
Experimental Evaluation of Autonomic Indexing

Denilson Barbosa
University of Toronto

Toronto, Canada

dmb@cs.toronto.edu

Mariano P. Consens
University of Toronto

Toronto, Canada

consens@mie.utoronto.ca

Laurent Mignet∗

IBM India Research Laboratory

New Delhi, India

lamignet@in.ibm.com

Technical Report CSRG-495, University of Toronto, July 2004

Abstract
We are witnessing an explosive increase in the com-
plexity of the information systems we rely upon. Au-
tonomic systems address this challenge by continu-
ously configuring and tuning themselves. Recently, a
number of autonomic features have been incorporated
into commercial RDBMS; tools for recommending in-
dex configurations for a given workload are promi-
nent examples of this promising trend. In this paper,
we introduce a flexible characterization of the perfor-
mance goals of an indexing recommender and develop
an experimental evaluation approach to assess the ef-
fectiveness of these tools. We focus on exploratory
queries and present extensive experimental results us-
ing both real and synthetic data that demonstrate the
validity of the approach introduced. Our results iden-
tify a specific indexing configuration based on single-
column indexes as a very useful baseline for compar-
isons in the exploratory setting. Furthermore, the
experimental results demonstrate the unfulfilled po-
tential for achieving improvements of several orders
of magnitude.

1 Introduction

The area of autonomic computing has received con-
siderable attention in the recent years, particularly
in industry, and aims at providing systems that can
adjust themselves to a changing environment. The vi-
sion of autonomic computing is to eliminate the need
for human intervention in tuning the systems, and is
motivated by: (1) increasing system usability (by al-
lowing non-expert users to achieve acceptable perfor-
mance); (2) decreasing operational costs (by reducing
the demands on system administrators); (3) deploy-
ing systems in scenarios where human intervention

∗Work done while the author was a Postdoctoral Fellow at
University of Toronto

is impossible or undesirable (e.g., in pervasive and
embedded computing environments).

Recently, a number of autonomic features have
been incorporated into commercial RDBMSs as well.
In particular, tools that recommend indexes for a
given Workload (such as [5, 9]) are crucial first steps
toward autonomic data management. Agrawal et
al. [1] discuss the recommendation of materialized
views as well as indexes, possibly defined over the
recommended views, given a query workload.

Most of the work on autonomic databases has cen-
tered around using the DBMS’s own query optimizer
for comparing hypothetical scenarios [6]. The input
to the process is typically a query workload and a
budget (often in as a bound on the disk space that
can be used for additional indexes). In this approach,
a tool enumerates several “interesting configurations”
that do not exceed the budget, and uses the query
optimizer to find one with the lowest cost. The cost
of a given configuration is obtained by feeding the
query optimizer with the description of the configu-
ration and the query workload. In order to describe
a given configuration, the tool must estimate cardi-
nalities and selectivities for the hypothetical indexes,
and, since such indexes can be defined as queries, es-
timates provided by the query optimizer can also be
used during this phase. Currently, most major DBMS
vendors support tools that behave in this way [7, 15].

One potential limitation of the model described
above is that they rely on estimated statistics for
parameters such as size and cardinality of certain
queries, and it is well known that the quality of such
estimates degrades severely as more operations are
performed [8].

The potential impact on the system’s performance
of an effective index configuration dwarfs any other
system parameter that a database administrator
could tune. For instance, more than two decades ago



Protein(nref id, p name, last updated, sequence, length)
Source(nref id, p id, taxon id, accession, p name, source)
Taxonomy(nref id, taxon id, lineage, species name,

common name)
Organism(nref id, ordinal, taxon id, name)
Neighboring seq(nref id 1, ordinal, nref id 2, taxon id 2,

length 2, score, overlap length, start 1, start 2,
end 1, end 2)

Identical seq(nref id 1, ordinal, nref id 2, taxon id)

Figure 1: Relational schema for the NREF database;
primary keys are underlined.

Boral and DeWitt [2] concluded that parallelism is no
substitute for effective and efficient indexing. There-
fore, the practical value of index recommender tools
could be very significant.

1.1 Exploratory Queries on NREF

To motivate this work, we present a realistic scenario
for autonomic data management tools in the con-
text of supporting exploratory queries on the Non-
redundant REFerence protein database (NREF, for
short), published on the web by the Protein Infor-
mation Resource [16]. NREF is provides a com-
prehensive collection of protein sequence data from
several genome sequencing projects (PIR-PSD, Swis-
sProt, TrEMBL, RefSeq, GenPept, and PDB) and
has identical sequences from the same source organ-
ism reported as a single NREF entry. The database
is updated biweekly; release 1.34 contains 1,393,678
entries and its XML representation has 17GB. Once
the XML data is converted to “raw” relational format
(i.e., CSV text files) it occupies 6.5GB.

The relational schema for the NREF database is
shown in Figure 1. The Protein relation (1.1 mil-
lion rows) contains a unique identifier for each of the
aminoacid sequences in the database. The Source
relation (3 million rows) contains the name of the
database (e.g., SwissProt) where a given sequence is
reported, and the corresponding access key for the
protein on that database. All known taxonomic in-
formation about a given aminoacid sequence is stored
in the Taxonomy and Organism relations (15.1 and
1.2 million rows, respectively). Finally, the Neighbor-
ing seq relation (78.7 million rows) associates pairs
of closely related sequences within the same organ-
ism, while the Identical seq relation (0.5 million rows)
contains pairs of identical sequences that occur in
different organisms. Neighbor NREF sequences are
identified based on scores obtained by performing all-

Figure 2: Query execution times on system A using
a configuration with primary keys only.

against-all FASTA searches.
Consider now that the biologist in our scenario

is interested in executing hundreds of exploratory
queries such as the one below:

Example 1 This SQL query finds the number of
protein sequences (nref ids) for each taxon as-
sociated with a virus that infects apes, and has
been recently linked with cancer in humans (see
http://www.cancer.gov/newscenter/sv40).

SELECT t.lineage, count(distinct t2.nref id)

FROM source s, taxonomy t, taxonomy t2

WHERE t.nref id = s.nref id

AND t.lineage = t2.lineage

AND s.p name = ’Simian Virus 40’

GROUP BY t.lineage

For concreteness, assume that during her explo-
ration of NREF, the biologist has to execute 100
queries sampled from a much larger family of rele-
vant queries, which we will call NREF2J in the sequel.
Each of those queries executes in a certain amount of
time. We visualize the response times experienced
by the biologist while using a given configuration of
NREF on a given DBMS by plotting the histogram
of the query execution times.

For instance, Figure 2 shows the response times of
a commercial system (which we call system A) on a
configuration of the NREF database where the only
indexes present are those automatically created for
the primary keys of each relation. (Note that we de-
fine the bins using logarithmic scale; also, we report
all “timeout” queries on a single bin, labeled t out in
the figures; for this work, we define a timeout limit of
30 minutes for each query.) Contrast that histogram
with the response times observed on the same sys-
tem A, but using a configuration with several recom-
mended indexes shown in Figure 3. Not only there

2



Figure 3: Query execution times on system A using
a recommended configuration.

is a significantly smaller number of timeout queries
in the recommender system, but also the proportion
of queries that complete in about 5 minutes is much
larger.

The lines in the figures are the cumulative his-
togram for the queries in each system, which, as we
argue more precisely below, provide a concise way of
comparing the behavior of different configurations on
the same system. For instance, we read that 55% of
all queries finish in at most 100 seconds (each) on the
recommend configuration; a similar reading in Fig-
ure 2 shows that only 20% finish in 100 seconds or
less.

1.2 Our Contributions.

The focus of literature describing index recom-
menders has been on reporting results characterizing
how efficiently these tools arrive at useful recommen-
dations; that is, how quickly they can produce a solu-
tion to the combinatorial problem of index selection.
However, to the best of our knowledge, there has been
no comprehensive assessment of the effectiveness of
index recommenders, as the ones we discuss here.

In this paper, we describe an approach to evaluate
the quality of the index configurations suggested by
index recommenders. We present extensive experi-
mental results characterizing the effectiveness of com-
mercial RDBMS index recommenders when presented
with a workload consisting of exploratory queries.
Our contributions are as follows:

• We provide a novel framework for assessing the
effectiveness of index recommenders. In particu-
lar, our framework supports describing very large
workloads and also provides a flexible character-
ization of performance goals.

• We present results on state-of-the-art commer-
cial RDBMS index recommenders and show that
there is substantial room for improvement.

• We identify a configuration that covers all single
column indexes as a very useful baseline for com-
paring against recommendations. In fact, the
consistently good performance of the single col-
umn configuration suggests a practical improve-
ment for RDBMS index recommenders: do not
overlook the potential gains brought by single
column indexes.

The single column indexing approach that we dis-
cuss here can be viewed as an extreme case of schema
design by vertical partitioning. We note that there
has been work on autonomic schema design tools that
use vertical partitioning [11], but without considering
the recommendation of indexes.

We introduce a framework for evaluating auto-
nomic indexing tools in Section 2, followed by a
description of the challenges and the approach we
choose in designing a benchmark in Section 3. We
present our initial experimental results in Section 4,
followed by a more detailed analysis of the recom-
menders performance in Section 5. Finally, we con-
clude in Section 6.

2 Evaluation Framework

In this section we describe the framework used to
evaluate the performance of an index recommender.
We start by describing the task that a recommender
performs as well as the factors in the RDBMS envi-
ronment that affect the recommendations. We then
present some basic definitions and notation for char-
acterizing costs and performance goals.

2.1 Recommender Task

In broad terms, the basic task of an index rec-
ommender is to select a new configuration for the
RDBMS system that improves the performance of
that the system exhibits when executing a workload.
Alternatively, the recommender can be given a perfor-
mance target and it should find a configuration where
the target is reached. The selected recommendation
can be applied by the recommender itself, or the user
may be given the option to accept or reject the rec-
ommended change in configuration. To produce a
recommendation, the recommender has to: (1) assess

3



the cost of executing a workload in a given config-
uration; (2) assess the cost of changing the system
configuration; (3) search among possible system con-
figurations to find a better performing configuration,
given some constraints (such as a budget for changing
configurations).

The most relevant aspect of the system configura-
tion for an index recommender is, not surprisingly,
the set of indexes available. However, a number of
additional aspects can be considered part of the con-
figurations being recommended such as data place-
ment or the selection of materialized views [1, 17]).

There needs to be some definition of the perfor-
mance goal that a recommender is trying to reach
or improve upon. This goal can be a simple number
(the execution time of a workload) or a more compre-
hensive (perhaps multidimensional) measure of over-
all system performance. The workload can also be
defined in a variety of ways. The recommender may
assume a known workload: the queries (and updates)
together with their frequencies are given in advance.
There may be a component in charge of automati-
cally providing such a workload to the recommender
based on observing the RDBMS operation [3]. Alter-
natively, there may be a describable set of potential
queries that are candidates for workloads.

The RDBMS environment that influences the rec-
ommender task includes the instance of the data (or
a summary description of the database instance, such
as selected statistics), the parameters selected for the
RDBMS engine as well as the engine itself (the sup-
ported query plans and the operators implemented),
and all aspects of the physical data storage (includ-
ing not just indexes, but also the layout of the data
in the storage medium, replicas, materialized views,
and so on).

2.2 Costs and Performance Goals

Notation. Let us denote by Ci the configuration
(i.e., set of indexes, materialized views, etc.) of a
system in state i. There is a set of possible config-
urations Cj1 , Cj2 , . . . , Cjn that the recommender can
possibly select for the next system state j, and one
actual selected recommendation Cj = Cjm for some
m.

Consider qk ∈ F , where F is the family of queries
(or updates) that the system may execute. We de-
note by A(qk, Ci) the actual cost (a measure) of the
system executing query qk in configuration Ci. Sim-
ilarly E(qk, Ci) denotes the estimated cost of execut-
ing query qk in configuration Ci. Finally, AT (Ci, Cj)

Figure 4: Behavior of system A on NREF2J.

is the cost of changing the system from configuration
Ci to configuration Cj , while ET (Ci, Cj) is the corre-
sponding estimated transition cost from configuration
Ci to Cj .

A workload is defined as a subset W ⊆ F of the
potential family of queries that the system may exe-
cute. Alternatively, it can also be defined as a bag,
in which case the repetitions can model queries with
a higher frequency or weight.

Given a workload W, we can measure the actual
performance of the system on a configuration Ci by
a single quantity A(W, Ci) =

∑
qk∈W A(qk, Ci) (to-

tal cost). Similarly, the estimated performance is
defined as E(W, Ci) =

∑
qk∈W E(qk, Ci) (total es-

timated cost).
Finally, we denote by CFCj the cumulative (rel-

ative) frequency of the elapsed times A(qk, Cj) for
qk ∈ W on configuration Cj , defined as:

CFCj (x) = count({qk : A(qk, Cj) < x})/size(W)

Figures 2 and 3 show the cumulative frequency of
the elapsed times of a 100-query workload for two
database configurations, as discussed in Section 1.1.
Contrasting cumulative frequencies of elapsed times
on a given workload is an objective and accurate way
of comparing different configurations; for instance,
Figure 4 compares three configurations, called P, 1C
and R (which will be explained later) on system A.
The figure shows that configuration 1C is superior to
both R and P: 57% of the queries take complete in up
to 1 minute (each) on configuration 1C, while for R
and P, only 35% and 27% (resp.) finish in 1 minute
or less.

A Model for Current Index Recommenders.
We can describe the behavior of the index recom-
menders incorporated in commercial RDBMS [7, 15]

4



using the framework discussed above. The RDBMS
index recommender takes as input a given work-
load W, including the relative frequencies of the
queries in the workload. The recommenders goal
is to select a configuration Cj that improves the
(frequency-weighted) total estimated cost of queries
E(W, Cj), subject to an estimated storage budget
(hence ET (Ci, Cj) uses storage as the measure). The
index recommender uses the RDBMS optimizer’s es-
timation capabilities to asses E(W, Cj). The opti-
mizer has to hypothesize statistics for Cj from the
statistics in the current configuration Ci. Since there
is a combinatorial space of possible index configu-
rations, the RDBMS index recommender relies on a
heuristic search to compute estimates for a subset of
the configurations.

Performance Goals. A performance goal for the
index recommender can be stated as a simple target
measure for the sum of the individual query execu-
tion measures over the queries in the workload. More
specifically, if the measure is elapsed time, then we
would have total elapsed time of executing the work-
load as the performance goal (for example, complete
the workload in less than two hours). Finer-grained
goals than total execution cost are usually more in-
formative: “naive folks will use the average response
time; more sophisticated specifiers will opt for the
90th or 95th percentile” [13].

A performance goal can also be stated as an im-
provement ratio IR = A(W, Ci)/A(W, Cj) where
Ci, Cj are the existing and selected configurations,
respectively. Continuing with the elapsed time ex-
ample, a goal could be to obtain a 10 times im-
provement (by decreasing elapsed times in the rec-
ommended configuration by an order of magnitude).

We note that performance goals can be a more elab-
orate than a single quantity. In fact, a performance
goal can be viewed as a quality of service require-
ment that specifies minimum levels of performance
that must be met by the system. Again, making use
of elapsed time as an example measure, consider the
performance goal below.

Example 2 A performance goal for the execution of
a set of queries can be to expect 10% of the queries to
complete in less than 10 seconds, 50% to complete in
less than 2 minutes, and 95% to complete before a 30
minute timeout. This goal can be described by a step
function:

G(x) = 0, x < 10
G(x) = 0.1, 10 ≤ x < 120
G(x) = 0.5, 120 ≤ x < 1800
G(x) = 0.95, x ≥ 1800

where seconds are used as units and we use values in
the (0, 1) interval instead of percentages.

A performance goal such as G above can be viewed
as a constraint in the shape of the cumulative (rela-
tive) frequency (CFCj

) of the elapsed times on con-
figuration Cj . A configuration Cj satisfies the perfor-
mance goal if CFCj

> G. For instance, in Figure 4,
configuration 1C satisfies the goal G above, while the
other two do not. Note that any monotonic function
G can be used as a performance goal in this setting.

3 Benchmark Design

There are a number of challenges in designing ex-
periments that can adequately evaluate the perfor-
mance of recommenders. We have to select a suitable
database and an instance that is part of the initial
configuration (or, more generally, a method for gen-
erating instances). Then, we need to provide a num-
ber of workloads W1, . . . ,Wk and goals and obtain
a corresponding number of recommended configura-
tions Cj1 , Cj2 , . . . , Cjk

. To evaluate the quality of the
configurations selected by the recommender we can
use reference configurations Ch1 , Ch2 , . . . , Chk

as ref-
erence points to compare A(Wl, Cjl

) to A(Wl, Chl
).

Valentin et. al [15] provide an example of a quali-
tative evaluation of an index recommender based on
the TPC-D version benchmark. The database and
initial configuration are as defined in the benchmark;
the 17 queries in the benchmark are used as the single
workload W, and an expert-tuned configuration Ch

is used as reference configuration. The results in that
work show that the recommender suggested a config-
uration Cj that performed as well as Ch in 14 out of
the 17 queries, which is a very encouraging result: the
comparison configuration used is expected to perform
extremely well and hence matching its performance
is quite an accomplishment. While this evaluation
is useful, it is important to realize that the TPCD
workload has only a small number of queries (that in
addition, are well-known to the RDBMS implemen-
tations).

Our approach to evaluate index recommenders ad-
dresses the challenges described above using two

5



mechanisms. First, we model query workloads as
query families, which are sets of queries that con-
tain a large number of related yet suitably diverse
queries. Second, we identify a single reference config-
uration that is used as the reference point in all the
workloads. Our reference configuration has a single
column index for each possible (indexable) column in
the schema (and we refer to it as 1C, for 1-column
index).

Design of the Query Families. The following cri-
teria were used for designing the families we use in
this work. First, the queries should have a mean-
ingful interpretation. One way to achieve this is by
grouping columns in the schema by domains, and al-
lowing joins on attributes in the same domain only.
For example, referring to the NREF schema in Fig-
ure 1, all attributes used for the scientific or common
names of proteins, species and organisms are in the
same broad domain and could be joined meaningfully.
Second, the queries should be simple enough for query
optimizers to have a good chance of handling them
well. To facilitate this, we use only select-project-join
SQL queries defining simple aggregate functions and
with at most one level of nesting. Third, queries that
require the materialization of large intermediate re-
sults should be avoided, as they could make irrelevant
the presence of indexes in the database. To achieve
this, we use additional selective predicates for each
query. Finally, the queries in the family should cover
a reasonable spectrum of query execution times, from
fast (e.g., subsecond respose) to slow (e.g., a timeout
after a reasonable long execution time).

In our experimental evaluation we use three
databases that are scaled appropriately to the com-
puting resources available in the desktop computing
environment we utilize. The databases selected are
the NREF database discussed in Section 1.1, TPC-
H [14], and a skewed version of the TPC-H [4], gen-
erated with a Zipfian factor of 1. Due to the ex-
ploratory nature of our motivating scenario, we focus
on queries that represent fragments of typical “ice-
berg” queries; that is, queries that compute aggre-
gate functions over a set of attributes to find aggre-
gate values satisfying certain conditions, grouped in
different ways. We note that although we have ex-
perimented with several families with a wide range of
characteristics, we summarize our results using two
families for the NREF database, and three families
for the TPC-H databases.

Family NREF3J. The first family, on the NREF
database, is a generalization of the self-join pattern in
the query described in Example 1. We pick a table R,
and a column c1 to define a self-join on R; then pick a
another table S, and column c2 (in the same domain
as c1) and join R.c2 with S.c3. Next, we choose up
to three other columns ci1 , . . . , ci3 in R and define a
group by that includes c1 as well. Finally, we add a
selection condition of the form S.c4 = k, where k is a
constant selected as follows. For each column in each
table, we pick three values k1, k2 and k3 that can be
used as the constant k such that k1 has the highest
selectivity for the column and the frequencies of k2

and k3 are one and two orders of magnitude (resp.)
greater than the frequency of k1. This is a template
for the family:

SELECT r1.ci1,...,r1.ci3,r1.c1,COUNT(DISTINCT r2.c2)
FROM R r1, R r2, S s

WHERE r1.c1 = r2.c1
AND r1.c2 = s.c3
AND s.c4 = k
GROUP BY r1.ci1,...,r1.ci3,r1.c1

Family NREF2J. Queries in the second NREF
family count co-occurrences of values (from the same
domain) in different tables. We pick tables R, S and
a column from each table (c1 and c2) such that these
columns are in the same domain; we then count the
number of co-occurrences of values by joining R.c1

and S.c2. Next, we pick up to three other columns
ci1 , . . . , ci3 in R to define a group by clause. Finally,
we further restrict the values of both R.c1 and S.c2 to
be relatively infrequent (i.e., occur less than 4 times)
in order to limit the size of the intermediate join
R ./ S. The template for this family is as follows:

SELECT r.ci1,...,r.ci3,r.c1, COUNT(*)

FROM R r, S s

WHERE r.c1 = s.c2
AND r.c1 in

(SELECT c1 FROM R GROUP BY c1
HAVING COUNT(*) < 4)

AND s.c2 in

(SELECT c2 FROM S GROUP BY c2
HAVING COUNT(*) < 4)

GROUP BY r.ci1,...,r.ci3,r.c1

Family SkTH3J. Queries in this family define
three-way joins on a 10GB TPC-H database gener-
ated with skewed data (using a Zipfian factor of 1).
For each query, we pick tables R, S and T ; define a
join R ./ S via primary key and foreign key corre-
spondences; define a join S ./ T via a pair of non-key

6



columns S.c1, T.c2 from the same domain; and de-
fine a selection condition θ(S.c3) on a column c3 of
S to limit the number of tuples in R ./ S. In this
family, θ(S.c3) is one of S.c = p or S.c IN (SELECT c

FROM S GROUP BY c HAVING COUNT(*)=p), and the param-
eter p is used to control the sizes of the intermediate
result R ./ S. Up to three θ(S.c3) are chosen such
that the final query results are not empty; also, the
three constraints selected cause the intermediate re-
sult sizes for R ./ S to take values k1, k2 and k3,
where k2 and k3 are one and two orders of magnitude
(resp.) greater than k1. Finally, each query returns a
COUNT(*) where the group is defined by choosing up
to 4 columns from relation T . This is a template for
the family:

SELECT t.ci1,...,t.ci4,COUNT(*)

FROM R r, S s, T t

WHERE r.cp1 = s.cf1 AND . . . AND r.cpj = s.cfj

AND s.c1 = t.c2
AND θ(s.c3)
GROUP BY t.ci1,...,t.ci4

Family SkTH3Js. This family, also defined for the
TPC-H database generated with skewed data, is a
simpler version of family SkTH3J in which R,S and
T are restricted to be chosen from Lineitem, Orders
and Partsupp. An additional simplification is that all
the θ(s.c) constraints are of the form S.c = p, where
the constants are chosen as before.

Family UnTH3J. The last family uses the stan-
dard version of a 10GB TPC-H database (where all
values are sampled with uniform distributions) and
its queries are the same as those in the family SkTH3J
above (except that different selection constants are
used).

4 Experimental Results

In this section we describe the setup used for the ex-
periments and we present our results.

4.1 Experimental Setup

We used two commercial RDBMSs running on four
Pentium 4 desktop PCs ranging from a 2GHz ma-
chine with 752 MB of RAM running Windows 2000
Server; to a 2.6GHz machine with 1GB of RAM run-
ning Windows XP. We choose to report here best re-
sults achieved by each system, regardless of the ma-
chine used.

Two sets of experiments were run. The first ex-
periment was run on the NREF benchmark and was
aimed at understanding the behavior of the systems
tested (which we call Systems A and B for this exper-
iment) on a realistic scenario, using real data. The
second experiment was run on both TPC-H bench-
marks and was aimed at verifying our observations
on a standard benchmark database, and to observe
the impact of uniform versus skewed data on the be-
havior of the index recommenders. We selected one
of the two systems for the second experiment, which
we will refer to as System C.

The results we discuss next are based on actual
executions of the query families in each benchmark.
In all cases, the queries are run in isolation, and
the machine is fully dedicated to running the experi-
ments. For obvious practical reasons, a timeout limit
of 30min is set for running each query; queries that
do not finish in that amount of time are reported as
“timeout”. We perform two additional runs on the
queries that do not timeout on a first run, and report
the average time of the three measures.

4.1.1 Query Workloads.

The families presented in Section 3 contain large
numbers of queries. For instance, NREF2J has
110,970 queries while NREF3J has 6,336 queries. We
adopt a number of practical restrictions to further
reduce the space of possible queries to consider. For
instance, only subsets of each relational schemas are
used in the queries: all non-indexable columns were
ignored and we did not use more than 4 columns per
table. Another restriction was to consider fewer selec-
tion criteria (thus, fewer queries) on the larger tables
on each database; similarly, we used fewer columns
in group by clauses on these tables.

Despite the reduction in size, running just both
NREF families on all configurations and systems re-
mains a daunting task: it may require (485 + 373)×
3 runs × 7 systems/configurations × 30min = 9, 009
hours or 375 days of machine use! The final reduction
was motivated by the desire to work with the same
(round) number of queries for all families: we sam-
pled 100 queries from each family, in a way that the
distribution of elapsed times of the larger family was
preserved. While the query families for the TPC-H
based benchmarks are substantially smaller (as fewer
meaningful joins can be defined in that schema), we
also work with samples of 100 queries for those fam-
ilies.

7



Benchmark System Size (GB) Time (min)

A NREF P 13.5 322
A NREF2J R 18.0 335
A NREF 1C 35.7 1171

NREF B NREF P 11.1 2161
B NREF2J R 14.6 117
B NREF3J R 15.1 281
B NREF 1C 17.1 1795

C SkTH P 21.4 959
C SkTH3J R 22.7 153

SkTH
C SkTH3Js R 21.8 576
C SkTH 1C 38.5 2860

C UnTH P 21.4 923
UnTH C UnTH3J R 23.2 901

C UnTH 1C 38.5 2197

Table 1: Sizes and build times of all configurations
used in the experiments.

4.1.2 Configurations Tested.

In each experiment, the initial configuration contains
only those indexes automatically created for the pri-
mary keys of each table; we call this configuration P
(for primary-key indexes only). The comparison con-
figuration is defined by adding to the P configuration
individual indexes on each indexable column in the
schema; we call this configuration 1C (for 1-column
indexes). One recommended configuration is used for
each query family in each experiment, produced by
the index recommender using: the P configuration as
starting point, a single query family as workload, the
difference in size of 1C and P as budget, and no limit
on the time the recommender is allowed to run.

As a convention, the system name is used as a
prefix for identifying configurations, and a “XXX R”
suffix, where XXX is the name of a query family,
is used for identifying the recommended configura-
tions; for instance, A NREF P refers to the P config-
uration on system A for the NREF database, while
B NREF2J R is the configuration recommended by
system B for query family NREF2J. Table 1 shows
the building times and storage required for all con-
figurations used in our tests.

The decision to define the space budget as above is
motivated by the desire to make 1C as comparable as
possible to the recommended configuration (the space
used by 1C is the same space available for the recom-
mendation). The space usage of 1C would be consid-
ered a high budget in many scenarios, which is gen-
erous to the recommenders; in fact, as Table 1 shows,
no recommended configuration uses as much space as
1C. (We also obtained recommendations with an un-
limited storage budget and in most cases observed no

Figure 5: Behavior of system A on NREF3J.

significant difference compared to those constrained
to a budget.)

We note that we were not able to obtain recom-
mendations for family NREF3J using system A. We
tried with a few other samples of 100 queries from
family NREF3J, as well as smaller workloads con-
sisting of 25, 12, 6, and 3 queries. While we verified
that we could obtain recommendations for several of
the smaller workloads, it did not make sense to pick
any such configuration to represent the missing rec-
ommendation for the 100 query workload.

Summary of Recommendations. Tables 2 and
3 show the number of indexes in each recommended
configuration for the NREF and TPC-H experiments,
respectively. Note that the recommendations for
SkTH3J and UnTH3J contain indexes on both base
tables and materialized views. For SkTH3J, 2 recom-
mended indexes were defined on materialized views of
Lineitem, while for UnTH3J, 12 of the 16 indexes rec-
ommended were defined on 9 materialized views over
the join of Lineitem and Partsupp.

4.2 Results on the NREF Benchmark

Recall the discussion in Section 2.2 about cumula-
tive frequency distributions, and how to use them for
comparing different configurations on the same sys-
tem and workload.

Figure 4 in Section 2.2 describes the behav-
ior of system A for family NREF2J. Besides the
substantial improvements in both A NREF 1C and
A NREF2J R relative to A NREF P, the figure
shows that the recommended configuration behaves
much closer to A NREF 1C for queries that require
more than 177 seconds to complete. Figure 5 shows
the result of System A on family NREF3J. The graph

8



A NREF2J R B NREF2J R B NREF3J R
Table

1c 2c 3c 4c 1c 2c 3c 4c 1c 2c 3c 4c
Identical seq 1 2 1 1 6
Neighboring seq 3 1 1 1 1
Organism 5
Protein 1 1 1 1
Source 1 1 1 1 1
Taxonomy 2 1 1 1 1 1

Totals 6 3 0 1 6 2 1 1 3 14 1 1

Table 2: Number of 1,2,3, and 4-column indexes in each recommended configuration for the NREF bench-
mark. No index with more than 4 columns was recommended.

C SkTH3Js R C SkTH3J R C UnTH3J R
Table

1c 2c 3c 4c 1c 2c 3c 4c 1c 2c 3c 4c
Lineitem 2 2 1
Orders 1 1 1 1 2
Partsupp 2 1 2
Supplier 1
2 Views on Lineitem N/A N/A N/A N/A 1 1 N/A N/A N/A N/A
9 Views on Lineitem ./ Partsupp N/A N/A N/A N/A N/A N/A N/A N/A 2 3 4 3

Totals 5 2 0 0 3 3 1 1 4 5 4 3

Table 3: Number of 1,2,3, and 4-column indexes in each recommended configuration for the TPC-H bench-
marks. No index with more than 4 columns was recommended. Also, no indexes on Customer or Part were
recommended.

Figure 6: Behavior of system B on NREF2J.

shows a more pronounced difference in performance
for the P and 1C configurations than before: on 1C,
59% of the queries finish in less than 6 seconds (each),
while on P, 60% of the queries may take as long as
1780 seconds to complete. Another way of looking at
these numbers is: it takes 98 seconds to complete 60%
of the queries on 1C, while it takes 4 hours and 45
minutes to complete 60% of the queries on P: an im-
provement of 174 times! As discussed above, despite
the vast benefit provided by indexes, system A was
unable to produce a recommendation for this family.

Figures 6 and 7 show the behavior of system B
on families NREF2J and NREF3J, respectively. As

Figure 7: Behavior of system B on NREF3J.

one can see, the performance of the recommended
configuration for query family NREF2J is almost in-
distinguishable from that of the P configuration. In
family NREF3J, the recommended configuration per-
forms relatively better, but the gap it exhibits to the
1C configuration is still significant.

In summary, the 1C configuration was always (and
sometimes far) superior to both P and the recom-
mended configurations we found. Moreover, a careful
look at Figures 5 and 7 shows wide gaps between
the P and 1C configurations, indicating large poten-
tial performance improvements by the use of indexes.
Therefore, we arrive at the surprising observation

9



Figure 8: Behavior of System C on SkTH3Js.

Figure 9: Behavior of System C on SkTH3J.

that both recommenders may fail to improve on the
P configuration even when the potential for improve-
ment is considerable.

4.3 Results on the TPC-H Bench-
marks

We note that the behavior observed for the NREF
benchmark is consistent with the behavior observed
on the synthetic datasets (Figures 8, 9 and 10). No-
tably, the 1C configuration is very competitive with,
and most of the times far superior to the recom-
mended configurations. This happens, despite the
fact that some of the recommendations use even non-
trivial materialized views defined on joins of base
tables, which makes the relative performance of 1C
truly remarkable.

The only recommendation in all our experiments to
outperform 1C (even though only for a small fraction
of the workload) was obtained on family SkTH3Js
(see Figure 8). A comparison of Figures 8 and 9 shows
a sharp contrast between the behavior of System C
for the simpler and the “generalized” 3-way join fam-

Figure 10: Behavior of System C on UnTH3J.

ilies in the TPC-H benchmark. This emphasizes the
dependence of the index recommender on the input
workload.

Another interesting observation can be made by
comparing the behavior of the recommender on
skewed versus uniform data. Contrast the recommen-
dations for SkTH3J and UnTH3J (Table 3) and the
relative performance of these configurations in Fig-
ures 9 and 10. Clearly, the recommender did perform
much better for the uniformly distributed data. Nev-
ertheless, the 1C configuration still proved the best
overall.

Finally, given that the recommender considers the
overall workload performance, and not the distribu-
tion of the individual query execution times, it is in-
formative to present overall numbers for one work-
load. Consider the results of running SkTH3J on the
configuration P. We observe that the total execution
time for the queries that do not timeout is 34461 sec-
onds, while there are 78 queries that timeout (taking
at least 1800 seconds each). While we do not know
how long timeout queries could take, we can use the
timeout value to obtain a lower bound for the exe-
cution of workload SkTH3J on P of 174,861 seconds.
A similar calculation gives lower bounds for the exe-
cution of workload SkTH3J on the configurations 1C
and R of 5445 and 91019 seconds, respectively. Keep
in mind, though, that 1C has only one timeout query
while P and R have 78 and 50 timeout queries respec-
tively (hence the lower bound is much tighter on 1C
than on R and P). Thus, a very conservative overall
workload assessment results in 1C producing almost
17 times better results than R!

10



5 Recommender Evaluation

Recall the discussion in Section 2.2. Current RDBMS
index recommenders take three inputs: an existing
system configuration Ci, a query workload W, and a
space budget B that limits the size of the recom-
mended configuration. Recommendations are pro-
duced by performing a heuristic search on the space of
possible configurations Cj1 , . . . , Cjn that satisfy the
budget B, while minimizing the estimated cost of ex-
ecution of (possibly a sample of) the workload W.
That is, none of the configurations considered by the
index recommender are actually built during the rec-
ommendation phase. The estimated performance of
a given hypothetical configuration Cx considered by
the index recommender is obtained by feeding the
RDBMS query optimizer with parameters that de-
scribed Cx (e.g., statistical information about indexes
in Cx). The parameters describing Cx are also esti-
mated using the query optimizer [5, 9].

Given that query optimizers are also heuristic
tools, the model described above has several prac-
tical advantages. Most notably, it avoids potential
mismatches in estimated query costs for a given con-
figuration, as the same estimator (i.e., the query op-
timizer) is used for both the index recommender and
the RDBMS. In practice, this eliminates the risk of
having indexes that are recommended but never used.
However, the model relies extensively on the RDBMS
query optimizer producing accurate estimates for
costs of executing queries and also for the various pa-
rameters describing the hypothetical configurations
enumerated by the index recommender. This de-
pendency is a potential limitation of the model as
it is well known that the quality of such estimates
degrades severely as more operations are performed
[8].

We note that there has been work on improving the
accuracy of estimates based on observing actual ex-
ecution costs; LEO, the learning optimizer described
in [10], is an example of a technique that has been
shown to improve estimates on a commercial opti-
mizer. However, this approach has its own limita-
tions, as LEO depends on observed executions in the
current system configuration, thus, it is not clear how
it could be used for improving the estimates for hy-
pothetical configurations (as there are no executions
to observe on them).

Another potential limitation of the model is that
it is founded on the assumption that estimated costs
(seen by the index recommender) of hypothetical con-
figurations are identical to estimated costs on those

Figure 11: Estimated improvement achieved by
changing from B NREF P to B NREF3J R.

configurations if they were implemented. That is, the
index recommender has an accurate picture of how
each hypothetical configuration would behave if im-
plemented. Based on this assumption, we use the es-
timated query execution costs given by the RDBMS
to compare the expected (as seen by the index rec-
ommender) and the actual improvements achieved by
the various configurations we used.

5.1 Estimated and Actual Improve-
ments

We define the estimated improvement of query qk

when moving from configuration Ci to configura-
tion Cj as the ratio EI (qk) = E(qk, Ci)/E(qk, Cj);
similarly, the actual improvement of changing be-
tween configurations Ci and Cj is AI (qk) =
A(qk, Ci)/A(qk, Cj). (Actual improvements for time-
out queries are defined as follows; if qk does timeout
in both Ci and Cj , then AI (qk) = 1; if qk does time-
out on Ci only, we define AI (qk) to be “+∞”; finally,
if qk does timeout on Cj only, then AI (qk) is “−∞”.)

Recall Figure 7 (page 9) showing the behavior of
the three configurations for family NREF3J on Sys-
tem B. Figure 11 shows a distribution of the queries
in that family by their estimated improvements when
moving from P to the configuration recommended by
System B. In other words, by the assumption dis-
cussed above, the figure shows the best improvements
that the index recommender believed would be ob-
tained by any configuration within the given budget.
Figure 12, on the other hand, shows the actual im-
provement achieved by changing the same configura-
tions. Note that we report one query with an “infi-
nite” actual improvement.

We will focus our discussion on improvements (or
losses) of more than one order of magnitude. Hence,

11



Figure 12: Actual improvement achieved by changing
from B NREF P to B NREF3J R.

Figure 13: Improvements on family NREF3J for Sys-
tem B.

we ignore the queries whose improvement lie in the in-
terval (0.1,10) and we highlight the remaining queries
by shading their bins in Figures 11 and 12. The
lines in these two figures show the decreasing cumu-
lative histograms corresponding to the shaded por-
tion of the histogram. The decreasing cumulative
histograms allow us to read in Figure 12 that 17%
of the queries had an actual improvement of 10 times
or more, while 2% of the queries had an actual im-
provement of 100 times or more.

The decreasing cumulative histograms described
above can be superimposed for comparing estimated
and actual improvements of more than one configu-
ration as well. Figure 13 compares the estimated and
actual improvements for the 1C and B NREF3J R
configurations relative to the P configuration. The
graph shows that the actual relative improvement of
configuration B NREF3J R is very close to the es-
timated improvement observed by the index recom-
mender. However, the actual improvement achieved
by the 1C configuration is far greater than what is
estimated; this means that even if the 1C configura-

Figure 14: Improvements on family SkTH3J for Sys-
tem C.

Figure 15: Improvements on family UnTH3J for Sys-
tem C.

tion was considered by the index recommender, its
benefits would have been underestimated. Figure 14
shows a similar analysis for the three configurations
tested with System C for the SkTH3J family (recall
Figure 9 on page 10). Note that in this case, the bene-
fits of both 1C and C SkTH3J R as seen by the index
recommender are grossly underestimated. A similar
behavior is observed for the configurations using the
uniform TPC-H data as well (Figure 15).

6 Conclusions

This paper introduced a novel framework for a quali-
tative assessment of the performance of index recom-
menders. We propose a broader notion of workload
performance, large and diverse query workloads de-
scribed by families of similar queries, and we iden-
tify comprehensive single column indexing as a very
useful baseline comparison configuration. Using this
framework, we describe three benchmarks using real

12



and synthetic data and several classes of families
which are used to provide the first assessment of cur-
rent commercial index recommendation tools.

We believe that the extensive experimental results
we report have substantial value as they not only
confirm the practical applicability of the approach
proposed, but also demonstrate that improvements
of several orders of magnitude can still be achieved.
Conducting extensive experimental evaluations are a
first step towards assessing and improving the effec-
tiveness of existing relational recommenders. The
value of these experiments extends also to recently
proposed XML-based recommender tools [12].

We can also regard the experimental data collected
from our experiments as the missing observation step
in the observe-predict-react loop applied to autonomic
indexing. Current recommenders predict based on es-
timates and hypothetical configurations and react by
recommending a new configuration but there is no at-
tempt to observe the actual cost of query execution.

Finally, our use of histograms to characterize per-
formance goals highlights the value of recommender
systems that can accept quality of service goals spec-
ified as performance histograms.

Acknowledgments. This work was supported in
part by grants from the Natural Science and Engi-
neering Research Council of Canada. D. Barbosa was
supported in part by an IBM PhD. Fellowship.

References

[1] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Au-
tomated Selection of Materialized Views and Indexes
in SQL Databases. In VLDB, 2000.

[2] H. Boral and D. J. DeWitt. Database machines: An
idea whose time has passed? a critique of the fu-
ture of database machines. In Proceedings of the In-
ternational Workshop on Database Machines, 1983.
Reprinted in Parallel Architectures for Database Sys-
tems. IEEE Computer Society Press, 1989.

[3] S. Chaudhuri, A. K. Gupta, and V. Narasayya. Com-
pressing sql workloads. In SIGMOD. ACM Press,
2002.

[4] S. Chaudhuri and V. R. Narasayya. TPC-D Data
Generation with Skew. Available via anonymous
ftp from ftp.research.microsoft.com/users/

viveknar/tpcdskew.

[5] S. Chaudhuri and V. R. Narasayya. An efficient cost-
driven index selection tool for microsoft sql server. In
VLDB. Morgan Kaufmann Publishers Inc., 1997.

[6] S. Chaudhuri and V. R. Narasayya. AutoAdmin
’What-if’ Index Analysis Utility. In SIGMOD, 1998.

[7] S. Chaudhuri and V. R. Narasayya. Microsoft Index
Tuning Wizard for SQL Server 7.0. In SIGMOD,
1998.

[8] Y. E. Ioannidis and S. Christodoulakis. On the prop-
agation of errors in the size of join results. In SIG-
MOD, 1991.

[9] S. S. Lightstone, G. Lohman, and D. Zilio. To-
ward Autonomic Computing with DB2 Universal
Database. ACM SIGMOD Record, 31(3), 2002.

[10] V. Markl, G. M. Lohman, and V. Raman. LEO: An
Autonomic Query Optimizer for DB2. IBM Systems
Journal, 42(1), 2003.

[11] S. Papadomanolakis and A. Ailamaki. Au-
topart: Automating schema design for large scientific
databases using data partitioning. In Proceedings of
the 16th International Conference on Scientific and
Statistical Database Management, 2004.

[12] K. Runapongsa, J. M. Patel, R. Bordawekar, and
S. Padmanabhan. XIST: An XML Index Selection
Tool. In XSym, 2004.

[13] T. Sawyer. Doing your own benchmark. In J. Gray,
editor, The Benchmark Handbook for Database and
Transaction Systems (2nd Edition). Morgan Kauf-
mann, 1993.

[14] Transaction Processing Performance Council. TPC
Benchmark H - Decision Support, 1999. Revision
1.3.0.

[15] G. Valentin, M. Zuliani, D. C. Zilio, and A. S.
Guy Lohman. DB2 Advisor: An Optimizer Smart
Enough to Recommend its own Indexes. In ICDE,
2000.

[16] C. H. Wu, H. Huang, L. Arminski, J. Castro-Alvear,
Y. Chen, Z.-Z. Hu, R. S. Ledley, K. C. Lewis, H.-
W. Mewes, B. C. Orcutt, B. E. Suzek, A. Tsugita,
C. R. Vinayaka, L.-S. L. Yeh, J. Zhang, , and W. C.
Barker. The protein information resource: an in-
tegrated public resource of functional annotation of
proteins. Nucleic Acids Research, 30, 2002.

[17] D. Zilio, C. Zuzarte, S. Lightstone, W. Ma,
G. Lohman, R. Cochrane, H. Pirahesh, L. Colby,
J. Gryz, E. Alton, D. Liang, and G. Valentin. Recom-
mending Materialized Views and Indexes with IBM
DB2 Design Advisor . In Proceedings of the Interna-
tional Conference on Autonomic Computing, 2004.

13


