should have a library of possible presentation techniques which can be used in


creating its captions—these techniques can be applied at all of the steps listed in the preceding


sections, from the initial selection of content to the final textual realization step. They can spec-


ify which aspects of a dataset should be considered “interesting”, how to combine information


from different datasets in various contexts, and the word and sentence structures that should


be used to express the final assertions; the techniques may be domain-dependent or domain-


independent. A caption-generation system should have a variety of such techniques—as many


as are required to produce the particular types of text that are required.


The possible different techniques which a caption-generation system might use should be


derived from a corpus of texts of the sort the system aims to produce. The data and communica-


tive goals used to produce the corpus texts should both be considered when deriving rules to


use; any other available contextual information could also be useful in determining the reasons


behind the choice of presentation technique.


The existing systems take a variety of approaches to selecting among the various presen-


tation techniques. For example, PostGraphe and SelTex (Section2.3.2) use a table which
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associates each possible user goal (such ascomparison) with the schemata that can express it


and a weight indicating the efficiency of each schema at expressing that intention. A planning


algorithm then selects appropriate schemata to realize all of the user’s goals. SelTex’s various


textual presentation techniques and the heuristics which choose one over another were gathered


from an analysis of a variety of text-graphics pairs.


AutoBrief (Section2.3.3) also uses a planning process to refine and decompose the us-


er’s domain-specific communicative goals into medium-specific actions. It is not clear how


the rules used to perform this decomposition were derived; however, they aim to specify the


techniques which are most commonly used to achieve particular goals.


Ana’s (Section2.2.1) fourth module performs this task; it selects phrases from the lexicon


that capture the meaning of the messages and satisfy rhetorical constraints. The user may


specify constraints on the system which determine the complexity and rhetorical structure of


the generated text; the selection of phrases from the lexicon is guided by these constraints.


3.4.3 Integration with graphics


The eventual goal for a caption is to be presented alongside a graphic in order to point out


important features of the data displayed on the graphic. So far, this chapter has described only


the choices that must be made inside the text-generation component; however, a full caption-


generation system should also consider the features of the graphic the captions are generated


to accompany.


There are two aspects to this issue: the assertions to be made must be allocated among the


available output media, and the various components of the resulting presentation must be well-


integrated. Zelazny (1996), in a book aimed at business presenters, advocates first selecting


the textual message which is to be presented, and then producing a graphic which supports that


message. This is good advice for manually created captions, as people are good at choosing


appropriate words to express the message they want to present; however, in an automated


system, it is better to produce the various components of the presentation together, guided by a
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common goal.


Choosing how to allocate a particular message across the available media is a difficult task.


Generally, it is known that graphics are superior for showing quantitative relationships and for


presenting large amounts of statistical information, while text has the advantage of being able


to stress particular aspects of the data; however, specific rules which can guide an automated


system are not so easily stated.


The general question of allocating different components of a message among the available


media has not been solved. According to Roth and Hefley (1993), most systems use domain-


specific heuristics for making such selections, using criteria such as the number of relational


facts to be presented or whether the information consists of physical attributes or abstract ac-


tions. The effectiveness with which each medium realizes the purpose of a presentations should


also be considered.


Once the messages have been allocated among the available media, the task still remains


to produce a coherent presentation from the individual pieces. If a graph-generation system


and a caption-generation system use the same representation of the data, context, and user


goals, it is unlikely that the final presentation will be completely unacceptable even if there


is no interaction between the two systems. However, better results can be obtained if there


is communication between the graphics component and the text component. For instance, if


one of the goals is not possible to satisfy with graphics, then the graphics component could


communicate to the text component that it should emphasize that particular aspect of the data.


Also, the graphics generator could omit some information if it knows that it is already being


mentioned in the caption.


As well, if there is communication between the two components, then the text can explicitly


refer to physical features of the graphic (such as “the top line” or “the red bar”)—this enhances


the integration across the media. The graphics generator could even indicate to the textual


component that some part of the generated image may be difficult to understand, and a note


to explain the graphic itself would be added to the caption. Making sure that the graphics and
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text generators produce compatible results could also be the task of an overall coordinating


component, as in AutoBrief (Section2.3.3). This component would translate the user’s goals


into specific tasks for the two generators, making sure that the tasks are compatible.


Of the existing systems which generate integrated text-graphics presentations, only SAGE


(Section2.3.1) considers medium allocation; essentially, as much as possible is expressed in


graphics, and the remaining ideas are generated in the text. In AutoBrief, the user specifies


medium-independent goals which are translated into medium-dependent goals for the text and


graphics generators. However, there is as yet no attempt made to distribute the messages to be


generated between the medium-specific generators; each medium will express as much of the


content as it is capable of expressing.


PostGraphe’s (Section2.3.2) graphics generator and SelTex both use the same input data;


however, once again, there is no effort made to allocate the messages across the media. If


there is a graphical schema which will realize the intention, then it is used; if there is a textual


schema which will also realize the intention, then it is used too. The textual schemata come


from an analysis of a corpus of text-graphics pairs, so it is likely that they will mention the


correct sort of information and not be overly redundant; however, there is no explicit allocation


of components of the message to different output media.


3.5 Summary


A full caption-generation system should provide a framework in which a variety of rules can


be implemented. Specifically, it should allow for rules to guide all of the generation tasks—


content determination, discourse planning, sentence aggregation, lexicalization, referring ex-


pression generation, and lexical choice. These rules should be based on knowledge of presen-


tation techniques, of the domain of the data, and of the goals of the user. Any particular system


might implement only a skeletal version of any of these components; however, the system


should be designed in such a way that it is straightforward to add new rules or new knowledge
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to produce different sorts of captions as the need arises.


A full caption-generation system should work with the component which is producing the


graphics in order to create well-integrated graphics presentations; they may communicate di-


rectly, or some overall process may control the two generators. Various portions of the message


should be allocated to the two media by some process which considers the capabilities of each


medium to ensure that the result is coherent and does not contain any redundancies.


To perform these tasks, the caption-generation system should have knowledge of a variety


of textual presentation techniques and rules to guide the choice among them in order to have


the proper effect on the audience. It should also have some information about the domain from


which the input data comes, to guide both its choice of information to present and the words


and phrases it uses to present the selected information.







Chapter 4


CAPUT: A caption generation system


Chapter3 outlined the theory underlying caption generation and the requirements for a sys-


tem which generates such captions. Moving from the theoretical to the practical, this chapter


describes CAPUT, a particular implementation of a caption generator.


CAPUT1 is a system designed to generate single-sentence summaries of statistical data con-


tained in an input file. The summaries generated are suitable for use as captions for graphics


generated from the same input data. CAPUT was implemented in Java 1.1 (Arnold and Gosling,


1997), with CoGenTex’s RealPro (Lavoie and Rambow, 1997) as the linguistic realizer.


4.1 Generation algorithm


The following is a sketch of the procedure CAPUT follows to generate a caption. Later, a


particular Java implementation of this procedure is discussed.


The input to CAPUT is contained in a file that specifies a variety of information about the


desired form and content of the caption. There may also be any number of datasets in the


file, each of which can also have its own descriptive information. A simple tree is created to


represent the content of the input file, with a root node and one leaf node for each individual


1The name is not an acronym as such; the CAP refers to captions, of course, andUT could be thought of as a
reference to the University of Toronto if some explanation must be given.
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Figure 4.1: Initial tree structure—one node per dataset


dataset in the input. Descriptive information is attached at the appropriate level—to the root


for common information, and to the leaves for information which differs across datasets. An


example of an initial tree is shown in Figure4.1.


This initial tree contains all of the information in the input file, in the order in which it


was listed. However, quite often a successful caption will only mention some of the input data


items, and it may sort or group the information which it does mention in a variety of ways. The


next step in the generation process is to sort and group the datasets to produce a representation


of the content of the final caption to be generated; this is accomplished by modifying the initial


tree.


The modification of the tree may include the following steps: ordering the datasets, group-


ing the datasets, calculating totals or averages, or removing datasets that will not participate in


the final caption. The criteria used to reshape the tree depend on both the nature of the data and


the specification of the desired caption. This process advances in a top-down fashion, starting


at the root of the tree and continuing until there are no more groupings to be made.


For example, if the data for British Columbia, the Maritimes and Quebec increased, that for


Ontario remained constant, and Alberta’s data decreased, and the selected grouping technique


was to combine datasets with like parity, then the grouping would look like that shown in


Figure4.2after this portion of the process is complete.


After the tree has been modified, the next step is to generate a text plan for the caption. The


plan is created from the tree in a bottom-up fashion; each subtree generates a plan fragment


which represents its content, and these fragments are then combined at the parents until the


root node has the complete text plan.
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Figure 4.2: Revised tree structure—datasets sorted and aggregated


The final step is to send the text plan to the linguistic realizer. Currently, there is no auto-


matic generation of the graphic which the caption is to accompany, so the output of CAPUT is


simply the English version of the caption.


4.2 Implementation


The procedure described above was implemented in a Java prototype. This section describes


various features of the current Java implementation of CAPUT: the important classes, and the


other components such as the format of the input file and the lexicon and the text realizer used.


4.2.1 Important classes


CAPUT was implemented in Java 1.1 (Arnold and Gosling, 1997). The tasks of modifying the


tree and producing the text plan from the result are performed by a number of different Java


classes; for example, a particular class extracts the information from the datasets, while another


groups the datasets in the tree, and still another combines the information from the tree into


a text plan. In a particular caption-generation setting, specific subclasses which perform their


respective tasks in a particular way are used to ensure that the content and form of the caption


are appropriate to the situation. The following sections provide details of the main classes


used; AppendixA provides a hierarchy of all of the classes in the current implementation.
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TreeNode


Central to CAPUT’s caption-generation process is its tree of information. It is created from the


initial input file, and all of the subsequent processes act on this tree to produce the final caption.


All of the nodes of this tree are instances of the TreeNode class.


There are two distinct sorts of TreeNodes: LeafNodes and ParentNodes. As their names


suggest, these two types of nodes play two different roles in the tree; LeafNodes are at the


edge, while ParentNodes form the interior of the tree. A LeafNode contains a single dataset


and the context information associated specifically with that dataset.


ParentNodes also contain context information; any information attached to a ParentNode


implicitly applies to all children of that parent. As well, ParentNodes have a number of as-


sociated objects that help to reshape the subtree rooted at the node and to produce a text plan


representing that subtree. Every ParentNode must have an Aggregator, and it may have a Mes-


sageExtractor and a Template as well; if a particular ParentNode does not have one of these,


then it uses the object attached to its parent. This means that the root node of the treemusthave


all of these objects. These component classes are described below.


Field


Field is the abstract superclass of any sort of real-world context information which can be


attached to a node in the tree. Information attached to a ParentNode is inherited by its children


and can be overridden by information explicitly attached to the child. Each Field subclass fills


a specific slot on the node—for example, the Action class fills theactionslot. Currently, the


subclasses of Field are Subject, Action, and DirectObject.2


If more than one Field wants to fill the same slot on a node, then all of the Fields are stored


temporarily on that node. Then, when the information from the node is actually needed, all


of the other information about the nature of the desired caption is used to help choose the


2Confusingly, an instance of DirectObject can also represent an indirect object; this name was chosen to avoid
clashing with the built-in java.lang.Object class.
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Field Parameter Value
[consume] verb CONSUME


noun CONSUMPTION
direct DIRECT


[Canada] noun CANADA
adjective CANADIAN1


[watermelon] noun WATERMELON


Figure 4.3: Three example Fields


appropriate Field to use. For example, if the input specifies that the action should be realized


as a noun, but one of the possible Actions specifies only a verb form, then that Action can be


eliminated from consideration. This resolution is performed by the particular instance of Field


itself whenever it is necessary, so that (for example) Subjects know how to resolve conflicts for


thesubjectslot. If necessary, subclasses of the particular types of Field can also be created in


order to make more sophisticated choices.


The Field instances contain the information needed to lexicalize the concept they represent


in a variety of surface forms—the specification of the [consume] Action, the [Canada] Subject,


and the [watermelon] DirectObject are shown in Figure4.3. The direct field on [consume]


indicates that it takes a direct object. Note that the parameter values such as CONSUME are


RealPro lexicon entries, not actual words.


Dataset


A Dataset object contains the points constituting one dataset. It also contains a number of


methods which serve to extract various information from the dataset, for use in grouping the


datasets and generating the text plan. For example, there are methods to return the highest


value in the set or the difference between its initial and final values. Additional methods can


be added as required by other system components.
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Action: [eat]
Subject: [Canada]
Object: [watermelon]
Complements: [between [1990, 1998]]


Figure 4.4: Sample ActionSpec


ActionSpec


An ActionSpec represents a single action that is the subject of one of the datasets—for example,


the consumption of watermelons in Canada. In its simplest form, an ActionSpec has a subject,


a verb, and an (optional) object, which may be direct or indirect; each of these components is


an instance of a Field subclass. ActionSpec is a convenient way of encapsulating the context


information associated with a Dataset for use further on. An ActionSpec is created from each


LeafNode during the time that the text plan is being created. Figure4.4shows the ActionSpec


for the above example of watermelons in Canada.


An ActionSpec can also have an unlimited number of prepositional complements; these


may be specified in the input file along with the other descriptive information, or may be


added based on the aspect of the data on which the caption is concentrating. For example,


if the caption is considering the time period from 1990 to 1998, a complement representing


“between 1990 and 1998” would be added to the ActionSpec, as in Figure4.4.


An ActionSpec can be realized in a variety of ways; the example above, the consumption of


watermelons in Canada between 1990 and 1998, might become the text “Canadians eat water-


melons between 1990 and 1998” or the noun phrase “Canadian consumption of watermelons


between 1990 and 1998”. The form that is chosen is determined by the selected Template at


the time that the text plan is being generated. The Template will add to this text plan any rele-


vant information about the value of the action being measured, such as whether it increased or


decreased, to produce the final text plan; see the description of Template on page63 for more


information.


The information associated with several Datasets can be combined into one ActionSpec if


they are compatible—that is, if they differ in exactly one of their components. For example, a
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single ActionSpec could represent “American and Canadian consumption of watermelons” or


“Canadian consumption of watermelons and grapefruit”. See Section5.3 for examples of this


process.


Aggregator


Aggregator is an abstract class which is never directly instantiated; it is the subclasses of Ag-


gregator that do the actual work. An instance of an Aggregator subclass is attached to every


ParentNode in the tree. An Aggregator has two main functions: to sort and group the children


of the ParentNode with which it is associated, and to create a single text plan based on the in-


formation in the children of that node and corresponding to the subtree rooted at its associated


ParentNode.


Different subclasses of Aggregator can perform very different transformations on the tree.


For example, the ParityAggregator groups the children by the “parity” of the change in their


values (whether the values increased, decreased, or remained the same), as in Figures4.1and


4.2. The ComparisonAggregator sorts the nodes and then uses heuristics to determine which


elements to mention (for example, the highest or lowest value). The TotalAggregator and


AverageAggregator compute total or average values, respectively, of the variables represented


in the datasets. The Aggregator stores information about the choices it makes at this stage so


that the following stage can produce the appropriate text.


When producing the text plan from the subtree with which it is associated, an Aggregator


will extract information from each of its child nodes and combine them in whichever way is


appropriate. The information from the child nodes could consist of fragments of text plans


which are then combined using simple conjunctions such as “and” or “but”; the Aggregator


might also use the ActionSpecs or the data from its children to produce a text plan from scratch.


Which of these alternatives is used depends on the type of Aggregator and possibly on the


nature of the data. It may use the information stored in the previous step to guide this choice;


for example, if one child node remains, it must know whether it had the highest or lowest value,
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or was the only input to begin with, or had some other property which caused it to remain in


the tree after the first pass.


The type of Aggregator to use on the root node is specified in the input file. Any new


internal nodes created during the process of reshaping the tree are given an Aggregator of a


type determined by the original Aggregator.


MessageExtractor


Like Aggregator, MessageExtractor is an abstract class whose subclasses do the work. A Mes-


sageExtractor extracts information from Datasets; this information is then used by the Aggre-


gator to group and sort the Datasets. Different subclasses of MessageExtractor extract different


information; for example, an IncreaseDecreaseKey extracts the difference between the starting


and finishing values of a dataset, while a SingleValueKey uses a single point from the dataset.


See Chapter5 for examples of various MessageExtractors being used.


A MessageExtractor also performs the task of choosing an appropriate Trend object to be


used in the creation of the text plans. Each type of MessageExtractor has its own procedure


for selecting a Trend; it uses the information from the datasets, and may also query the Ag-


gregator for information about the choices it made to guide this process. For example, an


IncreaseDecreaseKey chooses an IncreaseDecreaseTrend if there was only one child node to


start with; this would result in sentences stating that something “increased” or “decreased”.


It chooses an IncreaseDecreaseCompareTrend if there were multiple children which are being


compared, which results in sentences containing phrases like “increased the most”. A subclass


of MessageExtractor can perform arbitrarily complicated operations to choose an appropriate


Trend.


The final task of a MessageExtractor is to attach the appropriate prepositional complements


to the ActionSpecs, so that this information can be included if necessary in the final caption.


The IncreaseDecreaseKey adds the starting and ending dates of the data in the dataset, for


instance, while the PercentageChangeKey also inserts the percentage increase or decrease.
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Trend


A Trend represents the trend that was detected in a particular Dataset by the MessageExtractor.


Once again, Trend is an abstract class; it is the subclasses of Trend that implement the actual


process of describing the trend. For example, a SingleValueTrend describes the fact that a


single point or a set of single points had the highest or lowest values, resulting in generated


text of the form “Canadian watermelon consumption had the highest value”.


Trends can generate text plans in the form of a verb phrase (e.g., “increased the most”), an


adverb (e.g., “less often”), or an adjective (e.g., “more”). Specific types of Trends might not be


able to generate all of these forms; if it cannot produce the requested form, the Trend will throw


an exception to indicate that the type of caption specified in the input cannot be realized. The


selected Template determines which sort of text plan the Trend should create and integrates the


result with the text plan from the ActionSpec.


The type of Trend to use is not specified in the input; rather, it is selected by the Mes-


sageExtractor based on the data and possibly the state of the Aggregator, as specified in the


description of the MessageExtractor class.


Template


A Template converts a set of ActionSpecs and a Trend into a text plan. Different subclasses of


Template will put the information together in different ways. For example, if the action that


was measured was Canadian watermelon consumption and it increased, then a NounTemplate


would realize it as “Canadian consumption of watermelon increased”, with the action as a


noun phrase and the trend as a verb. By contrast, a VerbTemplate would produce “Canadians


eat more watermelons” on the same input; in this case, the action is a verb phrase and the trend


is the adjective “more”.


The input file specifies the type of Template to use in generating the caption. Syntactic in-


formation about the final caption form can also be specified as arguments to the Template—for


example, the input could request a caption in the past tense or the progressive mood. Examples
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template: NounTemplate
extractor: SingleValueKey
aggregator: ComparisonAggregator
context: buy DirectObject( WATERMELON )
-----
context: australia
1998 1250


context: canada
1998 1500


“Canadian consumption of watermelon in 1998 has the highest value.”


Figure 4.5: A sample CAPUT input file and its output


of the use of different Templates with various arguments are presented in Chapter5.


4.2.2 Other components


In addition to the classes described above and their subclasses, CAPUT includes a number of


other components. The input to the system comes from an input file in a particular format; the


system has access to a lexicon; and it uses an external realizer to produce the final form of the


text. This section describes each of these components of CAPUT.


Input file


The input file specifies the data from which the caption is to be generated, as well as a variety


of information to guide the choices made during the generation process. A sample input file


and its corresponding output are shown in Figure4.5.


There are two parts to an input file: the preamble and the individual datasets. The preamble,


which gives the specification for the type of caption which should be generated, has four fields.


If any of these fields is omitted, then a generic default is used. Thetemplatefield determines


which template should be used for the caption—for example, whether the action which is being


measured should be realized as a noun or as a verb phrase.


Theextractorfield specifies which aspect of the data to use for grouping or sorting. In the


example, a SingleValueKey is specified; this uses the value at a single point, rather than some
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other aspect of the data such as the overall increase or decrease.


The keywordaggregatordeclares which Aggregator should be used to group the datasets


and to combine their assertions. A ComparisonAggregator, specified in this example, uses


heuristics to choose the highest or lowest values, depending on the characteristics of the data.


Finally, thecontextsfield provides a list of contexts to guide lexical choice. These contexts


can be named concepts from the lexicon, such asbuyin the example—see the following section


for a discussion of the lexicon. They may also be the specifications of individual Fields, such


as thewatermelonDirectObject. All of the contexts listed at this point in the input file are


attached to the root ParentNode of the initial tree.


The second section of the input file consists of the individual datasets. Each dataset has


its own list of contexts, which can once again be either named concepts from the lexicon or


the specifications of Fields. These contexts are attached to the LeafNode corresponding to a


particular dataset. Each dataset also specifies a list of (x, y) pairs which describe the data.


All of the classes (such as Template or Aggregator) that can be directly specified in an input


file are instantiated by the same process. First, an instance of the desired class is created, and


then any specified arguments are passed to that instance. So that this can be done, all such


classes inherit from BasicObject, a class which provides methods for setting the parameters


once the class has been created; the classes must also provide a no-argument constructor so


that they can be dynamically instantiated.


Lexicon


CAPUT’s knowledge of the lexicon of the domains about which it is generating captions comes


from a list of “contexts” which it reads in on startup. These contexts specify appropriate lexical


items to use in a particular context—for example, the context in Figure4.6 shows the appro-


priate words to use when the topic is consumer purchases or Canada. Any words in all-capitals


specify entries that appear in RealPro’s lexicon (see the following section for more on Real-


Pro), while words in lower case are unknown to RealPro. If a word is not in RealPro’s lexicon,
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// purchasing context
buy {


Action( CONSUME, CONSUMPTION, DIRECT )
Action( BUY, DIRECT )
Action( PURCHASE1, DIRECT )


}


// Canadian context
canada {


Subject( CANADA, CANADIAN1 )
}


Figure 4.6: Sample lexical knowledge base concepts:purchasingandcanada


then its syntactic category must be specified in the text plan when it is used so that the caption


can be realized.


When the file is read, the lexical items are instantiated using the same method as the classes


specified in the input file (see the previous section). As well, each lexicon context (such as


canada) is stored in a hash table under its name so that the lexical items in that context can be


retrieved if the context is specified in the input file.


Each context in the list specifies one or more lexical items. When one of these contexts is


specified in an input file, the associated lexical items are attached to the appropriate TreeNode.


If there is more than one item attempting to fill the same slot during the generation process—


such as with the three Actions listed under “buy”—then the conflict is resolved as specified


above in the description of the Field class.


Text realizer


CAPUT uses CoGenTex’s RealPro text realizer (Lavoie and Rambow, 1997) for the final step


of linguistic realization. RealPro is a fast, portable linguistic realizer implemented in C. It


developed out of the text realizers used by systems such as LFS, FOG, and GOSSIP (see


Chapter2).


The input to RealPro is the Deep-Syntactic Structure—“DSyntS” for short. This structure


is based on Mel’̌cuk’s Meaning-Text Theory (Mel’ čuk, 1988). A DSyntS is an ordered tree
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“This boy sees Mary.”


Figure 4.7: An example of DSyntS


SEE [ ] (
I BOY [ article:def ] (


ATTR THIS1 [ ]
)
II Mary [ class:proper_noun ]


)


Figure 4.8: ASCII representation of sample DSyntS


with labelled nodes and arcs. Every node is labelled with an uninflected lexeme from the target


language (in this case, English); there are no non-terminal nodes. The arcs are labelled with


syntactic relations such assubjectrather than semantic relations likeagent. No function words


are represented in the tree (thus “deep” syntactic structure); it consists only of meaning-bearing


lexemes. The input to RealPro fully determines the output, but it specifies it at an abstract level.


An example of a DSyntS (adapted from (Lavoie and Rambow, 1997)) is shown in Figure4.7.


Note that if the featurequestion:+ is added to the verb andnumber:pl to theboy node, then


the resulting text is “Do these boys see Mary?” This illustrates that function words do not


need to be included in the input DSyntS and that syntactic issues are handled automatically.


Figure4.8 shows the ASCII representation of the DSyntS of Figure4.7; for the remainder of


this thesis, the ASCII representation will be used whenever DSyntS is displayed.


The tree structure of DSyntS is based on the notion of syntactic dependency. Broadly s-


peaking, each lexeme in the sentence “depends” on exactly one other lexeme; in other words,


the dependent lexeme is present in the sentence because of the presence of the lexeme it de-


pends on. There is exactly one lexeme which is not dependent on any other; in a full sentence,


this will always be the main verb. This independent lexeme forms the root of the tree.
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As the sentence is generated, the DSyntS is transformed into a Surface-Syntactic Structure


(SSyntS); here, the abstract dependency relations used in the input such assubjectare trans-


formed into concrete relations such aspredicative. The next step is to transform the SSyntS into


a Deep-Morphological Structure (DMorphS). This is done by using rules of ordering of gover-


nors and their dependents and of dependents at the same level, and by adding default features


to the lexemes. Then a Surface-Morphological Structure (SMorphS) is created by converting


the abstract lexemes into their surface representations. Next, a graphical component adds ab-


stract punctuation and formatting instructions to the SMorphS to produce the Deep-Graphic


Structure (DGraphS). Finally, formatters transform the DGraphS into formatting instructions


for the targeted output medium, which is currently one of ASCII, HTML, or RTF.


RealPro can be run in the background as a generation server; DSyntS can then be sent to


it, and it will generate the text on the fly. RealPro comes with a Java interface, which allows


DSyntS to be created and sent to the server programmatically. This is how RealPro is used in


CAPUT.


The main class in the Java API to RealPro is CGTSyntNode, which represents a deep-


syntactic node with or without dependents. A DSyntS is represented in Java by a number


of CGT SyntNodes arranged in a tree structure; it can be manipulated as needed during the


generation process to produce an appropriate plan for the final text. Once the final DSyntS has


been created, the root CGTSyntNode is sent to the server for realization via the CGTRealizer-


SocketClient class, which connects to a running RealPro server, sends the DSyntS, and returns


the string of generated English text.


4.3 CAPUT and generation principles


Chapter3 described a set of principles which a caption-generation system should follow. This


section examines CAPUT in the context of those principles. While CAPUT does not implement


all of the principles outlined in that chapter, it does consider a number of them and can be
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extended to be more comprehensive in the future.


4.3.1 Generation tasks


Section3.3 presented Reiter and Dale’s (1997) list of generation tasks, and proposed how


each task should be addressed by a system to generate captions for information graphics. This


section considers CAPUT’s approach to each of these tasks.


Content determination


Content determination consists of selecting the relevant information from each dataset in the in-


put. In CAPUT, this task is performed by the specific type of MessageExtractor specified by the


system user in the input file. The various types of MessageExtractors currently implemented


in CAPUT choose different information from the datasets—for example, the absolute increase


or decrease in value, the percentage change from start to finish, or the value of a variable at a


specific point.


In the present implementation, CAPUT does not have any knowledge about the effect of


selecting different features from the data or any rules to choose among the possibilities. It is the


user who must specify the MessageExtractor in the input, so it is the user alone who considers


issues such as the graphic the caption is to accompany, the domain of the data, and the desired


effect on the audience. In future versions of the system, these issues can be considered—see


Section6.3.2for proposed implementations.


The set of MessageExtractors in CAPUT can easily be extended to allow the generation


process to concentrate on new aspects of the data. A new MessageExtractor requires that a


programmer specify the following: a “key” which can be used by the Aggregators to sort and


group the data; one or more new types of Trend which will produce appropriate output from


the data selected by the MessageExtractor; and a procedure for creating an appropriate Trend


object given a dataset and the state of the Aggregator.


This basic method of determining content—extracting information of a particular type from
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each dataset—is, of course, not novel. However, the fact that it is done by special-purpose


classes instead of by a built-in part of the system means that it is more flexible than other


methods which build the selection rules into the core of the system itself. This method is


domain-independent in general, and domain-specific classes can be created to implement rules


such as the 120 used by Ana (Section2.2.1) in the stock market domain.


Discourse planning


Discourse planning is the process of structuring the messages produced by the content deter-


mination step into a coherent text. In CAPUT, this task is performed by the Aggregators during


the process of converting the initial tree into a representation of the content of the caption.


The type of discourse planning performed on a particular caption is determined by the type


of the Aggregator on each parent node. The top-level Aggregator is specified by the user in the


input file, while the type of any sub-Aggregators is determined by the type of the original. As


in content determination, therefore, it is currently the task of the user to decide what form of


planning is to be done; there is no consideration of the other factors. Once again, Section6.3.2


presents possible enhancements to CAPUT to allow the system to perform these tasks.


The various Aggregators currently implemented in CAPUT perform a wide variety of ag-


gregations on the descendants of the node with which they are associated. The simplest Aggre-


gator, a BasicAggregator, does not modify the tree at all, while a SortAggregator simply sorts


the children by the value of their sort key. A ParityAggregator groups the children by the parity


(positive, negative, or zero) of its sort key, while a TotalAggregator computes totals grouped


by a specified field.


This framework allows for aggregation rules as complex as required to be included. For


example, Corio’s (1999) rules about which element(s) to mention in a comparison (e.g., the


highest, highest two, or lowest) are implemented in the ComparisonAggregator. To add new


rules would require the creation of a new Aggregator subclass, and possibly the addition of new


methods to other classes, especially Dataset and MessageExtractor, so that the new Aggregator
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could access the sort of information it needs in order to structure the children of the node it is


attached to.


It is possible that certain Aggregators do not interact well with particular MessageExtrac-


tors. For example, it makes no sense to use a TotalAggregator with a PercentageChangeKey;


this would produce a caption that talked about the total percentage increase or decrease across


datasets, a meaningless value. Aggregators or MessageExtractors can verify that they are com-


patible before attempting to produce a caption, and possibly output a message to the user or


fall back to a generic implementation if the incompatibility is profound.


This method of discourse planning is inspired by that used in GOSSIP (Section2.2.4)


and LFS (Section2.2.2). The nodes in GOSSIP’s topic trees contain more and more varied


information than those in CAPUT’s trees. For example, the nodes may have labels such as


res-cons(resource consumption) orint-period (interactive period during the session), while


the arcs connecting the nodes represent conceptual links such as aspect, agent, or action. In


the case of CAPUT, the data to be represented is less structured than the audit trails used by


GOSSIP, so the simple tree of datasets and dataset groupings is sufficient.


Sentence aggregation


Sentence aggregation translates a set of conceptually-grouped messages which are the output


of the discourse planner into a single overall text plan. This task is executed on the second pass


through the modified tree, when the actual text plan is being created.


The Aggregator on each parent node performs the task of combining the information in


each of its child nodes into a text plan. How this is accomplished is determined by the type of


the Aggregator. For example, a BasicAggregator or SortAggregator will simply combine the


DSyntS produced by each of its children with the conjunction “and”, while a ParityAggregator


will perform more elaborate transformations.


The more sophisticated Aggregators may attempt to combine the ActionSpecs from each


of their children into a single ActionSpec; currently, this is possible only if the ActionSpecs
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differ in exactly one feature. An example of this process is given in Section5.6.


Sentence aggregation follows a similar process in all of the preceding systems which ad-


dress this issue; concepts are grouped together if they are sufficiently similar. When the data


itself is more complex, then the meaning ofsimilar changes, as in GOSSIP (Section2.2.4);


however, the idea remains the same, and CAPUT will still be able to perform aggregation given


suitable classes to perform the comparisons.


Lexicalization and referring expression generation


Lexical choice, choosing words to describe the messages extracted from the data, is performed


on the second pass through the tree, after it has been reshaped during the first pass. There


are two sorts of choices that must be made in this step: choosing words to describe both the


trends themselves (lexicalization) and the domain elements which make up the trends (referring


expression generation).


The description of the trends is performed by several different components in CAPUT. The


Trend selects the appropriate manner to express the features of the data; the type of Trend to


use is selected by the chosen MessageExtractor, using the features of the data and the state of


the Aggregator. For example, if the MessageExtractor measures a single value and it appears


in the caption because its value was among the highest, then the eventual text produced would


be of the form “... had the highest value”. The Template specifies the overall syntactic form of


the caption and integrates the results of the other processes into a single text plan. The type of


Template to use is specified by the user in the input file.


In the current system, each Trend has at most one way to realize its information in the


context of a given Template. In other words, if the message to be expressed is that the value of


a variable had the largest increase and the Template specifies that the Trend should be realized


as a verb, then the verb phrase “increase the most” will always be generated. In the future, the


user should be able to specify features which would allow the system to choose among a larger


variety of ways to express a message.
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In addition to the trends detected in the data, the data itself must be described appropriately


in the caption. As is the case when describing the trends, the Template specifies the desired


part of speech for each component; the individual subclasses of Field then provide the required


lexical items. This process is mediated by the ActionSpecs, which gather all of the context


information (Field subclasses) associated with each grouping of datasets.


Some selection is done among the possible lexical items which could be used to describe


an entity; if there is more than one possible word to describe it, then the conflict is resolved


by the Field subclasses themselves, using the rest of the information about the caption to guide


the choice. This process could be extended in future versions to provide more alternatives and


more sophisticated methods of distinguishing between them.


The possible domain vocabulary can be specified in CAPUT’s lexicon, or the lexical items


may be directly indicated in the input file. New items can be added very simply to the input file,


or if they are to be used multiple times, to the lexical knowledge base. Words with irregular


forms (such as the verb “to eat”) must also be added to RealPro’s lexicon if they are not already


there, so that sentences using them will be syntactically correct. The capabilities of the lexical


items could be extended if needed in order to enable more complex selection processes among


them.


Both of these forms of lexical choice take place at the same time in CAPUT, each time that


a text plan fragment must be created for a message. The Template specifies the slots that must


be filled, and the ActionSpecs and Trends together provide the text plan fragments to fill those


slots. Additional syntactic information can be specified in the input file to further guide the


generation process—for example, the required tense of the verb in the final caption.


The approach to describing the trends is more flexible than that used by some of the previ-


ous systems; for example, TREND (Section2.2.6) uses very inflexible templates to produce its


texts. Others are more flexible; STREAK (Section2.2.5), for example, chooses among differ-


ent parts of speech to express its facts depending on how they are to be inserted into the output,


in a process similar to that employed by CAPUT.
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When it comes to describing domain entities, only STREAK among the previous systems


chooses from among a set of alternatives; its choice depends mostly on the syntactic role that


the entity is to play in the output. Other systems either have the domain vocabulary built in (as


in FOG (Section2.2.3) or Ana (Section2.2.1), for example) or else specify it in the input to


the system (SelTex, Section2).


Linguistic realization


CAPUT uses RealPro for the final realization step, which means that many intermediate results


are stored as DSyntS. However, it is not tied to RealPro; any other linguistic realizer could be


used as well. A Java interface to the realizer would be required in order to integrate it with


the rest of CAPUT; all of the methods in CAPUT which create DSyntS would then have to be


rewritten to use this new representation. However, the process of creating and reshaping the


tree is not at all dependent on the form of the output and would not be affected by a change in


linguistic realizer.


RealPro developed from the text realization systems used in LFS, FOG, and GOSSIP (Sec-


tions 2.2.2–2.2.4); these systems use a representation similarly based on Meaning-Text the-


ory for the input to the realizer. Other systems also use existing realizers, including SAGE


(Section2.3.1), AutoBrief (Section2.3.3), and STREAK (Section2.2.5), all of which employ


FUF/SURGE. Some of these (e.g., STREAK) use the input language of the selected realizer


throughout the generation process; others, such as AutoBrief, use an internal conceptual rep-


resentation which is then translated into the appropriate form for the actual realization step.


CAPUT follows this latter paradigm, as it was more straightforward to implement the process


of modifying the tree on custom-built structures.


4.3.2 Other necessities


In addition to the generation tasks described above, a caption-generation system also has other


requirements: knowledge of the domain of discourse, a model of the audience, and the ability
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to be integrated with a graphics generator. This section describes CAPUT’s approach to these


requirements.


Domain knowledge


The domain knowledge of CAPUT currently consists only of a domain-specific lexicon, which


specifies words appropriate for use in a variety of predefined domains. For example, when


the data has to do with the consumption of food, words such as “consumption” and “eat” are


appropriate.


The current implementation of domains could be extended to contain more information;


for example, domains could specify appropriate Aggregators or MessageExtractors to use, or


particular language which can be used to describe the trends. A weather domain, for instance,


could indicate to the system that words like “hot” and “cold” are to be preferred when talking


about extremes, rather than the generic “high” and “low”.


This use of a domain only as a lexicon is similar to the approach taken by SelTex (Sec-


tion 2), although it is somewhat more flexible. Ideally, the domain model should be extended


until CAPUT is capable of domain-specific reasoning similar to that employed by the domain-


dependent systems such as Ana (Section2.2.1) or SAGE (Section2.3.1).


User model


The only user that CAPUT currently deals with explicitly is the actual user of the program—the


person who is producing the caption. This user can specify a variety of constraints on the style


and content of the caption, within the limits of what is implemented in CAPUT. CAPUT relies


on this user or on some other external source to guide the selection of Aggregator, Template,


and MessageExtractor; if none is specified, then it uses a generic default.


The components of CAPUT do have some knowledge of their own. For example, the Com-


parisonAggregator uses heuristics developed in Corio (1999) to select the appropriate element


or elements to concentrate on when a caption comparing several values is to be produced. How-
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ever, this knowledge is implicit in the rules themselves, rather than explicitly represented in a


form which CAPUT reasons about. Other than the knowledge implicit in the implementation


of some of its components, CAPUT does not have any information about the effect of any of its


presentations on the audience.


The goal of CAPUT is to generate textual summaries of data that are suitable for presenta-


tion alongside a graphic produced from that same input data. Given this, it is possible that some


overall coordinating system will process the top-level goals and transform them into specific


goals which can then be expressed as input parameters to CAPUT, as well as specific goals for


the graphics system; this is the technique used by AutoBrief (Section2.3.3). If so, then CAPUT


would not have to consider issues of the user model. The planning models used in SelTex (Sec-


tion 2) and AutoBrief are probably the best method of integrating presentation knowledge into


CAPUT; this model lends itself well to planning the graphical component of the presentation


as well. Integration with graphics is discussed more fully in the following section.


Integration with graphics


CAPUT was designed to produce just the text portion of an integrated multimodal presentation.


It does not explicitly consider issues of medium allocation and coordination across media,


although (as mentioned above) it has some implicit knowledge in its rules for content selection


(which were derived partly from actual text-graphics pairs).


A skilled user could use CAPUT as a tool in the process of preparing presentations, pos-


sibly alongside a system which generates graphics automatically, or with the graphics being


produced by hand. If the graphics and the data use the same underlying data, it is likely that


the caption will not be bad.


However, better results could be obtained if CAPUT were integrated with some graphics


generator. The model could be that of AutoBrief, with a top-level controlling program driving


the two individual generators; the two generators could also run in parallel and communicate


with each other, as in SAGE (Section2.3.1). Section6.3.2discusses integration with a graphics







CHAPTER 4. CAPUT: A CAPTION GENERATION SYSTEM 77


generator in more detail.


4.4 Summary


This chapter has presented CAPUT, a particular implementation of a caption-generation system.


CAPUT has several novel features. It creates an initial tree representing the input data, and then


chooses the content of its captions by modifying this tree. CAPUT is made up of a number of


abstract classes, the subclasses of which produce a variety of behaviour. New subclasses can


easily be added if new types of captions are required.


CAPUT addresses all of the principles described in Chapter3 to some degree. Although it


does not currently incorporate any presentation knowledge of its own, such knowledge is easily


added. CAPUT can also be integrated with a graphics generation system to produce coordinated


multimedia presentations; all that is needed is an intermediate layer to convert the end-user’s


rhetorical goals into settings of CAPUT’s input parameters.







Chapter 5


Examples


This chapter presents several examples which demonstrate the capabilities of CAPUT. The first


few examples produce simple enumerations of the features of the input data, while the later


examples perform more involved manipulations to produce text that is more like a caption than


a summary.


5.1 Example 1: Basic


Example 1 shows a very simple caption. The input file1 for this example is shown in Figure5.1,


and Figure5.2shows a graph of the data.


The first step in the caption-generation process is to read in the input and create the initial


tree to represent it. The tree created for this example is shown in Figure5.3.


Once the tree is created from the input, the next step is to use the chosen Aggregator and


MessageExtractor to reshape it. However, in this case, the user has specified a BasicAggrega-


tor, which does not modify the tree. So, in this case, the first pass through the tree does not


change anything.


The next step is to generate the fragments of DSyntS for each of the subtrees, using the


1The data for all examples is fictional.
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template: VerbTemplate
extractor: IncreaseDecreaseKey
aggregator: BasicAggregator
context: spend DirectObject( healthcare )
-----
context: quebec
1990 1400
1998 1450


context: alberta
1990 1500
1998 1400


context: british_columbia
1990 1610
1998 1900


context: ontario
1990 1700
1998 1700


context: maritimes
1990 1575
1998 1640


Figure 5.1: Sample input file


MessageExtractor and the Template. We will concentrate the “Quebec” node for this example,


but the same process takes place on the other nodes of the tree as well.


First, an ActionSpec is created from the information in the dataset on the “Quebec” node.


This ActionSpec is shown in Figure5.4. At this point, the entries in this ActionSpec are not


yet lexicalized; they represent only concepts.


An appropriate Trend object is also created for use in the generation of the DSyntS; the


type of this Trend is selected by the MessageExtractor and is determined by the nature of the


data. In this case, the MessageExtractor is an IncreaseDecreaseKey and the data for Quebec


shows an increase, so an IncreaseDecreaseTrend with a positive direction is created.


Once the ActionSpec and the Trend have been created, they are passed to the Template


for conversion into DSyntS. The Template in this case is a VerbTemplate, which realizes the


action as a main clause and the Trend as an adverb or adjective. The Template first converts


the ActionSpec into the DSyntS shown in Figure5.5. It then creates an adverb from the Trend
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Figure 5.2: Graph of the sample data


Figure 5.3: Initial tree for Example 1


Action: [spend]
Subject: [Quebec]
Object: [healthcare]
Complements: [between [1990, 1998]]


Figure 5.4: Action specification of “Quebec” node
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SPEND [ ] (
I QUEBEC [ ]
III healthcare [ class:common_noun article:no-art ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))


“Quebec spends on healthcare between 1990 and 1998.”


Figure 5.5: DSyntS fragment for “Quebec” action


SPEND [ ] (
I QUEBEC [ ]
III healthcare [ class:common_noun article:no-art ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
))
ATTR MORE1 [ rheme:+ ]


)


“Quebec spends more on healthcare between 1990 and 1998.”


Figure 5.6: DSyntS fragment for “Quebec” action (Trend added)


object and attaches that to the generated DSyntS to create the structure in figure5.6.


A similar process creates DSyntS fragments for each of the other nodes in the tree. Finally,


the aggregator must combine these fragments into a single DSyntS; the BasicAggregator does


this in the simplest possible way, by putting “and” between each of them. The DSyntS for the


final caption is shown in Figure5.7.


5.2 Example 2: Grouping by parity


Obviously, there is a great deal of redundancy in the caption generated in Example 1; this


redundancy could be removed by judicious grouping of the nodes in the tree. This involves


choosing a different type of aggregator, a ParityAggregator. For this example, the data is the


same; only the preamble of the input file has changed, as shown in Figure5.8. Notice that the


only difference between this one and Example 1 is in the choice of aggregator.
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SPEND [ ] (
I QUEBEC [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
ATTR MORE1 [ rheme:+ ]
COORD AND2 [ ] (


II SPEND [ ] (
I ALBERTA [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
ATTR LESS1 [ rheme:+ ]
COORD AND2 [ ] (


II SPEND [ ] (
I BRITISH_COLUMBIA [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
ATTR MORE1 [ rheme:+ ]
COORD AND2 [ ] (


II SPEND [ ] (
I ONTARIO [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
ATTR THE_SAME [ rheme:+ ]
COORD AND2 [ ] (


II SPEND [ ] (
I MARITIMES [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
ATTR MORE1 [ rheme:+ ]


)))))))))


“Quebec spends more on healthcare between 1990 and 1998, Alberta spends less on healthcare between
1990 and 1998, British Columbia spends more on healthcare between 1990 and 1998, Ontario spends
the same on healthcare between 1990 and 1998 and the Maritimes spend more on healthcare between
1990 and 1998.”


Figure 5.7: Final DSyntS for Example 1
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template: VerbTemplate
extractor: IncreaseDecreaseKey
aggregator: ParityAggregator
context: spend DirectObject( healthcare )


Figure 5.8: Input file preamble for Example 2


Figure 5.9: Revised tree for Example 2


The initial tree for Example 2 is the same as the one for the previous example (see Fig-


ure 5.3); however, this time, when the aggregator is run, it reshapes the tree by sorting the


nodes by the amount of change and then grouping nodes with like parity (increase, decrease,


or no change). The result of this grouping is shown in Figure5.9.


Now that the tree has been revised, the next step is to generate the DSyntS from each


subtree. For the subtrees with one element, the process is exactly as in the previous example;


the interesting subtree is the “Increase” tree with its three leaves.


Since the tree was grouped by a ParityAggregator, the system knows that all of the nodes


in each subtree have the same Trend; it can therefore create a single ActionSpec for the whole


subtree and apply the Trend to that. The ActionSpec for the “Increase” subtree is shown in


figure5.10. Notice that, since all three actions differ in only one field of the ActionSpec, it was


possible to create a single specification to cover all three of them. This is not always possible;


see Example 6 for a case in which the ActionSpecs cannot be combined.


Action: [spend]
Subject: [BritishColumbia], [Maritimes], [Quebec]
Object: [healthcare]
Complements: [between [1990, 1998]]


Figure 5.10: Action specification of “Increase” subtree
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SPEND [ ] (
I BRITISH_COLUMBIA [ ] (


COORD AND2 [ ] (
II MARITIMES [ ] (


COORD AND2 [ ] (
II QUEBEC [ ]


))))
ATTR MORE1 [ rheme:+ ]
III healthcare [ class:common_noun article:no-art ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
))))


“British Columbia, the Maritimes and Quebec spend more on healthcare between 1990 and 1998”


Figure 5.11: DSyntS fragment for “Increase” subtree


This ActionSpec creates a corresponding DSyntS which has all three of the specified sub-


jects, to which the Trend is then applied as in Example 1; the result of this process is shown in


Figure5.11.


Finally, the ParityAggregator combines the fragments from each of its subtrees into a final


DSyntS, shown in Figure5.12. Notice that ParityAggregator uses “but”, rather than “and”, to


combine the DSyntS.


5.3 Example 3: Changing the Template


Examples 1 and 2 both used a VerbTemplate; this Template realizes the ActionSpec as a verb


and the Trend as an adjective or adverb. By contrast, NounTemplate realizes the action as a


noun phrase and the Trend as a verb. Figure5.13 shows the preamble of the input file for


Example 3. The only difference between this input file and the file in Example 2 is in the


Template.


The process of generating this caption proceeds in the same way as described in Example


2 until the time comes for the Template to create DSyntS fragments from the subtrees. This


time, the ActionSpec for the “Increase” subtree (Figure5.10) is realized as a noun phrase as
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SPEND [ ] (
I BRITISH_COLUMBIA [ ] (


COORD AND2 [ ] (
II MARITIMES [ ] (


COORD AND2 [ ] (
II QUEBEC [ ]


))))
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
ATTR MORE1 [ rheme:+ ]
COORD BUT [ ] (


II SPEND [ ] (
I ONTARIO [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
ATTR THE_SAME [ rheme:+ ]
COORD BUT [ ] (


II SPEND [ ] (
I ALBERTA [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
ATTR LESS1 [ rheme:+ ]


)))))


“British Columbia, the Maritimes and Quebec spend more on healthcare between 1990 and 1998, On-
tario spends the same on healthcare between 1990 and 1998 but Alberta spends less on healthcare
between 1990 and 1998.”


Figure 5.12: Final DSyntS for Example 2


template: NounTemplate
extractor: IncreaseDecreaseKey
aggregator: ParityAggregator
context: spend DirectObject( healthcare )


Figure 5.13: Input file preamble for Example 3
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SPENDING [ ] (
ATTR BRITISH_COLUMBIAN1 [ ] (


COORD AND2 [ ] (
II MARITIME [ ] (


COORD AND2 [ ] (
II QUEBECOIS [ ]


))))
III healthcare [ class:common_noun article:no-art ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
))))


“British Columbian, Maritime, and Quebecois spending on healthcare between 1990 and 1998”


Figure 5.14: DSyntS fragment for “Increase” subtree—noun phrase


INCREASE1 [ ] (
I SPENDING [ ] (


ATTR BRITISH_COLUMBIAN1 [ ] (
COORD AND2 [ ] (


II MARITIME [ ] (
COORD AND2 [ ] (


II QUEBECOIS [ ]
))))
III healthcare [ class:common_noun article:no-art ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))))


“British Columbian, Maritime, and Quebecois spending between 1990 and 1998 on healthcare increas-
es”


Figure 5.15: DSyntS fragment for “Increase” subtree—noun phrase (Trend added)


shown in Figure5.14. The Trend is then realized as a verb and the DSyntS generated from the


ActionSpec is attached as the verb’s subject, resulting in the structure shown in Figure5.15.


The fragments from the three subtrees are combined using “but”, as in the previous section,


resulting in the DSyntS shown in Figure5.16.
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INCREASE1 [ ] (
I SPENDING [ ] (


ATTR BRITISH_COLUMBIAN1 [ ] (
COORD AND2 [ ] (


II MARITIME [ ] (
COORD AND2 [ ] (


II QUEBECOIS [ ]
))))
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
))))
COORD BUT [ ] (


II REMAIN [ ] (
ATTR THE_SAME [ ]
I SPENDING [ ] (


ATTR ONTARIO [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
))))
COORD BUT [ ] (


II DECREASE1 [ ] (
I SPENDING [ ] (


ATTR ALBERTAN1 [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))))))))


“British Columbian, Maritime and Quebecois spending between 1990 and 1998 on healthcare increas-
es, Ontario spending between 1990 and 1998 on healthcare remains the same but Albertan spending
between 1990 and 1998 on healthcare decreases.”


Figure 5.16: Final DSyntS for Example 3
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template: NounTemplate
extractor: IncreaseDecreaseKey
aggregator: ComparisonAggregator
context: spend DirectObject( healthcare )


Figure 5.17: Input file preamble for Example 4


Figure 5.18: Revised tree for Example 4


5.4 Example 4: Comparing values


All of the preceding examples mention all of the values in the input; however, a good caption


generally concentrates on just an “interesting” subset of the values: for example, the highest or


the lowest value. The ComparisonAggregator implements the rules described by Corio (1999)


that specify how the characteristics of the input data should determine which aspects of it are


mentioned in the output. The input file preamble for Example 4 is shown in Figure5.17; it


differs from the input in Example 3 only in the choice of aggregator.


Once again, the initial tree is the same as in the previous examples (Figure5.3). Once


the initial tree has been created, the aggregator—in this case, a ComparisonAggregator—takes


over. This aggregator uses the values of the data to select which dataset(s) should appear in the


final caption. Since the value for British Columbia, which has the highest increase, increases


more than 10% more than that for the next dataset (the Maritimes), the ComparisonAggregator


decides that the B.C. dataset should be the only one in the final caption. The aggregator also


stores the fact that the British Columbia dataset was chosen because it was the highest; this


allows an an appropriate Trend to be selected later on. The revised tree is shown in Figure5.18.


The other difference between Example 4 and the others is that a different Trend is chosen—


one which reflects the fact that the remaining dataset not only increased, but had the highest
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INCREASE1 [ ] (
ATTR the_most [ class:adverb rheme:+ ]
I SPENDING [ ] (


ATTR BRITISH_COLUMBIAN1 [ ]
III healthcare [ article:no-art class:common_noun ]
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))))


“British Columbian spending between 1990 and 1998 on healthcare increases the most.”


Figure 5.19: Final DSyntS for Example 4


template: NounTemplate
extractor: SingleValueKey( 0 )
aggregator: ComparisonAggregator
context: spend DirectObject( healthcare )


Figure 5.20: Input file preamble for Example 5


increase. The final DSyntS generated by CAPUT on Example 4 is shown in Figure5.19.


5.5 Example 5: Changing the MessageExtractor


In all of the preceding examples, it was the increase or decrease in data values that was used to


sort the datasets and to choose an appropriate Trend to express. However, sometimes the user


may want to concentrate on specific values rather than the overall change in value.


Figure5.20shows the input file preamble for Example 5. The extractor field has changed


from an IncreaseDecreaseKey to a SingleValueKey; the parameter to the SingleValueKey indi-


cates that we are interested in the first value in each dataset. Figure5.21shows a graph of the


data used in this comparison.


In this case, the values of all of the datasets are sufficiently close together that the Compar-


isonAggregator chooses to keep all of them in the final caption, shown in Figure5.22.2


2Notice the singular verb “has” in the final caption; unfortunately, RealPro does not consider subjects of this
form to be plural.
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Figure 5.21: Graph of the sample data


HAVE1 [ ] (
II VALUE2 [ article:indef ] (


ATTR similar [ class:adjective ]
)
I SPENDING [ ] (


ATTR ONTARIO [ ] (
COORD AND2 [ ] (


II BRITISH_COLUMBIAN1 [ ] (
COORD AND2 [ ] (


II MARITIME [ ] (
COORD AND2 [ ] (


II ALBERTAN1 [ ] (
COORD AND2 [ ] (


II QUEBECOIS [ ]
))))))))
III healthcare [ class:common_noun article:no-art ]
ATTR IN1 [ ] (


II 1990 [ class:numeral ]
)))


“Ontario, British Columbian, Maritime, Albertan and Quebecois spending in 1990 on healthcare has a
similar value.”


Figure 5.22: Final DSyntS for Example 5
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template: VerbTemplate( aspect:cont )
extractor: IncreaseDecreaseKey
aggregator: ComparisonAggregator
context: food
-----
context: quebec DirectObject( orange )
1990 1400
1998 1450


context: alberta DirectObject( orange )
1990 1500
1998 1400


context: british_columbia DirectObject( apple )
1990 1610
1998 1900


context: ontario DirectObject( orange )
1990 1700
1998 1700


context: maritimes DirectObject( apple )
1990 1575
1998 1640


Figure 5.23: Input file for Example 6


5.6 Example 6: Various syntactic changes


The preceding examples show the major changes that can be made in generating a caption.


However, CAPUT can also make finer-grained choices, as the following example demonstrates.


The input file for Example 6 is in Figure5.23. There are several differences between this


example and the others. First, the VerbTemplate is given a parameter, which will affect the


form of the generated verb. Also, the context has been changed from one of spending to one


dealing with food, and the objects (apple or orange) are attached to the individual datasets


instead of to the caption specification as a whole.


The initial stages of processing this file follow those of Example 2 exactly, up to the point


where the revised tree is created (Figure5.9); the differences appear when generating DSyntS


from that revised tree. Firstly, not all of the datasets in the subtree of increasing datasets can be


combined into a single action specification, as they differ in too many fields; rather, they end
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Action: [consume]
Subject: [British Columbia], [Maritimes]
Object: [apple]
Complements: [between [1990, 1998]]


Action: [consume]
Subject: [Quebec]
Object: [orange]
Complements: [between [1990, 1998]]


Figure 5.24: Action specifications for Example 6


up in two separate ActionSpecs, as shown in Figure5.24. Also, the lexical entry for the verb


consumespecifies that it takes a direct object, as opposed to the prepositional object ofspend.


The object in the action specification is therefore realized as a direct object (a child of type


“II” in the DSyntS), and the Trend as an adjective modifying the object. The ActionSpecs for


the “Increase” subtree and the corresponding Trend object are realized as the DSyntS shown in


Figure5.25.


Another thing to note in the generated DSyntS in this case is that the specified attributes on


the VerbTemplate have been passed on to the verbs in the DSyntS, so that the realization is in


the present progressive rather than the simple present.


Similar actions take place to create DSyntS fragments in the other subtrees, and then the


final DSyntS (Figure5.26) is produced by combining these fragments using “but”.3


5.7 Example 7: Computing totals


Example 6 lists the increase and decrease for each province and for each type of fruit separately.


However, sometimes the desired content of a caption is the average or total value, rather than


the individual values. This is where the TotalAggregator and AverageAggregator are useful.


The input file for Example 7 is shown in Figure5.27. The data section of this file resembles


that of Example 6, except that several of the provinces have been changed so that interesting


totals can be computed. As well, the Template has been changed back to a NounTemplate, the


MessageExtractor is a SingleValueKey, and the aggregator is now a TotalAggregator. Notice


3The use of “between” in this caption seems strange; CAPUT’s handling of start and end dates could be
improved.
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CONSUME [ aspect:cont ] (
I BRITISH_COLUMBIA [ ] (


COORD AND2 [ ] (
II MARITIMES [ ]


))
II orange [ article:no-art class:common_noun ] (


ATTR MORE2 [ ]
)
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
COORD AND2 [ ] (


II CONSUME [ aspect:cont ] (
I QUEBEC [ ]
II apple [ article:no-art class:common_noun ] (


ATTR MORE2 [ ]
)
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
))))))


“British Columbia and the Maritimes are consuming more apple between 1990 and 1998 and Quebec is
consuming more orange between 1990 and 1998.”


Figure 5.25: DSyntS for the “Increase” subtree


.


the argument to TotalAggregator; this indicates that it will compute a subtotal for each object


that was consumed.


The initial tree for this input file is shown in Figure5.28. During the tree-modification pro-


cess, a TotalAggregator behaves much like a ParityAggregator; that is, it creates new subtrees


grouped by characteristics of the data. In this case, the TotalAggregator groups by object, so


nodes with the same object are put together. The result of this grouping process is shown in


Figure5.29.


It is during the process of generating the DSyntS that the TotalAggregator actually com-


putes the totals for each of its subtrees. We will consider only the “apple” subtree for this


example; the same procedure takes place in the “orange” subtree as well.


The ActionSpec for this subtree is shown in Figure5.30. Notice that the “Subject” slot
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CONSUME [ aspect:cont ] (
I BRITISH_COLUMBIA [ ] (


COORD AND2 [ ] (
II MARITIMES [ ]


))
II orange [ article:no-art class:common_noun ] (


ATTR MORE2 [ ]
)
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
COORD AND2 [ ] (


II CONSUME [ aspect:cont ] (
I QUEBEC [ ]
II apple [ article:no-art class:common_noun ] (


ATTR MORE2 [ ]
)
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))))
COORD BUT [ ] (


II CONSUME [ aspect:cont ] (
I ONTARIO [ ]
II apple [ article:no-art class:common_noun ] (


ATTR THE_SAME_AMOUNT_OF [ ]
)
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
)))
COORD BUT [ ] (


II CONSUME [ aspect:cont ] (
I ALBERTA [ ]
II apple [ article:no-art class:common_noun ] (


ATTR LESS2 [ ]
)
ATTR BETWEEN1 [ ] (


II 1990 [ class:numeral ] (
COORD AND2 [ ] (


II 1998 [ class:numeral ]
))))))))


“British Columbia and the Maritimes are consuming more orange between 1990 and 1998 and Quebec
is consuming more apple between 1990 and 1998, Ontario is consuming the same amount of apple
between 1990 and 1998 but Alberta is consuming less apple between 1990 and 1998.”


Figure 5.26: Final DSyntS for Example 6
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template: NounTemplate
extractor: SingleValueKey
aggregator: TotalAggregator( object )
context: food
-----
context: ontario DirectObject( apple )
1990 1400
1998 1450


context: alberta DirectObject( apple )
1990 1500
1998 1400


context: ontario DirectObject( orange )
1990 1610
1998 1900


context: maritimes DirectObject( apple )
1990 1700
1998 1700


context: maritimes DirectObject( orange )
1990 1575
1998 1640


Figure 5.27: Input file for Example 7


Figure 5.28: Initial tree for Example 7


Figure 5.29: Revised tree for Example 7
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Action: [eat]
Subject:
Object: [apple]
Complement: [in 1998]


Figure 5.30: Action specification of “apple” node
CONSUMPTION [ ] (


II apple [ article:no-art class:common_noun ]
ATTR IN1 [ ] (


II 1998 [ class:numeral ]
))


“Consumption of apple in 1998”


Figure 5.31: DSyntS for the “apple” subtree


.


is empty; this is a result of the grouping by object that took place in the previous step. This


ActionSpec is converted to the DSyntS shown in Figure5.31.


The TotalAggregator then sums up the value in all of the datasets in its subtree; in this case,


since a SingleValueKey was specified, it sums the final value from each dataset. It then creates


a TotalTrend object to express the total value. The final DSyntS produced by this subtree is


shown in Figure5.32.


A similar process takes place to produce a DSyntS fragment from the “orange” datasets,


and the two fragments are then combined using “and” to produce the final DSyntS shown in


Figure5.33. A similar process takes place when an AverageAggregator is used.
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HAVE1 [ ] (
II VALUE2 [ article:indef ] (


ATTR TOTAL [ ]
ATTR OF1 [ ] (


II 4550.0 [ class:numeral ]
))
I CONSUMPTION [ ] (


II apple [ article:no-art class:common_noun ]
ATTR IN1 [ ] (


II 1998 [ class:numeral ]
)))


“Consumption of apple in 1998 has a total value of 4550.0.”


Figure 5.32: DSyntS for the “apple” subtree


.


HAVE1 [ ] (
II VALUE2 [ article:indef ] (


ATTR TOTAL [ ]
ATTR OF1 [ ] (


II 3540.0 [ class:numeral ]
))
I CONSUMPTION [ ] (


II orange [ article:no-art class:common_noun ]
ATTR IN1 [ ] (


II 1998 [ class:numeral ]
))
COORD AND2 [ ] (


II HAVE1 [ ] (
II VALUE2 [ article:indef ] (


ATTR TOTAL [ ]
ATTR OF1 [ ] (


II 4550.0 [ class:numeral ]
))
I CONSUMPTION [ ] (


II apple [ article:no-art class:common_noun ]
ATTR IN1 [ ] (


II 1998 [ class:numeral ]
)))))


“Consumption of orange in 1998 has a total value of 3540.0 and consumption of apple in 1998 has a
total value of 4550.0.”


Figure 5.33: Final DSyntS for Example 7


.







Chapter 6


Conclusion


6.1 Summary


This thesis has presented the principles underlying the automated generation of captions for


information graphics. A caption-generation system should address the generation tasks of con-


tent determination, discourse planning, sentence aggregation, lexicalization, referring expres-


sion generation, and linguistic realization. It should also have knowledge of various presen-


tation techniques and of the domains about which it is generating, and should model both the


user of the system and the eventual target audience of the presentation. A system to generate


captions for graphics should be integrated with the system which is generating the graphic-


s themselves, so that the final generated text and graphics complement each other and make


appropriate reference across media.


CAPUT is a prototype system which attempts to follow these principles. It is implemented


in Java, and it uses CoGenTex’s RealPro text realizer for the text realization. CAPUT generates


captions by creating an initial tree representation of its input, then reshaping that tree into a


representation of the content of the final caption, and finally generating a sentence plan from


the tree and sending it to RealPro for realization. CAPUT is composed of a number of abstract


classes, with specific behaviour implemented in the subclasses of these classes. Captions which
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use new styles or which concentrate on new aspects of the data can be generated by creating


new subclasses which implement the desired behaviour.


6.2 Contributions


6.2.1 Principles of caption generation


This thesis provides a description of the requirements for a system which is to generate text


to accompany information graphics. Each task in a generalized text-generation architecture is


examined from the perspective of caption generation. The factors that influence the processing


at each stage are outlined.


Various possible approaches to implementing each of the generation tasks in a caption-ge-


neration system are provided; the methods used to address these tasks in existing systems are


also outlined.


The other necessary components of a caption-generation system are presented: knowledge


of the domain, knowledge of presentation techniques and of their effects on the audience, and


a method of integrating the captions with the graphics which they are to accompany. Possible


ways of implementing these components of a system are also suggested.


A distinction is made between text which summarizes quantitative data on its own and text


which is designed to accompany information graphics. The content selected to appear in the


text and the methods used to present it differ between these two cases, so different strategies


must be employed in caption-generation systems than in systems which aim to generate stand-


alone text.


6.2.2 CAPUT


CAPUT is a prototype implementation of a caption-generation system which attempts to ad-


dress the principles outlined in Chapter3. Although it does not directly address all of the listed
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requirements, it can be extended to address more of these with little difficulty.


It uses a tree-based method of content determination and discourse planning which is sim-


ilar to the “topic trees” employed by GOSSIP and LFS. In this method, an initial unstructured


tree of all of the information extracted from the raw data is modified top-down, sorting and


grouping the datasets and potentially removing some of them, until the final tree represents the


message structure of the text to be generated. This approach was taken because in the captions


studied, some subset of the possible messages from the graph appeared, often sorted or grouped


in some way; it was logical to mirror this structure in the process of producing these messages.


Tree modification is a useful technique for this sort of generating domain, when coupled with


sufficiently sophisticated rules guiding the processes of grouping the messages and producing


text from the resulting tree.


The object-oriented nature of CAPUT is another strong point. All of the work in the system


is performed by special-purpose subclasses of general abstract superclasses. All of the knowl-


edge is represented in a procedural fashion, rather than a declarative one. In other words, the


various components do not just specify what is to be done; they actually contain methods to


perform the necessary actions. This means that potentially very complicated behaviour can


be added to the system, and selected only when necessary by specifying the class which im-


plements the desired behaviour. Any component in the system, down to those implementing


the lexicon, can be subclassed if desired to obtain specific behaviour; this is potentially a very


powerful feature for future development.


CAPUT is domain-independent, but capable of implementing very complex domain-specific


behaviour simply by creating the necessary subclasses and then specifying them. At present,


its use of domain knowledge is limited to selecting appropriate words to describe its data, but


the domain model can be extended to influence all of the steps in the generation process.







CHAPTER 6. CONCLUSION 101


6.3 Future directions


6.3.1 Short-term enhancements to CAPUT


CAPUT should be extended to produce a wider variety of caption types. One source of new


types is the list provided by Corio (1999); possible extensions include:


• Explicitly mentioning variables which particularly interest the user—for example, the


value in Quebec might be of special interest even if it is not the highest or lowest.


• Rather than concentrating only on an overall increase or decrease, using the data to


choose between techniques such as mentioning only the last value, the trend of the data


as a whole, or a trend in a sub-interval of time.


• Detecting correlation, non-correlation, convergence, and divergence of variables.


In addition to these schemata, a further corpus analysis of texts from other sources could reveal


even more potential types of presentations.


In addition to providing a wider variety of captions, a useful end in itself, the process of im-


plementing the classes necessary to produce these caption types may well reveal inadequacies


in the current design of CAPUT; indeed, this has occurred several times during the development


process up to this point. Any problems revealed during this process can then be fixed to make


CAPUT more robust in the future.


Another possible short-term goal is to increase the number of domains about which CAPUT


can generate captions. For the most part, this would be a simple task, requiring only additions to


the lexical knowledge base or the specification of appropriate words in the input file. However,


once again, testing CAPUT on a wider variety of domains may reveal inadequacies which,


when rectified, will result in a stronger overall system which will be able to deal with even


more domains.
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6.3.2 Longer-term goals


The work listed in the previous section involves only short-term enhancements to make CAPUT


more robust and general-purpose; however, there are also a number of potential longer-term


enhancements that lead to other possible areas of research. The following are some of the


possible future research areas in which CAPUT could play a part. Note that many of them


interact with one another.


Use of a user model to select presentation techniques


As it currently stands, CAPUT has no knowledge itself of the rhetorical impact of various


presentation techniques; all it knows is the techniques themselves. Other systems such as Post-


Graphe or AutoBrief allow the user of the system to express goals or intentions, such ascom-


parisonor presentation, which are then transformed into specific schemata for the generated


text. Such integration would be valuable in CAPUT as well.


Existing research and guidelines on the selection of presentation techniques to produce an


appropriate effect should be used to help in creating appropriate guidelines for the selection


among textual presentation techniques.


In addition to rules governing the selection of a presentation technique, the set of goals


which the user can specify should also be determined. A starting point might be Zelazny’s


“intentions”, which are also used in PostGraphe/SelTex. However, these intentions govern the


selection of graphical techniques; when text is to be generated, additional intentions might also


be necessary to capture the full set of possible presentation goals.


There are two possible ways to integrate such a method of choosing between presentation


techniques into CAPUT. First, the mapping between intended effect and presentation technique


could be “hard-coded” into CAPUT, so that it selects an appropriate type of Aggregator and


other objects to use in its generation. An alternative is a pre-processing step, in which some


other program reads the user’s goals and creates the appropriate input to CAPUT to produce the


required sort of output.
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Use of domain knowledge


CAPUT’s use of domain knowledge in the current implementation is limited to using appro-


priate words to talk about the quantity being measured in the data—for example, “Canadian


watermelon consumption”. However, if the domain representation contains more complex in-


formation, much more interesting things can be done with that information.


The representation of a domain might include typical words and phrases used to talk about


it in a variety of situations. For example, the phrasal lexicon for the stock market domain of


Kukich (1983), includes phrases such as “mixed”, “heavy trading”, and other stock-specific


terms. The lexicon used in FOG (Goldberg, Drieger and Kittredge, 1994), on the other hand,


contains entries like “winds diminishing to light” and other phrases typically used in weather


reports.


But beyond even specifying the terms to talk about a particular domain, the specification


for a domain could also include rules about what features should be considered “interesting”


and should appear in text referring to that domain. This information could describe, for exam-


ple, the thresholds beyond which an increase or decrease is significant, or could specify other


particular patterns in the data which are worthy of mention.


Integrating such domain knowledge into CAPUT requires multiple steps. First, the appro-


priate information should be obtained, either from consultation with domain experts or from a


careful examination of typical texts from the domain—or, ideally, both. Then CAPUT will have


to be extended to represent this knowledge in a way which can easily be used during the gener-


ation process. A possible method of doing this is to produce domain-specific subclasses of the


important classes used during the process, but other representations may also be developed.


Automatic selection of presentation techniques


As noted above, CAPUT does not do any selection of presentation techniques on its own, but


instead relies on the user or some external system to select the appropriate techniques. In future,


the process of choosing among presentation techniques should be made more automatic.
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The current system requires the user to specify precisely the technique to use and the par-


ticular aspects of the data to concentrate on. On the other extreme, the user could specify


nothing at all about the desired features of the caption; it would then be up CAPUT to choose


an appropriate presentation technique from its library of techniques.


If the user of the system gives no guidance at all, then CAPUT could perform a variety of


tests in an attempt to determine which aspects of the data are the most salient or important; that


is, whether the absolute increase of a single item is “more interesting” than the correlation or


non-correlation of several of the variables, or some other characteristic.


To make such a choice automatically requires that the system be able to rate the salience


of various characteristics of the data so that it can pick the one which is most worthy of note.


This is a complex task, and one which certainly varies depending on the domain from which


the data is drawn. For example, the different types of trend could be given varying weights


depending on their nature and the magnitude or other measurements, and these weights would


determine what appears in the final caption.


Although this enhancement was motivated by a scenario in which the user gives the system


no guidance as to what presentation technique to choose, a similar method could be used with


some user participation. For example, if a scheme of weights is used to select a technique, then


the system user could specify revised weights to tailor the caption to a particular situation.


Integration with graphics generation


While CAPUT was designed to produce texts which can accompany information graphics, no


work was done here on the generation of such graphics. A future application of CAPUT is to


integrate it with a graphics generator in order to produce well-integrated presentations.


Before any media-specific generation can be done, the various components of the message


must be allocated among the available media. This will ensure that each medium expresses the


facts that it is best at; for example, the text should contain only the highlights of the message,


while the graphic can provide support and background.
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Once generation begins, the graphics- and text-generation systems should as a minimum


use the same underlying representations so that the choices they make are compatible. Ei-


ther both could take the same input, or there could be an overall controlling system which


translates the user’s input into specific goals for the two independent generation systems (as in


AutoBrief).


For even more integrated results, the two systems should be able to communicate with


each other; this will ensure that the caption complements the graphic without being redundant.


If some important aspect of the data is already adequately expressed by the choices made in


one medium, then the generator for the other medium could ignore that aspect to concentrate


on others. This inter-generator communication can also allow the text generator to produce


captions which explicitly refer to particular aspects of the graphic (as in SAGE), either because


of their interest or because the particular graphical technique used is easy to misunderstand.


Text to replace graphics


CAPUT is a system designed to generate text to accompany graphics; a number of the previous


systems generated only text with no consideration of graphics. A slightly different take on the


same issue is to generate text toreplacea graphic; for example, when the reader is visually


impaired or when a set of pictures is to be indexed for searching.


The issues here vary greatly from those involved in generating text to accompany a graphic.


The main difference is that, when the text and image are displayed together, the reader can be


relied on to look at the image to fill in any details not mentioned in the text. When the graphic is


to be replaced by words, on the other hand, the generated text is all that the user has available.


The text must therefore describe all aspects of the image, rather than just highlighting some


aspects of particular interest (as is often done with captions).


Every graphic in a well-designed document is there for a reason, whether it simply enhances


the desired mood or it is crucial to the message the document is trying to convey. Determining


the function of a specific image and how best to explain that function in words is not a trivial
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task. This process is the exact inverse of Zelazny’s (1996) advice to presenters, in which he


suggests that they first select a textual “message” and then produce a graphic to accompany it,


with the message itself possibly not appearing explicitly in the final presentation.


A particular area where this sort of work is applicable is on the World Wide Web, where


good style demands that authors provide alternative text for every image on a Web page so that


it can be understood even by readers not using a graphical browser. Well-designed Web pages


of this sort provide an excellent corpus for beginning a study of text used to replace graphics.
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Appendix A


Hierarchy of classes in CAPUT


The following is the hierarchy of the Java classes in the current implementation of CAPUT.


• class mef.thesis.ActionSpec


• class mef.thesis.BasicObject


– class mef.thesis.Aggregator


∗ class mef.thesis.AverageAggregator
∗ class mef.thesis.BasicAggregator
∗ class mef.thesis.ComparisonAggregator
∗ class mef.thesis.ParityAggregator
∗ class mef.thesis.TotalAggregator


– class mef.thesis.Field


∗ class mef.thesis.Action
∗ class mef.thesis.DirectObject
∗ class mef.thesis.Subject


– class mef.thesis.MessageExtractor


∗ class mef.thesis.IncreaseDecreaseKey
· class mef.thesis.PercentageKey


∗ class mef.thesis.SingleValueKey


– class mef.thesis.Template


∗ class mef.thesis.NounTemplate
∗ class mef.thesis.VerbTemplate


• class mef.thesis.Complement


• class mef.thesis.Contexts
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• class mef.thesis.Dataset


• class mef.thesis.Input


• class mef.thesis.Main


• class mef.thesis.Point


• class java.lang.Throwable


– class java.lang.Exception


∗ class java.lang.RuntimeException


· class mef.thesis.IncompatibleException


• class mef.thesis.TreeNode


– class mef.thesis.LeafNode


– class mef.thesis.ParentNode


• class mef.thesis.Trend


– class mef.thesis.AverageTrend


– class mef.thesis.IncreaseDecreaseTrend


∗ class mef.thesis.IncreaseDecreaseCompareTrend
· class mef.thesis.PercentageCompareTrend


∗ class mef.thesis.PercentageTrend


– class mef.thesis.SingleValueTrend


– class mef.thesis.TotalTrend
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