
Department of Computer Science, U of Toronto, Technical Report: CSRG-437, OCT. 2001 1/9

The location for this technical report, via anonymous FTP

ftp://ftp.cs.toronto.edu/csrg-technical-reports/437/

Hunter Gatherer: Interaction Support for the Creation
and Management of Within-Web-Page Collections

m.c. schraefel,1 David Modjeska,2 Daniel Wigdor,1 Yuxiang Zhu1

 1Dept. of Computer Science
University of Toronto

Toronto, Canada
{mc |dwigdor |yuxiang}@dgp.toronto.edu

2Faculty of Information Systems
University of Toronto

Toronto, Canada
modjeska@fis.toronto.edu

ABSTRACT
Hunter Gatherer is an interface that lets Web users carry out
three main tasks: (1) collect components from within Web
pages; (2) represent those components in a collection; (3)
edit those component collections. Our research shows that
while the practice of making collections of content from
within Web pages is common, it is not frequent, due in large
part to poor interaction support in existing tools. We
engaged with users in task analysis as well as iterative
design reviews in order to understand the interaction issues
that are part of within-Web-page collection making and to
design an interaction that would support that process. We
report here on that design development, as well as on the
evaluations of the tool that evolved from that process. These
evaluations confirm the effectiveness of Hunter Gatherer for
facilitating within-Web-page collection making and
management. Aside from the practical aspects of the tool,
the interaction supported by Hunter Gatherer also has
implications for Intellectual Property in terms of facilitating
the concept and practice of users repurposing Web data.

KEYWORDS
Interaction design, information gathering, information
management, information sharing, attention, collections

INTRODUCTION
Studies of Web-based information interaction such as
[2][4][8], have generally dealt with a Web page as the
smallest unit of consideration. Task analysis carried out in a
user study reported in [9] indicates that users, however,
regularly need to deal with smaller units, that is,
information components from within Web pages. The study
found two things: (1) that Web users want to be able to
make collections of information found from within Web
pages, but that (2) users only infrequently make such
collections, in large part because of poor interaction support
for this activity. For instance, bookmarks, referencing entire
pages often capture more than the desired data; this forces
users first to load and then to sift through multiple pages to
attempt to find the desired material. Text editors cause
users to shift attention between the information gathering

task in the browser and the information management task
with the editor. With editors, users often forget or neglect to
label the collected component with a title or the URL of the
source page, making later access to the original material
difficult, degrading the value of the collection over time.

Despite these shortcomings, those surveyed still expressed
a need to create collections from material within Web
pages. Scenarios for such collections are easy to imagine: a
journalist might want to build a collection of different
newspaper coverage of the same story. A student might
build a heterogenous collection to reflect her current term,
including courses, professors, gym hours and so on.

We developed Hunter Gatherer (HG) both to support this
kind of within-Web-page collection making and to
investigate how this novel interaction design might affect
Web-based information practices. Hunter Gatherer (Figure
1) blends the transparency of bookmark capture for
component selection, with the support of an editor for
revising collections. The tool also automates the inclusion
of a contextual, editable header for each component, and
grabs the URL of the source page for that component
(Figure 2), so that users can return to the source document
at any time. Our goal for Hunter Gatherer’s interaction
design is to let users, rather than the tool, determine which
information activity they wish to focus on: gathering,
management or contemplation of the collection.

Figure 1. Hunter Gather. The Collection Window
(foreground) presents all elements in the current
collection; the List of collected components appears
upper left; lower left are the discrete pages from which
the components in the collections have been selected.

Copyright held by the authors.

 Please do not redistribute without consent.

Paper contact: mc@dgp.toronto.edu.

Department of Computer Science, U of Toronto, Technical Report: CSRG-437, OCT. 2001 2/9

The location for this technical report, via anonymous FTP

ftp://ftp.cs.toronto.edu/csrg-technical-reports/437/

Hunter Gatherer is the result of an iterative process of user-
based design, surveys and evaluation. This paper describes
the most recent version of the artifact, the associated
interaction design, and its evaluations. We begin with a
discussion of related work in Web-based collection
management, and illustrate where this work does not
address the interaction problem most relevant to within-
Web-page collection making: shifting focus between
information capture and post-capture information
management. We follow this with a discussion of our
prototype tool development and evaluation over several
iterations. Finally, we report on lessons learned from these
evaluations, and describe how the results have helped to
refine our understanding of the tasks we hope to support.

RELATED WORK
Our research investigates the problems faced by Web users
who wish to carry out two related tasks: to gather
information components from a variety of Web sources and
to manage that gathererd information. When we focus on
information gathering on the Web, we foreground the
process that Marshall et al. refer to as “information triage,”
the act of moving through a variety of sources to determine
quickly whether they are of potential worth. The sticking
point occurs when, on making such a determination, we
wish to capture the component identified for retrieval. When
users are engaged in information triage, they currently lack a
method for putting the identified components into a
collection without needing to make the collecting activity a
foreground task. While there has been much work done on
the management of Web-based document collections (which
we discuss below), there has been less work on the
interaction activity of placing the identified information
from the source into the collection. Therefore, our work has
focused especially on the latter process.

Bookmarks and Visualization
Our design model for the kind of transparent interaction that
we wish to emulate has been bookmark-making.
Bookmarking is well integrated with most Web browsers.
The user engages a simple command key sequence, or
makes a menu selection, and the current page is added to a
list of bookmarks. With slightly more concentration on the
bookmark task, users can shift focus to more specific
information management tasks: many bookmark tools, for
instance, support adding bookmarks directly to specific
folders within the bookmark list. Such interaction supports a

gradient of task focus, from peripheral attention to main
focus. While bookmarking supports this multiple attention
level for interaction, its failure to help users retrieve
information effectively from bookmarks has been well
discussed in Abrams et al. [1]. To deal with the
shortcomings of bookmarks for retrieving information,
several research and commercial applications have been
developed. While not completely applicable to our research,
there are related findings from that work which inform ours.

Card, Robertson and York’s WebBooks [2] is an early
example of an application for bookmark visualization. In
this work, the entire Web page is always available,
eliminating the requirement for a user to load each
interesting bookmark iteratively. Collections of pages are
visualized as books, where pages in the collection can be
quickly “flipped through.” While the WebBook eliminates
the need for users to load pages, it still focuses on a
complete Web page as the artifact of value.

More recently, Robertson et al. developed the Data
Mountain tool to let users arrange bookmarks as page of
thumbnails on an inclined plane. Compared with Internet
Explorer’s Favorites bookmark tool, participants were able
to retrieve pages more quickly and with fewer errors [7].
Czerwinski et al. extended this work; they demonstrated
that the name and the location of a bookmark on the plane
were the two factors most important for successful
retrieval; a page's thumbnail image was less important [4].

Amento, Terveen, Hill and Hix’s TopicShop work [2][11]
draws particularly on the Data Mountain research for letting
users manage collections of sites on a given topic. In this
case, an algorithm developed for TopicShop captures
candidate sites, which become available to a user in a multi-
paned window. In the site profile pane, for instance, a list of
sites shows miniature thumbnails of the page, along with
relevant site characteristics, such as name and number of
links in and out of the page. This information helps users
decide if they wish to visit the site. Users can then drag
chosen sites into a “work area.” The site is represented here
as a thumbnail. Thumbnails can be “piled” into groups;
groups are in turn reflected in the site profile window.
Evaluation participants found this multi-view approach to
evaluating and organizing collections to be TopicShop’s
most effective feature.

Once again, the Web page is the entity of value. This makes
sense in the case of TopicShop, as the entire page or site is
desired overall, since, by design, the pages collected are
themselves either all “on topic” (e.g., a fan site) or are
collections of links to such sites. It is not clear if the
TopicShop algorithm could be extended to capture, for
instance, a more heterogeneous notion of topic, as in the
preceding student scenario. There, “My Term” as a topic
might reflect an associative set of components such as
courses and student loan information, rather than clusters of
similar information.

Figure 2. Close up of single component in a collection.
Figure shows collection title in the window name;
automatic addition of both element header and URL
back to component’s source page.

Department of Computer Science, U of Toronto, Technical Report: CSRG-437, OCT. 2001 3/9

The location for this technical report, via anonymous FTP

ftp://ftp.cs.toronto.edu/csrg-technical-reports/437/

Editors
Some editors such as Microsoft Windows’ Front Page and
Netscape Navigator’s Communicator are better integrated
for the within-Web-page collection process than basic text
editors or even some word processors. Both applications let
users open a blank, editable page into which they can drag
content, including images, from the browser to the editor.
Users can then edit the collected information in any way
they wish. Unlike bookmark managers, the editor page
makes all the collected components readily apparent to a
user looking at the file. The file can be saved to a server via
the editor’s integrated FTP support. Users can also access
the URL of any collected image. The same cannot be said,
however, for any collected text. Unless the URL is
specifically grabbed, that information is not captured.
Similarly, the user must label the content themselves, since
no page information (such as page title) travels with the
copied content. Word processors such as Microsoft Word
support drag and drop of both text and images from Web
pages into files; plain text editors support text capture.

Hybrids: Spatial Hypertext
In Spatial Hypertext, which predates the emergence of the
Web, the notion of the page, per se, does not exist.
Documents are always already collections of data objects,
like one’s own notes on a topic, or references to other
works. These data objects are manipulated in a 2D
visualization space, so that the space in which a user creates
a hypertext is also the space in which that document is
viewed. This is a more elastic version of hypertext than
what the Web currently supports. By way of intermediary,
Mark Bernstein’s Web Squirrel,1 is a tool that attempts to
bring some of the data object vs. Web page approach to
Web practice, though its main use is for annotating
bookmarks. Web Squirrel lets users create and copy
information (such as URLs) into a Web Squirrel file. The
Data is represented as squares to be directly manipulated in
a 2D space. The objects can then be arranged and
annotated. Agents sift through information in a collection
(or “farm” in Squirrel parlance) and suggest connections
among collected objects. Like bookmark lists, which only
reveal a page title, not the page content, the Web Squirrel
boxes hide annotation/link information attached to them.
Also, only one box’s information can be revealed at a time.
As well, while users copy and pastes text information from
a Web page into Web Squirrel, the source URL for that text
is lost unless the user also grabs the URL and drops that
into the application. This URL will then show up as a
distinct box from the text. Finally, Web Squirrel does not
capture images or other media.

Overview
With the exception of a hybrid tool like Web Squirrel and
the Spatial Hypertext work that informs it, Web-based
research has focused on managing whole Web pages and

1 http://www.eastgate.com/squirrel/FAQ.html

sites, rather than on the discrete content within a Web page.
Even in Spatial Hypertext with its emphasis on capturing
one’s own annotations, however, there is little consideration
of the interaction of getting content from one context to
another. We wish to expand the research to consider this
interaction aspect of the movement among information
gathering, capture and reflection.

HUNTER GATHERER DESIGN PROCESS
Our main goal for Hunter Gatherer has been to support the
collection making interaction process for collecting within-
Web-page components. To determine how best to do this,
we carried out the task analysis, tool comparison and an
initial prototype design review [9].

Goals
From our tools and task analysis, and prototype design
review, we determined 3 requirements for Hunter Gatherer.

• First, to make the addition of components to collections as
transparent as highlighting text.

• Second, the interaction must support user-determined
focus shift among component selection, addition,
monitoring, and management.

• Third, the collected components must automatically
capture enough contextual information for the collection
to be immediately valuable for the user.

In the following sections, we present an overview of the
artifact to support this process, and its evaluation in terms of
these three goals.

Description of the Tool
First, Hunter Gatherer is a browser-based, not a stand-alone
application. By integrating Hunter Gatherer with the
browser in a manner similar to bookmarks, we are able to
minimize the forced divided attention [12] introduced by
shifting between browser and editor, gathering and
management. Our approach is also proxy based. This means
that the user does not have to download additional software
to access the tool. While not perfect, the proxy approach
also lets us support multiple operating systems and browsers
simultaneously. Further, our interest is in the potential
impact of supporting within-Web-page collection making on
Web information practices. Multiple OS support lets us
deploy the tool over a wide user space for this assessment.

Second, Hunter Gatherer does not copy data into a
collection; it creates references for the components inside
the Web page instead. Thus, a collection is built as a string
of URLs. The resulting Aggregated URL (AURL) makes
collections highly transportable: an AURL can be
bookmarked or emailed. For instance, http://[anon proxy
server] /examples/servlet/Collection_b?aurl=http%

3a%2f%2fwww%2eacm%2eorg%2fsigchi%2fchi2002%2fpaper

s%2ehtml%23P%231%231%23papers%20%20CHI%202002%7cht

tp%3a%2f%2fwww%2eacm%2eorg%2fsigchi%2fchi2002%2flo

cation%2ehtml%23P%233%231%23location%20%20CHI%2020

02&pagetitle=Chi%20Info represents an AURL with 2
components (its headers and page title are in bold).

Each user can view and non-destructively edit the collection,

Department of Computer Science, U of Toronto, Technical Report: CSRG-437, OCT. 2001 4/9

The location for this technical report, via anonymous FTP

ftp://ftp.cs.toronto.edu/csrg-technical-reports/437/

since editing only changes an AURL, and one user’s
changes to an AURL have no impact on someone else’s.
Versions of collections can be readily shared while working
on an information-gathering project, either as a link in a
collaborative Web page, or sent via email.

We note briefly two side effects of the AURL approach.
First, HG references within-page-components by
converting an HTML page to XHTML, an XML-compliant
form of HTML. This process lets us use XML’s Document
Object Model to reference the elements marked up within a
page. The referenced-based approach to collections makes
collections dynamic. If a user includes a component for the
local weather, each time the page is loaded, the user will
see the latest forecast. In some cases, it may be necessary to
construct methods to let users identify which components
are important to be set as static and which can remain
dynamic. For now, we are interested particularly in refining
the interaction between component selection, capture and
management rather than considering the long-term archival
properties of a collection. Second, as a side effect of
referencing components by AURLs rather than by coping
content, Hunter Gatherer embodies a version of Nelson’s
Transclusions [7]. Translusions propose creating and
publishing hypermedia documents by reference in part so
that authors can control both private and public
organization and publication of information resources. One
could imagine a method of extending Hunter Gatherer to
support authorizing Web sites/pages/components for
publication within public or private collections

Interaction Technique
Selection
There are three steps to collect a page component in Hunter
Gatherer: (1) select the component to be collected (Figure
3); (2) with that component selected, press the “a” key; (3)
a dialog box appears (Figure 3) asking if the user wishes to

add the component or not. The user can click “ok” or press
the return key to approve the collection. We plan to make
this last step part of a user’s tool preferences, since in our
design reviews, some users wish to be asked to confirm a
selection; others do not. The current default is to ask. The
user can continue to add components in this manner. Any

component that can be displayed in a Web page can be
added to a collection, from images to applets.

The selection and add process is relatively transparent. It
does not require the user, after selecting a component, to

shift attention from the browser to an editor application,
paste content into that application’s file, go back to the
browser, copy the URL, go back to the editor, paste the
URL, add a note to contextualize the component, save the
file, go back to the browser and refocus on hunting for the
next component. The user simply identifies a component to
be added; the system manages the other steps so that users
can focus their main attention on a task until they decide to
shift that focus to a different task.

When the user first selects a component to be added to a
collection, a small window, the List/Edit view, will open
(Figure 4). This window displays a list of the components
in the collection and allows a user to monitor the growth of
that collection. Because the window can be moved behind
other windows, or arranged to be peripherally available, the
user can determine the degree to which they wish to
monitor the collection: each time they add a component
after a collection has been initiated, the List/Edit View
window does not come to the front, but stays where placed.
Indeed, in the first design review of the prototype with 26
evaluators [9], the ability to adjust the “focus” of List/Edit
View to monitor collection state was seen to be essential.
As an example, Figure 1 shows the List/Edit view visible
beside the main browser window, making the state of the
current collection peripherally available. By having the list
available in this way, the user can be confident that another
component has been added to the collection by a fast glance
at the window.

Prototype Selection Note. Because we use the XML
Document Object Model to locate and reference
components within a Web page, we have 2 methods to
identify components for selection: one is by page element,
such as a paragraph, indicated by the XHTML tags like
<p></p>. The other is to identify entities within elements,
so that in <p>some text </p> a user can select, for

Figure 3. The user has selected a component (indicated
by the border around the selection) and hit the “a” key to
add the component to a collection. The dialog box then
appears to ask the user to confirm the addition.

Figure 4. Component Selection. As the user holds the
control key and drags the cursor over the page, available
components are indicated by borders appearing around
them. By holding the control and shift key, users can
select multiple components.

Department of Computer Science, U of Toronto, Technical Report: CSRG-437, OCT. 2001 5/9

The location for this technical report, via anonymous FTP

ftp://ftp.cs.toronto.edu/csrg-technical-reports/437/

instance, the last “e” of “some” and the first “t” of text.
This latter method emulates the act of highlighting a portion
of a Web page for copying. In the current iteration of
Hunter Gatherer, we have had success with selecting and
addressing entire components, like paragraphs or table
cells. We have discovered a number of incompatibilities
across systems for within-element text selection, so have
temporarily taken this approach off line. This is why the
visual feedback for selecting a part or parts of a Web page
is indicated by borders around elements rather than by
highlighting. As users, we are used to interpreting
highlighting as something that can be edited to a fine-
grained level. Since we cannot yet support this degree of
selection fully, we have opted to use borders to indicate
what is selectable, since they are less likely to be
interpreted as being as refinable as highlighting. When we
have character selection back on line, we will evaluate
whether we should keep both modes of indicators:
highlighting and bounding boxes, or simply highlighting.

Collection Interaction
If the user wishes to move task focus from adding
components, to the collection, to dealing with the collection
itself, they can do so via the List/Edit View (Figure 5). This
window for monitoring collection state also acts as the
editor palette for the collection. Users have several editing
options available: they can rename a component, sort
components in the list, delete components from the list,
give the collection a title and preview the collection in a
browser window.

Collection View
When the user selects Preview from the List/Edit View, a
new browser window opens, displaying each of the
components represented by the list, in the order in which
they are displayed in that list. With both List/Edit View and
Collection View open, as in TopicShop, users have two
ways to visualize the collection. As shown in Figure 2, each
component appears with an automatically generated header:
the title of the component’s source Web page. The
component also appears in the collection with the source
page URL as a link. At any time, the user can click that
link to open the source page for that component. Likewise,
any links within the captured component behave just as
they would in the component’s source page.

Direct Manipulation. At present, users manipulate
collections via the List/Edit view. We do not believe that
this is optimal, and certainly related research, especially the
TopicShop and Spatial Hypertext work, indicates that for
the collection management part of the interaction, direct
manipulation of components has value over list views
alone . We are developing a way to integrate direct
manipulation into the tool.

Gradations of Interaction: Focus
Throughout the collection making process with Hunter
Gatherer, the user can move among hunting for sources,
selecting components from those sources, adding those
components to a collection, editing the content of a

collection, previewing the collection, and saving a version of
the collection (by making a bookmark, for instance, of the
current collection AURL). If the user at a later point wishes
to return to a collection, they load its AURL, which may be
done by selecting a bookmark for a collection or by pasting
the AURL from an email message into the browser’s
Location. To edit the collection further, the user clicks the
“edit” link from the collection page, and a List/Edit View
window of that collection opens, listing all its components.
The user can continue to view or revise that collection. By
having all views as browser windows, the user determines
which part of the collection making activity they wish to

foreground, keep in the background or have peripherally
available, simply by arranging the browser’s windows.

EVALUATION
In order to asses how Hunter Gatherer meets the
requirements for collection, focus shift and continued value,
we initiated 3 sets of related evaluations: a survey to better
quantify our understanding of existing Web-based
information-management practices, an experiment to assess
the tool’s efficiency, and a field study to gain insight into
how a new way of working with Web-based information
may fit into daily practice.

Survey
Design and Methodology
In the survey, we asked participants to report on their Web
use in three main areas: creating bookmarks, copying and
pasting from the Web, and printing Web pages. In each
case, we asked about perceived frequency of practice and
under what circumstances users initiated the activity. In the
copying/pasting section, we asked about copying and
pasting from Web pages into email and into text editors,
and under what circumstances each was done. In questions
asking for frequency of practice, we used a Likert scale,
ranging from “never” to “always;” in other questions, such
as kinds of pages considered for bookmarking, we
presented a list of predetermined topics from entertainment

Figure 5. List/Edit View of a Collection. This collection
contains components from multiple Web sites. Users
can sort, delete or rename components listed, and
rename or preview the collection.

Department of Computer Science, U of Toronto, Technical Report: CSRG-437, OCT. 2001 6/9

The location for this technical report, via anonymous FTP

ftp://ftp.cs.toronto.edu/csrg-technical-reports/437/

to research. We also collected demographic data about the
participants.

We ran the survey with 77 participants. The participants
were from a first year Computer Science summer session
course. Most participants were 18-24 years old and had
comparable sophistication with Web use. All but one
participant had a computer at home. Having this
commonality in background let us evaluate differences in
Web practice within a Web-savvy group. Analysis of this
constrained demographic sample will help us refine an
iteration of the survey for a random sample population, as
well as provide benchmark results for that iteration.

Significant Results Overview
While more complete results and copies of the survey are
available at [10], we report on some of the most significant
effects below with respect to Hunter Gatherer.

Bookmark Use. Out of 77 participants, only 5 reported
spending some or all of their Web time looking at pages
being visited for the first time. Similarly, 51 participants
reported spending most of their Web time looking at pages
visited frequently. 32 participants reported spending most
of their time on the Web for the purpose of entertainment.
The second most popular Web activity was personal
research, with 16 participants reporting this as their most
frequent activity.

Gender. In a one-way ANOVA, we saw that for the
subjects who reported copying URLs into e-mail, there was
a significant effect of gender (F = 5.564, p < .021). A
significantly larger proportion of men (30%) than women
(4.8%) reported copy/paste of URLs for “pages that may be
of interest, even if the content changes,” as opposed to
“pages that contain specific information you wish to share.”

Analysis
As the Abrams et al. work shows [1], users make enough
bookmarks to make collections unwieldy. Additionally, our
study shows that, whatever the size of the complete
bookmark set, users report visiting only a constrained and
regular subset of those bookmarks. More particularly, only
infrequently do users visit “new” pages. This raises
questions about how a new bookmark or new site becomes
part of that regular subset, how this practice interacts with
search engine use, and how Hunter Gatherer may enhance
that process through collections which represent, in one
page, a set of valuable components from multiple sources.

The finding that men are more likely than women to mail
URLs referencing general, possibly changing, information
rather than URLs for specific content indirectly supports
the rationale for HG’s design for saving and sharing
collections in AURLs. First, the finding implicitly indicates
that users do use URLs in email to share information.
Second, it shows that URLs are used to share at least two
kinds of information. Based on this practice, Hunter
Gatherer’s AURL approach extends rather than changes
existing practice for information sharing. HG Aggregated
URLs reference collections rather than an URL’s single
page. AURLs can also blend references to both specific

information (e.g. quotations) and to more general, dynamic
information (e.g. stock reports). The finding with respect to
information practices suggests that gender may also be
reflected in tool use. We will evaluate for this effect in
future studies.

Experiment
Design and Methodology
We set up a 2x2, within-subjects study to test the efficiency
of Hunter Gatherer compared to an editor for creating
collections. To reduce learning curve noise in the data for
the editor-based collections, we choose Microsoft Word as
the most familiar editor among participants. The first factor
in the experiment was tool (Hunter Gatherer vs. Word); the
second factor was data set (Web pages on a Chemistry
program; Web pages on a Physics program). We first ran a
pilot study with five participants, refined the protocol, and
ran the formal experiment with 12 participants, representing
a mix of technical and non-technical undergraduate and
graduate students at the University of [Anonymous].

At the start of the evaluation, users were given 15 minutes
training time with Hunter Gatherer. Users were then asked
to build two collections, each from a given set of
bookmarks to be clear enough to be used by someone else.
This direction was motivation to use the tools’ editing
capability to create the most effective collection possible
within the time constraints. We alternated which tool a
participant would use first, Word or Hunter Gatherer. To
reduce potential learning effects, we prepared two similar
collections of bookmarks, one on the Chemistry program
and one on the Physics program at University
[Anonymous]. The pages for each set were taken from the
same general Web sites, so that pages were similar but for
content. Participants were given 5 minutes with each set of
3 bookmarks to familiarize themselves with the content of
the pages. Participants were then given 15 minutes to build
a collection from the bookmarks that would explain how to
get a minor in the given subject, list and describe the
required courses, and show the course instructors for the
term. The experiment let us test HG in terms of our 3
requirements: (1) the efficiency of component addition (2)
the effectiveness of HG in the complete collection making
cycle (3) the immediate legibility of the resulting collection.

Empirical Results
A one-way within-subjects ANOVA showed a significant
effect of tool type (collection time (F = 5.730, p < .040) in
comparing average component collection time using HG
and Word. Participants required an average of 6.70 seconds
using HG and an average of 10.9 seconds using Word
(Figure 6).

Observations
General Observations. First, despite practice with the
Hunter Gatherer tool in which we also demonstrated that
each component captured contained a default header and
source page URL, only 3 participants, when using Word to
build a collection, included the URL of the source page for
a given component. The collections, on average, had over a

Department of Computer Science, U of Toronto, Technical Report: CSRG-437, OCT. 2001 7/9

The location for this technical report, via anonymous FTP

ftp://ftp.cs.toronto.edu/csrg-technical-reports/437/

dozen components. The participants who included URLs
did so for only a few components, and each of them had
used Hunter Gatherer as their first collection making tool.
Word-specific Observations. In creating collections in
Word, many participants over-captured the information
required from the Web page, and then edited the extra
material out from the collection file. Also in editing, Word
was more efficient than Hunter Gatherer for revising
component headers. Headers in Word could be edited
directly in the collection, whereas Hunter Gatherer requires
participants to move to the List/Edit view to enter a dialog
box to make a change.

HG-specific Observations. In the post-evaluation
questionnaire, most users reported that they would prefer
highlighting components to collect them, in addition to
having the bounding box as the only method for component
selection. Participants also commented that sorting
components in collections was “easier” in Hunter Gatherer
than in Word. Similarly, in being asked what the best
feature of Hunter Gatherer is, 10 out of 12 users reported it
as the automatic capture of the component’s URL.

Analysis
We have met our first design requirement to make the
addition of a component as efficient as copying text from a
browser. Though participants expressed a desire to have
highlighting as a selection method, HG selection
performance was significantly better than with Word. The
Hunter Gatherer method is also more effective than Word
for component addition, since HG automatically adds both a
header for the component and the URL for the source page,
the latter addition indicated by users as the most valuable
attribute of the tool.

We have only partially met our second design requirement
to support user-determined focus shift among collection
tasks. Header editing in HG forces users to concentrate on
the tool, rather than the task: double clicking a header title in
List/Edit view and ok’ing a change in a header dialog box is
less transparent than editing the header directly in a file.
While we would need to test this particularly, our
observations also indicate that users want to be able to make

a first pass at component selection, and then edit the
components further, after they have been collected. We may
be requiring users to focus too much on precise component
selection when they would rather be focusing on faster,
more general initial “information triage” as described above,
and edit further, later. In our Future Work section, we
propose several modifications we wish to test to address
these issues.

With the automatic capture of the URL, we have partially
met our third design requirement for automatic capture of
enough information for the collection to continue to be
useful to the user. Hunter Gatherer’s default component
headers, however, need refinement: they are currently only
the title of the source Web page. When components come
from multiple pages, the title is sufficient to identify the
component for the user. In our test, with many components
coming from a handful of pages, we saw that, in List/Edit
view especially, one component became indistinguishable
from another. This lack of distinction renders parts of the
collection immediately less useful. We address this concern
in the Future Work section as well.

Field Study
Design and Methodology
Andrew Dillon, discussing Process, Outcome and Affect as
alternative evaluation measures to Effect, Efficiency and
Satisfaction, suggests that the affect of a design – whether a
user experiences the interaction as empowering or
frustrating – is critical for understanding and improving the
interaction design [5]. With Hunter Gatherer, we are
interested to know if, given an efficient and effective
interaction, the tool itself will become an affective part of
Web information practices. To begin to answer this
question, we have followed Dillon’s suggestions for
evaluating affect: we have given the tool to users to explore
“free style.” Participants have been asked to try the tool
over a month, to answer a weekly set of questions about
their tool use, and to share example collections made during
that time. Participants learned how to use the tool via a
Web page, describing its features and known bugs. There
were 14 participants from a wide variety of disciplines.
Each identified themselves as “tolerant” of alpha software.

Overview of Results and Analysis
All but one participant reported that they like the tool and
make collections with it. Consistent with the findings in the
survey which suggest that users rely on a frequently visited
constrained set of bookmarks, participants did not make
many random collections, but made a few deliberately, for
specific purposes. Those purposes are as distinct as the
users. One participant has made a collection of components
from a variety of financial information sites, which, he
states, he consults daily, since the components are dynamic
and he wants only current financial information. Another
participant in Medicine has a collection on a particular
disease profile that he wishes to publish for participants at
an upcoming conference. Another has gathered components
for course lecture notes. The intent of these collections
indicates that they will have a relatively long shelf life and

Figure 6. Hunter Gatherer significantly more efficient in
component addition than Word.

Department of Computer Science, U of Toronto, Technical Report: CSRG-437, OCT. 2001 8/9

The location for this technical report, via anonymous FTP

ftp://ftp.cs.toronto.edu/csrg-technical-reports/437/

possibly high return use. Only one participant, a reporter for
a national television network, indicated making collections
for shorter term purposes, to collect background sources for
upcoming stories. We will quantify both collection making
and return to collection rates in the follow-up study.

When asked specifically if the concept of making collections
from within-Web-pages had become a technique that was
now part of their way of thinking about managing Web-
based information or not, most users responded that the
tool/concept had indeed become part of their way of
thinking about gathering information on the Web. Only one
participant reported discovering that he did not find a need
to make within-Web-page collections. Indeed, many of the
participants regularly emailed design suggestions that would
make the tool more effective for them. These reports
reiterated our experiment findings: better header support and
highlighting for component selection. Further, we completed
our survey after initiating our field study. Based on the
unexpected significance of gender found in that survey, we
plan to ensure that the next field study is gender balanced.

CONCLUSIONS AND FUTURE WORK
The data collected so far, both empirically and anecdotally,
indicates that Hunter Gatherer is a promising concept. User
response has been positive. We wish to improve the HG
interaction in terms of our second and third design goals, in
particular: user-determined attention shift and viability of
default collection representation. On the basis of the above
results, we are in the process of making revisions to Hunter
Gatherer in the following areas:

• Selection: Highlighting at both component and within-
component levels; supporting non-contiguous selection.

• Headers: For the default component header - page title
and key words from the component.

• Editing: Editing headers directly in the collection view;
deleting elements of a component in the collection view.

These revisions should help to satisfy our first research goal:
to support within-Web-page component collection making.
Our second research goal, as stated above, has been to
consider how supporting this interaction may affect users’
Web interaction practices. The evaluations reported here
have primarily helped with the first goal. To address the
second, after the proposed revisions are completed, we plan
to run a gender-balanced field study over several months,
specifically to evaluate interaction affect for both individual
and, what we have not looked at so far, collaborative Web
information management practices. In parallel, we are also
investigating how Hunter Gatherer’s approach to document-
creation-by-reference may be used as part of collaborative
digital rights management.

REFERENCES
1. Abrams, D., Baecker, R., Chignell, M. Information

archiving with bookmarks: personal Web space
construction and organization in Conf. Proc. on Human
Factors in Computing Systems, 1998, pp. 41–48.

2. Amento, B, Terveen, L., Hill, W., Hix, D. TopicShop,
enhanced support for evaluating and organizing
collections of Web sites in Proc. of the 13th Annual
ACM symposium on User interface software and
technology, 2000, 201–209.

3. Card, S K., Robertson, G. G., York, W. The WebBook
and the Web Forager: an Information Workspace for
the World Wide Web. Conf. Proc. on Human Factors in
Computing Systems (Vancouver, Canada, April 13-18,
1996), 111.

4. Czerwinski, M., van Dantzich, M., Robertson, G.G.,
Hoffman, H. The contribution of thumbnail image,
mouse-over text and spatial location memory to Web
page retrieval in 3D. Sasse A. & Johnson, C., Eds. HCI-
-Proc of Interact ‘99 (Edinburgh, Scotland, 1999), IOS
Press, 163-170.

5. Dillon, A. Beyond Usability: Process, Outcome and
Affect in Human-Computer Interaction. Presentation to
Faculty of Information Studies University of Toronto,
23/03/01.

6. Marshall, C. C. Shipman, F.M., Coombs, J.H. VIKI:
Spatial Hypertext Supporting Emergent Structure.
Proceedings of the 1994 ACM European Conf on
Hypermedia Technology, 1994, 13–23.

7. Nelson, T. H. “A Literary Structure with Two
Fundamentally Different Means of Connection.”
Xanalogical Structure, Needed Now More than Ever:
Parallel Documents, Deep Links to Content, Deep
Versioning and Deep Re-Use.
http://www.sfc.keio.ac.jp/%7Eted/XUsurvey/xuDation.html.

8. Robertson, G., Czerwinski, M., Larson, K. Robbins, D.,
Thiel, D., van Dantzich, M. Data Mountain: Using
Spatial Memory for Document Management. Proc. of
UIST ‘98, 11th An Sym on User Interface Software and
Technology, ACM Press, 153-162.

9. schraefel, m.c. and Zhu, Yuxiang. Preliminary
Requirements Gathering for the Design of User-
determined, Within-page, Web-based Collections. Tech
Report, CSRG-433, DCS, U of Toronto, 2001.

10. schraefel, m.c., Wigdor, D., Modjeska, D. Results of a
Survey on URL Saving and Sharing. Tech Report,
forthcoming, DCS, U of Toronto, 2001.

11. Terveen, L., Hill, W., Amento, B. Constructing,
Organizing, and Visualizing Collections of Topically
Related Web Resources. ACM Trans. Comput-Hum.
Interact. 6, 1 (Mar. 1999), 67-94.

12. Wickens, C. D., Hollands, J.D. Engineering Psychology
and Human Performance, 3rd Ed., Prentice Hall, 2000.

Department of Computer Science, U of Toronto, Technical Report: CSRG-437, OCT. 2001 9/9

The location for this technical report, via anonymous FTP

ftp://ftp.cs.toronto.edu/csrg-technical-reports/437/

Note,

There is also a demonstration video, schraefel_HG01.mov,
in the same directory as this report.

It is a Quicktime video, requiring the free Apple Quicktime
player (http://www.apple.com/quicktime/download/).

