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Figure 1: Use of Cords in the animated film Ryan

Abstract

A large body of research addresses the representation, construction
and interactive control of 3D curves for various applications. In-
teractively controlling curves with empirical physical attributes of
stiffness and elasticity that bend and wrap around 3D scene geom-
etry is a common and challenging problem. In this paper we ad-
dress this problem with a novel 3D curve called a cord. A cord is
created and subsequently controlled in real-time by defining a sec-
ondary curve called the guide curve. The guide curve represents the
general 3D path that the user wishes the cord to follow while bend-
ing and wrapping around scene geometry. Cords have attributes of
length, stiffness, and elasticity that allow them to empirically cap-
ture a range of behavior from wire to string to rubber bands. Cords
that make contact with geometry have a representation in the 2D
parameter space of scene objects and can be used not only as ge-
ometry for modeling and animation but as 2D parametric strokes
for rendering. We present techniques for the creation and interac-
tive control of cords and show examples illustrating their creative
use within the animation system Maya.

1 Introduction

Curves are a quintessential Computer Graphics primitive. They de-
fine features for object modeling, motion paths for animation, and
artistic strokes for rendering.

Mathematical representations of 3D curves with various geomet-
ric properties have been a subject of study for many decades [Farin
2001]. Research in this area has largely focused on the design of
parametric polynomial curves that are defined using a set of geo-
metric constraints. Parametric curves represented by a set of con-
trol points, such as Bezier curves and NURBS, are used to construct
continuous, piecewise polynomial curves that provide good control
over geometric attributes of tangency and curvature. More recently,
piecewise linear curves [Barzel 1997; Pai 2002; Balakrishnan et al.
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1999; Grossman et al. 2003] controlled using higher level interac-
tion techniques and continuous curves defined by subdivision rules
[Chaiken 1974; DeRose et al. 1998] are being used to define 3D
curve shapes. Conversion among different curve representations is
possible in a robust and efficient manner as a result of research on
curve fitting [Farin 2001].

While general 3D curve creation and interactive control is a ma-
ture science with widespread commercial use, there is a class of
common problems involving 3D curves that are difficult to solve
with these representations and techniques. These problems, de-
scribed below, motivate cords, which are a new 3D curve primitive
that models curves with physics-like properties that bend and wrap
around 3D geometry.

1.1 Motivation

Curves are often used to represent physical objects that are tubular
in shape (see Figure 2a). They are also basic construction prim-
itives for most surface-modeling applications. Current interactive
curve-modeling techniques, barring a few approaches [Fiume 1995;
Barzel 1997; Pai 2002], are not well-suited to the modeling curves
like cords. In animation, 3D Curves model the temporal trajectories
of scene elements. Motion paths that bend around scene elements
are important to goal directed motion and path planning [Feather-
stone 1987; Latomb 1991]. Motion paths also require the ability
to define not just the position but the orientation of scene elements
animated along the curve. Curves also define brushstrokes for artis-
tic expression on 2D surface manifolds. While there is no physical
equivalent to the notion of a 3D stroke, a strong comparison can be
made to the use of wires in 3D sculpting (see Figure 2b). 3D curves
that conform to geometry also manifest themselves implicitly in a
large body of art as evidenced by Eschers use of 3D curves as neg-
ative space in Figure 2c. 3D strokes as applied to rendering often
require a 2D parameterization of space around the curve beyond the
typical Frenet frame [Bloomenthal 1990] formulation.

Our work has the same motivations as Barzel [Barzel 1997] and
was driven by the demands of an animated film. As seen in Figure 1
and the video accompanying this paper, the need arose to control



(a) 3D curve construction of shoe-lace. (b) Wire-sculpture (J. Peterson), c©2002
Dover Abrams.

(c) Bond of union (M.C. Escher), c©2002
Cordon Art B.V.-Baarn-Holland.

Figure 2: Real world primitives analogous to cords

with keyframe precision, the growth and motion of a number of
cords in a highly dynamic scene, often in an exaggerated manner
that would be hard to achieve with physical simulation. Compared
to complex objects like clothing that are intractable to animate using
any technique but physical simulation [Baraff et al. 2003], curves
are sparse geometric primitives. On one hand this makes them eas-
ier for an animator to specify but they require greater precision and
control since there is less visible geometry to critque. This contrast
motivates the design of the user interface to cords.

1.2 Approach

Most stroke based approaches for computer graphics have adapted
2D techniques established in physical media. Comparing our 3D
curves to cords of wire, ribbon, or string allows an alternate per-
spective to curve creation [Balakrishnan et al. 1999]: one of un-
rolling prefabricated 3D curve segments into a scene and then ma-
nipulating them among geometric primitives as one would manip-
ulate wire or ribbon in the real world. We decouple the curve an
animator controls, from the curve that represents the 3D cord. We
call the control curve a guide curve that defines the general path that
a 3D cord should follow. The cord itself is then constructed using
the guide curve, stiffness and elasticity parameters and constraints
based on scene geometry. The guide curve being only a general
specification of the path of the cord is now amenable to high-level
curve manipulation. The actual algorithm that generates the cord
involves a combination of geometric stepping in the spirit of tape
drawing [Balakrishnan et al. 1999] and an intersection test with 3D
scene geometry. The length of unrolled tape empirically captures
stiffness and the length the curve is grown to relative to the length of
the guide curve captures elasticity. Intersection testing ensures that
the cord bends around scene elements without penetration. When
the cord is on the surface of 3D scene geometry, the surface normal
and curve tangent define a reference frame that is interpolated in
regions of the curve that are unconstrained.

Our stepping approach generates a poly-line approximation of a
continuous curve but we prove in section 5 that a cord is indeed
a mathematically defined 3D curve primitive that has a continuous
definition as the step size tends to zero.

This paper thus contributes a novel 3D curve primitive called a
cord, that is defined by a parametric guide curve and 3D geometry,
with explicit parameters that control, stiffness, elasticity and length
of the curve. The formulation and implementation of cords is ele-
gant (less than 10 lines of code), robust and very efficient for use in
complex animation scenes.

1.3 Overview

The rest of this paper is organized as follows: Section 2 presents re-
lated work. Section 3, describes our framework for the creation and
editing of 3D cords. Section 4 presents the cord generation algo-
rithm in detail. Section 5 provides an analysis of the mathematical
properties from the cord algorithm. We conclude in Section 6 with
a number of example applications of cords.

Figure 3: Example guide curve (blue) and cord (red) among 3D
geometry

2 Related work

The theory of mathematical representation of curves has existed
for centuries [Farin 2001]. Problems related to finding the convex
hull of geometry and path planning for collision avoidance stud-
ied in Computational Geometry [Preparata and Shamos 1993] and
Robotics [Latomb 1991] while not directly addressing the problem
in this paper have a similar geometric flavour. Related work to this
paper can be broadly classified into two categories. Creation and
control of curves for use in physics or physics-like applications and
high-level manipulation of 3D curves for modeling and animation.

2.1 Curves with physical properties

The two most relevant peices of work to this are Barzel’s work on
faking dynamics [Barzel 1997] and Strands [Pai 2002].

Barzel [Barzel 1997] argues, as we do, for the need for curve
primitives that possess dynamic properties but are under keyframe
control. The paper presents a collection of simple shape primitives
that capture the visual behaviour of ropes and springs by overlaying



detailed wave-like deformations on a gross overall shape which is
along the lines of work on multiresolution curves [Finkelstein and
Salesin 1994] and curve alalogies [Hertzmann et al. 2002]. The
techniques described in the paper complement our work well and
can be used in two ways: using a cord to define the rest shape in
Barzel’s work or using his resulting curve to defined a fairly inelas-
tic guide curve.

Strands as presented by Pai [Pai 2002] are phyiscally simulated
curve primitives. Strands have the benefit of being part of an overall
physical simulation and address scenarios where a precisely simu-
lated output curve is desired with minimal user control from the
user. The work is tailored to surgical sewing applications, and, is
controlled by moving its two end points. Cloth modeling [Baraff
et al. 2003], hair simulation [Magnenat-Thalmann et al. 2000] are
other practical approaches to physical simulation have produced
impressive results[Terzopoulos and Qin 1994; James and Pai 1999;
Popović et al. 2000; Chenney and Forsyth 2000; Popović et al.
2003], the objects cords are intended to model would requre in-
teractive manipulation of deformable material simulations, which
remains an open problem.

2.2 3D Curve manipulation

Creating and manipulating curve in 3D is far less straightforward
than working with planar curves. Placement of multiple 3D curves
that often overlap spatially, while maintaining curve length [Fiume
1995] only exacerbates this problem. Arbitrary 3D strokes in space
are typically created awkwardly in two steps, by first drawing out
the projection of the curve on a plane and then editing it in other
views to manipulate it outside the plane. This has been alleviated
somewhat by interaction devices such as ShapeTape [Grossman
et al. 2003] that allow the direct control of curves in 3D and higher-
level curve manipulation techniques [Balakrishnan et al. 1999]. We
simplify our problem of creating and editing 3D cords by the in-
troduction of a guide-curve which is a rough indicator of the path
taken in the space by the actual cord, leaveing animators free to
manipulate and control a simpler 3D curve using existing 3D curve
editing techniques.

3 Cord Generation

Cords have been developed with the goal of providing intuitive
artistic control within a key-frame animation environment without
the need for simulation. The guide curve, an arrbitrary parametric
curve, acts as both an interface to specifying the shape of a cord and
an abstraction of the desired shape. The intrinsic property of stiff-
ness is comparable to a resistance to bending sharply around geom-
etry in the scene, while the guide curve bounds the space in which
a stiff cord can exist. Elasticity in combination with rest length
describes the characteristic stretching of rubberband like materi-
als. Stiffness and elasticity are mutually exclusive; the stretching
of an elastic cord with stiffness will not increase its rate of bend-
ing. While such manipulations are coupled in real-world materi-
als, the independent parameterization produces easily controlled,
predictable behavior. Mathematically, elasticity models tendency
to change in arc length, and stiffness models tendency to change
in curvature and torsion. Figure 4 demonstrates how a cord cord
changes shape as its length is increased, its stiffnes increased, and
its ability to stretch when elasticity is non-zero.

Cord generation is a deterministic process dependent on the cur-
rent configuration of the guide curve and geometric primitives with
which the cord will interact. The cord properties of length, elastic-
ity, and stiffness affect the generation of the cord, as does a step size
which is indicative of the sampling dicretization of the guide curve.
The generation of fully elastic cords of zero stiffness is described
first, as the incorporation of length and elasticity properties can be

considered as refinements to the basic algorithm. These refinements
are then presented, as the general cord generation algorithm is de-
veloped. The technique is independent of dimension, although it is
illustrated in 2D for clarity.

3.1 Fully Elastic, Non-Stiff Cords

Fully elastic cords with no stiffness are analagous to rubberbands
that can be stretched to infinite length, but with zero rest length.
Such cords will stretch to meet the end points of the guide curve
with no bending resistance, similar to how string wraps around
sharp corners, but unlike a geodesic in that the shortest path is in
general not taken. In relation to the guide curve, the cord appears
tied to the two endpoints. The shape of the cord approximately
follows the path of the guide curve around complex geometry.

Figure 5: Geometric construction of nonstiff and stiff strands

The algorithm used to generate such a cord is conceptually simi-
lar to the computation of a two-dimensional convex hull [Preparata
and Shamos 1993]. A regular sampling of the guide curve parame-
terization is precomputed, ideally a regular sampling along an arc-
length parametrization. The cord is generated along a particular di-
rection relative to the guide curve, having an initial point coincident
with an endpoint of the guide curve. Rays are repeatedly cast to-
ward samples of the guide curve from the most recently added cord
point (Figure 5a). When no geometry is intersected by the ray in
the region convex relative to the guide curve, the algorithm moves
on to the next guide curve sample using the same initial point for
ray casts. When a ray intersection is detected, the current and previ-
ous sample points are used in conjunction with bisection along the
curve to isolate a grazing intersection with the geometry. This in-
tersection point is appended to the cord, and sampling of the guide
curve resumes using the previous sample point. This process con-
tinues until the guide curve samples are exhausted. Pseudo-code is
presented below.

i = 1;
cord.append(guide.start());
while (not done) {

tTest = guideSamples[i];
ray.direction = guide.pointAt(tTest) - cord.last();
ray.origin = cord.last();
if (ray.intersectGeometry()) {

cord.append(refine( tLast, tTest, guide));
} else {

i = i + 1;
if (i == guideSamples.size()) {

cord.append(
guide.pointAt(guideSamples[i - 1]));

done = true;
}

}
}



(a) Fixed length cord (b) Increased stiffness (c) Increasing elasticity (d) Elastic stretching

Figure 4: Effect of editing cord properties

The only requirement of the algorithm is the ability to perform
ray intersection tests with the geometric primitives. In addition, it is
assumed that the guide curve does not intersect the geometric prim-
itives, as it conceptually models how the cord should wrap around
such primitives. This behavior is not well defined for intersecting
guide curves.

3.2 Incorporating Stiffness

Intuitively, stiffness models a cord’s resistence to bending. Cord
stiffness is represented as scaler value in the range [0, 1], such that
a cord with no stiffness is equivalent to the cord generated with al-
gorithm as presented above, and a cord with full stiffness is equiv-
alent to the guide curve. Within this model the guide curve acts
acts as an outer bound on where in space the guide curve can exist.
This property can be especially valuable to a user, as stiff cord be-
havior can be constrained without incorporating expensive global
computations into the algorithm.

To generate a stiff cord, the algorithm casts rays using the same
sampling scheme as described above. However, the algorithm is
modified such that each non-intersecting ray contributes a segment
to the cord equal to the proportional length of the ray to the guide
curve sample, where the proportion is equal to the stiffness value
(Figure 5b). When the stiffness is zero, no extra segments are
added, and the result is equivalent to the previous algorithm. When
the stiffness is one, each point of the cord lies along the guide curve.
Modifications to the algorithm are as follows:

...
if (i == guideSamples.size()) {

...
} else {

next = ray.origin + ray.direction * stiffness;
cord.append(next);

}
...

Within this framework, a user also has the ability to model sharp
turns in a stiff cord as would result from the application of external
forces. Introducing a region of high curvature in the guide curve
will produce a corresponding region of increased curvature in the
cord at a predictable location. Stiffness can also vary along the
curve for greater local control.

3.3 Length and General Elasticity

The ability to define a constant length allows cords to model real-
world materials which do not stretch. Cord length is modeled rel-
ative to the first point; this allows it to be incorporated into the

algorithm as an early exit point. As each segment is appended, the
total length is tracked. If the addition of a segment causes the cord
to be longer than the defined length, it is truncated. If the end of
the guide curve is reached before the desired length is accumulated,
the final segment is extended such the resulting cord has the desired
length.

Having defined a fully elastic cord and an inelastic cord (constant
length), it is straightforward to model general elasticity as the vari-
ation between these two lengths. The length, as described above, is
now consired as rest length. Elasticity, like stiffness, is a scalar in
the range [0, 1]. The fully elastic curve is first computed as above;
we refer to its length as the elastic length. The elasticity value then
defines actual length as a linear interpolation between the elastic
length and the rest length. If the elastic length is greater than the
rest length, and hence the actual length, the computed fully elastic
curve is truncated at the actual length. If the rest length is greater,
the final segment of the curve is extended beyond the last point of
the guide curve along the end tangent of the cord such that the cord
has length equal to the interpolated actual length. While this fi-
nal case has no analogue to a real world manipulation, it maintains
cord continuity relative to changes in all parameters. The following
is appended to algorithm:

...
elasticLength = cord.length();
actualLength = elasticity * elasticLength +

(1 - elasticity) * restLength;
if (elasticLength > restLength)

cord.truncate(actualLength);
else

cord.last() = cord.last() +
cord.endTangent.normalize() *
(actualLength - elasticLength)

4 Analysis

In this section we mathematically consider geometric cord proper-
ties.

Position: By construction, a cord (if long enough) clearly inter-
polates the two end points of the guide curve. While attempting
to follow the guide curve, the cord wraps around scene geometry.
Considered in a 2D plane, the cord traces a convex hull around ge-
ometry in the direction of the guide curve. In 3D, the cord similarly
wraps around the 3D convex hull while traversing a curve that can
be thought of as a geodesic whose locality is controlled by the guide
curve. In general, however, the entire cord between the two end
points will not mathematically be a geodesic. As the stiffness of a
curve increases it lifts off the geometry while maintaining contact
at various points until lifting off entirely.



(a) 5 steps (b) 10 steps

(c) 100 steps (d) 1000 steps

Figure 6: Varying the number of steps

Tangent: The curve, by construction, is tangent continuous ev-
erywhere except at extreme stiffness values. At sti f f ness = 0 the
cord has the same continuity as the geometry it conforms to and
and is identical to the guide curve at sti f f ness = 1. Elasticity only
affects the parameterization and length of the cord and not its shape.

Curvature: The cord attempts to be be a continuous curve with
a minimum overall curvature along the curve that satisfies the ge-
ometric constraints, while having a maximum allowed curvature at
any point along the curve (defined by sti f f ness). We only empiri-
cally capture this behavior.

Continuity: The geometric steps of size that models bending
energy has been used to inspire the creation of many continuous
parametric curves [Farin 2001; Balakrishnan et al. 1999]. While
cords of non-zero stiffness are intuitively continuous, we wished to
invesitgate their limit behaviour as the step size approaches zero.
For stiffness defined as a fixed ratio r of the line segments from
the current point to the sample on the guide curve, it is easy to
see that as the step size approaches zero, the cord degenerates to
the guide curve. We thus considered an adaptive value for r, set-
ting stiffness to be the factor that related r and step size s such that
r = sti f f ness∗ s. This results in curves that are stable with respect
to a changing step s and converge to a continuous curve as s → 0.
The proof of convergence requires us to consider point samples pi
along the cord for a guide curve f (t), parametric in t. The cord
construction defines a recurrence relation for pi:
pi = pi−1 + sti f f ness∗ s∗ ( f (i∗ s)− pi−1) and p0 = f (0)
This recurrence relation can be obtained as a solution to a differen-
tial equation of the guide curve using Euler’s method [Braun 1983].
The theorem that Euler’s method converges to a solution of the dif-
ferential equation guarantees that our recursion converges to a con-
tinuous curve. The analytic solution of the differential equation will
provide an analytic formula of the resulting cord. This analysis of
continuity does not account for the cord making contact and bends
around geometry.

5 Example Applications and Results

Cords have been implemented as a plugin to the Maya modeling
and animation system. We now look at two applications of cords,
for modeling and rendering, respectively.

5.1 Wide and Thick Cords

Wide cords are a variation of cords for modeling primitives that can
be represented as long two-dimensional manifolds, such as flat rib-
bons or straps. Thick cords can represent objects such as thick tubes
or rope. In both cases, the Cord model is extended to have width
or thickness, which may vary along the length of the curve, and a
local orientation radially about the cord. Orientation is expressed as
vector in the normal plane of the curve, which is used to define the
surface of a flat cord or the radial orientation of a thick cord. For
flat surfaces, this normal vector should be defined such that the cord
surface lies flat on the geometric surface. The common definition
of a curve normal is ill-suited for this task, as it would generally re-
sult in geometric occlusion. Furthermore, it does not have a defined
direction for straight sections of a curve. To define this vector, the
geometry normal is recorded for all points of contact. Additional
points along the cord have this vector defined as the smaller angular
interpolation within the local curve normal plane between the two
surrounding well defined points, resulting in a continuous surface
normal along the cord. This technique is demonstrated in Figure
7a.

In addition, constraining wide chords against locally convex ge-
ometry or thick cords against any geometry requires that the inter-
section test be replaced with a proximity test in the cord generation
algorithm. The geometry that these cords produce it fed back into
the system to allow such cords to appropriately cross over them-
selevs. An example of a thick cord with self-overlap is shown in
Figure 7b.

5.2 Artistic Primitives

Artistic primitives such as paint strokes or procedural geometric
curves can be defined about an underlying curve primitive [Hertz-
mann et al. 2002]. Existing software packages allow such artistic
primitives to be defined on two-dimensional canvases or embedded
within parametric 3D surfaces. These technigues can be extremely
limiting, as general 3D curves are difficult to manipulate by hand.
Cords can be used to easily specify the locations of such curves
in space or about arbitrary geometry. Figure 7c demonstrates the
use of a chord wrapped around a head to define a CSG modeling
primitive to create an image in the spirit of Escher’s Bond of Union
(Figure 2c). From this standpoint, the cord represents an implicit
3D stoke.

Cords have also found extensive use in the production of the an-
imated film Ryan (Figure 1). Without the ability to interactively
specify a curve that maintains continuity in time with a simple in-
terface, such a sequence would have never been possible given the
time constraints of animated production.

6 Conclusion

Cords provide an intuitive, interactive technique for specifying
curves with physics-like properties. They can be interactively ma-
nipulated in the presence of geometric primitives with behavior akin
to string or wire. This approach is favorable to editing traditional
3D curve models by hand, as the detailed interaction with geometry
would be intractable to specify. The approach is contiuous in space
with respect to manipulations of the guide curve and cord proper-
ties, allowing them to be used in a typical animation environment.
Finally, cords capture intuitive, physically-based qualities without



Figure 7: Example Applications of cords

the need for simulation. The use of animated cords for a number
of shots in the animated film Ryan has further demonstarted their
usefulness and viability as a modeling primitive that captures the
qualities of real-world curve-like objects. We show that in the limit
of infinitely many stpes,the curves generated by the cords algorithm
are continuous. Deriving the analytic form of these curves remains
as ongoing work.
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