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Abstract. Many difficult visual problems like monocular human tracking require
complex heuristic generative models defined over high-dimensional parameter
spaces. Despite their successes, optimization with such models remains notori-
ously complex due to the difficulty of flexibly using prior knowledge in order to
reshape an initially designed representation space. Non-linearities, inherent spar-
sity of high-dimensional training sets and lack of global continuity makes dimen-
sionality reduction challenging and low-dimensional search inefficient. To ad-
dress these problems, we present a sampling-based optimization framework that
restricts tracking to low-dimensional spaces via non-linear embedding. The for-
mulation leads to a layered generative model where global continuous optimiza-
tion over the embedded manifold is made possible. Our prior flattening method
allows a simple analytic treatment of boundary and manifold intrinsic curvature
constraints and allows consistent iterative and closed-form solutions for embed-
ded geodesic and sequence smoothing calculations. We analyze the structure of
reduced manifold representations for a variety of human interaction activities and
demonstrate that the approach gives accurate tracking and reconstruction of fast
self-occluded motion in cluttered monocular video.

1 Introduction

Many successful visual tracking approaches are based on high-dimensional heuristi-
cally built non-linear generative models of shape, intensity or motion [14, 7, 8, 19, 24].
Although usually hard to construct, such models offer intuitive representations, counter-
point coherence to image clutter and offer the analytical advantage of a global coordi-
nate system for continuous optimization or sampling. However, despite much progress,
estimation with such frameworks remains notoriously difficult, mostly due to the lack
of representation adaption beyond the initial design choice. This inflexibility leads to
either high-dimensional, ill-conditioned parameter spaces [24] or to a lack of represen-
tational power that restricts their usage in most cases. The use of priors in the original
parameter space may alleviate the problem [15, 13, 7, 19, 20] while conserving contin-
uous representations, but still the search space dimension (i.e. complexity) remains un-
changed. Another approach is to use forms of non-linear dimensionality reduction [5,
30, 32] but then lose the global nature of the representation [5, 30] and/or the continuity
of the generative mapping [32] that makes efficient optimization possible.
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To address these problems, we present a sampling-based optimization framework
that restricts tracking to low-dimensional spaces via non-linear embedding [2, 27, 18].
Our formulation leads to a layered generative model where global continuous optimiza-
tion over the embedded manifold is made possible while also respecting boundary and
intrinsic curvature constraints. We describe algorithms for geodesic and smoothing cal-
culations within the manifold. Finally, we analyze the structure of reduced manifold
representations and demonstrate the approach by providing quantitative and qualitative
results of tracking a variety of human activities in cluttered monocular video.

Related Work: There is much work involving tracking using constrained generative
models [14, 5, 30] but none involving global continuous optimization over a learned
non-linear manifold. Bregler & Omohundo [5] track 2D lip contours using a Gaussian
Mixture Model (GMM) prior learned from training data and gradient descent. How-
ever, they still track by optimization in the original high-dimensional space and their
backward/forward regularization onto/from GMM after each gradient step is not guar-
anteed to find a local minimum. Toyama & Blake [30] track 2D exemplars over a GMM
index and Euclidean similarities using a discrete method and a set of local-coordinate
system charts. Brand [3] estimates a GMM over the joint angle space and assumes
known 2D silhouettes over an entire observation sequence to map to corresponding
joint angle poses. The method does not produce a differentiable generative model and
the coordinate system is again not global. Globally post-coordinating a local mixture
representation of the manifold [4, 26] wouldn’t be applicable for continuous optimiza-
tion because the coordinates are uniquely defined only with respect to the considered
training set. Wang et al [32] use an isometric embedding [28] to restrict variations of
high-dimensional 2D shape coordinate sets to low-dimensions (2d in their case) and
compute local non-parametric mappings between the intrinsic and embedding spaces.
While this method, as the ones above, shares in principle the same idea of optimizing in
low-dimensional spaces, it lacks a number of important desirable features for efficient
manifold modeling and optimization:

(i) Learning highly non-linear reduced global models requires a dimensionality re-
duction method able to discover manifolds containing holes and having intrinsic cur-
vature. These structures arise naturally in many problems and cannot be unfolded by
isometric embeddings, e.g. physical constraints of an articulated figure or occlusion in
image based representations [9]. In � 2 we show that a low-dimensional representation
with these properties can be built based on Laplacian, local structure preserving embed-
dings [2]. Estimating the intrinsic dimensionality of the model based on the Hausdorff
dimension is demonstrated in � 3.1.

(ii)Consistent estimates. Separating sampling artifacts from intrinsic curvature de-
mands not only a prior on the probable regions of the embedded manifold but also a
method to separate holes produced by missing sample data from genuine space curva-
ture. The sparsity of high-dimensional training sets makes this disambiguation process
inapplicable at the embedded manifold layer under unrestrictive sampling assumptions
[21]. In � 2.2 we propose an analytic solution that combines an embedded smoothing
GMM prior with a prior flattening method that exploits the layered (hierarchical) struc-
ture of the generative model.
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(iii)Global continuous generative model: Efficient continuous optimization in the
embedded space requires not only a global coordinate system but also a global contin-
uous generative mapping. A method for constructing such mappings between the em-
bedded and embedding spaces is given in � 2.3. The ability to do continuous search (i.e.
compute gradients or higher-order operators of the energy surface) is a key ingredient
for efficient optimization [24, 22, 25] or sampling [6, 23] in high-dimensional spaces.1

(iv)Geodesics and Sequence Smoothing: To obtain a powerful generative model
for analysis and synthesis, interpolation and smoothing operations are also necessary.
Closed-form and iterative methods for their consistent computations are given in � 2.4.

2 Learning a Non-Linearly Embedded Continuous Generative
Model

Consider a classical generative model � as a mapping �������	��

� into an observation
space. The mapping has parameters ������������������� in a heuristically constructed,
high-dimensional parameter space ��������� �!�#"%$'&!(�) , subject to a prior * � ��� � �!�
*+���������-,.*��������/� . Also 
 is an indicator variable for an observable model element.
The residual 0 between model mapped patterns 1 and matched extracted observations
13254�"6$#7 is used to define a likelihood over model configurations �
� . To effi-
ciently search � , gradient and Hessian operators for Newton style-optimization or hy-

brid MCMC sampling can be derived analytically by differentiating �98:�<;=?> 4A@=> $ .
Suppose we want to improve � by learning a subset of its representation2 . As-

sume, restricting the high-dimensional subspace � to a low-dimensional embedded
space BC"D$FE that is able to represent the variability of a training set that is typical

for the model’s application domain. Consider such a set GH�5IJ�
�
KML�N�O L�P�QSR?R T and com-

pute its global, non-linear embedding IJ��U#KVL�N�O L�P�QWR?R T into a low-dimensional manifold
B that preserves the local structure in the neighborhood of each training sample. Be-
cause the subspace � is generally non-linear and high-dimensional, we use a Laplacian
neighborhood preserving embedding method that can reconstruct underlying manifolds
B with holes and intrinsic curvature [2, 27]3. To obtain an embedded generative modelX

and efficiently optimize or sample in YZ�[B\�]� , we need to define a prior distri-
bution *�U on the manifold, account for existing constraints or priors in � , and estimate
a smooth global forward kernel regressor mapping ^ between B and � . The new rep-
resentation �_�`����Ua�����/�92bY can be mapped into � using ^ac���d ^e����Uf�g���ih
and thus link with the observations. A globally defined, continuous, generative map-
ping from the learned model representation into the observation space can be derived

as
X 8�Y j+k=l=m> � ;= > 4 @= > $ (see fig. 1(a)). Various components and operations of

1 While we aim for dimensionality reduction here, it is likely that for many complex processes
even reduced representations would have at least 10-15 dimensions.

2 Without loss of generality and motivated by: (a) prior knowledge on the independence of
subsets of parameters that makes their learning difficult or not necessary (e.g. translation and
rotation of an object), (b) unavailability of training data for certain parameters.

3 The same principles would hold for the construction of a generative model based on isometric
embeddings [28], these only apply to more restricted classes of manifolds.
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the model, including the estimation of mappings, layered priors and the calculation of
geodesics and smoothing operations are given in the following sections.

2.1 Density Estimation and Propagation

We apply Bayes rule to compute the ‘static’ total posterior probability over the learned
manifold space Y : *������ 1 ��� *���1�� ��� , *
�����C� ���	� I =�

��� ��1 � � ���lO , *������ . Here,
*������ is the prior on the model parameters, � ��1 � � ��� �_0 � ����1 � ������� 1 � �������F��� � � is the
cost density associated with observation � and � 1 � ����� �61 � = � � ^e����Uf�l�������m
 � � is
the feature prediction error. For tracking, the prior at time � combines the previous
posterior *���� L�� Q � � L�� Q � and the dynamics * E ��� L � � L�� Q � , where we have collected the
observations at time � into vector 1 L and defined � L �5I 1 Q �������J��1 L O . The posterior at �
becomes: *���� L � � L ���5*
��1 L � � L �.*
��� L �� "!$#&%(' * E ��� L � � L�� Q � *���� L���Q � � L���Q � (In fact * E will
encode both simple dynamic rules and **) in order to ensure the dynamics remains in the
feasible region. The static prior **) otuside the integral is also necessary to ensure moves
to feasible configurations during ‘static’ likelihood search). Together * E ��� L � � L�� Q � and
*���� L���Q � � L���Q � form the time � prior *���� L � � L�� Q � for the static Bayes equation.

2.2 Embedded and Layered Generative Priors

Optimization in the embedded space B requires a prior model that ensures the search is
roughly confined within the manifold domain. This is determined by the typical training
data but the boundary should be fuzzy in order to accommodate coverage and smooth-
ness at moderate distances away. Smoothing should apply both to external boundaries
to generalize away from a limited scope training set and to internal holes inside the
domain. Holes in B may arise from sampling artifacts but may also be genuine, due to
intrinsic curvature of � , perhaps because some of its regions are not feasible4. Disam-
biguating between sampling artifacts and intrinsic curvature in B may not be possible
under unrestrictive sampling assumptions (Generally, we cannot assume that e.g. the
training data available in � has been sampled uniformly from the unknown B , neither
can we most of the time assume fine sampling granularity [21]).

We follow a conservative approach and use a broad prior for the on-the-manifold
configurations. This may violate some of the intrinsic constrains of � , but we flexibly
delegate interleaved priors at subsequent generative model layers where their represen-
tation is sharper as they may have simple analytic forms. This is straightforward in
our formulation since computations are modularly performed using the transformation
chain of

X
. Therefore, the use of priors is not only restricted to the embedded ‘opti-

mization’ space but more generally applies to variables at each generative stage up to
the residual layer. Since residual differentiation is the core machinery of the generative
model, analytic forms for all intermediate derivatives down the chain are available. For
a generative model with +-,/. layers having variables � � with priors * � ��� � � and inter-
layer forward mappings 0 � ��� � � , with layer 0 having prior *������ , the flattening mechanism

4 E.g. in a human kinematic representation 1 based on joint angles 2*3 , the limits of articulations
or the body non-self intersection constraints exclude certain parameter combinations (see 4 3).
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gives and equivalent absorbed prior *
������� *
������* Q � 0 Q �����m� � � � *���� 0���� 0�� ��Q � � � 0 Q �������m� (see
fig. 1(b)). Jacobian volume factors need to also be taken into account (see below).

In the remaining section, we show how the above mechanism is applied for the
embedded/embedding layers of our generative model in order to exploit both learned
representation and intrinsic curvature constraints of � .

Fig. 1. (a) (left) Learned generative model allows global continuous optimization/tracking in the
low-dimensional embedded space. (b) (right) Prior flattening mechanism allows consistent ana-
lytic treatment and optimization over manifolds with holes and intrinsic curvature.

Consider a mixture model over B obtained by
�

-means clustering the embedded�
-dimensional training set [16] to obtain mixing proportions, centers and covariances
���
	 ��� 	 ��
�	 ��	 P�QWR?R

� . This will be also used in section � 2.4 for off-line estimation of
a manifold roadmap for bootstrapping geodesic calculations. Here, we consider the
mixture as a prior distribution over the manifold: *��]����Ug�!� 
 �

	 P�Q ��	�� ����U'��� 	 ��
�	 � .
Define now a prior on the embedded space B that combines the distribution over

probable regions on the manifold with flattened priors from the embedding space � :
*+U'����Uf�!� *
�]����Uf� , *+� � ^e����Uf�m��� � j ����U � � � j ����Uf��� Q

���
. The prior on Y is thus: *
�����!�

*+U'����Uf� , */�������/��� � j ����U � � � j ����� U � Q
���

. Analytically differentiating *������ is straightfor-
ward, given that */� is known, *�� factorizes, and there exist a parametric form for the
kernel regressor mapping ^ , described next.

2.3 Globally Smooth Forward and Inverse Mappings

The construction of the learned generative model requires the estimation of a forward
mapping ^_8
B ��"b$FE.� > �-� "D$ & � between the embedded and embedding spaces
[27, 18] based on points in the training set G in � (stored column-wise in a matrix � )
and corresponding points in the embedded space (stored in a matrix � ). Consider a
row operator K

�
N that extracts the � -th row of a matrix and K

�
N the corresponding col-

umn operator. We employ kernel regressors and estimate � mappings from $ E > $ .
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Consider a set of � representatives � � 2 B and place kernels
� ������� � � at these points5.

For the mapping corresponding to dimension � in � , the constraint that the vectors of
the training set in B map to the real values at dimension � of the corresponding vec-
tors in � is ���	� � � � � K � N , where �
���[d � � Q ��� � �V����� �Wh are kernel coefficients that map into

dimension � and � � d � � � K � N ��� � � h is the kernel matrix of size d 
 x � h , where 
 is

the dimension of the training set. Consequently, ��� � ��� ( � � K � N and the mapping can

be derived as: ^e�������6d � ! � Q � ��� � �V��� ! � & � h#�6d � ! � ( � � K Q N ��� � � ��� ! � ( � � K & N h where

� ! � d � ������� Q �W��� � �V�
� ������� � � h and � ( is the Moore-Penrose pseudo-inverse, com-

puted once for all � mappings. The differentiation of the generative mapping
X

to sec-
ond order for continuous optimization can now be obtained using the chain rule and the
straightforward derivation of the Jacobian of ^ c : � j k ���
�����
�� �����

�
where � j ��� j� !��is the Jacobian corresponding to the embedded mapping and � ) �! ) are identity respec-

tively zero square matrices of dimension � corresponding to derivatives of the represen-
tation set � � that is not learned. An inverse (back-projected) mapping ^

�
8:� > B �m^

�
c

can be similarly estimated.
We also experimented with a sparse ‘lasso cost’ based on individual � components

[29, 17]. In our tests, we found that this is comparable with subset selection having the
same kernel set for all dimensions, in a cross-validation loop. It tends to be more pre-
dictable, but it requires iterative optimization, which is more expensive than sampling
kernel subsets. The latter can select among a larger number of models.

2.4 Embedded Geodesics and Sequence Smoothing

The construction of geodesics is framed as a regularization problem [11] where we
synthesize a trajectory that is smooth and preserves the internal constraints of the man-
ifold Y (this is precisely the prior * ). Assume trajectory endpoints "$#:��"&% ( Q 2 B and
a discretization with ' knots " � d " Q ��� � � "&%�h �(" � � �)" U� �(" �� � . The corresponding en-
ergy function is: *+%]� = 
 %�

P�Q-,/.�0 *
�)"
� ��,213"$4 �E (�) 4 E (�) " � � = 


%�
P�Q5,/.�0 *�U'�)"�U� � =
 %�

P�Q-,/.�0 *�����^e�6"�U� �m� ,718"�U94 �E 4 E "�U � = 
 %�
P�Q5,:.;0 *����)"��� � ,<13"��&4 �) 4 ) "�� � , where1 controls amount of regularization and 4 E is a first order difference operator consist-

ing of band-diagonal blocks of
�
-dimensional identity matrices d � � � = � E � E � � � h . Higher

degree of smoothness can be obtained by self-multiplication, e.g. for second order as4 �E 4 �E 4 E 4 E , etc. The function * % is differentiable and can be thus be optimized for
a locally optimal solution from a trivial initialization (e.g. points " � uniformly dis-
tributed on a straight line between " # and " % ( Q ). However, we find that in practice
a better initialization is desirable for manifolds of complex topology, especially for
long-range geodesic calculations6. Floyd’s algorithm is run off-line to find all short-
est paths on the set of representatives � � obtained from clustering B (see � 2.2). This
roadmap can be effectively used at geodesic query time: given known endpoints, link
to the closest representative at each end and use the precomputed road. To precompute

5 For the work here we use simple radial basis functions =�> 2&?A@CBED&F�G7> 2&?A@
B�?(H9B6D with diagonal
covariance matrices H9B5FJI5K�L . We also use the means obtained by clustering M as in 4 2.2.

6 Applies only to NPO . For N5Q use trivial straight line initialization (no training data available).
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a smooth road between representatives, assume the shortest path traverses � representa-
tives � Q ��� � � � ) . Take � �[d ��� ' ��� � � ������h and 
 � ���	��
 d 
 � ' ��� � � ��
 � � h . An approximate
energy function, that does not preserve the internal constraints of � can be derived as:�* U) � �6" U = �F��� 
 ��Q �)" U = �F�*, 13" U 4 �E 4 E " U � and the trajectory " can be solved

in closed form by differentiating
�* U) to give: "�U � �Z��
 ��Q , 154 �E 4 E � � Q 
 � Q � � .

This coarse trajectory can be re-parameterized, based on curvature into ' pieces and
estimated using the full energy function *-% . Interpolation in the embedding space �
for problems with missing data (e.g. visual optimization in the presence of occlusion)
is also possible by back-projecting the nearest neighbor corresponding to the present
data (known indicies of ��� ) using ^

�
followed by geodesic computations in the em-

bedded space as above, and forward projection using ^ (generalizations over
�

nearest
neighbors are straightforward but require sampling from multiple geodesic paths).

Optimal estimates over an entirely tracked observation sequence (smoothing) are
obtained in a similar manner as geodesic calculations, with the following differences:(i)
The entire observation sequence � L � IJ1 Q ��1

� ��� � �V�m1 L O is used; (ii) The local modes of a
tracked trajectory are initial estimates for " � I " Q ��� � � �(" L O , and (iii) Trajectory smooth-
ness is controlled by the dynamical model * E �)" L � " L�� Q � . Under these assumptions, the
corresponding energy function is: * � � = 
 L � P
Q5,/.�0 I�*���1

� � " � � , *��6" � � , * E �)" � � " � � Q �SO and
can be optimized efficiently for " using sparse non-linear optimization methods[10, 31].

3 Human Representation Learning for Visual Tracking

Representation Learning is based on a heuristic 3D body representation that consists
of a kinematic ‘skeleton’ of articulated joints controlled by angular joint parameters,
covered by a ‘flesh’ built from superquadric ellipsoids with deformations. The model
has 29 joint parameters ��� , 6 global rigid parameters ��� and additional internal body
and shape parameters � & . The complete model is encoded in a single parameter vector
��� � ����� �����/� , ( � & are held fixed here and do not count for optimization). We learn a
low-dimensional representation ��U 2 B for ��� using manifold embedding on a set of
training joint angle data obtained with a motion capture system (courtesy of the motion
capture database at the CMU graphics laboratory [1]). We estimate a mixture model for
B using

�
-means clustering on the

�
embedded eigenvectors to build the prior * � ����Ug�

and compute a forward mapping ^ into the original joint angle space using a radial
basis function approximation. During tracking and static pose estimation we estimate
the parameters � � ����U'������� of the global rigid motion + the embedded coordinate. In
use, model superquadric surfaces are discretized into 2D meshes and the mesh nodes

 are mapped to 3D points using knowledge of the kinematic parameters predicted at
configuration ��� by ^e����Uf� . These map to each body kinematic chain and then project
to predicted image points 1 � ����� using perspective image projection (transformations
that are encoded into � �����	�m
 � ). The Edge and Intensity-based Observation Model
is based on sums of predicted-to-image matching likelihoods (and their gradient and
Hessian metrics) evaluated for each model feature 1 � . As image features, we use a ro-
bust combination of intensity-based alignment metrics and robustified normalized edge
distances [24]. Flattened Embedded Priors consist of soft joint angle limits and body
non self-intersection constraints [24].
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3.1 Experiments

The experiments we show include image-based visual tracking of human activities in
monocular video. This underlines the importance of using prior knowledge because of-
ten the motion of subsets of body limbs is unobserved for long periods, e.g. when a
tracked subject is sideways or not facing the camera. However, information about un-
observed variables is present indirectly in the observed ones and this constrains their
probability distribution. Learning a global, non-linear, low-dimensional representation,
produces a model that couples the state variables. We derive models based on various
training datasets, including walking, running and human interaction (gestures in con-
versations).

Analysis of the walking manifold involves a corpus of 2500 frames coming from
5 subjects, and thus contains significant variability. Fig. 2 shows walking data analysis
and various structures necessary for optimization. Fig. 2(a) (left) gives estimates of the
data intrinsic dimensionality based on the Hausdorff dimension

� � ,
��� ��� # � ��� T-K � N� ���

K Q
� � N ,where � is the radius of a sphere centered at each point, and 
 �6� � are the number of

points in that neighborhood (the plot is averaged over many nearby points). The slope of
the curve in the linear domain 	�� 	�. = . corresponds roughly to a 1d hypothesis. Fig. 2(b)
plots the embedding distortion, computed as the normalized Euclidean SSE over each
neighborhood in the training set graph. Notice its stability across different neighborhood
sizes, and contrast it with the larger distortion of more variate training sets, in fig. 5(c).
Fig. 2(c) and fig. 2(d) show embeddings into 2d and 3d. The latter representation is more
flexible, and allows more variability. The results correspond to spherical neighborhood
sizes of � �
	 � �
� and Gaussian standard deviation �\� . � ��� . The figures show the
embedded manifold as defined by the GMM prior * U ����� (3 stdev). Notice the shape
has similarities with the position-velocity plot of a harmonic oscillator. Fig. 2(d) shows
the spatial decomposition of the data based on oriented bounding boxes OBB [12]. This
is used for fast nearest-neighbor queries in geodesic calculations ( � 2.4). The embedded
generative model used for tracking is based on a forward mapping ^ ( � 2.3) that has 500
kernels.
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Fig. 2. Analysis of walking data. (a) estimates intrinsic dimensionality based on the Hausdorff
dimension. (b) plots average local geometric embedding distortion vs. neighborhood size (notice
its stability). Figures (c) and (d) show embeddings of a large 2500 walking data set in 2d and
3d and the manifold mixture prior � O . (d) shows the spatial decomposition of the data used for
nearest-neighbor queries in geodesic calculations (see text).
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The image based tracking of walking is based on 2s of video of a subject mov-
ing against a cluttered background in a monocular sequence (fig. 3). We use a 9d state
model consisting of a 3d embedded coordinate (for the 2500 walking dataset above) ( � )
+ 6d rigid motion ( ��� ). and track using CSS with 5 hypotheses. Aside from clutter, the
sequence is difficult due to the self-occlusion of the left side of the body. This occasion-
ally makes the state variables associated to the invisible limbs close to singular. While
singularity can be artificially resolved with stabilization priors, the more serious prob-
lem is that without prior knowledge, the related state variables would be mistracked,
thus making recovery from failure extremely unlikely. Also notice the elimination of
timescale dependence present in classical dynamic predictive models. The manifold is
traversed at a speed driven by image evidence, as opposed to a prespecified one.

Fig. 3. Tracking a 2s monocular video sequence of a walking subject using optimization over
a mixed 9d state space > 2&?�2 � D consisting of embedded 3d coordinate (from 29d walking data)
+ 6d (rigid motion). In this way the search complexity is significantly reduced and can tolerate
missing observations (e.g. an occluded limb in a monocular side view).

Embedded vs. original model comparison for walking in fig. 4 is based on 60
frames of left out test motion capture data, synthesized using the articulated 3D model.
We select 15 (3D) joint positions (shoulders, hips, elbows, etc.), perturb them with 1cm
spherical noise to simulate modeling errors and project them onto a virtual monocular
camera image plane (440x358 pixels). This input data is used to define a SSD repro-
jection error (Gaussian likelihood), for body joints. We track with 2 hypotheses, using
both the 35d original model (having joint angle limit and body non self-intersection
priors) and the 9d embedded walking model. The left and middle figures 4(a), (b) show
the average pixel reprojection error per joint, whereas fig. 4(c) gives the average joint
angle error with respect to ground truth (for the embedded model we plot the estimated
	�� 	�. � radians � .�� , average range of uncertainty of the kernel regressor ^ with error-
bars). Both models maintain track, but the original one overfits the data, leading to low
reprojection errors, but larger variance in joint angle estimates. This is caused by tracks
that follow equivalent class (monocular reflective) neighboring minima w.r.t. ground
truth, more clearly noticeable at the beginning and the end of the sequence. The region
between the frames 40-60 corresponds to moments where the model puppet is situated
sideways in straight-stand positions with respect to the camera ray of sight. The accu-
racy of the original model improves during this period, perhaps because some of the
depth ambiguities are eliminated due to physical constraints. The embedded model is
biased for walking and has thus larger reprojection error but significantly smaller 3D
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variance, having the error rather uniformly distributed among its joint angles. The aver-
age error in fig. 4(c) is about .�� � � , and the maximum error during tracking was

� � � � in
one left hip joint angle. The original model tends to have large localized errors caused
by reflective ambiguities at particular limbs. The average error in fig. 4(c) is about � � ,
but the maximum error was ����� � � in one right shoulder joint angle. For the limited
computational resources used, and for the limited walking task, the learned embedded
model is clearly more accurate.
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Fig. 4. Embedded (9d) vs. original (35d) model comparison for walking. (a) and (b) show the
average joint reprojection error (in pixels). (c) plots joint angle angle error vs.ground truth (within
0.014 radians ����� , average uncertainty range for the map � ). The original model overfits the
data (low reprojection errors, larger 3D variance estimates). The embedded model has higher bias
(larger reprojection error) but also superior 3D accuracy. The original model has about � � average
error, but the maximum error was 	�

� ��� in one of the right shoulder joints. The embedded one
has about ��� � � average error, but the maximum was ��� 	 � in one of the left hip joints.

Analysis of the running, walking and human interaction manifold is illustrated
in fig. 5 where we show a 600 point training set consisting of samples drawn from an
activity set consisting of walks, runs and conversations. Left plots in fig. 5(a),(b) show
3d projections of neighborhood graphs ( �e� 	�� ��� ) for 6d and 5d embeddings onto their
3 leading Laplacian eigenvectors. Note that the the submanifolds of these activities mix,
therefore pathways between these are probable (this can be also qualitatively checked
by connected component analysis in the training set graph). Circular structures related
to periodic walks and runs are less observable for 5d embeddings but are more clearly
visible for 6d ones. The plot in fig. 5(c) confirms that the embedded neighborhood dis-
tortion decreases monotonically with increasing dimension. In practice, the stability
of optimization in the embedded space becomes satisfactory beginning at about 5-6d,
ruling out the use of very low-dimensional 2-4d models. The performance of the opti-
mizer is based on both the latent space structure, and the accuracy of the mapping ^ .
Indeed, we found that the constrained topology of low-dimensional spaces (2-4d) col-
lapses data from embedded runs and walks into nearly overlapping cycles (not shown),
and this leads to estimation instability. In fig. 5(d) we show the good accuracy of a map-
ping ^ (based on 100 kernels) from the 6d embedded data in fig. 5(a) into the original
29d training set.

Tracking of human activities is exemplified in fig. 6 where we analyze a 5s video us-
ing a 12d model consisting of 6d rigid state + 6d embedded coordinate obtained from
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Fig. 5. Analysis for a 600 sample dataset consisting of mixed walking, running and conversation
samples, best viewed in color (light red, green and blue local graph neighborhood connections
originate at points in each set respectively). Left (a) and (b) show 3d projections of 6d and 5d
embeddings respectively. (c) shows the neighborhood distortion plot for dimension range 2-6 and
(d) plots the good average joint angle accuracy of a 6d-29d map � , in radians (maximum � ��� 	 � )
(see text).

a 9000 element training set consisting of 2000 walking, 2000 running and 5000 human
interaction samples. The 6d-29d mapping ^ is based on 900 kernels. Fig. 6 shows snap-
shots from the original sequence together with image-based tracking and monocular
3D reconstructions of the most probable configurations rendered from a synthetic scene
viewpoint. The algorithm tracks and reconstructs 3D motion with good accuracy using
7 hypotheses. Missing data resulting from frequent occlusion / disocclusion of limbs
would make monocular tracking with quasi-global cost sensitive search [24] or optima
enumeration methods [25], alone difficult without prior-knowledge, or at least a sophis-
ticated image-based limb detector. On the other hand, the presence of multiple activities
and complex scenarios of human interaction demands a flexible learned representation,
and makes dedicated dynamic predictors (e.g. walking, running) [7, 20] difficult to ap-
ply. In fig. 7 we show various components failure modes. Fig. 7(a),(b) shows the behav-
ior of the system in a run that does not use the flattened embedded priors for physical
constraints. Indeed, these are useful – notice unfeasible configurations of the right hand
inside the back and right upper-arm inside the torso. The effects of missing training data
on tracking behavior are explored in fig. 7(c)-(f) where an embedded model computed
without conversation training data is used to track the sequence. The model tracks the
first part of the sequence and the beginning of the conversation, but eventually looses
lock of the arms when the gestures deviate significantly from the training set.

4 Conclusion

We have presented a sampling-based optimization framework that restricts tracking to
low-dimensional spaces via non-linear embedding. Because existing approaches to op-
timization over learned, constrained generative representations are based on only lo-
cally valid models, they do not succeed in exploiting both the convenience of low-
dimensional models and the one of efficient continuous search. Therefore they oper-
ate either discretely or in hybrid non-convergent regimes. To address these difficulties,
we introduce a layered generative model where global continuous optimization over
the embedded manifold becomes possible. Manifold boundaries and intrinsic curvature
constraints are automatically accounted for and geodesic and smoothing computations
can be efficiently performed in the embedded space. We analyze the structure of reduced
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Fig. 6. Tracking a 5s monocular video sequence of mixed running, walking and conversational
activities over a 12d state space. Top row: original sequence. Middle row: most probable 3D
model configuration (wireframe) projected onto image at given time-step. Bottom row: recon-
structed 3D poses rendered from a synthetic scene viewpoint. Although clutter, motion variation
and missing data resulting from frequent self-occlusion / disocclusion makes monocular tracking
difficult, motion tracking and reconstruction have good accuracy. Without prior knowledge, the
occluded limbs can’t be reliably estimated.

Fig. 7. Exploring system component failure modes. Left (a), (b) shows unfeasible configurations
(right hand inside the back and right upper-arm inside the torso) from a run that does not use the
flattened embedded priors for physical constraints. Middle (c),(d) and right (e), (f) show two pairs
of image projection and 3D configurations when tracking with an embedded model computed
without conversation data. The model tracks the beginning of the conversation but eventually
looses lock of the arms when the gestures deviate significantly from the training set.

manifold representations and demonstrate the approach by providing quantitative and
qualitative results of tracking a variety of human walking, running and conversational
activities in cluttered monocular video.

Future and ongoing work will explore the use of low-dimensional representations for
shape and appearance and multiple activity recognition.
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