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Abstract 
Powerful, flexible shape models of anatomical structures 
are required for robust, automatic analysis of medical 
images. In this paper we investigate a physics-based 
shape representation and deformation method in an effort 
to meet these requirements. Using a medial-based spring-
mass mesh model, shape deformations are produced via 
the application of external forces or internal spring 
actuation. The range of deformations includes bulging, 
stretching, bending, and tapering at different locations, 
scales, and amplitudes. Springs are actuated either by 
applying deformation operators or by activating 
statistical modes of variation obtained via a hierarchical 
regional principal component analysis. We demonstrate 
results on both synthetic data and on a spring-mass model 
of the corpus callosum, obtained from 2D mid-sagittal 
brain MRI slices. 

1. Introduction 
Controlling non-rigid object deformation at multiple 
locations and scales in an interactive and intuitive manner 
is highly desirable in medical image analysis tasks such as 
segmentation and registration. Most current deformable 
shape models [9], are boundary-based and although 
provide excellent local shape control, lack the ability to 
undergo intuitive global deformation. As a result, it is 
difficult to incorporate intelligent deformation control 
operating at the right level of abstraction into the typical 
deformable model framework of energy minimization. 
Consequently, these models remain sensitive to initial 
conditions and spurious image features in image 
interpretation tasks. 
 Various hierarchical versions of boundary-based 
deformable models have been developed [10,12,8,7] but 
again fail to provide a natural global description of an 
object - the multi-scale deformation control is constructed 
upon arbitrary boundary point sets and not upon object-
relative geometry. Several global or “volume-based” 
shape representation or deformation mechanisms do exist 
[1,14,15,17] but are limited either by the type of shapes 
they can represent, or the type and intuitiveness of the 

deformations they can carry out. They are also typically 
not defined in terms of the object but rather the object is 
unnaturally defined (or deformed) in terms of the 
representation or deformation mechanism. 
 Emerging trends in deformable shape modeling 
include medial-based approaches, which we believe are 
powerful techniques since they follow the geometry of the 
object and provide natural and intuitive deformations. 
[13,4]. Additionally, physics based deformable shape 
models have been developed [17,11]. The attractiveness 
of these models stems from their ability to inherently 
handle smoothness and continuity constraints. 
Furthermore, statistically derived shape models [2,16] are 
gaining wide acceptance within the medical image 
analysis community since they constrain the global shape 
deformations according to the statistical shape variations 
observed in a training set. 
 The shape representation and deformation method 
presented in this paper is motivated by the following 
desirable characteristics of a deformable model for 
medical image analysis tasks. First, implementing the 
deformations within a physics-based framework that 
inherently handles smoothness and continuity constraints 
and facilitates intuitive user interaction. Second, using 
shape representations and deformations that follow the 
naturally geometry of the object. Third, controlling the 
deformations of an object shape at multiple locations and 
multiple scales. Fourth, restricting the deformations to 
produce only feasible shapes. 

In this paper, we investigate a method that addresses 
all of the above points. First, the deformable shapes are 
modeled using physics-based meshes of connected nodes 
(mass-spring models) that maintain the structural integrity 
of the body as it deforms and are suitable for intuitive 
user interaction. Second, the mesh nodes and connectivity 
are based on the medial axis of the object. Third, we use 
either operator- or statistics-based deformations to control 
the different types of deformation at multiple locations 
and scales. Finally, statistics-based feasible deformations 
are derived from a hierarchical (multi-scale) regional 
(multi-location) principal component analysis.  



2. The Dynamic Mesh Model 
We use mesh models to represent object shapes (Figure 1-
Figure 2). A mesh is made up of nodes (masses or 
particles) and springs (elastic links or connecting 
segments). A Mass im , position ix , velocity iv , and 
acceleration ia  are associated with each node in . Two 
terminal nodes in  and jn , Hook’s spring constant sk , 
damping constant dk , and rest length ijr  are associated 
with each spring ijs . 
 By applying Newton’s second law of motion and 
simulating the dynamics by time integration, the mesh 
nodes move deforming the object’s shape. Newton’s 
second law of motion for the node in , states that 

i i ia f m= , where if  is total force acting on in  
Hook viscous user image
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to be exerted at in  and Hook
if−  on jn . Viscous drag at 

in  is given by viscous
vi if k v= − . A single user applied 

force user
if  is implemented as the dynamic force resulting 

from a spring connecting a mesh node to the (varying) 
position of the user’s point of application. Image forces 
can be implemented as 

( )( )image
sexti if k I x∝ ∇ ∇  (3) 

where ( )s iI x  is the intensity of a pixel at the location of 
node in  in a smoothed version of the image. Image forces 
that attract the model to an image boundary are calculated 
only for boundary mesh nodes (similarly image forces 
that attract medial model nodes to medial features can 
also be applied). 
 Following the calculation of the node forces we 
compute the new acceleration, velocity, and position of 
each node given the old velocity and position values, as 
follows (explicit Euler solution with time step t∆ ) 
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Figure 1. Examples of different spring-mass structures. 
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Figure 2. (a) Mid-sagittal MRI brain image with the 
corpus callosum (CC) outlined in white. (b) CC mesh 
model. 

3. Shape Deformation 

3.1. Shape Deformation Using External Forces 
As explained in section 2, deformations can be applied 
via external forces such as user interaction (Figure 3) or 
image forces. 

 

 

 
Figure 3. Examples of deformations via user interaction 
(‘mouse’ forces). 

 



3.2. Deformations Using Spring Actuation 
Other forces result from spring actuation (in a manner 
analogous to muscle actuation in animals). Two nodes 
connected by a spring will normally change position until 
the spring is at its rest length. To actuate a spring we 
change its rest length while continuously simulating the 
mesh dynamics. 
 
Operator-Based Localized Deformations. Bulging 
(radial bulge), stretching (directional bulge), bending, 
tapering, and scaling deformations are implemented using 
spring actuation. These operator-based deformations can 
be applied at different locations and scales with varying 
amplitudes. 
 To perform a (radial) bulge deformation we specify a 
center C  and a radius R  of a deformation region (Figure 
4a) as well as a deformation amplitude K . We then 
update the rest length ijr  of each spring ijs  if at least one 
of its terminal nodes, in  or jn , lies within the 
deformation region, as follows 

( )( )( )( )21 1 1 1 old
ij ij

dr K r
R

θ
π

= − − − +  (5) 

where 0,
2
πθ  ∈   

 is the angle between ijs  and the line 

L  connecting the midpoint of the spring with the C and 
d  is the length of L  (Figure 4a). The resulting effect of 
the above equation is that springs closer to C  and with 
directions closer to the radial direction are affected more 
(Figure 5). 

To perform a stretch (directional bulge) we again 
specify a deformation region and amplitude as well as a 
direction D

G
 (Figure 4b). We update the rest length of 

each spring as in equation (5) where 0,
2
πθ  ∈   

 is now 

defined as the angle between ijs  and D
G

 (Figure 4b). The 
resulting effect in this case is that springs closer to C  and 
with directions closer to the stretch deformation direction 
are affected more (Figure 5). 
 

R

d

θ

ijs
in

jn

C

R

d

θ

ijs
in

jn

C

 
R

d

C

θ

ijs in

jn

D

R

d

C

θ

ijs in

jn

D

 
R

d
ijs

in

jn

C

R

d
ijs

in

jn

C

 
(a) (b) (c) 

Figure 4. Definition of variables for (a) radial bulge, 
(b) directional bulge, and (c) localized scaling. 
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Figure 5. The coefficient (white=K, black=1) by 
which oldijr  is multiplied as a function of θ  and d . 

 
 A localized scaling deformation is independent of 
direction and requires only the specification of a 
deformation region and amplitude (Figure 4c). The rest 
length update equation then becomes 

( )( )( )1 1 1 old
ij ijr d R K r= − − + . (6) 

To perform localized bending, we specify a bending 
amplitude K  and two regions surrounding the medial 
axis (Figure 6).  The rest lengths of the springs on one 
side of the medial are increased according to 
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while the rest lengths on the other side are decreased 
according to 
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Figure 6. Definition of variables for localized 
bending deformation operator. 

 



 To perform localized tapering, we specify a tapering 
amplitude K  and a region with a base (Figure 7). The  
rest lengths on one side of the base are increased 
according to 
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1
1 1 old

ij ij
d

r K r
R

 = − +   
 (9) 

while those on the other side are decreased according to 
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Figure 7. Definition of variables for 
tapering deformation operator. 

 
 Different examples of localized operator-based 
deformations are shown in Figure 8. 
 
Statistical or learned deformations. Statistical or 
learned deformations are also implemented via spring 
actuation. To facilitate intuitive deformations, springs are 
designed to be of different types: stretch springs, bend 
springs, or thickness springs. Stretch springs connect 
neighboring medial nodes, bending springs are hinge 
springs that connect non-consecutive medial nodes, and 
thickness springs connect medial nodes with boundary 
nodes (Figure 9). Actuating the stretch springs causes 
stretch deformations, actuating hinge springs causes bend 
deformations, and actuating thickness springs causes 
bulging, squashing, or tapering deformations. 
 Feasible mesh deformations are obtained by actuating 
springs according to the outcome of a statistical analysis 
performed on the spring lengths of a training set 
(discussed in section 3.4). 

3.3. Affine Transformations 
Rotation and translation are implemented via the 
application of external forces. Scaling is implemented by 
muscle actuation. Scaling by a factor of S  is performed 
by changing the rest length of all the springs, i.e.  

old
ij ijr S r= ⋅ . Rotation forces are applied on all nodes in 

a direction normal to the line connecting each node with 
the center of mass of the model, with a consistent 
clockwise/counter clockwise direction (Figure 10a). 
Translation forces are applied on all nodes in the direction 
of the desired translation (Figure 10b). Examples are 
shown in Figure 11. 
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Figure 8. Examples of localized deformations. (a) 
Initial synthetic object, (b) bulge, (c) bend, (d) bend at 
another location, (e) tapering, (f) tapering followed by 
a bulge, and (g) tapering followed by a bulge and a 
bend deformations. CC model (h) before and (j) after a 
localized bend. (i,k) Close up versions of (h,j). 
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Figure 9. Spring types used for statistics-based 
deformations. 

 
 



  
(a) (b) 

Figure 10. External forces for performing a (a) 
rotation (light gray circle marks center of mass) 
and a (b) translation. 
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(b) 

Figure 11. Affine transformation via external 
forces. (a) Rotating a model of the corpus 
callosum. (b) Rotating and scaling a synthetic 
model. 

3.4. Hierarchical Regional PCA 
To produce feasible (i.e. similar to what has been 
observed in a training set) shape deformations at different 
locations and scales, we perform a principal component 
analysis (PCA) of the spring lengths corresponding to the 
desired localized deformations as explained below. 
 The set of rest lengths for the stretch springs (Figure 9) 
in a single example model are collected in a vector Sr , 
i.e. 

{ }, : stretch springsij ijS r i j s= ∀ ∈r  (11) 
and similarly for the bending and left and right thickness 
springs (Figure 9) 

{ }
{ }
{ }

, : bend springs

, : left thickness springs

, : right thickness springs
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where , , TS BN N N  are the numbers of stretch, bend, and 
left/right thickness springs and the springs are ordered 
spatially (i.e. moving from one end of the medial to the 
other we encounter 1 2, , , SN

S S Sr r r… ). 
 Performing global (traditional) PCA on corresponding 
variables in a training set gives  (details on obtaining the 
corpus callosum training set can be found in section 4) 
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where the columns of SM , BM , TRM , TLM  are the main 
modes of spring length variation. Associated with each 
mode is the variance it explains. 

For capturing the shape variations at different 
locations and scales, we study the variations in the rest 
lengths of the springs in the desired localized region. 
Furthermore, to decompose the variations into different 
types of general deformations, each statistical analysis of 
the spring length in a localized region is restricted to a 
specific type of deformation springs (Figure 9). 
Accordingly, the PCA becomes a function of the 
deformation type, location and scale. For example, to 
analyze the local variation in object length (stretch), we 
perform a statistical analysis on the lengths of the stretch 
springs of that local region. In general, for a single 
deformation/location/scale- specific PCA we obtain 

, , , , , , , ,def loc scl def loc scl def loc scl def loc sclM= +r r w  (15) 
where def  is the deformation type being either, S (for 
stretch), B (for bend), TL (for left thickness) or TR (for 
right thickness). The location and scale, determined by 
the choice of loc  and scl  respectively, determine which 
springs are to be included in the analysis according to 
 1 1

, , , , ,loc loc loc scl
def loc scl def def def

+ + − =   r r r r… . (16) 
For example, for the bending deformation at location 
‘five’ with scale ‘three’ ( , , , 5, 3def loc scl B= ) we have 

[ ]5 6 7
, , ,5,3 , ,def loc scl B B B B= =r r r r r  (17) 



The average values of the spring lengths are calculated 
according to 

 ( ) , ,, ,
1

1 N

def loc scldef loc scl
j

j
N =

= ∑r r  (18) 

where ( ) , ,def loc scljr  is , ,def loc sclr obtained from the thj  
training example and N  is the number of training 
examples. The columns of , ,def loc sclM  are the 

eigenvectors, , ,def loc sclm , of the covariance matrix 

, ,def loc sclC . That is 
 { } , ,def loc sclC λ=m m  (19) 
where 

( )( ) ( )( )
1 , ,

1
1

N
T

j def loc scl

C j j
N =

   = − −  −  
∑ r r r r  (20) 

and where { } , ,def loc scl  denotes deformation type-,  
location-, and scale- specific PCA variables. 
 The data set needs to be aligned only with respect to 
scale. The statistical analysis of spring lengths is 
independent of orientation and translation. See the 
different examples in Figure 12-Figure 15. 

4. Mesh Generation From Real Data 
 From 51 MRI brain volumes, we extracted the mid-
sagittal slices from the coronal slices. We then used  
human expert segmented corpus callosum images (Figure 
16a) to compute the set of spatially ordered boundary 
coordinates (Figure 16b). We calculated a pruned (using 
morphological operations) skeleton to produce a medial 
axis (Figure 16c-d) represented by spatially ordered 
coordinates. We then sampled the medial and boundary 
coordinates (we experimented with critical point detection 
algorithm [18], fitting line segments [6], in addition to 
uniform/equal arc length sampling and non-uniform 
sampling). We then constructed the mesh by finding the 
boundary points closest to the line normal to the sampled 
medial points. Since Delaunay triangulation does not 
guarantee correspondence between the meshes in different 
examples, we hand crafted the spring connections and 
applied it to all the training data (Figure 16e-f). We intend 
to explore other triangulation algorithms to automate the 
generation of corresponding meshes. 
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Figure 12. Sample corpus callosum mesh model 
deformations (1st PC for all deformation types over the 
entire CC) derived from the hierarchical regional PCA. 
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Figure 13. Sample CC mesh model deformations (2nd 
PC for all deformation types over the entire CC) 
derived from the hierarchical regional PCA. 

 

  
(a) (b) (c) 

Figure 14. Statistical CC mesh model deformations: 
Stretching the Splenium. 

 

(a) (b) (c) 

Figure 15. Statistical CC mesh model 
deformations: Bending the Genu. 

 



(a) (b) 

(c) (d) 

(e) (f) 

Figure 16. CC mesh generation: (a) expert segmented 
CC images, (b) extracted boundary pixels, (c) skeleton, 
(d) pruned skeleton/medial axis, (e) spring connections, 
and (f) final CC mesh model. 

5. Conclusion 
A key requirement of a deformable model-based medical 
image analysis system is the ability to intelligently 
schedule and control the type, location, extent, and order 
of intuitive model deformations during the fitting process. 
In this paper we investigated the use of a physics-based 
shape representation and deformation technique to meet 
such a requirement. This investigation is our first step for 
using our model (as an alternative to the technique 
presented in [4]) as the lower layers of a recently 
developed multi-layered intelligent model-fitting system 
[5]. 
 Several interesting issues are currently under 
consideration for further exploration. For example, the 
circular deformation region may be too restrictive for 
more complex-shaped mesh models. We are also 
investigating the extension of the controlled physics based 
deformations to 3D meshes. 
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