
The Need for Cross-Layer Service Discovery in MANETs

Alex Varshavsky, Bradley Reid and Eyal de Lara
walex,brad,delara@cs.toronto.edu
Department of Computer Science

University of Toronto

Abstract

Service selection has a crucial effect on wireless multi-hop
ad hoc network (MANET) performance. Because of the
broadcast nature of wireless transmission, good service se-
lection groups clients with nearby service providers, local-
izing communication, which in turn reduces inter-node in-
terference and allows for multiple concurrent transmissions
in different parts of the network. Less optimal service selec-
tion spreads traffic over the network, increasing interference
and reducing overall network throughput.

This paper presents a novel cross-layer architecture for
service discovery, selection and rediscovery in MANETs
that closely integrates service discovery with ad hoc rout-
ing mechanisms. We have analytically showed superiority
of the cross-layer approach over traditional approaches in
terms of message overhead. Moreover, extensive simulation
results for DSR and DSDV (two representative MANET
protocols) show that the cross-layer approach achieves net-
work throughput up to five times larger than a traditional
application-layer implementation. By leveraging existing
routing protocol traffic, the cross-layer architecture allows
clients to re-evaluate their service selection, and switch to
a better server to offset the effects of changes in network
topology.

1 Introduction

A multi-hop mobile ad hoc network (MANET) consists
of a group of mobile wireless nodes that self-configure to
communicate information beyond the transmission range
of individual nodes by routing packets over intermediate
nodes [23, 29, 30].

MANETS have been proposed for disaster relief opera-
tions, police and military applications, and other situations
where there is no deployed communication infrastructure
or the existing infrastructure is not available. We expect
that one of the main uses of ad hoc networks will be for
accessing services. Examples of services include: a long-
range radio that allows communication between a team of
emergency personnel on the field and commanders oversee-
ing the operation from the command center; maps showing
the physical location of other team members; large libraries

with detailed instructions and procedures; and processing
capacity to perform CPU-intensive operations such as auto-
matic text or voice recognition and translation.

When a service is offered by multiple nodes in an ad hoc
network, the specific matching between client nodes and
service providers, typically referred to as service selection,
has a crucial effect on the performance of the wireless multi-
hop ad hoc network. Because of the broadcast nature of
wireless transmission, the communication pattern of nodes
in the network affect the number of concurrent wireless
transmissions that the network can sustain, and therefore
the achievable overall network throughput. Good service
selection localizes communication, which in turn reduces
inter-node interference and allows for multiple concurrent
transmissions in different parts of the network. Less optimal
service selection spreads traffic over the network, increas-
ing interference and reducing overall network throughput.
Over time, changes in network topology degrade the opti-
mality of service selection requiring clients to continuously
re-evaluate their choice of a server, a process we refer to as
reselection; and even actively probe the network for avail-
ability of new service providers, a process we refer to as
rediscovery.

Unfortunately, existing service discovery mechanisms
are not appropriate for MANETs. Traditional service dis-
covery mechanisms [1–3, 13, 18, 20] have limited knowl-
edge of network topology and assume a mostly-static envi-
ronment with infrequent network topology changes. In con-
trast, frequent topology changes are the norm in MANETs,
and good service selection is highly dependent on up-to-
date knowledge of the network topology.

This paper presents a novel architecture for service dis-
covery in MANETs. Central to the architecture is a cross-
layer optimization [11, 31] that closely integrates service
discovery functionality with the routing mechanisms of
MANETs. The cross-layer service discovery architecture
increases overall network throughput by leveraging exist-
ing routing traffic to reduce service discovery cost, optimize
service selection, and reduce the cost for tracking and react-
ing to changes in network topology.

We make two significant contributions to the state-of-the-
art. First, we provide analytical and experimental proof
that the cross-layer approach to service discovery is supe-
rior to traditional application-layer approaches that preserve

1

the modularity of the networking stack. Second, we iden-
tify service rediscovery and reselection as vital components
of service discovery in MANETs, and formalize the space
of possible rediscovery and reselection policies. While the
idea of using routing information to improve the efficiency
of service discovery in MANETs [5, 8, 11, 12, 26, 27, 36]
is not new, this is the first study that quantifies the perfor-
mance advantages of cross-layer integration, demonstrates
the dramatic effect that service selection has on network
throughput, and identifies efficient service rediscovery and
reselection as fundamental requirements for MANETs.

Extensive simulation-based experiments with two cross-
layer prototypes based on the DSR [23] and DSDV [29]
routing protocols show that the cross-layer implementations
consistently outperform an application-layer service discov-
ery implementation that closely models the Service Loca-
tion Protocol (SLP) [20]. In a mobile environment, the
cross-layer implementations achieve up to 5 times higher
network throughput than standard SLP and 3.7 times higher
throughput than an extended variant of SLP that tries to de-
termine the closest server by sending ping messages. These
results show that in order to localize communication, ser-
vice selection in ad hoc networks needs to be based on ac-
curate knowledge of the underlying network topology. Fur-
thermore, we show that due to interference from the under-
lying routing traffic, timing-based mechanisms for service
selection, such as pinging, are highly inaccurate and fail to
localize communication.

The rest of this paper is organized as follows. Sec-
tion 2 discusses service discovery in MANETs, motivates
the need for a cross-layer approach for service discovery
and presents an analytical upper bound to the cost of service
discovery. Section 3 describes a novel cross-layer architec-
ture for service discovery in MANET. Section 4 presents
experimental results. Finally, Section 5 describes related
work, and Section 6 concludes the paper and discusses op-
portunities for future research.

2 Service Discovery

We consider a service to be a resource (either hardware or
software) that is accessible through the network and is ca-
pable of generating or receiving data. We refer to nodes
that host services as service providers or just servers, and to
nodes that run the client applications that access services as
clients.

Service discovery is the process of finding a mapping
from a service description (e.g., “long-range radio”) to a
service location, which usually consists of a server address
and a port number on which the service “listens” to the in-
coming requests (e.g., 172.16.1.1:80). Because there can be
multiple instances of the same service in the network and
because a service description may match multiple similar
services, the service discovery process can result in multi-

ple mappings. A client can then choose a specific server
among the available mappings based on a myriad of fac-
tors including service-specific properties [4] (e.g., select the
least-loaded printer) and network-layer parameters [23, 30]
(e.g., network latency, hop-count, bandwidth). In this pa-
per, however, we follow the trend taken by the majority of
routing protocols [23, 29, 30] and define best server as the
one that is deemed to be closest to the client, either because
it has the shortest path length or because it has the small-
est round trip time. In Section 4, we show that this practice
improves overall network throughput and consequentially
maximizes performance.

Service discovery requires that servers and clients
describe services using a common service description
language. For example, the Service Location Proto-
col [20] uses service descriptions that consist of a service
type (e.g., “printer”) followed by service attributes (e.g.,
“color=true,type=laser”). Jini [2], on the other hand, uses
the Java class hierarchy to achieve this goal. Other archi-
tectures define their own proprietary formats [4], which are
frequently based on XML [22]. Because the concepts dis-
cussed in this paper are independent of the choice of service
description language, we do not consider this issue further.

In the rest of this section, we compare two possible im-
plementations of service discover on MANETs: a tradi-
tional application-layer implementation which preserves the
modularity of the network stack, and a novel cross-layer im-
plementation that exploits existing routing traffic to perform
service discovery. For each implementation, we consider
the network cost it incurs in terms of the number of mes-
sages it generates, and provide analytical upper bounds on
the cost of performing service discovery.

2.1 Application-Layer Service Discovery

Service discovery can be implemented at the application-
layer based on both centralized [2, 38] and distributed [20,
22] architectures. In centralized implementations, service
providers register their services at directory servers, and
client nodes unicast their service discovery queries to the
directory server. Distributed implementations, in contrast,
rely on broadcast or multicast of server-initiated service ad-
vertisements or client-initiated service discovery queries. In
the former, clients passively listen for advertisements that
are periodically broadcasted by the service providers. In
the latter, clients broadcast their service discovery queries,
which are answered by unicast responses from services that
match the client’s query.

Both approaches have advantages and disadvantages
when deployed in MANETs. Centralized approaches rely
mostly on unicast messages, which can reduce network traf-
fic and service discovery latency as clients only need to
communicate with the directory server. On the other hand,
centralized approaches require manual configuration or the
use of election algorithms that incur significant communi-

2

cation cost. Furthermore, keeping the directory server up to
date as servers join or leave the network may require signifi-
cant traffic. Finally, network partitions may preempt service
discovery when the directory server is not reachable, even
in cases where a client and server could communicate with
each other. Distributed approaches to service discovery do
not require manual configuration and can operate even if the
network is partitioned. On the other hand, distributed ap-
proaches rely on broadcasts which may result in excessive
network overhead.

When multiple mappings exist for a service descrip-
tion, the client chooses the server that has the shortest
path length or smallest round-trip-time. Because network
topology information is not readily available in application-
layer service discovery implementations, clients have to do
extra processing to obtain it. One of the most common
application-layer techniques for obtaining network topol-
ogy information is pinging. Pinging determines the round-
trip-time to each service provider by sending a short mes-
sage to each server and measuring the time it takes for the
responses to come back. The client can then select the
server which has the lowest response time.

It is interesting to note, that in distributed application-
layer service discovery implementations that use client-
initiated broadcasts for service discovery, a client can find
the approximate round-trip-time to all servers by broadcast-
ing a service discovery query and keeping track of the ar-
rival times of unicast responses sent by services that match
the query.

Node mobility and the arrival and departure of nodes that
host services degrade the optimality of initial server selec-
tion. To overcome this problem, clients need to constantly
reevaluate their choice of service provider and switch to a
better service provider if one is available. As we show in
Section 4, rediscovery has a paramount effect on network
throughput.

Rediscovery can be either server or client-driven. In
server-driven rediscovery [22], service providers periodi-
cally broadcast advertisements, thus constantly refreshing
each client’s knowledge about available services. In client-
driven rediscovery, clients have to periodically check for
new servers by either communicating with the directory
server or by broadcasting a new service discovery query. In
both cases, however, clients need to periodically re-evaluate
their service selection by pinging available servers as de-
scribed above.

While the functionality of application-layer approaches
to service discovery is independent of underlying routing
protocol, the actual network cost (in terms of the number
of messages send to perform service discovery and selec-
tion) is highly dependent on the underlying routing proto-
col. MANET routing protocols can be characterized as ei-
ther on-demand or proactive. On-demand routing protocols
discover routes only when data is being actively sent to a
destination. Proactive protocols, on the other hand, main-

tain an updated view of the network topology by requiring
nodes to periodically exchange routing information.

In the rest of this section we first describe two representa-
tive MANET routing protocols: DSR [23] (on-demand) and
DSDV [29] (proactive). We then describe the Service Lo-
cation Protocol (SLP) [20], a widely-used application-layer
service discovery protocol. Finally, we analyze the network
cost of operating centralized and distributed versions of SLP
on top of DSR and DSDV.

2.1.1 DSR

DSR is an on-demand source routing protocol. DSR has
two operation modes: route discovery and route mainte-
nance. Whenever a node needs to route a packet to some
other node in the network, DSR first checks its local cache
for a route to the destination. If DSR finds a route, it inserts
the route into the packet and forwards the packet toward
its destination. If no route is found, DSR switches to route
discovery mode and broadcasts a route request packet. On
receiving a route request packet, a node appends itself to the
source route in the packet, and either (i) identifies itself as
the destination by sending a route reply to the source via a
reversed source route, or (ii) rebroadcasts the route request
packet. On receiving the route reply, the source node adds
the route to its cache and forwards the data packet along the
newly acquired source route. Route discovery may result
in many route responses (multiple routes to a destination).
These source routes are cached by DSR and the shortest
source route (fewest intermediate nodes) is used. DSR re-
duces the latency and frequency of route discoveries by al-
lowing intermediate nodes to cache overheard routes and re-
spond to route requests for which they have a cached source
route.

Route maintenance is DSR’s standard operation mode.
While in route maintenance, DSR routes data packets using
the source route. On receiving a data packet, a node unicasts
the packet to the node listed as the next hop in the source
route. If the link to the next node is broken, the node detect-
ing the failure sends a route error packet back to the sender.
Nodes overhearing the route error packet invalidate entries
in their routing caches as needed. Upon receiving the route
error packet, the sender attempts to find a new route to the
destination node in its cache, and if none is found, switches
to the route discovery mode.

2.1.2 DSDV

DSDV is a table-driven proactive routing protocol, where
every node has a routing table entry for each destination
node in the network. Each routing entry includes a destina-
tion’s address, the next hop to the destination and a metric
(usually path length). Nodes exchange route entries period-
ically, thus propagating network topology changes through
the network.

3

2.1.3 SLP

The Service Location Protocol [20] (SLP) is an IETF stan-
dard for automatic service discovery in IP networks. The
abstract architecture consists of ”User Agents” (clients),
”Service Agents” (servers) and ”Directory Agents” (direc-
tories). SLP can operate in either centralized or distributed
mode. In the centralized mode, servers advertise their ser-
vices to Directory Agents (DAs), and clients unicast their
requests directly to the DAs, which respond with a list of all
services that match the client’s request. Clients and servers
learn about DAs by reading from a statically configured file,
using DHCP [15], waiting to receive periodic DA advertise-
ment message or sending a multicast message to trigger DA
advertisement. In the distributed mode, no DAs are present
and clients query servers directly by sending multicast re-
quests to a known address. On receiving a multicast re-
quest, a server unicasts a response directly to the querying
client. In the rest of this paper we refer to the centralized
version of SLP as SLP-CENT and to the distributed version
as SLP-DIST.

2.1.4 Application-Layer Network Cost

In this section, we provide analytical upper bounds on the
cost of performing service discovery and selection. We de-
fine the terms discovery cost and the selection cost to be the
number of additional network messages sent (on behalf of
the underlying routing protocol or the application-layer ser-
vice discovery system) for the purpose of discovering the
identities of available service providers, and selecting a ser-
vice provider, respectively.

Assume s service providers and one directory agent (DA)
are present in the network. Further, assume that the cost
of sending a unicast message is u, the cost of performing
routing-layer broadcast is b, and the cost of performing
application-layer broadcast1 is B. Note that B is usually
larger than b, which in turn, is much larger than u.

DSR In SLP-CENTdsr, a client learns the identities of
servers by unicasting a request to DA. However, when the
client does not cache a valid DSR route to DA, DSR first
broadcasts a route request for DA. On receiving the route re-
quest, DA unicasts a DSR route reply back to the client. For
the sake of expediency, in the rest of this paper we use the
term route request-reply exchange to describe a DSR route
request broadcast followed by a route reply (which has a
cost of b

�
u). Once a route to DA is available, the client

can finally unicast the message to DA, which responds (via

1Application-layer broadcast differs from the DSR route request broad-
cast in several ways. First, an application layer broadcast is more expen-
sive, since it is delivered to every node in the network; while a DSR route
request is forwarded only if the node does not know a route to the required
destination. Second, an application layer broadcast does not contribute
to network topology information propagation (e.g., do not create reverse
source routes).

unicast) with a list of available service providers. Thus, the
discovery cost for SLP-CENTdsr is b

�
3 � u.

We next determine the selection cost for two SLP-
CENTdsr implementations: SLP-CENT-PINGdsr, which
tries to select the closest server2 by unicasting ping mes-
sages to all known servers and choosing the server whose
ping reply arrives first, and SLP-CENT-RDdsr, which picks
one of the available servers at random.

The cost of performing server selection for SLP-CENT-
PINGdsr protocol over DSR is the cost of discovering routes
to each of the servers and then sending and receiving a
ping from every server. Thus, the selection cost for SLP-
CENT-PINGdsr is s � b

�
3 � s � u. Therefore, the total cost

of discovery and selection for SLP-CENT-PINGdsr is equal
to � s � 1 ����� b � 3 � u � .

For MANETs where the number of nodes significantly
exceeds the number of servers (which we expect to be the
common case), the service discovery cost is dominated by
the broadcast traffic. Hence, the discovery and selection
cost for SLP-CENT-PINGdsr can be approximated to � s �
1 ��� b.

Because SLP-CENT-RDdsr picks one of the servers ran-
domly it does not generate any extra traffic, and therefore
its selection cost is 0. However, when comparing the se-
lection cost of SLP-CENT-RDdsr with that of SLP-CENT-
PINGdsr it is important to note that in SLP-CENT-PINGdsr

the client has a valid route to the selected server, whereas
in SLP-CENT-RDdsr this is likely not the case. A more re-
alistic selection cost for SLP-CENT-RDdsr, which includes
the cost of finding a DSR route to the randomly selected
server, is b

�
u. Therefore the discovery and selection cost

for SLP-CENT-RDdsr is equal to 2 � b
�

4 � u � 2 � b.
In SLP-DISTdsr, a client learns the identities of servers

by multicasting a service discovery query. For simplicity,
we assume that the multicast message is implemented using
application-layer broadcast. Servers that match the broad-
casted query unicast a response back to the client. However,
for servers that do not cache a valid DSR route to the client3,
DSR first has to perform route discovery. Thus, the discov-
ery cost of SLP-DISTdsr is B

�
s ��� b � u � � s � u.

The selection cost for SLP-DISTdsr is 0. A client just
picks the server who replies first to the broadcasted service
discovery query. The total discovery and selection cost for
SLP-DISTdsr is B

�
s ��� b � 2 � u ��� B

�
s � b.

DSDV Because DSDV routing traffic is periodic and in-
dependent of the pattern of application traffic, in calculating
the discovery and selection costs we only need to consider
application-layer messages sent between the client, DA and
the servers. Hence, the discovery cost for SLP-CENTdsdv

and SLP-DISTdsdv are equal to 2 � u and B
�

s � u, re-

2SLP is an application-layer service discovery implementation, and as
such does not have direct knowledge of network topology.

3The application-layer service discovery query does not create DSR
reverse source routes

4

DSR DSDV
SLP-CENT-RD 2 � b 2 � u
SLP-CENT-PING � s � 1 ��� b � s � 1 ��� 2 � u
SLP-DIST B

�
s � b B

CL b 0

Table 1: Cost of service discovery and selection in terms of
overhead messages (s is the number of servers, u is the cost
of unicast message, b is the cost of routing-layer broadcast
and B is the cost of application-layer broadcast). B � b � u.

spectively. The selection costs for SLP-CENT-RDdsdv and
SLP-DISTdsdv are both equal to 0, while the selection cost
for SLP-CENT-PINGdsdv is equal to 2 � s � u. Therefore,
the total cost of discovery and selection for SLP-CENT-
RDdsdv, SLP-CENT-PINGdsdv and SLP-DISTdsdv are 2 � u,
� s � 1 ��� 2 � u and B

�
s � u � B, respectively.

Table 1 summarizes the total costs of discovery and selec-
tion for three variants of SLP running over DSR and DSDV.

2.2 Cross-Layer Service Discovery

Because MANET routing protocols are distributed by de-
sign, a cross-layer (CL) approach to service discovery for
MANETs can only be implemented following a distributed
architecture. In the rest of this section we first describe how
DSR and DSDV can be extended to provide service dis-
covery functionality. We then analyze the network cost of
performing service discovery using the extended protocols.

2.2.1 CLdsr

A simple extension to the DSR route discovery mechanism
enables nodes to discover routes to nodes hosting services.
The extended cross-layer protocol, CLdsr, supports service
discovery by broadcasting a service request packet that con-
tains a description of the requested service. On receiving the
service request packet, a node appends itself to the source
route and determines if it hosts a service that matches the
service description. If this is the case, the node replies to
the source by sending a service reply packet via a reversed
source route. Otherwise, the node rebroadcasts the service
request packet. At the end of this process, the node that
initiated the service discovery learns the identity of one or
more nodes that host services matching the service descrip-
tion and one or more source routes to these nodes. Anal-
ogous to DSR, CLdsr reduces the latency and frequency of
service discoveries by allowing intermediate nodes to cache
overheard mappings between service descriptions and ser-
vice locations, and to respond to service requests for which
they have a cached mapping. CLdsr learns about topology
changes implicitly when either a source route breaks or it
overhears a service reply that has a new service mapping.

2.2.2 CLdsdv

DSDV can be extended to support service discovery by in-
tegrating service descriptions into routing table entries. In
the resulting cross-layer protocol, CLdsdv, each entry in the
routing table has an additional field with the service descrip-
tions of the services hosted by the node.

2.2.3 Cross-Layer Network Cost

The total cost of discovery and selection for CLdsr consists
of a broadcast of a service discovery request packet fol-
lowed by the unicast replies from the the matching servers.
Given that the message cost of a service discovery broad-
cast is similar to that of a route discovery broadcast, the
total cost is b

�
s � u.

Since no additional messages are sent into the network,
the total cost of cross-layer discovery and selection for
CLdsdv is 0! However, this comes at the cost of larger rout-
ing table entries.

2.3 Comparison

The total cost of discovery and selection is summarized in
Table 1. As can be seen, cross-layer approach is cheaper
than any of the application-layer approaches. Moreover,
cross-layer implementation adapts better to changes in
network topology than application-layer implementations,
which have to proactively probe the network via pings in-
curring significant overhead (s � b

�
3 � s � u over DSR and

2 � s � u over DSDV). In contrast, cross-layer approach may
either learn about network topology implicitly (i.e., for free)
or initiate a new service discovery with a maximal cost of
b
�

s � u.
Application-layer service discovery implementations

preserve the traditional modularity of the networking stack
and thus are portable across transport and routing proto-
cols. A cross-layer service discovery implementation, on
the other hand, has significant dependencies on the underly-
ing routing protocol, and therefore has to be customized for
different routing protocols. However, exposing the routing
information has considerable benefits for service discovery,
selection and rediscovery, which we feel outweigh the dis-
advantage of breaking the abstraction layers.

3 Implementation

In this section, we first present a general architecture for
cross-layer service discovery. We then describe two proto-
type implementations based on DSR and DSDV.

3.1 Architecture

Several factors have to be considered in the design of a gen-
eral architecture for cross-layer service discovery. On the

5

one hand, a cross-layer service discovery implementation
has to be closely coupled to the underlying routing mech-
anisms to exploit routing traffic for service discovery. On
the other hand, the functionality that a cross-layer service
discovery implementation needs to provide is largely inde-
pendent of the underlying routing protocol. Specifically, the
architecture has to propagate service information across the
network, match service discovery requests with advertise-
ments, provide the application with accurate information
for selecting the best server among those available, track
network topology changes and inform the application so
that it can take corrective measures (e.g., switch to a closer
server). Finally, the cross-layer architecture should provide
the means for efficient server selection and rediscovery, but
leave it to an application to determine how to select servers
and when and how to re-evaluate its choices.

These consideration lead to the split architecture design
shown in Figure 1, which consists of two main components:
a routing-protocol independent Service Discovery Library
(SDL), and a Routing Layer Driver (RLD) that is closely
coupled with MANET routing mechanisms. SDL provides
a consistent view of the cross-layer service discovery mech-
anism to client applications and service providers, isolating
them from much of the intricacies of the underlying routing
protocol. RLD interacts closely with the MANET’s routing
protocol to propagate service discovery messages and track
network topology changes.

SDL’s main data structure that stores information about
known servers is called service table. Table entries have
five fields: service description, service location (e.g.,
“172.16.1.1:80”), minimum hop count from the current host
to a service provider, optional routing protocol specific in-
formation provided by RLD (e.g., a list of available routes to
the destination), and optional service-specific metrics sup-
plied by a service provider (e.g., current load, CPU usage).

All interactions between client applications, service
providers and SDL, as well as between SDL and RLD,
follow well-defined interfaces. Clients and servers call on
SDL to issue service discovery requests and propagate ser-
vice advertisements, whereas SDL notifies applications of
changes to the service table by invoking an application-
specified callback function. SDL calls on RLD to dissem-
inate service discovery requests and advertisements, and
propagate service discovery replies. RLD forwards service
discovery messages it receives to SDL and informs it about
changes in network topology.

3.1.1 Discovery

Client applications learn about available servers by instruct-
ing SDL to find all entries in its service table that match a
service description. When no matching entries are found,
the application has to wait for servers to be discovered.

SDL supports two modes of service discovery: active
discovery and passive discovery. Active discovery is client

CLIENT

service
discovery
request

User defined
callback
routine

service
registartion

Service
Discovery

Library (SDL)

INTERMEDIATE
NODE

SERVER

Service
Discovery

Library (SDL)

Service
Discovery

Library (SDL)

U
se

r
S

pa
ce

R

ou
tin

g
La

ye
r

Routing
Protocol

Routing Layer
Driver (RLD)

Routing
Protocol

Routing Layer
Driver (RLD)

Routing
Protocol

Routing Layer
Driver (RLD)

Figure 1: Cross-Layer Service Discovery Architecture

driven. In active discovery, SDL instructs RLD to dissem-
inate discovery requests for a specific service, and waits
for explicit responses to flow back. The actual mechanisms
used by RLD to disseminate service discovery requests are
implementation dependent. For example, RLD implemen-
tations build on top of on-demand routing protocols such as
DSR and AODV would disseminate discovery requests by
broadcasting modified route discovery messages. In con-
trast, an RLD implementation for a hierarchical MANET
protocol such as CBRP [28] would unicast discovery re-
quests to the cluster-head.

Passive discovery, in contrast, is server driven. In passive
discovery, SDL instructs RLD to periodically disseminate
advertisements for a specific service. As was the case for
active discovery, the mechanism used by RLD to dissemi-
nate advertisements depends on the underlying routing pro-
tocol. For example, for proactive protocol such as DSDV,
RLD would extend route table entries with service informa-
tion.

RLD hands service discovery requests, replies and adver-
tisements it intercepts from the network to SDL, which in-
spects them and modifies entries in its service table accord-
ingly (e.g., adds an entry for a newly discovered server). On
receiving a service discovery request, SDL checks its ser-
vice table for a match. To make SDL independent of a par-
ticular service description language, the matching between
the service description as advertised by service providers
and the service discovery requests is performed by a plug-
gable matching module. For our experiments, we used a
simple module that performs a string based comparison. If
SDL finds a match, it instructs RLD to compose a service
response. Otherwise, it instructs RLD to rebroadcast the re-
quest. The actual mechanisms used by RLD to propagate
service responses or forward service requests depends on
the underlying routing protocol.

3.1.2 Selection

When multiple entries in the service table match a client’s
service description, the client application selects one based
on the metrics stored in the SDL service table. In our cur-
rent implementation, clients choose the server with the low-

6

reactive
proactive

(every X seconds)

route breaks to the server
[Eager, Loyal, Lazy, Conservative]

any change
[Swift]

reselection

rediscovery

route breaks to the server
[Eager]

no route to the server
[Loyal]

no route to any server
[Lazy]

never

Figure 2: Reselection and rediscovery policies.

est hop count; however, other service or routing specific
metrics can be used in server selection (e.g., choosing a
server that has the least load).

3.1.3 Reselection and Rediscovery

To optimize performance, MANET clients need to con-
stantly re-evaluate their choice of a service provider. Re-
evaluation has two components: reselection and rediscov-
ery. Reselection reconsiders server selection based only
on the current entries in SDL service table. Rediscovery
involves probing the network for up-to-date information
about available service providers, and is therefore available
only on cross-layer implementation that support active dis-
covery. Rediscovery is usually followed by reselection.

In designing a re-evaluation policy, application develop-
ers need to determine when to do reselection and (if avail-
able) rediscovery. Figure 2 lays out the design space for
reselection and rediscovery policies. The names in brack-
ets refer to our implemented policies discussed later in the
section.

The simplest reselection policy is not to do reselection
at all. This policy, however, will likely result in poor per-
formance. An alternative is do reselection in reaction to a
change in the SDL service table. There is a wide spectrum
of possible reactive reselection policies. On one end are
policies that do reselection in response to any change to the
service table, such as finding a new server, or learning of
a change to a service-specific metric (e.g., server is over-
loaded). On the other hand are policies that do reselection
only when there is no valid route to the current server. An
intermediate approach is to do reselection when the active
route to the current server breaks 4.

Applications may choose to trigger rediscovery either
proactively or in reaction to a change in the service table.

4Some cross-layer implementations keep multiple routes to a destina-
tion. The active route is the one that is currently being used to forward
packets between the client and the server.

Available Servers: S1, S2

Service Cache:
 Server Routes

S1 (1) C->I1->I2->S1
(2) C->I1->I3->S1

S2 (3) C->I1->I2->S2

C

S1

I3I1

I2

S2

Available Servers: S3

Service Cache:
 Server Routes

S3 (4) C->I1->S3

C I3

S3

I1

I2

(a) Before (b) After

Figure 3: Rediscovery example

There is a wide spectrum of possible reactive rediscovery
policies. On one end, an eager reactive policy triggers re-
discovery as soon as the active route to the current server
breaks. On the other, a lazy reactive policy delays active
rediscovery until it has tried all known routes to all known
servers that implement a service. Between these two ex-
tremes lies a large set of possible reactive rediscovery poli-
cies that try a subset of the available routes to a subset of the
known servers before triggering rediscovery. In this space,
a policy we found works well in practice triggers a redis-
covery after trying all known routes to the current server.
We refer to this policy as loyal.

Figure 3 illustrates the use of a reactive rediscovery poli-
cies for a network that consists of three servers (S1, S2 and
S3) that provide the same service, one client node (C) and
three intermediate nodes (I1, I2, I3) that participate in the
communication but do not host or make use of the service.
Figure 3(a) shows the initial state of SDL service table for
node C, which contains three routes to two servers S1 and
S2. Let us assume that the C communicates with S1 over
route (1), and that without notice S1 and S2 leave the net-
work. As a result, the next use of route (1) will result in
a routing failure. In this scenario, eager will trigger re-
discovery right away; loyal will first try the route (2), and
then, on failure, will trigger rediscovery; whereas lazy, will
try routes (2) and (3) before triggering a rediscovery. Fig-
ure 3(b) shows the state of the SDL service table after re-
discovery.

3.2 Prototypes

3.2.1 CLdsr

We extended the existing DSR route request/reply mecha-
nisms to perform service discovery by adding fields to the
standard route request and reply packet headers. We added
two fields to the route request packet: (1) service descrip-
tion, which contains a description of the service to be dis-
covered, and (2) service discovery flag, which is set when
the service description field is non-empty. We added four
additional fields to the route reply packet: (1) service de-

7

scription, which contains a description of the service as ad-
vertised by the service provider, (2) service discovery flag,
(3) service location, which contains the location of the ser-
vice and (4) service metric, which contains additional met-
rics as advertised by a service provider.

When a client issues a request for a service that is not in
the local SDL’s service table, RLD broadcasts a service dis-
covery request packet to the network. The packet is a mod-
ified DSR route request with the service description field
populated to the required service description and the service
discovery flag set.

RLD investigates every received packet and delivers it to
the local SDL if the packet is a service discovery packet.
SDL matches the service description in the packet with the
data found in its local service table and on a successful
match, instructs the driver to issue a reply to a source node.
RLD generates a service discovery reply packet, which is a
modified DSR route reply packet, populates all the required
fields and unicasts the packet back to the original sender.

Similar to DSR’s intermediate node route caching and re-
plying, our implementation allows intermediate nodes to (i)
learn about available services by overhearing service dis-
covery reply messages, and (ii) reply to service discovery
requests, by checking local service table and responding if
the match is found. If not used or updated, service table
entries are periodically invalidated.

We developed 3 rediscovery and reselection policies for
CLdsr. All policies choose the server with the shortest route.
They differ, however, in the eagerness with which they trig-
ger a service rediscovery.

Eager Triggers service rediscovery immediately after the
current route to the server breaks.

Loyal Triggers service rediscovery only if no valid route
exists to the current server. Loyal delays rediscovery
until it has tried all cached routes to a server.

Lazy Triggers service rediscovery only when there are no
valid routes to any of the servers that offer the service.
Lazy defers rediscovery as much as possible, waiting
until all routes to all known service providers prove to
be faulty.

3.2.2 CLdsdv

We extended the DSDV routing table entries with three ad-
ditional fields that store the service description, location
and extra service-specific metrics. Nodes learn about avail-
able services while performing the regular routing table ex-
change operation, and no additional service discovery pack-
ets are sent into the network.

CLdsdv does not perform active service discovery. In-
stead, the RLD monitors changes in the routing table and
notifies SDL when either changes in network topology oc-
cur or new services are passively discovered during the rout-
ing table exchange.

We have implemented 2 reselection policies for CLdsdv:

Swift Switches servers as soon it becomes aware of a server
with a smaller hop count.

Conservative Switches servers only when there is no
longer a valid route to the current server.

3.3 Discussion

While our current implementation assists applications in
selecting the best available server, it is not aware of the
actual client-server communication and does not provide
additional support for migrating client sessions between
servers. While migrating a stateless service may be as sim-
ple as opening a new connection to the new server, migrat-
ing stateful services requires guaranteeing that application-
specific state is consistent across the old and the new server.
Additionally, if the client connects to the server over a reli-
able transport protocol, such as TCP, it is also necessary to
ensure that connection-specific state is consistent across the
two servers. Application-state migration and connection-
state migration are outside the scope of this work and have
been researched by other groups [19, 34].

However, we believe that there are many useful stateless
services that could benefit from server reselection. Clients
of stateful services may still use our architecture for initial
service discovery and selection, and simply choose not to
be notified when a better service provider is available.

Due to the tight integration between service discovery
and routing mechanisms, the scalability of our cross-layer
architecture is tied to the inherent scalability of the under-
lying routing protocol. We expect the scalability of the ar-
chitecture to improve with advances in MANET routing.

4 Evaluation

In this section, we use extensive simulations to compare
the performance of the cross-layer (CL) implementation de-
scribed in Section 3 to that of an application-layer service
discovery implementation closely modeled after the Service
Location Protocol [20] (SLP) described is Section 2. We
further refer to the version of CL that runs over DSR as
CLdsr and to the version that runs over DSDV as CLdsdv.

We have implemented both centralized and distributed
versions of SLP, which we refer to as SLP-CENT and SLP-
DIST, respectively. While SLP clients can base service se-
lection on a myriad of factors5, in this paper we evaluate two
approaches: random (RD), which picks one of the available
servers at random, and pinging (PING), which tries to select
the closest server by unicasting ping messages to all avail-
able servers and choosing the server whose ping reply ar-
rives first. Altogether, we consider three variations of SLP,

5The SLP standard does not cover server selection, leaving this decision
entirely to the client.

8

two centralized SLP-CENT-RD and SLP-CENT-PING, and
the distributed SLP-DIST, which picks the server whose re-
sponse to the broadcasted service discovery query arrives
first.

To eliminate any transient effects due to initializations,
in our SLP-CENT variations we have preloaded clients and
servers with a DA’s address and the DA with the informa-
tion about services in the network. In our SLP-DIST varia-
tions, we have implemented the multicast functionality via
a simple application-layer broadcast. We made this imple-
mentation decision to avoid the high cost associated with
maintaining a multicast group in wireless networks [27]. Fi-
nally, all our SLP implementations communicate over UDP.
Similarly to [7], we chose not to use TCP communication
to allow more accurate comparison between protocols6.

In the rest of this section, we first describe our experimen-
tal environment and then present the results of our evalua-
tion.

4.1 Experimental Environment

For our simulations we used the ns-2 simulator [16] with
CMU wireless extension [37]. The physical radio charac-
teristics were chosen to approximate the Lucent WaveLAN
direct sequence spread spectrum radio with a 250m nom-
inal transmission range and a raw capacity of 2Mb/s. All
experiments use distributed coordination function (DCF) of
IEEE 802.11 as the MAC protocol.

We report results for a network of 100 nodes randomly
placed on a rectangular 300m x 2000m flat space. Similarly
to [7, 14], the rectangular shape was chosen to force the
use of longer routes between communication pairs. Nodes
move following the random waypoint model [7] with no
pause time to stress test our implementations. In this model,
a node chooses a random point within the space and starts
moving toward that point at a speed randomly chosen from
an interval 0-Vmax (in our experiments Vmax is equal to either
2m/s or 20m/s). Upon reaching its destination, the node se-
lects another destination and speed, repeating the process.

Clients communicate with servers by sending 100 byte
packets at a constant bit rate (CBR). We experimented with
several client sending rates to simulate both unsaturated and
saturated networks (2.5 packets/sec and 7.5 packets/sec)
[14], number of servers (1, 2, 4 and 6) and number of clients
(30, 50, and 70). For every configuration, we present results
averaged at 5 movement scenarios.

All experiments start with a 100 second service discov-
ery phase during which clients discover servers for further
communication. After 100 seconds of simulation, clients
start sending data to servers. Without loss of generality, all
servers in the network offer the same service.

6TCP source varies the time at which it sends packets based on its per-
ception of the network’s congestion state. Consequentially, the time at
which packets are sent and the position of nodes at that time will differ
between protocols.

1

10

100

1000

10000

100000

2,50 4,50 6,50

<Servers, Clients>

C
o

n
tr

o
l
P

a
c
k
e

ts
 S

e
n

t/
F

o
rw

a
rd

e
d

CLdsr SLP-DISTdsr SLP-CENT-PINGdsr SLP-CENT-RDdsr

Figure 4: [DSR] Cost of service discovery (2, 4 and 6
servers, 50 clients).

4.2 Experimental Results

4.2.1 Stationary Network

This section evaluates the behavior of the proposed service
discovery protocols in stationary networks in terms of con-
trol message overhead, throughput, delivery ratio and initial
route length to a server. For all presented stationary exper-
iments we keep the number of clients constant at 50 while
we increase the number of servers from 2 to 6.

We experimented with both DSR and DSDV. However,
because of space limitations, and given that the results are
very similar for both protocols, we only present figures that
plot results for DSR.

Control Message Overhead

Figure 4 shows the message overhead for service discov-
ery for the various protocols over DSR. Included are DSR
packets and service discovery packets (no MAC packets are
included). Those experimental results confirm our analyti-
cal calculations summarized in Table 1.

CLdsr consistently outperforms the other protocols, as it
benefits from using the routing traffic to learn about servers
and routes to them simultaneously. The huge overhead of
SLP-DISTdsr results from using application-layer broad-
cast, which as opposed to the route discovery broadcast
does not propagate DSR routes throughout the network.
Varying the number of clients preserved the relative cost
between the protocols.

Experimental results over DSDV (not shown due to space
limitations) exhibit similar pattern, with the exception that
the protocols suffer an additional constant overhead as a re-
sult of the periodic routing table exchanges.

Route Length

Figure 5 shows the optimal average path length from a client
to the closest server and the average route length for each of

9

0

1

2

3

4

5

6

2,50 4,50 6,50

<Servers, Clients>

R
o

u
te

 L
e

n
g

th
OPTIMAL CLdsr SLP-DISTdsr SLP-CENT-PINGdsr SLP-CENT-RDdsr

Figure 5: [DSR] Average route length (2, 4 and 6 servers,
50 clients).

the service discovery protocols running over DSR. Varying
the number of clients did not affect initial route lengths.

While CLdsr picks optimal routes most of the time. The
gap that exists between CLdsr and Optimal results from
packet losses due to collisions that lead CLdsr to choose
sub-optimal routes. SLP-DISTdsr and SLP-CENT-PINGdsr

have longer average routes because they do service selec-
tion based on limited knowledge of network topology. Both
SLP-based protocols try to find the closest server by mea-
suring the round-trip-time. Unfortunately, the time to uni-
cast a message from the client to a server or from a server
back to the client varies greatly based on the availability
of DSR routes. Therefore, a remote server that has a DSR
route to the client can reply ahead of a closer server that has
to do DSR route discovery. The SLP-CENT-RDdsr picks
servers randomly and is obviously the worst case. Note that
SLP-CENT-RDdsr is not a purely hypothetical worse proto-
col. It represents a case where no topology information is
available or recorded (as typically the case when a client re-
quests all available services for browsing and then chooses
one randomly).

Experimental results over DSDV are very similar and
are therefore not shown. Because of packet losses due to
collisions, SLP-DISTdsdv and SLP-CENT-PINGdsdv tend to
choose longer routes than CLdsdv.

Throughput and Delivery Ratio

Figure 6 shows overall network throughput for 100 seconds
of communication of the service discovery protocols run-
ning over DSR. Clients send data at a fixed rate of 7.5 pack-
ets/second (750 bytes/sec). The numbers on top of the bars
show delivery ratios.

At this sending rate (which comes close to saturating the
network), there is a strong correlation between the aver-
age path lengths of Figure 5 and network throughput. We
also ran experiments with a 2.5 packets/second sending rate
(not shown due to space limitations). At the lower send-
ing rate, the performance of CLdsr, SLP-DISTdsr and SLP-

0

5000

10000

15000

20000

25000

30000

35000

40000

2,50 4,50 6,50

<Servers, Clients>

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t

(P
a
c
k
e
ts

)

CLdsr SLP-DISTdsr SLP-CENT-PINGdsr SLP-CENT-RDdsr

63

97 98

57

87
90

54

88 86

37

33

24

Figure 6: [DSR] Network throughput and delivery ratios (2,
4 and 6 servers, 50 clients).

CENT-PINGdsr is comparable with delivery rates reaching
99%. For the lower sending rate with no node mobility, the
network is not saturated enough and packets experiencing
low contention levels successfully reach even the farthest
servers.

Once again, the throughput and delivery ratio results for
DSDV are very similar and are thus omitted. This similarity
is not surprising since the overall throughput is highly de-
pendent on the average route length, which is very similar
for both DSR and DSDV.

In summary, server selection has a critical effect on over-
all network performance. Near optimal service selection
based on route length clusters clients and servers, localizing
communication and reducing interference. Moreover, with
good service selection, as the number of servers increases,
overall network throughput goes up. Poor service selection,
on the other hand, results in interference that severely limits
network throughput. It is interesting to note that with poor
service selection, as the number of servers grows, interfer-
ence increases further degrading network capacity (as seen
by throughput results of SLP-CENT-RDdsr protocol).

4.2.2 Effects of Motion

This section evaluates the effects of node mobility on the
service discovery protocols. In all mobility experiments,
clients start sending data at 100 seconds, motion starts at
200 seconds, and the experiments end at 800 seconds. We
do not include results for SLP-DISTdsr with mobility be-
cause the initial server selection of SLP-CENT-PINGdsr and
SLP-DISTdsr protocols are very similar, and consequen-
tially, there is no difference between them in the mobility
simulations. Since results for DSDV and DSR are similar,
we present DSR-based results only.

Figure 7 plots the network throughput over time for all
protocols for 4 servers and 50 clients with a CBR send-
ing rate of 7.5 packets/sec. Nodes move with a Vmax of
20 m/sec. The figure shows that without rediscovery, all
the protocols converge to the same throughput - that of the

10

0

200

400

600

800

1000

1200

1400

1600

1800

1
0
0
1
3
0
1
6
0
1
9
0
2
2
0
2
5
0
2
8
0
3
1
0
3
4
0
3
7
0
4
0
0
4
3
0
4
6
0
4
9
0
5
2
0
5
5
0
5
8
0
6
1
0
6
4
0
6
7
0
7
0
0
7
3
0
7
6
0
7
9
0

Time

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(P
a

c
k
e

ts
)

CLdsr(4,50)

SLP-CENT-PINGdsr(4,50)

SLP-CENT-RDdsr(4,50)

Figure 7: [DSR] Effects of mobility on network throughput
(4 servers, 50 clients). The numbers in parenthesis follow
the pattern of (server, client).

protocol with a random server choice. This is an expected
result, as the initial server choice becomes irrelevant after a
period of movement. Results for a similar experiment with
Vmax set to 2 m/sec show a similar trend (not shown due to
space limitations), with the caveat that it takes longer for
the protocols to converge because more time is needed at
the low speed to “shuffle” the nodes into a random topol-
ogy.

Figure 8 presents an interesting result. The figure plots
the network throughput over time for CLdsr with 1,2, and 4
servers and 50 clients with a CBR sending rate of 7.5 pack-
ets/sec. Nodes move with a Vmax of 20 m/sec. Before mo-
bility starts, network throughput goes up with the number of
servers. With mobility, however, an increase in servers leads
to a decrease in network throughput. This result is consis-
tent with the static SLP-CENT-RDdsr throughput measure-
ments in Figure 6. Although the average path length to a
server degrades with mobility to the same random value for
all instances, the increased number of servers in the network
cause more interference between client-server pairs. So, for
mobile networks with no rediscoveries decreasing the num-
ber of servers may actually increase network performance.
This result is not specific to CLdsr. The graphs for SLP-
CENT-RDdsr and SLP-CENT-PINGdsr (not included in the
paper) show a similar trend.

The trends outlined by Figure 7 and 8 motivate the need
to re-evaluate server selection to offset the effects of node
mobility on network capacity. It is compelling that as the
number of servers in a network increases, the need to re-
evaluate server selection becomes more urgent.

4.2.3 Rediscovery Strategies

Figure 9 and 10 show the performance of CLdsr and CLdsdv

rediscovery strategies. SLP-CENT-PING60dsr is a version

0

200

400

600

800

1000

1200

1400

1600

1800

1
0
0
1
3
0
1
6
0
1
9
0
2
2
0
2
5
0
2
8
0
3
1
0
3
4
0
3
7
0
4
0
0
4
3
0
4
6
0
4
9
0
5
2
0
5
5
0
5
8
0
6
1
0
6
4
0
6
7
0
7
0
0
7
3
0
7
6
0
7
9
0

Time

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(P
a

c
k
e

ts
)

CLdsr(1,50)

CLdsr(2,50)

CLdsr(4,50)

Figure 8: [DSR] Effects of mobility with different number
of servers on network throughput (1, 2 and 4 servers, 50
clients).

of SLP-CENT-PINGdsr that ping all known servers every
60 seconds, and selects the one with the shortest round-trip-
time. We present results for a 60 second pinging period
because this is the period that achieves the best throughput
for our network. SLP-CENT-RDdsr is included for compar-
ison. All protocols run on a network with 4 servers and 50
clients with a CBR sending rate of 7.5 packets/sec. Nodes
move with a Vmax of 20 m/sec. (experiments with Vmax set to
2m/sec show similar trends, and are therefore not included).

In DSR-based simulations, CLdsr-Loyal achieves the best
performance, validating the DSR policy of trying all cached
routes to a given node before issuing a route rediscovery
(see Section 3.1.3 for description of the policies). CLdsr-
Eager suffers from network congestion as a result of send-
ing rediscovery requests as soon as the active route breaks.
CLdsr-Lazy, on the other hand, is too conservative. Because
of the network mobility, routes in the DSR’s route cache
are often stale. Holding rediscovery until all routes to all
known servers have been tried makes the client wait for a
long time before doing a rediscovery and resuming sending
data to a server. CLdsr-Lazy also chooses longer routes over
a rediscovery leading to poor locality.

In DSDV-based simulations, CLdsdv-Swift achieves the
best performance. Since no additional packets are being
transmitted into the network, CLdsdv-Swift does not incur
any penalty for switching to the best possible service as it
becomes available. CLdsdv-Conservative, on the other hand,
waits for the active route break and thus misses opportuni-
ties of switching to better servers.

SLP-CENT-PING60dsr shows that server rediscovery
based on timing measurements such as pinging can increase
network throughput. However, a substantial gap still re-
mains between the best cross-layer rediscovery technique,
and the application-layer implementation. Two factors ac-

11

0

200

400

600

800

1000

1200

1400

1600

1800

1
0
0
1
3
0
1
6
0
1
9
0
2
2
0
2
5
0
2
8
0
3
1
0
3
4
0
3
7
0
4
0
0
4
3
0
4
6
0
4
9
0
5
2
0
5
5
0
5
8
0
6
1
0
6
4
0
6
7
0
7
0
0
7
3
0
7
6
0
7
9
0

Time

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t
(P

a
c
k
e
ts

)
CLdsr-Loyal(4,50)

CLdsr-Lazy(4,50)

CLdsr-Eager(4,50)

SLP-CENT-RDdsr(4,50)

SLP-CENT-PING60dsr(4,50)

Figure 9: [DSR] Effectiveness of rediscovery strategies in
heavily-loaded networks (4 servers, 50 clients).

count for SLP-CENT-PING60dsr lower performance. First,
pinging adds a significant amount of message overhead to
an already heavily-loaded network, creating more conges-
tion and interference. Second, to be effective the ping-
ing period needs to be compatible with the rate of net-
work topology change. To determine the sensibility of SLP-
CENT-PINGdsr to the rediscovery period, we varied the
pinging period between 30 and 90 seconds. While the 60
second pinging period achieves the best throughput, overall
network throughput was not significantly affected by vary-
ing the pinging period.

Figures 11 and 12 show results for a network with 4
servers and 50 clients with a low CBR sending rate of 2.5
packets/sec. Nodes move with a Vmax of 20 m/sec. SLP-
CENT-PING60 performs better in this less congested sce-
nario, but still falls short of the best CL rediscovery policy.

Interestingly, although the 60 seconds pinging period still
achieves the best performance over DSR, it fails to beat the
30 seconds pinging rediscovery over DSDV. This suggests
that it will be hard for the application-layer service discov-
ery to derive the optimal periodic rediscovery policy, and
the trivial policy of performing the rediscovery every x sec-
onds will fail to achieve the optimal performance indepen-
dent of the value of x.

Figure 13 shows the performance of CLdsr-Loyal (the
best-performing CLdsr variation) for networks with 1,2, and
4 servers. In all cases, there are 50 clients with a CBR send-
ing rate of 7.5 packets/sec. Nodes move with a Vmax of 20
m/sec.

These results show that CLdsr-Loyal is able to keep traf-
fic localized despite network mobility, and therefore can
take advantage of an increase in the number of servers.
Moreover, at either the lower node Vmax speed of 2 m/sec
or the CBR sending rate of 2.5 packets/sec., CLdsr-Loyal’s
throughput comes close to that of the network without mo-

0

200

400

600

800

1000

1200

1400

1600

1800

1
0
0
1
3
0
1
6
0
1
9
0
2
2
0
2
5
0
2
8
0
3
1
0
3
4
0
3
7
0
4
0
0
4
3
0
4
6
0
4
9
0
5
2
0
5
5
0
5
8
0
6
1
0
6
4
0
6
7
0
7
0
0
7
3
0
7
6
0
7
9
0

Time

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t
(P

a
c
k
e

ts
)

CLdsdv-Swift(4,50)

CLdsdv-Conservative(4,50)

SLP-CENT-RDdsdv(4,50)

SLP-CENT-PING60dsdv(4,50)

Figure 10: [DSDV] Effectiveness of rediscovery strategies
in heavily-loaded networks (4 servers, 50 clients).

200

300

400

500

600

700

10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

52
0

55
0

58
0

61
0

64
0

67
0

70
0

73
0

76
0

79
0

Time

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(P
a

c
k
e

ts
)

CLdsr-Loyal(4,50)

SLP-CENT-PING30dsr(4,50)

SLP-CENT-PING60dsr(4,50)

SLP-CENT-RDdsr(4,50)

Figure 11: [DSR] Effectiveness of rediscovery strategies in
lightly-loaded networks (4 servers, 50 clients).

200

300

400

500

600

700

1
0
0
1
3
0
1
6
0
1
9
0
2
2
0
2
5
0
2
8
0
3
1
0
3
4
0
3
7
0
4
0
0
4
3
0
4
6
0
4
9
0
5
2
0
5
5
0
5
8
0
6
1
0
6
4
0
6
7
0
7
0
0
7
3
0
7
6
0
7
9
0

Time

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(P
a

c
k
e

ts
)

CLdsdv-Swift(4,50)

SLP-CENT-PING30dsdv(4,50)

SLP-CENT-PING60dsdv(4,50)

SLP-CENT-RDdsdv(4,50)

Figure 12: [DSDV] Effectiveness of rediscovery strategies
in lightly-loaded networks (4 servers, 50 clients).

12

0

200

400

600

800

1000

1200

1400

1600

1800

1
0
0
1
3
0
1
6
0
1
9
0
2
2
0
2
5
0
2
8
0
3
1
0
3
4
0
3
7
0
4
0
0
4
3
0
4
6
0
4
9
0
5
2
0
5
5
0
5
8
0
6
1
0
6
4
0
6
7
0
7
0
0
7
3
0
7
6
0
7
9
0

Time

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t

(P
a
c
k
e
ts

)

CLdsr-Loyal(1,50)

CLdsr-Loyal(2,50)

CLdsr-Loyal(4,50)

Figure 13: [DSR] Effects of rediscovery with different
number of servers on network throughput (1, 2 and 4
servers, 50 clients).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

52
0

55
0

58
0

61
0

64
0

67
0

70
0

73
0

76
0

79
0

Time

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t
(P

a
c
k
e

ts
)

CLdsr-Loyal-ADD

CLdsr

SLP-CENT-PING-ADDdsr

SLP-CENT-PINGdsr

Figure 14: [DSR] Effects of adding 10 new servers to the
network.

bility. This is illustrated in Figure 11 for an experiment in-
volving 4 serves and 50 clients a CBR sending rate of 2.5
packets/sec and nodes moving with a Vmax of 20 m/sec.

4.2.4 Handling New Services

Figure 14 evaluates the effectiveness with which CLdsr and
SLP can take advantage of new servers as they are added
to the network. The experiments starts with a network that
has 2 servers and 50 clients with a CBR sending rate of 7.5
packets/sec. Nodes move with a Vmax of 20 m/sec. We then
add a new server every 30 seconds of simulation time, with
a total of 10 servers added over the lifetime of the exper-
iment. The results show that CLdsr is more effective than
SLP in leveraging the new servers that are added to the net-
work. As servers are incorporated to the network, CLdsr

manages to localize communication more effectively with
little extra cost for service discovery. In contrast, as servers
are added to the network the cost of service discovery for
SLP goes up as it has to ping a larger number of nodes to do
service selection.

4.2.5 Evaluation Summary

In summary, CLdsr and CLdsdv protocols incur the least
amount of message overhead, localize communication, and
consequentially achieve the best throughput. In mobile
networks, even with an optimal initial service selection,
throughput of all the protocols degrades to that of random
selection. This shows the need for effective rediscovery
and reselection techniques to offset the effect of topology
changes and improve network performance. Physical rout-
ing information, such as route lengths, have proved to be the
best tool for localizing traffic during mobility. Round-trip-
latency measures were shown to be effective in cases with
small network saturation, but using them too often leads to
congestion. Moreover, for heavily utilized networks round-
trip-latency measures are ineffective and fail to localize traf-
fic. In addition, periodic rediscoveries fail to capture the
rate of network topology change, thus re-evaluating server
status either too often or too rarely. Also, pinging adds sig-
nificant amount of overhead to an already congested net-
work, causing even more interference. In contrast, trigger-
ing rediscovery and reselection after detecting changes in
network topology proved to be effective.

5 Related Work

Considerable previous research has gone into service dis-
covery for distributed systems. However, most of the promi-
nent architectures were not designed for use in wireless mo-
bile environments. Some examples include SLP [20] from
IETF, Jini [2] from Sun, SSDP [18] from Microsoft, Salu-
tation [3] from IBM and Berkeley’s SSDS [13]

There has been significant research on application-layer
service discovery solutions for MANET. Allia [33] uses
agent based service discovery, taking into account user spe-
cific policies. Handorean et al. [21] and MARE [35] com-
bine agent based discovery with a distributed tuple space
approach for storing and distributing services. Although
maintaining the local tuple space data is costly, the service
discovery phase usually narrows down to a lookup of the
service information on the local device. Konark [22] uses
multicast to advertise and discover services and allows for
service delivery by running a lightweight HTTP server on
every device that hosts services. The Intentional Naming
System (INS) [4] is an example of a service discovery sys-
tem that allows sending data to a service provider without
discovering its address a priori. The network of Intentional
Naming Resolvers (INRs) routes packets based on a service
description included with the data payload. The user can

13

either choose to send the data to any service provider that
matches the requirement (anycast) or to all of them (multi-
cast). Chen and Kotz [10] have extended INS with context-
sensitive service discovery and Bisdikian et al. [6] propose
an intelligent middleware for context-based services.

Works that use ontologies or some level of hierarchy for
service description to reduce the amount of service adver-
tisement information that gets propagated over the network
include GSD [9] and Multi-Layer Clusters [25].

Azondekon et al. [5] argue for a need to select services
based on a physical proximity (line of sight) and proposes
two protocols based on a combination of infrared com-
munication and SLP. Other systems that discover services
based on the physical proximity include Satchel [17] and
Cooltown [24].

Our approach differs from these efforts in that it exploits
a close integration of service discovery functionality with
the routing mechanisms of MANET. As a result, nodes in
our system can exploit available topology information to re-
duce overhead and improve network performance.

Kozat and Tassiulas [27] propose a distributed service
discovery architecture that relies on a virtual backbone for
locating and registering available services within a dynamic
network topology. Service Broker Nodes constitute a domi-
nating set and act as directory agents, replying to discov-
ery requests and registering service advertisements. The
approach proves to be less costly than service discovery
based on the multicast ODMRP protocol, but more costly
than anycast based approaches. Tchakarov [36] propose a
resource location protocols for multi-hop ad hoc networks
that uses geographical information to reduce service adver-
tisement and discovery traffic. Raman et al. [32] argue for
extensive cross-layer optimizations in Bluetooth scatternets.
As a result, scatternet wide floods are minimized by caching
service discovery results at all intermediate nodes (this can
be thought of as a distributed implementation of an SLP
Directory Agent). Koodli et al. [26] propose extensions
to MANET routing protocols to support service discovery.
Cheng [12] suggests using On-Demand Multicast Routing
Protocol for service advertisement and discovery. In this
approach, each server and all its consumers make a multi-
cast group. Servers advertise their services periodically and
clients discover services by sending multicast requests to
the group. However, the multicast groups have to be created
and maintained, which is a costly process [27] resulting in
a significant control message overhead.

In contrast to our work, these efforts either do not eval-
uate system performance at all or do not show the effects
that server selection has on the overall network throughput.
More significantly, these efforts do not consider the problem
of server selection and rediscovery, which we have shown
to be fundamental requirements for good performance on
MANETs.

Chen et al. [11] propose a cross-layer design to al-
low QoS in MANET. Middleware uses specifically created

location-aware routing protocol for lookup and replication
of services. Routing-layer uses middleware’s packet prior-
ity information to route packets. The communication be-
tween routing and middleware occurs through system pro-
files, which include information about node location and
movement patterns. The system predicts group partition-
ing and replicates data from one partition to the other. The
same data is hosted by only one of the group members. Our
architecture, on the other hand, does not require a special-
ized location-aware routing protocol and is more concerned
with the problem of service selection and discovery than
with data replication.

6 Conclusions and Future Work

We identified three shortcomings of existing application-
layer service discovery architectures. First, they suffer from
a large control message overhead as a result of duplicate
message generation of service discovery and routing-layers.
Second, they do not provide any support for service selec-
tion once multiple comparable services are discovered in the
network. Third, they lack support for rediscovery of ser-
vices, to adapt to changes in network topology that result
from node mobility or the arrival and departure of nodes
hosting services.

We presented a new cross-layer architecture that inte-
grates service discovery functionality with existing routing
protocols. The architecture is designed up front with ser-
vice selection and rediscovery in mind. It integrates service
discovery with route discovery, thus allowing nodes to learn
about available services and routes to them simultaneously,
consequentially reducing control message overhead. Our
cross-layer approach helps clients select the best possible
service, and allows them to register call-back routines to be
notified once a better service is available nearby.

We have analytically and experimentally showed that
a cross-layer implementation consistently outperforms an
application-layer service discovery implementation closely
modeled after SLP. Not only does the cross-layer prototype
incurs the least amount of overhead, it achieves network
throughput up to 5 times higher than SLP.

In the future, we plan to extend our architecture to sup-
port other routing protocols (e.g., AODV). We also plan to
continue development of our framework to include support
for fault tolerance and recovery needed in cases where ap-
plication state is stored at the service providers.

References
[1] Bluetooth Specification Part E. Service Discovery Proto-

col(SDP) http://www.bluetooth.com, July 1999.
[2] Jini javaspaces service specification. Available at

http://www.sun.com/jini/specs.
[3] Salutation architecture. Available at

http://www.salutation.org/whitepaper/originalwp.pdf.

14

[4] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The design and implementation of an intentional naming
system. In Proc. of 17th SOSP, 1999.

[5] V. Azondekon, M. Barbeau, and R. Liscano. Service selec-
tion in networks based on proximity confirmation using in-
frared. In Proc. of ICT, 2002.

[6] C. Bisdikian, I. Boamah, P. Castro, A. Misra, J. Rubas,
N. Villoutreix, D. Yeh, V. Rasin, H. Huang, and C. Simonds.
Intelligent pervasive middleware for context-based and lo-
calized telematics services. In Proc. of Workshop on Mobile
Commerce, 2002.

[7] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and
J. Jetcheva. A performance comparison of multi-hop wire-
less ad hoc network routing protocols. In Proc. of MobiCom,
1998.

[8] C. Carter, S. Yi, P. Ratanchandani, and R. Kravets. Many-
cast: Exploring the space between anycast and multicast in
ad hoc networks. In Proc. of MobiCom, 2003.

[9] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. GSD: A
novel group-based service discovery protocol for manets. In
Proc. of MWCN, 2002.

[10] G. Chen and D. Kotz. Context-sensitive resource discovery.
In Proc. of PerCom, 2002.

[11] K. Chen, S. H. Shah, and K. Nahrstedt. Cross-layer de-
sign for data accessibility in mobile ad hoc networks. Wire-
less Personal Communications: An International Journal,
21(1):49–76, Apr. 2002.

[12] L. Cheng. Service advertisement and discovery in mobile ad
hoc networks. In Proc. of CSCW, 2002.

[13] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and
R. H. Katz. An architecture for a secure service discovery
service. In Proc. of MobiCom, 1999.

[14] S. R. Das, C. E. Perkins, and E. E. Royer. Performance com-
parison of two on-demand routing protocols for ad hoc net-
works. In Proc. of INFOCOM, pages 3–12, 2000.

[15] R. Droms. Dynamic host configuration protocol. RFC
2131, Mar. 1997. http://www.faqs.org/rfcs/
rfc2131.html.

[16] K. Fall and K. Varadhan. ns notes and docu-
mentation. The VINT Project, UCBerkeley, LBNL,
USC/ISI, and Xerox PARC, Nov. 1997. Available at
http://citeseer.nj.nec.com/fall00ns.html.

[17] M. Flynn, D. Pendlebury, C. Jones, M. Eldridge, and
M. Lamming. The satchel system architecture: mobile ac-
cess to documents and services. Mobile Networks and Ap-
plications, 5(4):243–258, 2000.

[18] Y. Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright. Simple
service discovery protocol. IETF Internet Draft draft-cai-
ssdp-v1-03, Oct. 1999.

[19] R. A. Golding. A weak-consistency architecture for dis-
tributed information services. Computing Systems, 5(4):379–
405, 1992.

[20] E. Guttman. Service location protocol: automatic discovery
of IP network services. IEEE Internet Computing, 3(4):71–
80, July 1999.

[21] R. Handorean and G.-C. Roman. Service provision in ad hoc
networks. In Proc. of Coordination, 2002.

[22] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - a ser-
vice discovery and delivery protocol for ad-hoc networks. In
Proc. of WCNC, 2003.

[23] D. B. Johnson and D. A. Maltz. Dynamic source routing
in ad hoc wireless networks. In T. Imielinski and H. Korth,
editors, Mobile Computing, volume 353, chapter 5, pages
153–181. Kluwer Academic Publishers, 1996.

[24] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell,
P. Debaty, G. Gopal, M. Frid, V. Krishnan, H. Morris,
J. Schettino, B. Serra, and M. Spasojevic. People, places,
things: web presence for the real world. Mobile Networks
and Applications, 7(5):365–376, 2002.

[25] M. Klein and B. Konig-Ries. Multi-layer clusters in ad-hoc
networks - An approach to service discovery. In Proc. of the
Workshop on Peer-to-Peer Computing, 2002.

[26] R. Koodli and C. E. Perkins. Service discovery in on-demand
ad hoc networks. IETF Internet Draft draft-koodli-manet-
servicediscovery-00.txt, Oct. 2002.

[27] U. C. Kozat and L. Tassiulas. Network layer support for
service discovery in mobile ad hoc networks. In Proc. of
INFOCOM, 2003.

[28] J. Mingliang, L. Jinyang, and Y. Tay. Cluster-based routing
protocol (cbrp). IETF Internet Draft draft-ietf-manet-cbrp-
spec-00.txt, Aug. 1999.

[29] C. Perkins and P. Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile com-
puters. In SIGCOMM, pages 234–244, 1994.

[30] C. E. Perkins and E. M. Royer. Ad hoc on demand distance
vector routing. In WMCSA, 1999.

[31] V. T. Raisinghani and S. Iyer. Cross-layer design optimiza-
tions in wireless protocol stack. Computer Communications,
2003.

[32] B. Raman, P. Bhagwat, and S. Seshan. Arguments for cross-
layer optimizations in bluetooth scatternets. In Proc. of
SAINT, pages 176–184, 2001.

[33] O. Ratsimor, D. Chakraborty, S. Tolia, D. Kushraj, A. Kun-
jithapatham, G. G. A. Joshi, and T. Finin. Allia: Alliance-
based service discovery for ad-hoc environments. In ACM
Mobile Commerce Workshop, 2002.

[34] A. C. Snoeren and H. Balakrishnan. An end-to-end approach
to host mobility. In Proc. of MobiCom, 2000.

[35] M. Storey, G. Blair, and A. Friday. Mare: Resource discov-
ery and configuration in ad hoc networks. Mobile Networks
and Applications, 7(5):377–387, Oct. 2002.

[36] J. B. Tchakarov and N. H. Vaidya. Efficient content location
in mobile ad hoc networks. In Proc. of MDM, 2004.

[37] The CMU Monarch project. wireless and mobility exten-
sions to ns-2, Oct. 1999.

[38] X. Wang and H. Schulzrinne. An integrated resource negoti-
ation, pricing, and qos adaptation framework for multimedia
applications. IEEE Journal on Selected Area in Communi-
cations, 18, 2000.

15

