
Controlling the Search for Convex Groups

Francisco J. Estrada and Allan D. Jepson

Department of Computer Science
University of Toronto
10 King’s College Road

M5S 3G4, Toronto, On. CANADA
{strider, jepson}@cs.toronto.edu

Technical Report CSRG-482, January 2004

Abstract. This paper describes an efficient algorithm for the perceptual
grouping of line segments. The method uses a geometry-based measure of
affinity between pairs of lines to guide group formation, and implements
a search control procedure that is intended to reduce search complex-
ity when image characteristics lead to a combinatorially large number
of possible groups. We also present a ranking system that identifies the
polygons that offer the most plausible explanation for the observed im-
age data. The method is applied in the context of finding convex groups,
and is experimentally shown to outperform existing algorithms, particu-
larly in images with significant clutter, strong texture, and long, curved
contours.

1 Introduction

Perceptual Grouping in real world images is an important problem in computer
vision. It deals with the organization of a set of features into groups that are not
likely to be accidental, and therefore, indicate the presence of interesting world
structure. The identification of feature groups can greatly improve the perfor-
mance of algorithms that carry out recognition, tracking, and correspondence
matching. Grimson [3] has shown analytically that search complexity for recog-
nition algorithms can be reduced from exponential to polynomial if they operate
on subsets of features, where the groups groups have the property that most of
their elements are likely to come from a single object. Clemens and Jacobs [2]
show that in the context of object recognition with a large database of models,
indexing must be preceded by perceptual grouping to become practical.
Our goal here is to develop an efficient framework for generating perceptually

salient feature groups in real-world images with significant clutter and rich tex-
ture. The framework should identify groups that are highly likely to correspond
to a single object, and be efficient regardless of scene complexity. Our method
has been developed in the context of finding closed, convex groups of line seg-
ments. It will be shown that our algorithm provides a significant advantage over
existing methods, particularly when the number of groups that can be generated
in an image is very large. We present an efficient way to guide group formation,



address the problem of keeping the search manageable, and explore the selection
of the most plausible groups out of a possibly large set of convex polygons.

2 Previous Work

There has been much research in the area of perceptual grouping. Lowe first
applied perceptual grouping to the task of object recognition [9], [10]. His sys-
tem used properties such as proximity, collinearity and parallelism to gener-
ate candidate groups for matching against known object models. Ullman and
Sha’ashua [21] propose a locally connected network for curve extraction that
determines saliency using smoothness, continuity, and curve length. Mohan and
Nevatia use geometric relationships such as proximity, co-curvilinearity, symme-
try, and continuity to group edgels into a description hierarchy [13], [14]. Their
hierarchy goes from edgels and line segments to patches that correspond to parts
of visible surfaces. Sarkar and Boyer [19] introduce a voting based scheme for
grouping that uses Bayesian Networks to infer structure from subsets of features.
Voting and inference are performed at multiple levels, generating a grouping hi-
erarchy. Guy and Medioni [5] propose an algorithm based on a tensor voting
scheme with communication between neighboring features, and subject to con-
straints such as co-surfacity and good continuity. In the particular case of 2D
line segments, their method allows for the identification of curve segments and
junctions [4], and is able to perform perceptual completion of smooth image
contours from fragmented data.
The use of an affinity measure was motivated by work in the field of spectral

clustering. Ng, et. al. [15] demonstrate the use of pairwise affinities for data
clustering, Shi and Malik [22] describe the use of spectral methods for image
segmentation, and Malik, et. al. [12] show how texture and contour information
can be incorporated to enhance segmentation results. Perona and Freeman [17]
propose that an approximation to the pairwise affinity between scene elements
can be used to estimate feature saliency, and use it to separate foreground and
background elements. More recently, Mahamud, et. al. [11] propose a contour
extraction algorithm that uses properties of the eigenvalues of an affinity matrix
to detect salient edges and links. The affinity values are related to the random
walk probabilities of particles going from one edge to another, and incorporate
proximity and smooth continuation. Salient contours are identified as connected
components on the estimated link saliencies, and the procedure is repeated to
obtain a pre-determined number of contours.
Contour extraction is also addressed by by Elder and Zucker [1]. Their ap-

proach uses a sparse graph whose edges are weighted by the likelihood of two
image segments belonging together, and performs contour extraction by search-
ing for minimal-weight cycles within the graph. Ren and Malik [18] describe a
multi-scale contour extraction algorithm based on higher-order Markov Mod-
els, the model parameters are learned from a database of human segmented
images. Saund [20] proposes a search-based algorithm that uses pre-computed
preferences for particular configurations of consecutive edges in a contour. These



preferences incorporate proximity and domain specific constraints to keep the
problem tractable. The algorithm is shown to efficiently extract contours from
sketches and line drawings, but is not designed to deal with fuzzy contours, or
richly textured scenes. The identification of convex groups has been addressed
by Huttenlocher [6], and Jacobs [7] among others. Jacobs’ work is particularly
relevant to our discussion, and will be addressed further in the next section. Pao.
et.al. [16] discuss the importance of convexity in human perception, and present
a convexity-based model for figure-ground separation that is biased toward com-
pact shapes.
Even though previous methods have proven to be successful for analyzing

images with particular constraints, real world images with significant clutter, rich
texture, and highly organized structure continue to be challenging for perceptual
grouping algorithms. As image complexity grows, so do the number and size of
groups that can be generated. It also becomes increasingly difficult to distinguish
good groups from accidental clusters of features.

3 Convexity and Coverage

Convexity is a powerful perceptual grouping principle. Jacobs argues in [7] that
convex chains of edges are unlikely to be accidental. This means that any convex
groups that are found in an image are likely to have a common origin. Convexity
is also useful since many objects are either convex, or made of convex parts. With
this in mind, [7] presents an algorithm for efficiently locating convex groups in
a set of lines. A coverage measure, which is the ratio of the part of the polygon
that is covered by image edges to its total perimeter, is used to prune potential
groups that fail to meet a user-defined threshold. It is shown in [7] that the
coverage based algorithm will be efficient if the number of polygons extracted
from the image can be kept small by choosing an appropriate threshold.
However, in many real world images the number of convex groups can be

quite large. Figure 1 illustrates the problem. There are two reasons for the large
number of convex polygons in these images: a) there are combinatorially many
ways to groups texture and boundary edges to form convex polygons; and b) in
images with long, fuzzy contours, many combinations of adjacent edges lead to
convex shapes, in fact, the number of groups grows exponentially with the length
of the contour. In images such as these, it is not possible to choose a coverage
threshold that will find most of the salient groups, and at the same time, keep
the search manageable.

4 Using Affinity to Group Lines

To reduce the problems described above, we need to be able to choose the most
promising search paths among a possibly large number of alternatives, and we
have to find a way to reduce the total number of paths that are examined. To
identify promising paths, we have defined a geometry-based affinity measure that
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Fig. 1. a) Line-set extracted from a textured box; there are 329,467 convex groups with
more than 95% coverage in the line-set. b) Section of a scene where several concentric
edge chains are found, there are 4,726,377 convex groups with coverage greater than
95% here. c) Typical image junctions are characterized by an intersection point, gaps,
and tails. Due to orientation uncertainty the intersection point can be anywhere within
the shaded area. Notice that the uncertainty is greater for smaller segments.

evaluates the quality of the junction formed by two line segments, typical image
junctions are illustrated in Figure 1c.
A perfect junction has both segments terminating exactly at the intersection

point. If there are gaps between the segments and the intersection, or if segments
are split (causing a tail), the junction’s affinity decreases. The contribution of
gaps is weighted using a Gaussian PDF whose sigma value is related to the size in
pixels of the gaps we expect to occur due to imperfections in the line extraction
process and regions with low image contrast. We’ve found a value of σgap = 20
to work well in our test images. Tails are also weighted with a Gaussian PDF,
but with σtail = σgap/2. The reason for the different sigmas is that we expect
junctions that originate at the vertices of convex objects to have little or no tails,
so we would like the affinity to decrease fast for junctions that cause significant
splitting of existing segments. Depending on the geometric configuration, we
calculate for each line one of the following distance-affinity factors:

DFgap = e−d
2/(2σ2

gap), DFtail = e−d
2/(2σ2

tail) (1)

where d is the length of the gap or tail.
We expect line-endpoint estimates to be affected by image noise, low con-

trast, and the spatial resolution of the filter used to detect edges. This leads
to uncertainty in the orientation of lines, with smaller lines being more strongly
affected by noise. In Figure 1c, uncertainty in orientation is represented as a pair
of cones extending from the center of each line toward the intersection point.
The cones are such that their width at the line’s endpoint is constant for all
segments, and corresponds to the expected uncertainty in endpoint localization.
The true intersection point can be anywhere within the overlapping region of the
two cones. The area of this region depends on the length of each segment, and
on their distance from the estimated intersection. Smaller segments, and lines



that are far away from the intersection lead to larger uncertainty. The second
component of our affinity measure accounts for this effect, an uncertainty factor
is calculated for each line as UF = e−w

2/(k2
u) where w is the width of the cone at

the intersection point, and ku is a constant that determines how fast the uncer-
tainty term becomes small as w increases. The larger the value of ku the weaker
the effect of uncertainty on the total affinity. We use ku = 15, so the uncertainty
term does not become too small unless w is reasonably big.
We combine the distance affinity factors and the uncertainty factors into a

geometric affinity measure given by

G affinity = (DFline1 ∗ UFline1 ∗DFline2 ∗ UFline2), (2)

and calculate the total affinity for a pair of segments with

T affinity = G affinity + κ. (3)

Where κ is a suitable constant and constitutes a lower bound for the total
affinity. Pairs of lines whose geometric affinity is very small will end up with
a total affinity near κ, and will be considered to be equally bad for grouping
purposes. The value for κ was experimentally set at κ = .25. Notice that given
the above discussion, a perfect junction would receive a geometric affinity very
close to 1, and a total affinity close to 1.25. It is important to note that this
affinity measure has no angle component, this enables our algorithm to extract
polygons with sharp corners, as well as smooth convex contours.The values for
the parameters described above are not arbitrary, it will be argued below that
they lead to an affinity function with sufficient discriminative power.
Once the affinity between each pair of lines has been calculated, it can be

used for grouping. However, the absolute value of the affinity is not very in-
formative since it depends on many factors that can change significantly from
image to image, or even within the same scene. This means that a threshold on
absolute affinity would be of little use. Instead, we base our grouping constraint
on the following reasoning: The large majority of groups that any given line can
form will have very low geometric affinity, they correspond to all the accidental
intersections between the segment and other lines all over the image. Instead of
applying a threshold on the affinity value, let us choose the best K junctions
that can be formed with a particular segment, and normalize their affinities so
that they add up to 1. If all of the possible groups were equally good, or equally
bad, their normalized affinities would be close to 1/K, but for most edges there
will be some good groups with affinities significantly larger than 1/K, and many
groups whose affinity is close to, or under 1/K. The latter case indicates dubious
or downright bad grouping choices.
To gain insight about the advantages of performing affinity normalization,

it is useful to examine the shape of the distribution of normalized affinities.
Figure 2a shows the histogram of normalized affinities for one of our images
with K = 20. Notice that most of the histogram’s mass and the histogram’s
peak are found below the 1/K value, and that the distribution has a long tail
beyond 1/K. The shape of the distribution is not accidental, Figure 2b shows



the result of averaging the normalized affinity histograms of 20 real-world images
from different domains. Even though the images vary greatly in size, number
of lines, and complexity, their normalized affinity histograms have the same
shape. From the shape of this distribution it becomes clear that a threshold
on normalized affinity would have significant pruning power. Furthermore, the
threshold is constrained to be larger than 1/K for the reasons described above,
and enough of the histogram’s mass should be above the threshold value to
provide the search algorithm with enough junctions to perform grouping. The
range of possible values for the threshold is small enough that a good value
can be found experimentally, and once this value has been identified, it can be
expected to work well regardless of the image. This last claim is well supported
by our experiments.
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Fig. 2. a) Typical normalized affinity histogram, the red line corresponds to the 1/K
value. b) Average histogram of normalized affinities for 20 test images. For both his-
tograms K = 20

The normalized affinity histograms also provide some information with regard
to the discriminative power of our affinity function, Figure 3 shows a normalized
affinity histogram for the same image used to generate Figure 2a. We used the
same affinity function described above, but we changed the values of the param-
eters so that σgap = σtail = ku = 200. Under these conditions the difference
in absolute affinity between good and bad junctions is minuscule. The resulting
histogram has none of the properties discussed above, and indicates that as far
as the affinity function is concerned, all junctions look almost equally good.
The particular values we set for the parameters of our affinity function were

selected experimentally to be those that provided the best separation between
good and bad junctions. The resulting histograms validate the claim that the
affinity function does indeed have sufficient discriminative power. The previous
discussion also indicates that any affinity function with sufficient discriminative



power will yield a normalized affinity histogram similar to those shown in Fig-
ure 2. This is important because it suggests that an efficient search procedure
working on normalized affinities could be applied to other problem domains as
long as a suitable affinity function can be defined.
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Fig. 3. Normalized affinity histogram for the same image used in Figure 2, but with
different parameters for the affinity function. The red line corresponds to the 1/K
value, and K = 20. This distribution lacks the properties described in the text, and
indicates that the affinity function has little discriminative power.

Given the above considerations, we propose the following depth-first search
strategy:

a) The search procedure will look at each segment in the line-set sequentially,
and use it as an initial group.

b) At each step of the search, the algorithm will attempt to generate a larger
group by adding an edge the current group, the edge is taken from the list of the
best K junctions that can be formed with the last edge of the current polygon.

c) An edge can only be added to the current polygon if its normalized affinity
with the last edge of the group is greater than the normalized affinity threshold
τ , and if the resulting polygon is convex.

d) The search backtracks when a closed group is found, or when there are
no more edges to try in the list of the best K junctions for the last edge in the
polygon. A polygon is closed when the last edge and the first edge intersect, and
the normalized affinity between them is greater than τ .

We have found that values of 1.3/K ≤ τ ≤ 1.5/K yield the best results
in terms of search efficiency and reliable extraction of convex groups. Such a



threshold allows the algorithm to examine the more interesting grouping choices
at each level of the search, while rejecting junctions of dubious quality. The
choice of K is not critical, and is domain independent. For small values of K the
algorithm becomes increasingly greedy (for K = 2, only the best group for each
segment is ever examined). For 15 <= K <= 30 the algorithm performs well.
Larger values of K are not required, since we don’t expect any segment to be
part of more than a small number of significant groups. This procedure achieves
a significant reduction in the total amount of search that has to be carried out to
detect salient groups. Affinity normalization has the additional benefit of making
this strategy robust to variations within the line-set. Locally dense, and locally
sparse regions of the line-set are given an equal opportunity to form groups.
However, even though the above grouping procedure greatly reduces the

branching factor of the search algorithm, it is not sufficient for dealing with
the complexity of scenes such as the one depicted in Figure 1b. In such im-
ages, even a small branching factor will lead to a huge search space due to the
generation of combinatorially many variations of a few contours.

Fig. 4. The figure shows possible chains that can be generated from a particular ini-
tial segment. Assume we have found chain a-b-c-d-e-f-g-h, and it leads to a complete
polygon. We’d like to prune variations such as a-i-c-d. . . , a-i-j-e. . . , a-b-c-k-f. . . , and
so on, since these chains lead to a similar polygon, and the number of variations is
exponential on the number of edges that make up the adjacent contours

5 Managing Search Complexity

We would like to avoid searching through chains of edges that are variations of
previously extracted polygons (see Figure 4). However, keeping a complete list of
distinct groups, and checking each new chain against it would be computationally
expensive. Instead, we propose the following algorithm: For each choice of initial
segment, initialize an empty list for subsequently extracted polygons. Every time
a new group is found, it is checked against the polygons already in the list, and
inserted if there are no similar groups already there. If a similar shape is found,
we keep the best polygon and discard the other. Section 6 will describe how



to determine which polygon is better, as well as the criteria used to detect
equivalence.
To avoid searching through variations of these polygons, we check every new

edge added to a chain against the intermediate polygon list. If the edge is cov-
ered, we prune the chain since we would expect it to lead to some variation of a
polygon that has been found before. This is possible because of the way affini-
ties work. Edges that are very close to each other and have similar orientation
will have similar affinities with regard to the surrounding lines, and will produce
similar search paths. This procedure ensures that a chain must introduce and
subsequently maintain a difference with regard to previously found polygons to
be explored, and eliminates the need to search a large space of similar chains
that share the same initial segment. However, it does prune out some chains that
lead to groups that are distinct, but share part of their contour with previously
found polygons. In practice, we expect these groups to be found when the search
is started at one of the edges that differentiate them from polygons in the inter-
mediate list. In addition to the above, we’ve found that search on deep, bushy
trees (which occur often along curved, fuzzy contours) can be greatly simplified
by increasing the normalized affinity threshold by a small amount at each step
of the search (in all our experiments, we used an increment of 1 × 10−6). The
result is that after the search tree has grown considerably, the search is unlikely
to proceed unless a really good group is found that justifies the additional effort.
Since groups are explored in a best-first order, we expect most salient groups to
be found before the search tree has become too large.
Even with the above enhancements, it is not uncommon to find hundreds, or

even thousands of groups in a given image. Most of these polygons are variations
of a small number of perceptually significant shapes (found by starting the search
at different edges along the same contours), the remaining ones are groups that
result from accidental relationships between segments. The following section
describes a method for determining which polygons are most likely to correspond
to interesting structure, and describes our criteria for eliminating most of the
similar groups while keeping the best ones.

6 Finding the Good Polygon

To identify the most promising groups, we use the Qualitative Probabilities
framework described by Jepson and Mann in [8]. Qualitative Probabilities esti-
mate the log-unnormalized posterior of a model given the image data

log q(M |I) = log (p(I|M)p(M)), (4)

where p(M) is the prior probability of finding a particular model, and p(I|M) is
the likelihood of the image given that model. Jepson and Mann show that the
prior probabilities for lines, and objects composed of lines can be specified in
terms of a small constant ε¿ 1 that gets smaller as image resolution increases.
In particular, the probability of finding a line endpoint or polygon vertex at a
specified location in the image is of order O(ε2). Since a line is specified by a



Fig. 5. Fragment of a polygon boundary (gray) and different coverage situations: a)
The polygon’s vertices explain the location of both line endpoints, no extra parameters
are required, so the likelihood is O(1). b) There is one break, its location can be
explained with one free parameter (it’s distance along the edge), so its likelihood is
O(ε1). c) Three breaks, the likelihood is O(ε3). d) There are two breaks (O(ε2)), and
one tail. The tail is nothing more than a segment which happens to align with the
polygon boundary, it requires 3 parameters: 2 for the endpoint we can see, and 1 for
the other endpoint which lies somewhere (its exact location is unknown) along the
polygon boundary. The second endpoint requires only one parameter since we we know
its direction. The combined likelihood in this case is O(ε2 ∗ ε3) = O(ε5).

pair of endpoints, the prior probability of specifying a particular segment is of
order O(ε2 ∗ ε2) = O(ε4), and the prior probability of specifying a polygon with
t vertices is of order O(ε2∗t). This corresponds to the term p(M) for a convex
group in equation 4. In a similar way, the prior probability of specifying a set of
n lines is of order O(ε4∗n). Under QP, the prior probability for a complete image
is given by the multiplication of the prior probabilities for hypothesized groups,
and any remaining lines that are not part of these polygons. Since ε ¿ 1, the
larger the order of epsilon (the more endpoints, polygon vertices, and lines that
need be specified), the smaller the corresponding probability.

A group increases its posterior probability by decreasing the total number
of parameters that are required to account for the observed image data. It does
so by offering a cheaper explanation for the lines that compose its boundary.
However, in general the match between the model and the observed lines is
imperfect, any gaps or tails occurring along the boundary must also be accounted
for. The term p(I|M) in equation 4 incorporates these effects. Figure 5 shows
part of a polygon’s boundary under different conditions of line-set support, and
gives a detailed example of how the term p(I|M) is evaluated. The epsilon order
of the likelihood term depends on the number of free parameters that must be
specified to account for the observed gaps and tails in a particular polygon.

For our grouping method, the QP framework was extended so that the term
p(I|M) also accounts for lines that terminate at the boundary of a hypothet-
ical group, as well as lines that are split, and lines that completely cross over
the proposed polygon. This allows us to incorporate more evidence into the QP



Fig. 6. Typical polygon interactions with the line-set. The polygon is treated as an
opaque surface. L1, L2, and L3 are not affected by the polygon, each requires 4 pa-
rameters. L4 and L7 are treated as lines that are ’painted’ onto the polygon, and
terminate at the boundary (within some tolerance), whereas L5 and L6 are outside
segments obscured by the polygon (the location of their second endpoint is unknown).
In both cases, we require 3 parameters to specify the visible part of each line: 2 for
the free endpoint, and 1 to specify the location where the segment meets the polygon
boundary (as a length along the appropriate polygon edge), hence the likelihood is
O(ε3). L8 is split, it is treated as 2 lines terminating at the boundary, one inside, and
one outside the polygon, so the split requires 6 parameters and the likelihood is O(ε6).
L9 is split in 3 parts, each outside segment is treated as a line obscured by the polygon,
and requires 3 parameters. We also need 2 parameters to specify the inside fragment
(2 distances, one along each polygon edge), thus L9 requires 8 parameters given this
particular polygon, and the likelihood is O(ε8).

calculation. Figure 6 shows several possible situations, and the associated value
of p(I|M) in terms of ε. Intuitively, p(I|M) is large for a polygon that has few
gaps along the boundary, offers an explanation for lines that terminate at its
boundary, and does not split segments. The above considerations can be used to
efficiently estimate q(M |I) for any polygon. We are now ready to integrate the
above discussion into the search framework. Recall that for each initial segment
we keep an intermediate list of polygons. At search time, a newly detected group
is checked for equivalence against the polygons that are already in the list. Poly-
gons Pa and Pb are said to be equivalent if all the vertices of Pa are within a
small distance of an edge in Pb, and vice-versa. If an equivalence is detected, the
group with the largest estimated q(M |I) is kept.

Notice, however, that the full evaluation of p(I|M) requires computing line
intersections and performing some geometric processing. This would be too ex-
pensive if it were to be performed on every polygon that is found, instead, for
the intermediate group list we consider in the likelihood term p(I|M) only lines
that lie along the polygon’s boundary, as shown in Figure 5. This is no more
expensive than checking the boundary for coverage. Once all possible distinct
groups have been found for a particular initial segment, the contents of the in-
termediate group list are inserted into a final list of convex polygons, sorted by
their posterior probability. This time, however, the complete likelihood term in-
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Fig. 7. Test results with K = 20 and normalized affinity threshold of 1.5/K: a)The
middle image displays the best 20 polygons output by our algorithm, the one on the
bottom shows the best 20 polygons found using coverage threshold of .9 and ranking
groups based on their coverage fraction. The coverage based algorithm searched through
37, 518, 725 nodes, took 58 minutes to complete, and found 89, 553 groups, out of which
90 were distinct. Our algorithm searched through 112, 053 nodes, took 13 seconds
to complete, and found 849 polygons out of which 130 were distinct. Most of the
polygons displayed in either image (or small variations of them) were found by both
algorithms, but the ranking is quite different. The input line-set contains 835 non-
oriented segments. b)The middle image shows the best 25 polygons output by our
algorithm. The bottom image shows all the polygons found using a coverage threshold
of .95. Even with this very high threshold, the coverage based algorithm searched
through 1.99× 109 nodes, required 42 hours and 42 minutes to finish, and found over
29.7 million groups, yet only 19 of these were distinct. Our method searched through
348, 642 nodes, ran in 56 seconds, and found 852 groups, out of which 78 were distinct.
The input line-set consists of 797 non-oriented segments. Run-times were measured on
a Pentium 4, 1.9GHz desktop machine.



cluding all interactions between the polygon and the line-set is calculated. Any
polygon whose posterior is worse than O(ε4n) is discarded since at least as good
an explanation for the same image is provided by a model that consists of n
independent lines.
The end result of the above procedure is that the final polygon list is signifi-

cantly smaller than the original number of convex groups detected in the image.
Furthermore, the polygons at the top of the list are those that do a better job
of explaining the observed line-set and, as will be shown in the experimental
results, tend to agree with perceptually salient structure.

7 Experimental Results

This section presents the results of running our algorithm on several images,
all tests were carried out using the same parameters as described in Section
4. Figure 7a shows the results of running our algorithm on an image of boxes.
Notice that many of the polygons that were determined to be most plausible
by the Qualitative Probabilities framework agree with the boundaries of boxes
in the original image. Figure 7b shows the results of running our algorithm on
the complete version of the fruit image from which Figure 1b was taken. The
results on this image provide a particularly clear demonstration of the reduction
in search complexity that is achieved by our framework. Notice that although the
total number of groups found by our method is much smaller than the number of
groups found by the coverage based algorithm, the number of distinct polygons
found by our system is much larger.
The experimental results in the fruits image demonstrate the benefits of using

the search control procedure described above, the coverage-based algorithm finds
over 29 million groups but only 19 describe distinct shapes, this indicates that the
search procedure is spending most of its time processing polygons that are only
small variations of previously encountered shapes. In contrast, our algorithm
finds less than 1 million groups, out of which, 80 are distinct. This is a very
significant improvement, in fact, the search control procedure alone yields a
reduction of roughly two orders of magnitude in search time for images that
contain such a large number of similar groups. Results in the boxes image also
show a significant reduction in the number of polygons that were detected by
our algorithm, while at the same time, identifying a larger number of distinct
shapes. Together, these results indicate that the search control procedure yields
a substantial speed-up with a negligible loss in search completeness.
While the benefits obtained from the search control procedure vary depend-

ing on the number of similar polygons that can be found in an image, the use
of normalized affinities consistently yields a reduction in the number of nodes
searched, while at the same time, increasing the number of distinct polygons.
This indicates that the affinities, together with the use of QP to rank the poly-
gons, help to focus the search on the more salient groups. Finally, the images
selected in our experiments show that the algorithm is able to extract shapes
with smooth contours, as well as polygons with sharp corners. The reader is



referred to http://www.cs.utoronto.ca/˜strider/TechRep482/ for more
experimental results.

8 Conclusion and Future Work

The above results indicate that our framework yields a very large reduction in
the amount of search that has to be carried out in order to identify perceptually
salient groups, while at the same time, increasing the number of salient polygons
extracted. We have also presented a ranking algorithm that allows us to identify
the polygons that do a better job of explaining the observed line-set. In its
current form, our method is capable of efficiently processing complex, real-world
imagery from different domains.
The geometric definition given here for the inter-line affinities is suitable

to the problem of identifying convex polygons, but the affinity measure can
be extended to incorporate domain specific constraints, or adapted to work in
different domains with features other than line segments. The pruning algorithm
based on normalized affinities is applicable to any search problem for which a
suitable affinity measure can be defined.
There are several directions for future work. We are evaluating the substitu-

tion of convexity with other grouping constraints that allow for the identification
of more general shapes, but at the same time, keep the search manageable. We
are also looking at the integration of image segmentation results into the above
framework, we believe that photometric information can provide additional con-
straints during the search phase and, once the search is completed, could be used
to identify and merge polygons that are likely to be part of the same object.

Photograph credits

The fruits image used in Figure 1b and Figure 7b was kindly provided by Mr. Peter
N. Lewis.
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