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Abstract

To enable modern data intensive applications including data warehousing, global information systems
and electronic commerce, we must solve the schema mapping problem in which a source (legacy) database
is mapped into a different, but fixed, target schema. Schema mapping involves the discovery of a query
or set of queries that transform the source data into the new structure. We introduce an interactive
mapping creation paradigm based on value correspondences that show how a value of a target attribute
can be created from a set of values of source attributes. We describe the use of the value correspondence
framework in Clio, a prototype tool for semi-automated schema mapping, and present an algorithm for
query derivation from an evolving set of value correspondences.

1 Introduction

Many modern applications such as data warehousing, global information systems and electronic commerce
need to take existing data with a particular structure or schema, and re-use it in a different form. These
applications start with an understanding of how data will be used and viewed. That is, they start by
determining a target schema. They then must create mappings between this target and the schemas of
the underlying data sources. Creating those mappings is today a largely manual (and extremely difficult)
process. Transformation of the data is accomplished by complex programs, hand-written or pieced together
by specialized tools (e.g., for data warehouses), and these programs must then be carefully tuned to get
reasonable performance. While the time required to generate and optimize these programs may be justified
for data warehouses, it is unacceptable for e-commerce, where applications must evolve much more quickly,
and it is awkward for applications which require direct access to source data (such as global information
systems and e-commerce).

We show how the transformation process can be simplified and made more efficient and flexible by using
database management systems as transformation engines. Data independent transformations, specified in
SQL, can then be automatically optimized and parallelized by the DBMS for better performance. As
many DBMS today can process queries over data they do not manage ([IBM97, CHS*95, Ora]), the DBMS
can effectively handle the inter-source scheduling and data movement needed for transformations as well.
Creating mappings becomes a process of query discovery: finding the queries or views that correctly transform
the data to the desired schema.

By simplifying the task of mapping creation, we make i1t possible for DBMS to play a broader role in
new applications, not merely as a provider of data, but as a manager of the transformations themselves.

*Extended version of: R. J. Miller, L.. M. Haas and M. Hernandez. “Schema Mapping as Query Discovery.” In Proceedings
of the Twenty-Sizth International Conference on Very Large Data Bases (VLDB), pp. 77-88, Cairo, Egypt, Sept, 2000.

tSupported by an IBM University Partnership Grant and the Presidential Early Career Award for Scientists and Engineers
(PECASE) under NSF Award # 9702974.



Modern DBMS are not only data management tools, they are query management tools. They incorporate
a wealth of sophisticated knowledge about queries and query manipulation. While this knowledge has been
targeted to the problem of query optimization to produce efficient execution plans, we show how the same
infrastructure and similar reasoning can be applied to the problem of query discovery for integrating and
transforming data. For both tasks, we are reasoning about the relationships between and equivalences of
queries and schemas.

We discuss the scope of the mapping problem, and describe how it relates to the long-standing problem
of schema integration in Section 2. In Section 3, we present a framework for mapping creation based on the
notion of value correspondences. Value correspondences are an intuitive way of recording the relationships
between source and target schemas. Given a set of value correspondences, we show how to compute the
query or queries needed to perform the implied transformations (Section 4). Section 5 illustrates the use of
our mapping algorithm for a data warehouse and for data exchange in XML. We briefly discuss related work
in Section 6 and conclude in Section 7.

2 Targeted Schema Mapping: The Challenge

The applications mentioned above — data warehousing, global information systems, and e-commerce — all
require targeted schema mapping. For example, [Wid95] describes a general architecture for data ware-
housing, in which an Integrator component extracts, filters, merges and transforms information from one or
more sources, and then loads the resulting data into the warehouse — in essence creating a materialized view
of the underlying sources. Before a data warehouse can be loaded, DBAs and consultants spend months
determining what types of queries will be asked, and then designing a schema that will readily support those
queries. The “Integrator” embodies the requisite mapping from source(s) to target. For warehouse products
today, the “Integrator” is a sophisticated, hard-wired program, which is written by a skilled user, possibly
using a tool to generate some of the code [ETI, Val, Dat]. Today, database management systems can be the
source or target for a data warehouse (or both); by creating mappings in SQL we enable them to play the
role of the “Integrator” as well.

Likewise, to deploy a global information system such as the Information Manifold [LRO96], experts first
determine what information it will present to the world (with what logical structure), and then create the
view definitions that map between the new schema and the data sources. Such systems serve as front-ends
to many information sources, directing queries to those sources with relevant information, then merging and
collating the results. The Information Manifold describes the capabilities of information sources as views
against the global schema it presents to users, expressing the mapping as a declarative query. This allows
it to efficiently determine which sources are relevant to a particular query. In this application, therefore, we
again need to create mappings, this time from the global schema to the individual source schemas.

While data exchange is not a new problem, the WWW and its availability for exploitation in business
have cast it in a new light. The flurry of activity around using the WWW to exchange not only documents,
but also structured data, has motivated the standardization of schemas (typically represented in XML)
to support this exchange. Even simple e-commerce applications, then, require the ability to map legacy
data into these new standardized structures. Furthermore, for XML, these structures will likely have been
designed using a very different design methodology than employed for the legacy relational databases or other
structured sources. Again, our work extends the applicability of database technology beyond its traditional
role as data source, facilitating the exchange of data for e-commerce.

All three of these applications place demands on a schema mapping solution. For two of the three
(global information systems and e-commerce), the conversion must take place “in real time”, in response
to user requests. In both of these cases, it is neither necessary nor desirable to convert the entire source
database to answer one request. Using SQL view definitions to specify mappings (and a database engine to
transform the data) allows the query to be merged with the view using standard algorithms, so that only
the required data are transformed. All three applications require good performance, warehousing because of
the volumes of data, and the others because of the real-time requirement. Query optimization technology
and, potentially, parallelism in the query engine can both be used to meet this requirement. In addition,
all three applications require robust data mappings that are dependent on the physical representation of
the source or target schemas. Expressing mappings as declarative queries provides an important level of



data independence allowing sources to evolve their physical structures without breaking fragile procedural
mappings.

In the applications we consider, the target schema may have been designed quite independently of the
source schema(s); hence, the transformations needed to create the target may be quite complex. Further, it
may be the case that neither the source nor the target schema is relational. As a result, it is unreasonable to
expect the person doing the mapping to be an expert SQL programmer. Hence the mapping solution should
generate the queries for the mapping.

Another requirement for the mapping solution is that it handle both data and schema transformations.
In all of these applications, both types of transformations are needed, and, in fact, the resolution of a schema
conflict may suggest appropriate data transformations and wice versa. Fortunately, it is possible for the
mapping query to resolve both data and schema conflicts, as we will illustrate in Section 3.

For both global information systems and e-commerce, the solution must handle mappings involving semi-
structured data. In a semi-structured schema, the data may encode search paths including hierarchical data
relationships that may be used to navigate through the data. Thus, our solution should make use of data or
of schema labels (for example, attribute, relation, or class names) in producing the mapping.

Additionally, all of these applications require the ability to create mappings when the source and target
schemas exhibit schematic heterogeneity, that is, where information is represented as data under one schema
and within the schema (as metadata) in another. In these cases, schema labels or other forms of metadata
must be used within the schema mapping. Schematic heterogeneity is an important class of heterogeneity
that arises frequently in integrating or mapping legacy schemas [Mil98, KLK91]. Query language and view
mechanisms for handling schematic heterogeneity have been studied [L.SS96, L.SS99, Mil98] but little has
been done in the context of schema mapping or integration [KS96].

It should be clear from the above list of requirements that schema mapping is quite different from the
classical schema integration problem, and cannot be done using traditional schema integration approaches.
Schema integration is the activity of integrating a set of schemas into a unified representation. Schema
integration techniques typically distinguish two key tasks: creation of the integrated schema and creation of
queries (mappings) between schemas. In the applications we consider, the target schema does not depend
for its definition on the identity and structure of the sources. Hence, the problem of creating the integrated
schema 1s no longer relevant. However, the need to create mappings between the source and the integration
remains. Yet the problem of mapping generation between an integrated schema and the source schemas
used to derive the integration is inherently different from that of deriving mappings between independently
created schemas. In the former problem, the mapping is implicit to the derivation process. Indeed in their
comprehensive schema integration survey, Ram and Ramesh devote only a single paragraph to mapping
generation [RR99]. This is not an oversight on their part, but rather a true reflection of the methodologies
they survey.

In addition, existing schema integration techniques do not meet the various requirements of our new ap-
plications. For example, in most traditional integration paradigms, data integration and schema integration
are viewed as largely separable endeavors. Schema integration is done as the integrated schema is created.
Once a mapping is derived from the integration process, it is refined to achieve any necessary data integra-
tion. Such an approach is inappropriate for a mapping task where the goal is essentially query discovery.
Likewise, with few exceptions, traditional approaches do not make use of the data in reasoning about schema
correspondences [ST98]. Further, schema integration methodologies consider at most a few special cases of
schematic heterogeneity [KS96].

Clio [HMN*99] is a research prototype of a tool to ease the task of schema mapping. Clio produces view
definitions that allow applications to get directly at source data using a middleware query engine. These
view definitions can be optimized normally by the query engine, and can be merged with the actual queries
so that only the data needed for a particular query is converted. Clio produces the SQL queries for the user,
providing users with data samples and other feedback to allow them to understand the mappings produced.
Data and schema conversions are considered and specified together, and data values can be used to guide the
mapping process. Clio handles schematic heterogeneity, and allows complex mappings to be specified quite
simply. In the rest of this paper, we focus on the framework Clio presents to users for specifying mappings,
and on the algorithm it uses to generate SQL views from the users’ specifications.



3 A Framework for Query Discovery

The focus in schema mapping is on query discovery. As with schema integration, the schema mapping task
cannot be fully automated since the syntactic representation of schemas and data do not completely convey
the semantics of different databases. For example, it is not possible to know with complete certainty from
the schema and data alone whether the Emp relation in one schema has the same meaning as the Employee
relation in another. As a result, for both schema mapping and schema integration, we must rely on an
outside source to provide some information about how different schemas (and data) correspond.

However, the different nature and goals of these two tasks necessitate the use of different types of cor-
respondences. For the schema integration, which is predominantly a schema design problem, design level
assertions detailing how schema constructs relate are appropriate [RR99]. These assertions state how the
set of values of a construct in one source schema relate to the set of values of a construct in another source
schema. For the mapping problem, we claim that a different type of assertion is both more informative and
easier to elicit from a user. We call this new type of assertion a value correspondence.

3.1 Overview of Value Correspondences

Informally, a value correspondence is a pair, consisting of (1) a function defining how a value (or combination
of values) from a source database can be used to form a value in the target, and (2) a filter, indicating
which source values should be used. For example, a string concatenation function can be used to indicate
that a value of the staff-id attribute of the target schema is formed by concatenating the letter 'E’ to an
employee number from the source, along with a filter that selects only active employees. Similarly, a value of
the appellation attribute may be formed by concatenating together a title and name value from the source.
There might be a filter on title, or any other attribute(s), or the filter might be “True”. From these examples,
it should be clear that schema assertions and value correspondences are related. An attribute assertion that
an Attribute A is a subset of Attribute D may imply the use of the identity function and some filter as a value
correspondence to map values of A to values of D [RR99]. However, the main focus of schema assertions is
on specifying how the values of one attribute (or other schema constructs) as a set relate with the set of
values of another attribute. It is this set relationship that drives the integration algorithms [RR99].

In contrast, in Clio, the value correspondences drive the integration. This distinction is important for two
reasons. First, we argue that it 1s natural for a DBA to be able to specify value correspondences indicating
the form in which a source value should appear in the target. Even DBAs with incomplete knowledge
of the schema can specify the correspondences for those values they understand. To be accurate, the set
relationships of attribute assertions require a more complete knowledge of the schema and relationships
between components of the schema. Inaccurate or imprecise assertions (for example, asserting that two
attributes overlap when there is actually a set containment relationship) will lead to incorrect integrations.
Second, the knowledge provided by these two different types of statements is very different. This difference
gives rise to a new approach to reasoning about and creating schema assertions that has not previously
been explored. Specifically, we propose an iterative integration-by-example paradigm under which a DBA
specifies how example values are mapped and the tool attempts to deduce a likely schema mapping. In the
process, the DBA may be prompted for information relevant to choosing between alternative mappings. This
information may sometimes include information about the set relationships (but only if this information is
necessary for disambiguating between different mappings).

Note that we are not arguing that the information provided by schema assertions is irrelevant. On the
contrary, we are arguing it may not be required to deduce all mappings and that it may be impossible for
a DBA to specify a prior: without having seen even a partial or potential mapping. Furthermore, we do
not use schema level assertions to drive the mapping derivation process. Rather, we make use of reasoning
about schemas (and queries) and about possible alternative schemas (and queries) to drive this process.

Our thesis is two-fold.

e Value correspondences are an appropriate abstraction for eliciting information from the
user or DBA. A DBA may easily be able to indicate that distance values are formed by multiplying
rate times time. However, (s)he may not readily be able to specify the possibly complex query required
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Figure 1: Example schemas to be mapped.

to indicate how a specific rate value is paired with a specific time value (perhaps through a complex
query involving many relations) without some help or prompting from the mapping tool.

¢ Using reasoning about queries and query containment, we can effectively and efficiently
help the user derive correct schema mappings. Specifically, we will employ the same reasoning
about queries (and alternative queries) already used in DBMS to do query optimization and semantic
query optimization. Traditionally, this knowledge is buried deep within the optimizer and highly tuned
to the problem of finding a low cost query plan. To our knowledge, this is the first principled attempt
to expose this sophisticated reasoning about queries to a user to help in the schema mapping task.

Value correspondences may be entered by a user or may be suggested using linguistic techniques applied
to the data and meta-data such as the names of schema components [BHP94, Joh97]. In Clio, we use
a graphical interface that facilitates schema and data browsing to elicit value correspondences from users
[HMN+99]. Other data-centric interfaces, including the scalable spreadsheet paradigm proposed by Raman,
Chou and Hellerstein [RCH99], would also be appropriate for eliciting the correspondences that drive our
algorithms.

3.2 Constructing Schema Mappings

We now turn to the question of constructing a schema mapping from a set of value correspondences. The
construction process is one of searching for the most reasonable mapping based on the properties of the
correspondences, the properties of the schemas, and the schema or structuring cues that lie buried in the
data. We begin with an example that explains intuitively the type of reasoning we will employ.

Example 3.1 Consider the two schemas of Figure 1. Suppose a user has indicated that the product of the
values in the PayRate(HrRate} and WorksOn(Hrs) attributes should also appear in Personnel(Sal). This
value correspondence is represented by the function fi. For this example, we will assume all filters are
“True”.

f1 : PayRate(HrRate )+ WorksOn(Hrs) — Personnel(Sal)
This correspondence indicates how two values from the source can be combined into a target attribute. How-
ever, it does not indicate which values should be combined. Intuitively, 1f HrRate and Hrs belonged to the
same relation, then the most likely interpretation of the correspondence is to combine values from the same
tuple. However, in general, particularly when HrRate and Hrs belong to different relations, we must define
a query that produces pairs of values to be combined.
In this example, to produce a schema mapping we must determine a way of associating a specific tuple of
PayRate with a tuple of WorksOn. If ProjRank is a foreign key of PayRate, then the natural way of doing
this is through a join on Rank = ProjRank. This produces the following mapping.

q1: SELECT P.HrRatexW.Hrs
FROM PayRate P, WorksOn W
WHERE P.Rank = W.ProjRank



However, suppose this foreign key is not declared but instead WorksOn.Name is declared as a foreign key of
Student and Student.Yr is declared as a foreign key of PayRate. (That is, there is a different HrRate value
for Sophomores than for Juniors, etc.) Then the foreign key path WorksOn < Student < PayRate would
be a better join path to use in the schema mapping.

qi: SELECT P.HrRate * W.Hrs
FROM PayRate P, WorksOn W, Student S
WHERE W.Name = S.Name AND S.Yr = P.Rank

Note that if, in fact, ProjRank is also declared as a foreign key of PayRate, it is then not clear which join
path is better. In some circumstances, the filter of the value correspondence may provide a clue. For example,
iof our filter were “Student.Yr > 27, the join through Student would make more sense. In the absence of such
clues, user wnput is required. A tool such as Clio can still help, however, by enumerating the options and
providing “samples” (that is, instances of the target schema) that are the results of different mappings.

Implicit to the process of deriving the mapping is our intuition that for each HrRate value, there is
somewhere in the source database a value for the Hrs attribute that can be used to derive a value of the Sal
attribute in the target. It is certainly possible that a user wished to take the cross product of HrRate and
Hrs and form salaries from every pair of these source values. However, this possibility is unlikely, particularly
if there is a natural way to pair HrRates with specific Hrs values. So Clio makes use of reasoning about
schemas and the semantics conveyed by constraints, such as foreign keys, to deduce likely mappings.

Example 3.2 Continuing this example, suppose that the user has provided a second value correspondence
indicating that values of the Professor(Sal} attribute should appear in Personnel(Sal) in the target.
f2 : Professor(Sal) — Personnel(Sal)

Certainly, one interpretation of these correspondences is that we should take the join of salary values produced
by f1 and those produced by fs to populate the target. However, this i1s not the most intuitive mapping since
it would mean that many (or perhaps even most) of the source values for salary would not appear in the
target. Rather, it 1s more likely that the user intended the mapping to be a union of these values. The salary
for personnel may be deriwved either from professor salaries or from student pay rates and hours. That is, a
better mapping would be the following.

g2: SELECT P.HrRate * W.Hrs
FROM PayRate P, WorksOn W, Student S
WHERE W.Name = S.Name AND S.Yr = P.Rank
UNION ALL
SELECT Sal
FROM Professor

While these examples may seem heuristic, there is some principled reasoning going on under the covers.
To guide the mapping construction, we are following two key principles. First, if possible, all values in the
source appear in the target. This principle guided our decision to use a union rather than a join in the
example when two different value correspondences were given for the same attribute. Second, if possible, a
value from the source should only contribute once to the target. In other words, associations between values
that exist in the source should not be lost. This principle guided our choice to use a join rather than the
cross product to compute a salary value using the correspondence f.

Note that these principles are restatements of common data design principles such as “one fact in one
place” [Dat95]. Even in the presence of filters, we try to uphold these principles for those values selected
by the filter. Since our goal is schema mapping rather than schema design, we do permit a user to override
these principles. For example, in publishing information for a “What-If” scenario, a user might want a
cross-product so that (s)he could evaluate all possibilities.

We use these principles to derive an initial mapping, one that preserves, to the extent possible, the
information in the source. A user may examine target data derived under this mapping and decide whether
to restrict or modify the mapping.

Example 3.3 To complete our running example, consider the extended schemas of Figure 2 and the following
additional value correspondences.
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Figure 2: Value Correspondences.

f3: Professor(Id) — Personnel(ld)

fa: Professor(Name) — Personnel(Name)
fs: Address(Addr) — Personnel(Addr)
fe: Student(Name) — Personnel(Name)

Intuitively, these correspondences divide naturally into two groups that coincide with the two different ways
in which a Personnel tuple can be created. The first group includes the correspondences from Professor and
Address, namely fs, fa, fa, f5. A Personnel tuple can be created by joining together a Professor tuple and an
Address tuple. Such a mapping is suggested by the presence of foreign key constraints between these relations
or by the presence of a source query workload that includes a join of these two relations or even by the data
itself (if the Id values in the two relations overlap). Depending on the constraint information, we may choose
an outer-join, rather than a join to avoid losing information (but we use a join here, to keep our ezample
simple). The second group includes the correspondences from Student, PayRate and WorksOn, namely fi
and fs. A Personnel tuple can be created by joining together Student, PayRate and WorksOn. Hence, the
most reasonable schema mapping given these specific constraints in the source is the following.

s1: SELECT P.Id, P.Name, P.Sal, A.Addr

FROM Professor P, Address A

WHERE A.Id = P.Id

UNION ALL

SELECT NULL as Id, S.Name, P.HrRate*W.Hrs,
NULL as Addr

FROM Student S, PayRate P, WorksOn W

WHERE S.name = W.name AND S.Yr = P.Rank

Notice that this is not the only possible mapping. Another option would be to take the outer-union of all
the relations in the source and project out attributes from the source that do not participate in any value
correspondence. The outer-union s the union where any missing attributes are set to null.

s;:SELECT NULL as Id, NULL as Name, NULL as Sal, Addr
FROM Address A
UNION ALL
SELECT P.Id, P.Name, P.Sal, NULL as Addr
FROM Professor P
UNION ALL
SELECT NULL as Id, Name, NULL as Sal, NULL as Addr
FROM Student S ...

While possible, it is clear from our understanding of the semantics of the source schema that this would
not be a particularly natural mapping. Such a mapping loses associations between data values present in
the source. For example, in the source, we can determine the address of a professor (assuming the Id of a
professor appears in the Address relation). This would not be true in the target using a mapping based on
outer-unions.

In the example, we described the intuition behind the mapping derivation. This intuition, while seeming
natural to anyone who has worked with databases, actually has a formal basis that dates back to early



theoretical work on database design. Simply put, our goal is to find mappings that do not lose information,
or at least lose as little information as possible. In reasoning about mappings, we will consider alternative
ways of combining value correspondences to produce mappings. We use formal reasoning about schemas to
choose among these alternatives. Due to the vagaries of semantics, we will not always be right. But our
goal is not to fully automate this process. Rather, our goal is to present users with a reasonable mapping
as a starting point which can be refined. By providing an example mapping, the user can see target values
produced by this mapping and identify data values that are missing (or have been included in error). Hence,
the mapping refinement process is data- or value-driven. The user does not have to edit SQL to refine the
mapping.

We have used a very simple example and enumerated only a few of the possible mappings that would need
to be considered. We have not had space to overview the complexities introduced by considering aggregations,
groupings or even outer-joins, all of which are important constructs for integrating information. In Example
3.3, 1f no foreign keys had been specified, we would need to use outer-joins rather than joins to avoid losing
information. Because outer-joins are not associative, the differences between alternative outer-join orders can
be subtle yet these differences are extremely important in obtaining a semantically correct mapping. There
is a considerable literature on these subtleties alone [GL94, RU96, GLR97]. Given this inherent complexity,
a systematic search through the large search space of alternative mappings is a job best done by a tool that
can eliminate unlikely mappings and identify correct mappings a user might not otherwise have considered.

3.3 Formalization of Schema Mapping Discovery

We are undertaking the discovery of a schema mapping / from a source schema, S, to a target schema, 7'
In the relational model, I is typically a set of view definitions Vi, ... V,, defined on the relations of .S, each
of which define a relation in 7' (71, ..., T, respectively). To understand our formalization of this problem,
it is useful to consider the role that I will play in answering queries.! This role depends on whether queries
are posed on the target schema T' (and answered using S) or on the source schema S (and answered using
T). In the former case, T acts as a traditional, probably virtual, view over S. A query on T is translated by
composing the query with the schema mapping I, into a new query ¢ = q o I on S. This is the traditional
query translation process and is depicted in the left-hand side of Figure 3. The mapping [ is a total function
meaning that it is defined for all instances of S and it always produces a single instance of T'. Furthermore,
I is typically expressed in the same query language as q. Hence, the composition ¢ o I is not only well
defined but expressible in the same query language and easily computed. In other words, any query on T
can be answered using S. The translation problem is one of composing the query ¢ with the body of the
view definition for T'. In relational terms, if ¢ accesses relations 71, ... Ty of T, then ¢’ is formed by replacing
each 7T; with its view definition V;.

Findag: g (T) =g ((9) = aS
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Answer Query q posed on View T Answer Query gon Susing View T

Figure 3: Two different roles for Schema Mapping /.

Alternatively, a query posed on the source S may be answered using the view T'. Here, the problem is to
find a query ¢’ on T such that ¢’ o 7(S) = ¢q(S). This problem can be thought of as answering a query using
views and is depicted in the right-hand side of Figure 3 [LMSS95]. Here, the problem of finding ¢’ is more
difficult since ¢’ is not merely the composition of the original query ¢ and the mapping I. Furthermore,
while I is a total function, it is not necessarily one-to-one. So while we might like to say that ¢’ should be q

I'Note that in Clio, we do not restrict the role I will play, so our discovered mappings may be used in either of the two ways
we describe.



composed with I’s inverse, I~ ! is not always well-defined. Furthermore, it is not obvious how to express =1
as a query expression. Hence, the problem can be broken down into two parts. First, we must determine
whether ¢ can be answered using 7. If [ loses information, that is, if I is not one-to-one, then the view T’
may not have all the information required to correctly answer the query q. However, even for lossy mappings,
a rewriting may still be possible if I does not lose information required in the query. Second, assuming ¢
can be answered using 7', we need to rewrite ¢ into an equivalent ¢’ on T

This problem has been reduced to the problem of finding a substitution that maps the attributes of
the query to the attributes of the view definitions [AHV95]. (Substitutions are also called containment
mappings in the literature [LMSS95].) Informally, a substitution specifies how attribute values in one schema
correspond to values in another. To ensure an equivalent query can be derived, the substitution must satisfy
some formal properties which depend on the class of queries and views being considered.

So we can refine the formalization for rewriting a query using views as follows. Given a target schema T
a source schema S, a mapping [ from S to T and a query q on S, find a substitution that maps the attributes
of the query to the attributes of the view definitions in I. The mapping I is used to defined a set of possible
(correct) substitutions. In special cases, a complete set of correct substitutions can be defined [SDJLI6].
In the presence of constraints, including keys and foreign keys, the set of possible query mappings is larger
[DPT99]. Heuristics are used to choose among these possible substitutions. Possible heuristics include using
substitutions that minimize the size of the rewritten query [LMSS95].

In targeted schema mapping, we do not have the benefit of knowing the mapping I. Rather, we are trying
to discover this mapping and we would like to be able to use the mapping to guide the query rewriting process
(whether queries are posed on the target 7' or on the source S). However, we do have a (possibly incomplete)
set of value correspondences. As with substitutions, value correspondences specify how attribute values in
one schema correspond to values in another. So the integration problem can be formalized as follows. We are
given a target schema T, a source schema S, and a substitution (value correspondences). Find a mapping
I from S to T that will permit a query on T to be rewritten into an equivalent query on S and will permit
a query on S to be rewritten into an equivalent query on T (if such a query exists). Just as knowledge of
the mapping 7 can be used to define a set of correct substitutions, we will use knowledge of the substitution
(that is, the value correspondences) to define a set of possible correct mappings 7. Since we wish to exploit
dependencies and constraints that exist in the source, we will not, in general be able to consider all possible
mappings.? However, from a search space of possible mappings (that is, a set of possible queries), we can
determine a set of correct mappings and use a set of heuristics for choosing among the different possible
mappings.

As the example of Section 3.2 illustrates, the systematic enumeration and consideration of the large
number of alternative mappings is not a job easily done by humans. Correct alternatives may be missed
and incorrect alternatives selected by domain experts who are not used to reasoning about queries and
equivalence between queries. Furthermore, the correct decision may require detailed knowledge of the source
schema (including dependencies and database statistics) and the database state which again a human may
not possess. It is our claim that this search problem is best done by a tool and that the search should be
guided by knowledge of the dependencies and constraints that hold in the database and by the database
state itself.

The analogy with query optimization should be apparent. In query optimization, the DBMS using
reasoning about query equivalence and heuristics (informed by database statistics and metadata) selects a
query and execution strategy that can be most efficiently process. Given the large search space and subtle
decisions that must be made, DBMS have proven more effective at finding good alternatives than all but
the most expert and seasoned administrators. In schema mappings, we are using reasoning about query
equivalence and heuristics (informed by database statistics and metadata) to select a query that best maps
between the two schemas. In both problems, the search space is too large to be effectively searched manually.
Unlike query optimization, our search is not limited to equivalent queries so we must keep a human in the
loop to ensure the semantics of the application are preserved by the query. We are not claiming that a
sophisticated expert with a wealth of integration experience could not outperform our tool. Rather, we are
claiming that few such experts exist, and for the rest of us, an automated tool can prove invaluable and
extremely effective.

2Indeed, in the presence of constraints, this set may be infinite.



The novelty of our approach lies in the following.

e The schema mapping discovery process is driven by semantic knowledge provided by either a user or
a knowledge discovery tool in the form of value correspondences. Such knowledge is easy and natural
for domain experts to provide. In our example, it is would be easy for a domain expert to indicate
that the value ’Steve Cook’ from the Professor[Name] relation should appear in the Personnel[Name]
attribute of the target.

e We show how knowledge of value correspondences is sufficient to fuel the schema mapping discovery
process. Detailed schema assertions, used in schema integration methodologies, are both hard for a
user to provide (possibly as hard as specifying the mapping itself) and are not required to derive the
schema mapping.

e We provide an algorithm for systematically searching through the large space of alternative mappings.
Even given basic value correspondences, the schema mapping problem is far from trivial. Our algorithm
uses value correspondences together with information on schema constraints, database statistics, and
data values to guide the discovery of the full mapping semantics.

3.4 Search Space

Having defined the mapping discovery problem as a search through a set of alternative mappings, an im-
portant characteristic of the approach is the set of possible mappings considered. We begin by considering
mappings that preserve information capacity dominance or equivalence [Hul86]. Such mappings are impor-
tant in information integration [MIR93]. We are able to take advantage of a solid literature enumerating such
mappings [MIR94, RU96, RR94] and providing search procedures for finding such mappings [AH88, MIR94].
From this foundation, we extend the search space in two ways. First, we consider a larger class of map-
pings, including queries for which the equivalence problem is not decidable. As a result, our algorithm
is not complete in that it may not consider all possible mappings. However, this extension is required to
consider mappings between schemas with constraints or dependencies. Second, we consider non-equivalence
(or dominance) preserving mappings. This extension is a necessity since in practice, the source and target
schemas will not represent the same information. To keep our search problem tractable, we attempt to find
mappings that minimize the information loss. A formal description of the search space is beyond the scope
of this paper. Informally, the mappings we consider can be broadly classified into two groups.

Vertical Compositions Facts or tuples can be combined using the join operator. To avoid having
a tuple combine or join with multiple tuples (that is, to avoid having a single tuple contribute multiple
times to the result), we favor performing joins where there is a functional (N:1) relationship between the
tuples. Dependency theory tells us this can be accomplished using joins across foreign keys. (Indeed this
same intuition motivates the relational normal forms.) In addition, to minimize information loss, we use
outer-joins unless the constraints in the mapping imply that the outer and inner-joins would be equivalent
or unless we can determine that the tuples that could be lost by using a join are included elsewhere in
the mapping. Obviously, we will not always be able to determine this since this problem is undecidable
for the general constraints we consider. In composing outer-joins, we favor full disjunctions to ensure all
information for a single fact is collected in a single tuple [RU96, GLR97]. Note that using an outer-join over
a foreign key, we have a mapping that corresponds to the composition transformation of [MIR94]. Such a
transformation preserves information (that is, information capacity dominance) in the sense of [Hul86]. We
also have an algorithm for determining if such a mapping exists between two schemas and for finding such
mappings [MIR94].

Horizontal Compositions Facts or tuples can also be combined using set operators. When we have
multiple value correspondences to the same value in the target, we begin by using union to combine the values.
To accomplish our information preservation principles, we favor using (multi-set) unions as a starting point,
over other set operations such as intersections. If we can determine the sets being unioned are disjoint,
a regular (set) union is used. For example, meta-data is often used to create a tag to distinguish a tuple
coming from one place in the schema from a tuple coming from a different location. Indeed, the mappings
resulting from schematic (or meta-data) heterogeneity between the source and target schemas can often be
represented using tagged unions [Mil98].
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This framework is an extensible one. Additional classes of mappings and additional heuristics for selecting
between mappings can easily be integrated.

4 Query Discovery Algorithm

We now present our mapping construction algorithm. To keep the notation simple, we assume the source
and target schemas are representated in the relational model. We discuss generalizations to other models,
including semi-structured models such as XML in Section 4.4.

4.1 Notation

Before presenting our algorithm, we outline the notation we will be using.

e Let S, ...,.5, represent the n source relations.
o Let 71, ...,T,, represent the m target relations.

e We use the (possibly subscripted) symbol A to denote source attributes. The domain of an attribute
A is denoted dom(A).

e We use the (possibly subscripted) symbol B to denote target attributes.

Each attribute of the source will have associated meta-data. The meta-data includes the attribute name,
the relation name, the schema name, the database name, the domain name, statistics such as high and low
values of the attribute, and possibly additional annotations provided by a DBA. Hence, the meta-data is
extensible. For an attribute A, pu(A) denotes the meta-data associated with A. Formally, ;(A) is a tuple
(1 (A), p2(A), ..., pm(A)) of values. For convenience, we give names to some of these values. The attribute
name is denoted attrname(A) and the relation name is denoted relname(A).

We will represent a value correspondence as a tuple v; = (f;, p;), where f; is the correspondence function
denoting the value substitution and p; a filter.

When defining a correspondence function f;, the DBA selects a number of source attributes (and, possibly,
meta-data associated with those attributes) and one target attribute. Let Attrs(f;) = {Ai,..., Az} be
the set of all source attributes used in f;, and TargetAtir(f;) = B be the (one) target attribute. The
correspondence function, f;, can be expressed as follows.

fi rdom(Aq) x ... x dom(Ag) x p(A1) x ... x u(4y) — dom(B)

Example 4.1 The following correspondence indicates that values of the Distance attribute of the target can
be formed by multiplying the Rate value by the Time value and dividing by 1.6 to convert kilometers to mules.

f1 : Rate x Time/1.6 — Distance

Example 4.2 The next correspondence indicates that company codes are formed by concatenating the ticker
code with the relation name (the name of the stock exchange).

fa : concat(relname(Ticker), Ticker) — CompanyCode

Each value correspondence function f; has an associated filter p; that determines which subset of values
from the source relations will be used by f;. If we define Attrs(p;) = {A1,..., A} to be the set of all source
attributes used in p;, we can express p; as follows.

pi s dom(A1) x ... x dom(A,) x p(A1) x ... x p(Ar) = boolean
By default, p; is the predicate True, indicating the value correspondence is defined for all values in the

domain. Note that Attrs(p;) is not necessarily the same as Attrs(f;). In the first example above, we could
define a p; : Rate < 100 which indicates that the correspondence only holds for small rate values. In
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Figure 4: Mapping Algorithm

the second example, we could have ps : FExzchange(Country) = “Canada” which would indicate that the
correspondence only holds for stocks listed on Canadian exchanges. Here, even though the values involved
in the correspondence come from the data and meta-data of a single relation (Ticker), the attributes of the
correspondence will also include Exchange(Country). As described below, the algorithm will determine a
join path between Exchange and Ticker (for example, relname(Ticker) ba Exchange(Name)) to use when
applying the filter.

Either the correspondence function or the filter may include aggregate functions. The aggregate is taken
as a cue to perform a grouping in the schema mapping. To determine the grouping attributes, we must
consider all the value correspondences for a target relation as described in the next section.

4.2 The Core Algorithm

For each target relation T we want to construct a query gg that specifies what values to include in the
relation. To do this, we consider the value correspondences Vy defining attribute values of Ty (i.e., Vi =
{vi =(fi, pi) | TargetAttr(f;) € Tk }).

The idea behind this algorithm is to divide the set of value correspondences Vj, into subsets of Vi, each of
which determines one way of computing the values of Ty. Each of these candidate sets can be mapped into
a single candidate SQL query (that is, a query with a single select-from-where-group-by clause). The
query g is then the horizontal composition (i.e., the application of set operations such as UNION ALL) of
these candidate queries.

We present the algorithm for a single target relation 7' and, thus, V = Vi includes all value correspon-
dences. When more that one target relation exists, we repeat the algorithm for each Vj possibly reusing
computations from previous targets.

We divide the algorithm’s tasks into four phases (see Figure 4). In the first phase, the value correspon-
dences in V are partitioned into sets {c1, ..., ¢y} that contain at most one correspondence per attribute of T'.
We call each such set a potential candidate set. In essence, each c; represents one possible way of mapping
the attributes of 7. A potential candidate set is complete if it includes a value correspondence for every
attribute in the target. Potential candidate sets are not necessarily disjoint since the same value mapping
can appear in multiple potential candidate sets.

For clarity of exposition, we describe this phase of the algorithm as searching every potential candidate
set derived from V independently (though the computations can be reused across subsets). Although this
implies a large search space, potential candidate sets are generated on demand from the next phase of the
algorithm (i.e., pipelined). The order in which potential sets are passed to the next phase is, thus, important.
As a heuristic, we give preference to complete potential sets whose value correspondences use the smallest set
of source relations. Also, if a particular potential candidate set c; is selected for use in the schema mapping,
we can heuristically prune potential candidates that are proper subsets of c; since they are unlikely to also
appear in the mapping.

Example 4.3 Consider the following value correspondences (and assume some filter p; has been defined for
each).

f1 : SlA —T.C f2 : SQA —T1.D f3 : SQB —T.C

The collection of complete potential candidate sets is P = {{v1, va}, {va,vs}}. The singleton sets {v1}, {va},
{vs} are also potential candidate sets.

It 1s important to note that we consider potential candidate sets that are not complete. There are two
reasons for this. First, as shown in Example 3.3, in the final query mapping, there may not be a value
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correspondence for every target attribute. Second, we will be using our algorithm incrementally on perhaps
incomplete sets of correspondences. We want to permit a user to specify a partial set of correspondences,
and have Clio derive a possible mapping. Using the mapping, example tuples in the target can be derived.
These tuples can be used by a user to understand how the data is fitting into the target.

The result of the first phase of the algorithm is a collection P = {e1, ..., ¢q}, where each ¢; C V represents
a different possible way of mapping the attributes in the target relation 7'

In the second phase of the algorithm, we prune from the set of potential candidate sets those sets that
cannot be mapped into a good query. In particular, if the value correspondences in the potential candidate
set map values from several source relations, we need to find a vertical composition (i.e., a way of joining
the tuples) of those relations. This composition will satisfy the criteria established in Section 3.4. We search
for foreign key paths between these relations.® Often there will be at most one such path. If, however, there
are multiple paths, we favor the path for which the estimated difference in size of the outer and inner join
is the smallest.* This heuristic favors (outer-)join paths that produce the fewest dangling tuples. For any
ambiguities that remain, we ask the user to choose one of the available join paths. To help in this process,
we show the user example target tuples produced by each of the alternative paths. In the absence of foreign
key paths, we could employ data mining techniques to determine if there is an (approximate) foreign key
relationship between the relations in question [Bel97, KMRS92] or permit the user to suggest appropriate
join paths. If no acceptable join path can be found, the potential candidate set is removed from further
consideration. Any potential candidate set that survives this pruning is a candidate set.

The result of this second phase is a set G C P of candidate sets. Value correspondences in a candidate
set either map attributes from only one source relation, or map attributes from multiple source relations and
a join path among those relations is known.

In the third phase of the algorithm, we attempt to find a subset T' of the candidate sets (I' C G)
that covers all value correspondences in V (that is, every value correspondence in V' appears at least once
in T'). We permit correspondences to participate in multiple candidates within a cover, but we do not
consider a set of candidates T' if we can remove a candidate set and still have a cover. For instance, in
Example 4.3, G = {{v1,va}, {v2, vz}, {v1},{v2}, {vs}}. Possible covers include Ty = {{v1}, {v2, vs}} and
[y = {{v1, v}, {vs,v3}} since all defined value correspondences appear at least once.

If there is more than one cover, Clio ranks them in reverse order of the number of candidate sets in the
cover. Since the number of candidates in a cover is the number of candidate SQL queries needed to compute
the mapping, we prefer smaller covers which will produce simpler mappings. When two or more covers
have the same number of candidate sets, we prefer those that use the largest number of target attributes
in all candidate sets and, thus, minimize the number of “null” values in the target. The ranked covers are
presented as alternative mappings for the user to evaluate.

The final step is to build the query ¢ from the selected cover. For each candidate set c; in the selected
cover, we create a candidate SQL query such that all correspondence functions f; mentioned in ¢; appear in
the SELECT clause, all source relations are mentioned in the FROM clause, and all predicates p; appear as a
conjunction in the WHERE clause. Any join path determined in the second step for this candidate set will be
used to determine the appropriate source relations for the FROM clause. The join predicates are also added to
the WHERE clause. For each candidate set that includes aggregate functions (in either the correspondence or
the filter), we select grouping attributes. All attributes (or functions on attributes) in the select clause that
are not within the aggregate are selected as the grouping attributes. If the aggregate 1s in the correspondence
function, the aggregate is placed in the select clause. If the aggregate is in the filter, the aggregate is placed
in the HAVING clause. (We provide an example using aggregation in Section 5.) All candidate SQL queries
are then combined into one large query using the multiset UNION ALL.

As in query optimization, the search space we consider in this algorithm is exponential. Nevertheless,
we are able to provide heuristics that can guide the search towards likely covers and, thus, a correct schema

mapping.

3 Actually, the search is done only once for all potential candidates and the results of the search reused over different potential
candidates.
4Note that this measure can be evaluated using common meta-data such as the number of distinct values of an attribute.
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4.3 Making the Algorithm Incremental

Often, users will provide value correspondences incrementally and wish to see partial results before adding
additional correspondences. We therefore provide an incremental version of the above algorithm. The
algorithm takes as input a cover I'; and a single change AV to the set of input value correspondences V. The
change AV can be the addition (denoted 4+v) or the deletion (denoted —v) of a single value correspondence
v. As output, the user is presented with a ranked set of possible next covers that are produced by the
application of AV to I';. The cover selected by the user becomes the next cover I';41.

The incremental algorithm is divided into three phases (see Figure 5). The first phase does the work
of the first and second phases of the batch algorithm presented in the previous section. Given a +wv, the
algorithm tries to insert v into all candidate sets of [';. If the addition of v changes the set of source relations
of a candidate set, a new join condition is sought (using the current join condition, if any, as seed for this
search). The same heuristics discussed in the previous section to obtain a vertical composition are used here.
If no candidate set in the cover can accept v, a new candidate set is created. For a deletion —wv, the algorithm
removes v from all candidate sets where it appears. Candidate sets that become empty, are removed from
the cover. The result of this first phase is a set of changes AT that can be applied to the candidate sets in
the current cover T';.

The second phase of the algorithm applies each change in AT to I';, producing a set of tentative covers
[i41. Since the first phase limits the number of changes per candidate set to at most one change, the number
of possible new covers is bounded by the number of candidate sets in the cover. This set of new covers are
ranked as described in the previous section and presented to the user. The user selects one cover as the next
Fi-l—l .

The third phase of this algorithm is identical to the fourth phase of the previous algorithm. Given a
cover [';, this phase produces an SQL query.

4.4 Nested-Sets in Target Relations

In addition to flat relational schemas, Clio can produce mappings to nested relational targets. Such map-
pings can be used to populate semi-structured schemas, including XML Schemas [W3C99]. For example,
assume one of our target relations is DeptInfo(number, name, staff:set of row(ename, eaddress)) where
staff is a set of rows containing the name and address of each staff member. Given source relations
Department (dno, dname) and Professors(ssn, name, address, salary, dno), we could expect users to map
values from Department into the outer-level of DeptInfo and values from Professors into staff. This
mapping implies a join condition between the source relations Department and Professor.

Clio considers each target relation as an instance of a collection (or set) of row types. These row types can,
in turn, contain collections of other row types. Candidate sets represent a possible mapping of the attributes
of a particular collection and are maintained for each target collection (including nested collections). This
forms a tree of candidate sets. For instance, in the example above, there is one candidate set that defines
the mapping for DeptInfo and a candidate set under it that defines the maping for staff.

Join conditions for nested candidate sets include the extra step of finding (if needed) a way of joining the
source relations of a particular candidate set with the source relations of each nested candidate set under it.
In the example above, no join condition is needed for the candidate set of staff. However, a join condition
between the source relations of that candidate set (Employee) and the source relation (Department) of the
candidate set of the parent is needed.

Given a nested cover I') we can use a modified version of the procedure described in Section 4.2 to produce
an SQL mapping query. The reasoning is similar to that used for flat relations and incorporates explicit
knowledge about when nesting preserves the desired information. A nested query is added to the FROM clause
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Figure 6: Schema of Rigi Source Database and a Software Engineering Warehouse

of the candidate set’s query for each of its nested candidate sets. To generate these nested queries, a recursive
call is made to this procedure using the nested candidate sets as input. In the example used in this section,
the expected output query is the following query.

SELECT DI.dno as number, DI.dname as name,
EmpTable.EmpSet as staff
FROM DeptInfo DI,
(SELECT SET OF(ROW(E.name, E.address)) AS EmpSet
FROM Employee E
WHERE E.dno = DI.dnumber) AS EmpTable

5 Using Mappings in Different Applications

In this section, we consider how mappings discovered in Clio can be used in the applications we discussed in
Section 2.

5.1 A Data Warehousing Application

We use an example based on a proposed software engineering warehouse for storing and exchanging informa-
tion extracted from computer programs [BGH99]. Such warehouses have been proposed both to enable new
program analysis applications, including data mining applications [MG99], and to promote data exchange
between research groups using different tools and software artifacts for experimentation [HMPR97]. Figure
6 depicts a portion of a warehouse schema for this information. This schema has been designed to represent
data about a diverse collection of software artifacts that have been extracted using different software analysis
tools. The warehouse schema was designed to be as flexible as possible. As a result, it uses a very generic
representation of software data as labeled multi-graphs. Conceptually, software artifacts (for example, func-
tions, data types, macros, etc.) form the nodes of the graph. Associations or references between artifacts
(for example, function calls or data references) form the edges. Two of the main tables for artifacts and
references are depicted in the figure. Both tables are specialized with subtables containing specific types of
software artifacts and references.

As new software analysis tools are developed, the data from these tools must be mapped into this
integrated schema. In Figure 6, we also give a relational representation of facts extracted from the Rigi
parser [MOTU93]. This schema may be supported by a wrapper built on top of Rigi [RS97]. Foreign keys
are depicted by dashed lines. To map the Rigi data into the warehouse, the correspondences of Figure 7
may be used. In the Schema S, function and data type names are sufficient to disambiguate values within a
software system. Within the warehouse, the information must be combined with meta-data describing the
software system (for example, the program name and version). In Rigi, the program name and version are
given in a header of a text file containing the set of all facts for the program. The wrapper exposes this
information using the meta-data functions dbname and dbversion. The correspondence f; is given below
and the other correspondences are defined similarly. The function Id is a Skolem Function that produces a
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Figure 7: Value correspondences used to map the Rigi Schema to the Warehouse

unique id for each unique set of values on which it is invoked [HY92]. Note that correspondences f4 and f5
map the relation name into the ReferenceType value, effectively transforming schema to data.

f1: Id(dbname(), dbversion(), Calls(Caller)) — References(Artifact)

The grouping algorithm of Clio uses the foreign key information in the source to create several candidate
subsets. One contains the four correspondences {f1, f2, f3, fa}. Note that there are two foreign key join paths
between the source relations involved in these correspondences. The first populates the Source attribute of
the target with the File attribute of the caller function (Mapping S1). The second populates the Source
attribute of the target with the File attribute of the called function (Mapping Ss).

S1: SELECT Id(dbname(),dbversion(),C.Caller),
Id(dbname() ,dbversion(),C.Callee),
relname(C), Id(dbname(),dbversion(),F.File)

FROM Calls C, Function F
WHERE C.Caller = F.Name

S9: SELECT Id(dbname(),dbversion(),C.Caller),
Id(dbname(),dbversion(),C.Callee),
relname(C), Id(dbname(),dbversion(),F.File)

FROM Calls C, Function F
WHERE C.Callee = F.Name

If we cannot distinguish these paths using the data, both will be presented to the user. The user is given
some example values to help evaluate which of the join paths is correct (Figure 8). Based on the data, the
user can pick the desired mapping. In this example, the user would choose the first since the source location
of a program call is the location of the caller function.

A second candidate subset contains the four correspondences {fs, fs, f7, fs}. Note that Clio chooses
to use f3 in both candidates since there is a good foreign key path to use for both candidates. These
two correspondences form a cover. Clio combines the Mapping S; and the mapping produced for this
second candidate subset to produce the following complete schema mapping. Since Clio favors grouping
correspondences from the same relation, the other covers possible in this example are eliminated.

S: SELECT Id(dbname(),dbversion(),C.Caller),
Id(dbname() ,dbversion(),C.Callee),
relname(C), Id(dbname(),dbversion(),F.File)

FROM Calls C, Function F WHERE C.Caller = F.Name

UNION ALL

SELECT Id(dbname(),dbversion(),D.Fct),
Id(dbname(),dbversion(),D.DataType),
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Figure 8: Discovered alternative schema mappings are used to derive example target data. The facts depicted are
example facts from Rigi’s analysis of the Linux software system. The files sock.c and skbuff.c contain the socket
management and socket buffer support, respectively, for the network subsystem of Linux.
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Figure 9: Aggregate filter in a value correspondence.

relname(D), Id(dbname(),dbversion(),F.File)
FROM DataRef D, Function F WHERE D.Fct = F.Name

To extend this example, consider the correspondence and filter used to define the Class table (a subtable
of the Artifact table). Although the Rigi facts from Figure 8 represent C programs, the warehouse may
contain tables like Class for storing information about object-oriented classes. C programs might be “reverse
engineered” into C*t+ programs by grouping together into a class all functions that access a particular data
type or set of data types. For brevity, we assume the Class table has a single Id attribute indicating the
data type of the class (Figure 9).°

fa : Id(dbname(),dbversion(), Data Type(Name))— Class(1d)
pa : count(DataRef(Fet)) > 5

The correspondence f, maps data types to the Class table. The user also provides a filter p, restricting
the mapping to data types referenced by more than 5 functions. Clio discovers the join paths between
DataRef and DataType. Given the aggregate function in the filter, the discovered mapping includes a group
by and is depicted below.

Sq: SELECT Id(dbname(),dbversion(),T.Name)
FROM DataType T, DataRef R
WHERE T.Name = R.DataType
GROUP BY Id(dbname(),dbversion(),T.Name)
HAVING count(R.Fct) > 5

5.2 Exchanging data in XML

Another use for data from the Rigi parser is to provide information about modules of interest directly to tools
and end users. XML may be used as a means of exchanging such information; a portion of a DTD giving
basic information about the module and the routines it invokes can be found in Figure 10. A schematic
representation of the same structure appears on the right side of Figure 11.

5While we are over-simplifying the reasoning behind reverse engineering methodologies, we are being faithful to the way
these groups can be represented in SQL [MG99].
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<!ELEMENT Module (Name, Defined_In, Invokes *) >
<!ELEMENT Name (CDATA) >

<!ELEMENT Defined_In (CDATA) >

<!ELEMENT Invokes (Name, Parameters #*, FileName, Line)>
<!ELEMENT Parameter (Type) >

Figure 10: A fragment of a simple DTD for module description
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Figure 11: Value correspondences for nested structure

Figure 11 also shows the relational schema for the Rigi parser, and a set of value correspondences between
the two schemas. The first two correspondences, f; and f,, provide the name of the module and the file
in which it is defined. (Unless otherwise mentioned, the functions used in this example will be the identity
function, and the predicate will be “True”). The correspondence f3 shows that the names of routines called
by this module come from the Callee field of Calls. At this point, Clio detects that it needs a nested table
expression, and a join condition to correlate that expression to the outer query. As in Section 5.1, there are
two ways to join Calls and Function. Clio would enlist the user’s help to determine that the module should
be the caller of the routine.

With one correspondence made at this level of nesting, fs4 can fill in the types of parameters to the called
routine. This correspondence has as its filter DataRef .Parameter = ’True’, so that only parameters are
included. Again, another nested table expression is needed, and a join condition. This time the data type
is that of a parameter of the called routine, so the predicate should tie the DataRef to the Callee; however,
the user would need to be consulted to ascertain that semantics. Finally, the last two correspondences take
us back to the middle nesting layer, and, because they refer to values in a table other than Calls, require
another join (to Function). Note that this is not another nesting, just a normal join to the existing tables in
this query block.

The resulting query is shown below. While this syntax does not accomplish the XML tagging, it is
relatively easy to post-process either the query or the results of executing the query to add the necessary
tagging functions or tags.

SELECT F.Name, F.File as Defined_In, R.TypeSet as Invokes
FROM Function F,
(SELECT SET OF (ROW(C.Callee, T.NameSet as Parameter,
F2.File, F2.LineNo)) as TypeSet
FROM Calls C, Function F2,
(SELECT SET OF (ROW(D.Datatype)) as NameSet
FROM DataRef D
WHERE D.Fct=C.Callee AND D.Parameter=’True’) as T
WHERE C.Caller = F.Name AND C.Callee = F2.Name) as R

It should be clear from this admittedly simple example that generating the queries needed to structure

data for XML tagging is not an easy task. Six value correspondences led to a complex query. Without a tool
such as Clio, we believe that setting up data exchange applications in XML would be a much harder task.
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6 Related Work

We have already described the differences between classical schema integration [RR99], which is primarily a
schema design problem, and the schema mapping problem we have addressed here.

Related language-based approaches provide tools for the specification and implementation of data and
schema translations. The YAT conversion language [CDSS98] permits the specification of data and schema
matching and restructuring operations. The correspondence rules of [ACM97] are another example. These
tools also include the schema matching techniques of [MZ98] for simplifying the specifications of matching
rules. Our techniques complement and extend these language-based approaches to consider the general
problem of query discovery. Finally, the search problem we consider is closely related to the problem of
finding the set of all views that can be used to answer a query [LMSS95, DPT99].

7 Conclusions

In this paper, we identified a new problem, targeted schema mapping, that is of critical importance to several
increasingly common classes of applications. We distinguished schema mapping from the well-known problem
of schema integration, and discussed the similarities and differences between the two. By using queries to
represent a mapping, we allow DBMSs to play an expanded role as data transformation engines, as well as
data stores. Additionally, we find expanded uses for many techniques from query optimization, as we apply
them to the new task of query discovery or mapping creation. Qur framework for schema mapping uses value
correspondences that describe how to populate a single attribute of the target schema. Given a set of value
correspondences, we must discover the mapping query needed to transform source data to target data. We
presented our algorithm for this often complex task, and introduced Clio, a tool that helps users create a
schema mapping. Finally, we showed through extensive examples based on real applications how Clio would
process a set of value correspondences to arrive at the mapping query.
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