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Abstract

One of the main shortcomings of Markov chain Monte Carlo samplers is
their inability to mix between modes of the target distribution. In this pa-
per we show that advance knowledge of the location of these modes can
be incorporated into the MCMC sampler by introducing mode-hopping
moves that satisfy detailed balance. The proposed sampling algorithm
explores local mode structure through local MCMC moves (e.g. diffu-
sion or Hybrid Monte Carlo) but in addition also represents the relative
strengths of the different modes correctly using a set of global moves.
This “mode-hopping” MCMC sampler can be viewed as a generalization
of the darting method [1].

1 Introduction

It is well known that MCMC samplers have great difficulty in mixing from one mode to
the other because it typically takes many steps of very low probability to make the trip.
Recent improvements designed to combat random walk behavior, like Hybrid Monte Carlo
and over-relaxation [14] do not solve this problem either. The question we’ll answer in the
paper is how to exploit knowledge of the location of the modes to design a MCMC sampler
that mixes properly between them.

In this paper we’ll consider two possible scenarios where this advance knowledge is
present. In one example we have actively searched for high probability regions using so-
phisticated optimization methods [16, 23, 24, 25]. Given these local maxima, we now
desire to collect unbiased samples from the underlying probability distribution. In another
example we are given data-cases and aim at learning a model distribution to represent these
data as accurately as possible. In this case, high probability regions should coincide with
the location of large clusters of data and a clustering algorithm could be employed to iden-
tify them.

This paper is organized as follows. In section 2 we review some popular Markov chain
Monte Carlo methods. Then, in section 3 we introduce the new mode-hopping sampler
and some extensions. An additional proof of detailed balance appears in the appendix.
Section 4 explains and illustrates an application to learning Markov random fields, while in
section 5 the generalized darting method is evaluated against the spherical darting method
on a “real world” vision application — estimating 3-D human body poses from 2-D image
information.
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2 Markov Chain Monte Carlo Sampling

Imagine we are given a probability distribution p(x) with x € R? a vector of continuous
random variables. In the following we will focus on continuous variables, but the algorithm
is easily extended to discrete state spaces. A very general method to sample from this
distribution is provided by Markov chain Monte Carlo (MCMC) sampling. The idea is to
start with an initial distribution po(x) and design a set of transition probabilities that will
eventually converge to the target distribution p(x).

The most commonly known transition scheme is the Metroplis-Hastings (M-H) algo-
rithm, where a target point is sampled from a possibly asymmetric conditional distribution
Q(x¢41|x¢), where x; represents the current sample. To make sure that detailed balance
holds, i.e. p(x¢)Q(X¢+1|xt) = p(X¢1)Q(X¢|x¢4+1), Which in turn guarantees that the tar-
get distribution remains invariant under @, we should only accept a certain fraction of the
proposed targets,
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In the most commonly used M-H algorithm, the transition distribution @ is symmetric
and independent of the energy-surface at location x. This simplifies (1) (the @ factors
cancel), but leads to slow mixing due to random walk behavior. It is however not hard to
incorporate local gradient information, dE(x) /dx to improve mixing speed. One could for
instance bias the proposal distribution @ (x¢.1|x:) in the direction of the negative gradient
—dE(x)/dx and accept using (1) %,
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where n is a vector of independently chosen Gaussian variables with zero mean and unit
variance, and A~ is the stepsize. When the stepsize becomes infinitesimally small this is
called the Langevin method and one can show that the rejection rate vanishes in this limit.

The Langevin method is a special case of a more general sampling technique called Hy-
brid Monte Carlo (HMC) sampling [14]. In HMC the particle is given a random initial
momentum sampled from a unit-variance isotropic Gaussian density and its deterministic
trajectory along the energy surface is then simulated for T' time steps using Hamiltonian
dynamics. If this simulation has no numerical errors the increase, AE, in the combined
potential and kinetic energy will be zero. If AE is positive, the particle is returned to its
initial position with a probability of 1 — exp(—AFE). Numerical errors up to second order
are eliminated by using a “leapfrog” method which uses the potential energy gradient at
time 7 to compute the velocity increment between time 7 — 1 and 7 + 1 and uses the
velocity at time 7 + % to compute the position increment between time 7 and 7 + 1. The
Langevin method corresponds to precisely one step of HMC (i.e. T' = 1).

A host of clever MCMC samplers can be found in the literature. We refer to the excellent
review [14] for more information.

3 TheMode-Hopping MCM C Algorithm

We start with reviewing the closely related “darting” algorithm described in [1]. In darting-
MCMC we place spherical jump regions of equal volume at the location of the modes of
the target distribution. The algorithm is based on a simple local MCMC sampler which is

*0ne can use more general biased proposal distributions, but the one defined in (2) was chosen
because of its vanishing rejection rate in the limit A — 0



interrupted with a certain probability to check if its current location is inside one of these
spheres. If so, we initiate a jump to the corresponding location in another sphere, chosen
uniformly at random, where the usual Metropolis acceptance rule applies. To maintain
detailed balance we decide not to move if we are located outside any of the balls. It is
not hard to check that this algorithm maintains detailed balance between any two points in
sampling space.

In high dimensional spaces this procedure may still lead to unacceptably high rejection
rates because the modes will likely decay sharply in at least a few directions. Since these
ridges of probability are likely to be uncorrelated across the modes, the proposed target
location of the jump will have very low probability, resulting in almost certain rejection.
In the following we will propose two important improvements over the darting method.
Firstly, we allow the jump regions to have arbitrary shapes and volumes and secondly these
regions may overlap. The first extension opens the possibility to align the jump regions
precisely with the shape of the high probability regions of the target distribution. The
second extension simplifies the design and placement of the jump regions since we don’t
have to worry about possible overlaps of the chosen regions.

First consider the case when the regions are non-overlapping but of different volumes. Like
in the darting method we could consider a one-to-one mapping between points in the differ-
ent regions, or we could choose to sample the target point uniformly inside the new region.
Because the latter is somewhat simpler conceptually, we’ll use uniform sampling in this
section. The deterministic case will be treated in the next section. Also, to simplify the
discussion we’ll first consider the case where the underlying target distribution is uniform,
i.e. has equal probability everywhere. Due to the difference in volumes, particles are more
likely to be inside a large region than in small ones. Thus, there will be a larger flow of par-
ticles going from the bigger regions towards the smaller ones violating detailed balance. To
correct for it we could reject a fraction of the proposed jumps from larger towards smaller
regions. There is however a smarter solution, that picks the target region proportional to its
volume,
Vi
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If we view the jumps between the various regions as a (separate) Markov chain, this method
samples directly from the equilibrium distribution while a rejection method would require
a certain mixing time to reach equilibrium. Clearly, if the underlying distribution is not
uniform, we need the Metropolis acceptance rule between the jump point and its image in
the target region,

P, =
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Paccept = min |:17 m] (4)
where t is the target point and x is the exit point.

Now, let’s see what happens if two regions happen to overlap. Again, we first consider
sampling the target point uniformly in the new region, and consider a target distribution
which is uniform. Consider two regions which partly overlap. Due to the fact that we use
the probability P; (3), each volume element dx inside the regions has equal probability of
being chosen. However, points located in the intersection will be a target twice as often as
points outside the intersection. To compensate, i.e. to maintain detailed balance, we need
to reject half of the proposed jumps into the intersection. In general, we check the number
of regions that contain the exit point, n(x), and similarly for the target point, n(t). The
appropriate fraction of moves that is to be accepted in order to maintain detailed balance is
min[1,n(x)/n(t)]. Combining this with the Metropolis acceptance probability 4 we find,

P -

Paccept = min |:]-a n(t)P(x)



Generalized Darted MCMC Sampler

Repeat until convergence
1. Draw a sanple wu; ~UJ[0,1].

2. if ur > Ppeck:
performone step of a | ocal MCMC sanpl er.

3. if < Pereck

(a) ldentify the nunber of regions n(x) that contain
the current sanple.
(b) if n(x)=0
do not hi ng.
(c) if n(x)>0
i. Sanple a new region according to P; (3).
ii. Propose a location inside the new region (ei-
ther deterministically or uniformy at ran-
dom) .
iii. ldentify the nunber of regions n(t) that con-
tain the proposed sanple.
iv. Draw a sanple wus ~UJ[0,1].
v. if u2>Paccept (5)
reject nove.
Vi, if us < Paecept (5)
accept nove

Figure 1: The steps of our generalized darting sampler.

Putting everything together, we define the mode-hopping MCMC sampler explained in
figure 1.

3.1 Elliptical Regionswith Deter ministic Moves

In the previous section we have uniformly sampled the proposed new location of the particle
inside the target region. This is a very flexible method for which it is easy to prove detailed
balance. However, a deterministic transformation can be tuned to map between points of
roughly equal probability which is expected to improve the acceptance rate. Consider for
instance the case that the energy surfaces near the regions is exactly quadratic and have the
same height (i.e. their centers have equal probability). We can now define a transformation
between ellipses that maps between points of equal probability resulting in a vanishing
rejection rate. This is obviously not the case when we use uniform sampling.

We first consider the case of non-overlapping elliptical regions. Ellipses seem a natural
choice, but the algorithm presented here is by no means restricted to it. For instance, the
method is readily generalized to the use of rectangles as basic shapes. We’ll parameterize
an ellipse by a mean g, a covariance X and a scale «, i.e. the ellipse is defined to be the
equiprobability contour that is « standard deviations away from the mean. We will also
need the eigenvalue decomposition of the covariance, ¥ = USUT, where S is a diag-
onal matrix containing the eigenvalues denoted by {o;}. A deterministic transformation
between two ellipses 1 — 2 is given by,

X2 = pty — UsSy S 20T (x1 — py) 6)



We note that this transformation would not leave a point invariant if we chose the second
ellipse to be equal the first one, but mirrors it in the origin. Even though the transformation
above is one-to-one, it does change the volume element dx, implying that we need to take
the Jacobian of the transformation into consideration. The intuitive reason for this is the
same as in the previous section: more particles will be located in the larger ellipses resulting
in more jumps to smaller ellipses than back, violating detailed balance. To compensate we
sample the target ellipse again proportional to its volume, i.e. using (3), where

%ol Hle o;
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where I'(z) is the gamma-function with I'(z + 1) = zI'(z), T(1) = 1and I'(§) = /7.

We will now discuss how this algorithm can be generalized in case the ellipses overlap.
Consider again two ellipses which partly overlap and a uniform target density. Consider
a point that is located inside both ellipses, i.e. in the overlap (point 1). To apply the de-
terministic mapping, we first need to choose one of the two ellipses as a basis for the
transformation. Unfortunately, an arbitrary rule such as the ellipse on top of the stack, or
the one with the largest volume will result in a violation of detailed balance. Thus, we
propose to pick the ellipse at random with equal probability. Now consider the image point
under the mapping (point 2), choosing either the same ellipse (resulting in mirroring the
point at the origin) or choosing the other ellipse. Assume point 2 is not located in the over-
lap. The probability of moving from 1 — 2 is i; a factor % coming from the fact that we
first choose with equal probability which ellipse will be used to define the transformation,
and another factor 1 because we sample the target ellipse using (3). However, in the other
direction 2 — 1 the probability is % Note that unlike the case of uniformly sampling a
target point (see previous section) the probability of going from 2 — 1 is not doubled?.
Thus, to rescue detailed balance we need to accept only half of the proposed moves from
2 — 1, or more generally min[1, n(x)/n(t)] with n(-) the number of ellipses containing
a point. Combining this with the usual Metropolis acceptance rule applicable to general
target densities, we arrive precisely at the rule in (5).
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To summarize, the deterministic algorithm has precisely the same structure as algorithm
in fig. 1, where in the transformation (6) ellipse 1 is chosen uniformly at random from all
ellipses containing point 1 and ellipse 2 is chosen using (3) with V; given by (7).

3.2 Mode-Hopping in Discrete State Spaces

A large number of practical problems is best described by probability distributions with
discrete state spaces. It is therefore of importance to discuss this case as well. Fortunately,
the extension is rather straightforward, the main difference being that “volumes” are to be
replaced by “number of states inside a certain distance”.

In this section we’ll consider the Manhattan distance, but the algorithm is by no means
restricted to that choice. Consider a discrete state s in some D dimensional space, where
every dimension can take one of V' values, e.g. s = [0,3,6,1] for D =4and V = 6. The
Manhattan distance between two states s; and s, is the total number of changes we need
to make to transform one state into the other, or,

D
D(s1,52) = Y [s} — sb| (8)
=1

2The reason is that for every target ellipse the image of the point under the mapping (6) is different.
However, there are circumstances, e.g. when one ellipse is completely encircled by a larger one, that
isolated points have the same image for two distinct target ellipses, resulting in violation of detailed
balance. Since in the continuous case this set has measure zero, we will ignore it.



First consider the situation where no points are contained in two distinct regions and the
regions have the same shape. Again, we have a choice of using a deterministic transforma-
tion, mapping states one-to-one to each other. For instance, if regions are defined to be the
collection of all states that are at most a distance d away from a reference state r, than we
can use the offset s — r to define the mapping: s; — r2 + (s; — r1). Since all regions have
the same number of states, we can simply pick a target region uniformly at random.

The situation is slightly more complicated if we allow for regions with different numbers
of states. It is clear that one-to-one mappings are now no longer possible. If one insists on
a deterministic mapping many-to-one mappings are possible, but intricate acceptance rules
will need to be designed to retain detailed balance. We will therefore proceed by using a
random method, where the state in the target region is picked uniformly at random from
all possible states in that region. In analogy with the continuous case, in order to maintain
detailed balance, we need to pick the target region according to the distribution,

P; = k;/ Zﬁj )
J

where «; is the number of states contained in region s.

It is also easy to generalize this to overlapping regions. The same reasoning as in section
3 leads to the conclusion that a fraction min[1, n(x)/n(t)] should be accepted where n(-)
is the number of regions that contains a point. Finally, combining this with general target
densities leads to the acceptance rule (5). The resulting MCMC algorithm is now very
similar to the one in fig. 1, but with a different distance measure and a probability of picking
a target region given by (9).

3.3 A Further Generalization

In the previous sections we have used distance measures to define regions between which
the samples could “jump”. This is geometrically appealing, but unnecessary for the al-
gorithm to function properly. More generally, we can use a set of conditions that must be
satisfied in order to be able to jump between these generalized regions. In order to maintain
detailed balance we should however be able to determine the total number of states which
satisfy each set of conditions. The probability (9) can then be used to pick a target region
and the acceptance rule (5) can be used to accept or reject a randomly picked point from
that region. Overlaps are also allowed in this case.

4 Learning Random Fields

The proposed mode-hopping algorithm can only be successful if we have advance infor-
mation® about the expected location of regions of high probability. In the following two
sections we discuss examples where this is indeed the case.

In the first example we consider a situation where we want to train a Random Field (RF)
model from data. The general form of a RF is given by,

p(x]6) = ﬁe—’“*‘” (10)

where @ is a set of parameters that we try to infer given the data, E(x; 0) is the energy and
Z(0) the normalizing constant or partition function,

Z(0) = / df e Fx:®) (11)

3Adapting the Markov chain to include new regions on-line would violate the Markov assumption
and is therefore not guaranteed to converge to the desired probability distribution.



We use the maximum likelihood criterium to define a cost function for finding the optimal
setting of these parameters,

N
F=—x 3108 p(x116) = (E(x;6))aa +10g Z(6) (12)

To minimize this “free energy” (negative log-likelihood) we need to compute its gradients,

dF _ [dE(x;8) dE(x;0)
@ - < de >data - < de >model (13)

where the second term is equal to the negative derivative of the log-partition function w.r.t.
6. Note that the only difference between the two terms in (13) is the distribution which is
used to average the energy derivative. In the first term we use the empirical distribution,
i.e. we simply average over the available data-set. In the second term however we average
over the model distribution as defined by the current setting of the parameters. Computing
this second average analytically is typically too complicated, so approximations are needed
instead. An unbiased estimate can be obtained by replacing the integral by a sample aver-
age, where the sample is to be drawn from the model p(x|@). In many cases MCMC is the
only method available that can generate this sample set.

Imagine the target distribution p(x|@) has many modes and the Markov chain is initialized
in one of them. Due to the energy barriers, we do not expect the chain to mix very well
between the modes which results in very poor estimates of the second term in (13). Under
the assumption that the modes of the distribution are located close to clusters of data-points,
a viable strategy is to start the Markov chains at various different data-points in order to
have some representative samples in each mode. This strategy is indeed used in contrastive
divergence learning [9] where a Markov chain is initiated at each data-point and run for
only a few steps (i.e. not to equilibrium) to generate distorted reconstructions of the data-
point. Those reconstructions are subsequently used in the second term of (13) to compute
an estimate of the energy derivative.

Even though we have arranged to generate samples in most relevant modes of the distribu-
tion, the fact that the samples do not properly mix between the modes results poor estimates
of their relative importance (i.e. their relative heights). The mode-hopping extension of the
MCMC sampler proposed in this paper can help resolve this problem by defining regions
around data clusters between which the sampler jumps. In one limit one could imagine
defining a a small spherical region around every data point, or an appropriate subset of all
data points. An alternative possibility is to run a clustering algorithm as a preprocessing
step and to define regions corresponding to each cluster. For example, a “mixtures of Gaus-
sians” model could be trained using the “expectation maximization” algorithm with regions
corresponding to the equiprobability contours « standard deviations away from the mean.
Since these regions are elliptical, the deterministic mode-hopping algorithm described in
section 3.1 may be used.

4.1 A Simplelllustrative Example

Figure 2 shows some two-dimensional training data and a model that was used to model
the density of the training data. The model is an unsupervised, deterministic, feedforward
neural network with two hidden layers of logistic units. The parameters of the model are
the weights and biases of the hidden units and one additional scale parameter per hidden
unit which is used to convert the output of the hidden unit into an additive contribution to
the global energy. By using backpropagation through the model, it is easy to compute the
derivatives of the global energy assigned to an input vector w.r.t. the parameters and it is
also easy to compute the gradient of the energy w.r.t. each component of the input vector
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Figure 2: a) shows a two-dimensional data distribution that has four well-separated modes. b) shows
a feedforward neural network that is used to assign an energy to a two-dimensional input vector. Each
hidden unit takes a weighted sum of its inputs, adds a learned bias, and puts this sum through a logistic
non-linearity to produce an output that is sent to the next layer. Each hidden unit makes a contribution
to the global energy that is equal to its output times a learned scale factor. There are 20 units in the
first hidden layer and 3 in the top layer.

(i.e the slope of the energy surface at that point in dataspace), which is needed for hybrid
Monte Carlo sampling.

The model is trained on 1024 datapoints for 1000 parameter updates using equation 2. The
reconstructions in (13) were obtained by briefly sampling (" = 10 time steps) from the
model using HMC, where the chain for each reconstruction was initialized at the corre-
sponding datapoint.

Figure 3a shows the probability density over the two-dimensional space that was learned
by the network. Notice that the four minima are locally correct but are not all at the same
height, so the model assigns much more probability mass to some minima than to others.

Figure 3b shows how the probability density is corrected by 10 parameter updates using a
Markov chain that has been modified by adding an optional long-range jump at the end of
each accepted trajectory. The details of the jump mechanism are slightly different than the
algorithm proposed in this paper and can be found in* [8]. Thus, by allowing the samples
to jump between the modes of the distribution, the learning procedure was able to assign
the correct amount of probability mass to each mode.

Note that this example was included to illustrate and motivate the need for mode-hopping
samplers in learning Markov random field models; not for testing and evaluating the gener-
alized darting method proposed in this paper (which will be the subject of the next section).
Indeed, due to the symmetry of the modes, we expect the spherical darting method of [1]
to perform just as well as our generalized darting algorithm.

“The reason we have chosen to leave out the details of that algorithm is that it was found to
behave inferior to the jump sampler proposed in this paper, but easier to implement and certainly
good enough for the simple example presented here.
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Figure 3: (a) Shows the learned probability masses by using the HMC sampler, computed on a 32 x
32 grid in the dataspace. Some modes contain too little probability mass. (b) Shows the probability
masses after including the long-range moves. The relative probability masses in the different modes
have nicely balanced out.

5 An Application to Human Articulated Pose Estimation Using a
Single Image

We explore the potential of the generalized darting method for monocular 3D human pose
estimation given correspondences between the articulated joints of a subject in the image
and the joints of a 3D articulated model. This problem is well adapted to illustrating the
algorithm because the resulting energy surface is high-dimensional (around 35 parameters
that defeat random sampling) and highly multimodal.®> This is caused by body limbs that
are subject to ‘reflective’ kinematic ambiguities (forwards vs. backwards slant in depth)
and each such ambiguity is a local minimum (see fig. 5) under almost any problem model-
ing. In this context pose estimation and target tracking applications require a machinery for
representing and propagating uncertainty and this requires density estimation and propaga-
tion under a static or dynamic series of observations. Particle filters [7, 10] have been one
such successful approach that can accommodate multimodal distributions evolving under
general dynamics and observation models with guaranteed asymptotic correctness (sam-
pling fairness). Practically however, the sample-based representations are expensive and
limited for good accuracy to 6-8 dimensions. This is partly due to the discrete search
for high-probability regions that tends to be inefficient in high-dimensions® and prone to
mode-trapping for multi-modal, ill-conditioned problems [23]. A different approach is to
use a parametric mixture density representation and rely on continuous search to find the
energy minima efficiently. These are used to build an approximative importance sampler.
A variety of methods for locating and tracking these local minima and avoid trapping have
been studied elsewhere [22, 23, 24]. However the above methods, while potentially good
importance samplers for expectation calculations, will still not help with accelerating sam-
pling from the equilibrium distribution and arguably not approximate the density well in
the modal tails thus leading to very low correction weights. Gradient-based hybrid MCMC
schemes could be effectively used instead [4]. This can significantly improve equilibrium
around individual local minima basins but broken ergodicity caused by trapping still re-

SMonocular human pose estimation has applications for actor motion reconstruction and view-
point synthesis from movie footage (where only one camera track is generally available) or for
human-computer interaction.

®The factored sampling method is one particular importance sampler currently used.



mains a major problem [24]. Therefore, in this work we assume the minima position and
local uncertainty structure is known and concentrate on using this prior information to ac-
celerate fair sampling. Minima structure plays an important role due to ill conditioning. In
our problem this is caused by lack of observability of parameter space directions that gen-
erate motions in depth with respect to the video camera ray of sight. This results in highly
non-spherical (fig. 6a shows the covariance structure of a minimum), nonaligned minima
covariances which further motivates our generalization of the classical darting scheme.

5.1 Sampling and Optimization Methods for 3D Human Pose Estimation and
Tracking

One line of research has concentrated on either applying scene constraints [3] or prob-
lem dependent constraints [25, 19] to regularize the search space. Deutscher et al [3] use
multiple cameras to avoid multimodality resulting from monocular projection ambiguities
and derives an annealed sampling schedule within a particle filtering framework. Their
layered method is based on factored sampling at a manifold of temperatures. A related
approach has been suggested by Neal [16, 17]. In contrast, Neal also includes an additional
importance sampling correction designed to improve mixing. Sidenbladh et al [19, 20]
use particle filtering and concentrate on the construction of a variety of learned dynami-
cal models (walking as well as more general classes) in order to generate predictions for
good places to look during temporal tracking. Sminchisescu & Triggs [25] use problem de-
pendent constraints about the forward/backwards pose ambiguity in the monocular case in
order to explicitly enumerate various kinematic minima (a fast way to provide the input to
an algorithm like ours). Choo & Fleet [2] combine particle filtering and hybrid Monte Carlo
sampling to estimate 3D human motion, using a cost function based on joint re-projection
error given input from motion capture data. For our experiments, we use a similar cost
function and local gradient-based sampling moves but here we propose an algorithm to
better deal with broken ergodicity aspects.

Other approaches have relied on more general search methods [22, 23, 24]. Sminchisescu
& Triggs [22] track articulated 3D motion from monocular images using a combination of
robust constraint-consistent local optimization and ‘oversized’ covariance scaled sampling
to focus samples on probable low-cost regions. Aiming to search the parameter space
in a more informed way they also propose methods for discovering new local minima by
deterministically or probabilistically locating saddle points (transition regions) surrounding
a known minimum basin [23, 24]. In this way surrounding basins become accessible and
can be progressively explored.

5.2 Problem Modeling

This section describes the humanoid visual models used in our sampling experiments. For
more details see [22, 21].

Representation: The human body model is constructed from ‘skeletons’ of articu-
lated joints controlled by angular joint parameters. It also has ‘flesh’ built from three-
dimensional ellipsoids with deformation parameters (these are only used for improved sur-
face coverage during visual tracking and not important for the pose estimation experiments
here, where we only concentrate on the joint angles). A typical model has about 30-35
effectively varying joint parameters 6.

The model is used as follows. Discretized model joint positions u; on local coordinate
systems for each body limb are transformed into global 3D points p;(6,u;), then into
predicted image points r;(@, u;) using composite nonlinear transformations r;(0,u;) =
P(p:(0,u;)) = P(K(0,u;)), where K represents a chain of rigid transformations that
map different body links through the kinematic chain to their 3D position (see fig. 4), and
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Figure 4: A simple model of a kinematic chain consisting of ellipsoidal parts. First, the
feature u;, defined in its local coordinate frame, is mapped to a 3-D position, p;(6,u;),
in the body model through a chain of transformations, K;(8), between local coordinate
systems. @ are parameters that encode transformations (here rotation angles) between
these reference frames. Finally, the 3-D coordinates p; (6, u;) are mapped into the image:
ri(0,u;) = P(pi(0,w;)).

P represents perspective image projection. During model estimation, prediction-to-image
Gaussian likelihoods are evaluated between each projected model joint r; and the joint of
the subject in the image x; (these are the input data to the algorithm). The results are
summed over all joints to produce the parameter space energy function. The cost is thus
a function e(x;|@) of the prediction errors Ax;(8) = x; — r;(0) between the model and
the given input data. The cost gradient g;(8) and Hessian H;(0) are also computed and
assembled over all observations. This will be necessary for second order local continuous
optimization and hybrid Monte Carlo (HMC) step computations.

Energy Function: We aim for a probabilistic interpretation and optimal estimates of the
model parameters by maximizing the total probability according to Bayes rule:

p(0X) o p(X[0)p(0) = exp (-3 ;e(x:|0)) p(6) (14)
where e(x;|0) is the cost density associated with observation 4, the sum is over all observa-
tions X = {x, ..., X }, and p(8) is the prior on the model parameters. The corresponding
energy surface is defined as the negative log-likelihood for the total posterior probability:

E(0]X) = —logp(X[0) —logp(0) = 3 ;e(x:|0) + E,(6) (15)

For the experiments we have used the classical Langevin sampler (see section 2), in com-
bination with long-range jumps using the spherical darting method and the generalized
darting method.

Observation Likelihood: In the experiments below we used a simple product of Gaus-
sian likelihoods for each model skeletal joint (assumed independent) with cost e(x;|0) =
Ax?/20%. Thus, the negative log-likelihood for the observations is the sum of squared
model joint re-projection errors. For the case study here it provides an interesting (and
difficult to handle) degree of multi-modality owing to the kinematic complexity of the hu-
man model and the large number of parameters that are unobservable in a single monocular
image.

Prior Distributions: The priors accommodated in the framework include parameter stabi-
lizers that avoid singular distributions for hard to estimate but useful modeling parameters’,

"E.g. some of the parameters at the end of the kinematic chains that generate rotations of limbs



terms for collision avoidance between body parts, and joint angle limits.® During estima-
tion, the values and gradients/Hessians of the priors are evaluated and added to the cost and
gradient/Hessians contributions from the observations.

5.3 Experiments

For the experiments shown here, we have selected 4 local minima corresponding to
the left forearm and left calf in a monocular side view (see fig.5). The local min-
ima have relative volumes of (0.16,0.38,0.10,0.36) and corresponding energy levels
(4.41,6.31,7.20,8.29).

The simulation enforces joint limit constraints using reflective boundary conditions, i.e. by
reversing the sign of the normal momentum when it hits a joint limit. We found that this
gives an improved sampling acceptance rate compared to simply projecting the proposed
configuration back into the constraint surface, as the latter leads to cascades of rejected
moves until the momentum direction gradually swings around.

We ran the simulation for A7 = 0.1, using the Langevin sampler (fig. 7a), the darting
method with spherical covariances (fig. 7b) and the generalized darting method with deter-
ministic moves (fig. 7¢). In fig. 7 we show a part of a larger simulation that uses a lower
jump probability P = 0.03 to diminish the number of jumps for illustrative purposes. From
fig. 7 it is easy to see that the classical sampler gets trapped in the starting mode, and wastes
all of its samples exploring it repeatedly. The spherical darting method explores the min-
ima only 2 minima based on one successful long-range jump during 600 iterations. Finally
the hopped method (right) explores more minima by combining local moves with non-local
jumps that are accepted more frequently. Different minima are visited using 7 jumps. This
could be visually checked as after each such jump, the sampler wanders around the energy
levels associated to the new local minima.

We also run a large simulation for 10 steps with A7 = 0.1. The first 200 samples were
discarded in order to let the chain reach equilibrium. With this increment, the sampler
mixes fast within each minimum while still preserving good acceptance rates of 94% for
local moves. We also use probability P = 0.25 for the darted moves. For generalized
darting, we estimate local covariances as the inverse Hessians at each local minimum. For
optimization we use a second-order damped Newton trust region method [5] where gradient
and Hessians of the energy functions are computed analytically and assembled by using the
chain rule with efficient back-propagation on individual kinematic chains. The covariance
volume scaling factor o was set to unity whereas for classical darting we place spheres
of unit radius around each minimum. The acceptance rate in the spherical case was a; =
1292/24, 863 = 0.052 whereas for the generalized darting case was a, = 9642/25,850 =
0.388, an important improvement. We have also run a variety of smaller experiments and
have found that the results are stable if we change the volume factor « by as much as 10%.

We additionally study the performance of this sampling regime in a different experiment
based on 3 runs consisting of 20, 000 simulation steps each. Here, we compute the ergodic
measure [1] that gives the rate of self-averaging in equilibrium calculations. Although
self-averaging is a necessary but not sufficient condition for the ergodic hypothesis to be
satisfied, it is still expected to give an intuition about the rate of parameter space sampling.
In here, we have chosen the parameter-space configuration as a quantity to average (alter-

around their major axis may change the energy function very little and are likely to be close to
singular.

8Given that we estimate pose from a single image and thus severely loose depth information, the
priors are especially useful to avoid non-admissible model configurations, particularly in a side view
(fig.5). In such cases different limbs could penetrate eachother, thus violating the body physical
constraints.



natively an ergodic measure based on other property, e.g. the energy could be used). This
it is essentially an average over pair-wise differences between average parameter-space po-
sitions for trajectories initiated in different minima during a simulation. Specifically, the
average parameter space position after S moves on a trajectory initiated at minimum a,
containing configurations {8, = 1..S} obtained® during a sampling run k:

1 S
a3(8) = 5 YO 116¢] (16)
i=1

and the ergodic measure is defined as the average between two trajectories initiated at
different minima a and b in R runs®®:

R
e(a,,5.R) = 5 Y AL(S) — dh(S)P a7)
k=1

For good mixing over large trajectories we expect the ergodic measure to converge towards
0. In fig. 6, we plot the ergodic measure corresponding to a classical Langevin simulation
with no jumps against one using the generalized scheme for S = 20, 000 over R = 3 runs.
One can see that the mixing behavior of the classical sampler is not satisfactory, perhaps
reflecting the average parameter-space difference between the two local minima where the
sampler gets trapped and repeatedly explores. On the contrary, in the generalized darted
case, it is clear that the various minima are explored and the long-range parameter space
distance self-averaging effect is observed.

6 Discussion

In this paper we have discussed a new Markov chain Monte Carlo sampler, that is able
to effectively jump between modes in the target distribution while maintaining detailed
balance. Our method is a generalization of “darting MCMC” where the basic jump regions
may have an arbitrary irregular shape and moreover are allowed to overlap. Generalizations
to discrete and more general domains are also discussed.

Apart from the darting method [1], other MCMC schemes that mix between distant modes
can be found in the literature®. In “simulated tempering” [12], a new temperature random
variable is introduced that extends the sample space in such a way that at high temperatures
the energy function is much smoother. The temperature itself is also sampled via random
walk. At high temperatures the Markov Chain mixes much faster between distant regions,
while the samples acquired at 7' = 1 are the desired samples from the target distribution.
Neal extended this idea to his “tempered transitions” method [15] that uses deterministic
moves between low and high temperature regimes. In [28] the “normal kernel coupler”
is proposed to sample from multi-modal distributions. The idea is to simulate N Markov
chains in parallel with target distribution p(x) = [, pi(x), but to use proposal distributions
based on a kernel estimate of all NV particles. Finally, in [26] a generalized Metropolis-
Hastings MCMC sampler is proposed that has the potential of incorporating deterministic
optimization algorithms to locate local maxima in the target distribution. The inclusion
of deterministic long range moves in a MCMC sampler for the purpose of computing the

®The trajectory may well include configurations inside minima basins other than a, but in a slight
abuse of notation we will identify both the starting minima and the trajectory itself with the same
letter.

1ONote that there are two different simulations for each run k, one for a and another for b.

\We do not claim that the listed methods are an exhaustive overview of the literature. We apol-
ogize beforehand if important contributions have been omitted and would be grateful if they were
being brought to our attention.



Figure 5: Four local minima of the energy function in (15), defined over 35 parameters (the
human joint angles). Note the very different 3D poses and very similar image projections
and thus similar cost.

free energy of a physical system can also be found in the physics and chemistry literature
[27,1, 18, 13, 11].

The main advantage of the proposed generalized darting method is that one can tune the
shape of the jump regions to match the shape of the high probability regions of the target
distributions. This should help to achieve an improved acceptance probability of attempted
jumps between regions. Note however that we do not claim that our method is superior to
all earlier schemes under all circumstances. In fact, we have only compared our method
with the classical darting method and shown improved acceptance rates. No doubt, the vari-
ous methods described above will have different properties for different target distributions,
or in the presence of different amounts of prior knowledge about the target distribution. We
have made no further attempts to explore these issues in this paper.

In the absence of sufficient prior knowledge of the position and shape of the modes of
the target distribution, the darting framework may suffer from unacceptably high rejection
rates for long range jumps. This problem will almost certainly be aggravated in high di-
mensions. The possibility to change the location and shape of the regions adaptively would
be advantageous but difficult without violating the Markovian property of the chain. Clever
ways around this obstacle do exist in the literature [6] but further research will be required
to find out if they can be applied to the proposed generalized darting method.
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Figure 6: (a, left) Top 25 eigenvalues of the covariance matrix (corresponding to a 35 pa-
rameter model) for a local minimum shows the typical ill-conditioning of the monocular
human pose estimation. (b, right) The ergodic measure compared for a classical Langevin
gradient-based sampling scheme and the generalized darting method. The classical sampler
doesn’t mix well because the long-range energy difference between trajectories reflects the
memory of the minima where they were initiated. The generalized method mixes much
better and explores various minima so the parameter-space difference over long-term tra-
jectories tends to zero (see text).

A Proof of Detailed Balance

To proof detailed balance between any pair of points in the sample space, we consider the
following three possibilitites:

1. Both points are located outside any of the jump-regions.

2. One of the two points is located inside one or more jump-regions while the other
one is located outside any of the regions.

3. Both points are located in one or more of the regions.

1: When both points are located outside any of the jump-regions detailed balance follows
because of the Markov chain for the local moves is assumed to respect detailed balance.
With probability P, this Markov chain is interrupted to check if the particle is located
inside a jJump-region. But since both points under consideration are assumed to be located
outside any jump-region this interruption will be symmetric and does not destroy detailed
balance.

2: The particle located outside any jump-region follows its local dynamics (i.e. it is not
interrupted) with probability 1 — P.p..x. The particle inside one or more regions will also
follow its local dynamics (i.e. it will not attempt a jump) with probability 1 — P.pecr. With
probability P.j..; the sampler decides to perform a check. But in that case the particle
outside any region will stay put while the particle inside one or more regions will attempt
a jump and will therefore never end up ouside the set of all regions. Thus detailed balance
again holds.

3: We will prove the case of two points in possibly overlapping regions, where the jump
points are sampled uniformly at random inside a target region. The prove for the determin-
istic case goes along similar lines (see section 3.1).

With probability 1— P, we follow the local dynamics of the Markov chain which fullfils
detailed balance by assumption. With probability P,;..r We initiate a jump to some other
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Figure 7: Classical hybrid Monte Carlo (left) gets trapped in the starting minimum. Spher-
ical darting explores the minima more thoroughly and one can see that only 2 minima
are visited during 600 iterations (only 1 successful jump). Finally the generalized dart-
ing method (right) explores the different minima by combining local moves with non-local
jumps that are accepted more frequently. 8 local minima are visited via 7 jumps (note that
after each jump the sampler explores its new local minimum for a while before the next

jump).

point in some other region. Define A to be the set of regions that contain point 1 and B the
set of regions that contain point 2. We now have,

p(xl) P(Xl — XZ) = p(xl) Pcheck Z % Paccept:1—>2 (18)
icB "
_ n(x) oy pGInGe)
- p(xl) Pcheck ] ‘/J min |:17 p(Xl)n(Xz)] (19)

- thLV min [p(x1)n(x2), px2)n(x1)]  (20)

- p(Xz) Pcheck ; ij min |:]-a p(x2)n(xl)] (21)
= P(Xz) Pcheck Z % Paccept:Z—)l (22)
icA 't
= p(x2) P(xz = x1) (23)

where P; (equation 3) is the probability of jumping to region 7 and the factor 1/V; is in-
cluded because the target point is sampled uniformly at random inside this region. Thus,
once again establish detailed balance.
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