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Abstract
We describe a mixture density propagation algorithm to estimate 3D human motion in monocular video

sequences, based on observations encoding the appearance of image silhouettes. Our approach is discrimi-
native rather than generative, therefore it does not require the probabilistic inversion of a predictive obser-
vation model. Instead, it uses a large human motion capture data-base and a 3D computer graphics human
model, to synthesize training pairs of typical human configurations, together with their realistically rendered
2D silhouettes. These are used to directly learn the conditional state distributions required for 3D body pose
tracking, and thus avoid using the 3D model for inference (the learned distributions obtained using a dis-
criminative approach can also be used, complementary, as importance samplers, in order to improve mixing
or initialize generative inference algorithms). We aim for probabilistically motivated tracking algorithms
and for models that can estimate complex multivalued mappings common in inverse, uncertain perception
inferences. Our paper has three contributions: (1) we clarify the assumptions and derive the density prop-
agation rules for discriminative inference in continuous, temporal chain models; (2) we propose flexible
representations and algorithms for learning multimodal conditional state distributions, based on compact
Bayesian mixture of experts models; and (3) we demonstrate our algorithms by presenting empirical results
on real and motion capture-based test sequences and by comparing against nearest-neighbor and regression
methods.

Keywords: density propagation, mixture modeling, hierarchical mixture of experts, 3D human tracking,
Bayesian methods, sparse regression.

1 Introduction and Motivation

We consider the problem of tracking and reconstructing (inferring) 3D articulated human motion
in monocular video sequences. This is a challenging research topic with a broad set of applica-
tions for scene understanding, but our argument applies generally to temporal estimation problems.
Approaches to tracking and modeling can be classified as generative and discriminative. They are
similar in that both require a state representation, here a 3D human model with kinematics (e.g.
joint angles) and/or shape (e.g. surfaces or joint positions) and they both use a set of image fea-
tures as observations for state inference. Their computational goal is also common: the conditional
distribution (or a point estimate) for the model state, given image observations.

Generative algorithms require a constructive form of the the observer (the observation like-
lihood or cost function) and explicitly use the 3D model for inference. This process is complex
and searches the state space in order to locate the peaks of the likelihood (e.g. using non-linear
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optimization or sampling). Then Bayes’ rule is used to compute the model state conditional from
the observation conditional and the state prior. Learning in these frameworks can be both unsu-
pervised and supervised. This includes priors on the state [14, 21, 47], dimensionality reduction
[10, 61, 63, 50] or learning the hyperparameters of the observation model (e.g. texture and color,
ridge or edge distributions using problem-dependent, natural image statistics, etc.) [20, 46, 43].
Temporal inference (tracking) is framed in a clear probabilistic and computational framework, e.g.
mixture or particle filters and beyond [24, 47, 14, 54, 23, 56].

It has been argued that generative models can flexibly reconstruct complex unknown motions
and can naturally handle problem constraints. It has been counter-argued that both flexibility and
modeling difficulties lead to expensive, highly-uncertain inferences [14, 47, 54, 51], and that a
constructive form of the observer is somewhat indirect with respect to the problem at hand, which
requires conditional state estimation and not conditional observation modeling.

These arguments motivate the complementary study of discriminative algorithms [9, 35, 45,
42, 3, 2, 16], that aim to estimate the state conditional directly in order to simplify inference. For
this purpose, they work supervised and use a set of examples (samples), �����������
	����������������������

, from the joint distribution of typical 3D human configurations � paired with their 2D
image appearance (i.e. observations) � , focusing on modeling only this ‘relevant’ data distribution.
Inference, on the other hand, involves missing data, unlike learning that is supervised. But learning
is also difficult, because modeling perceptual data often produces highly multimodal distributions.
[47, 51, 50].1 While this implies that, strictly, the inverse mapping from observations to states is
multi-valued and cannot be functionally approximated, several methods aimed to do so [45, 5, 35,
60, 3, 2]. Some authors constructed data structures for fast nearest-neighbor retrieval [45, 5, 60, 35]
or learned regression parameters [3, 2, 16]. Inference involved either indexing for the nearest-
neighbors of the observation and using their state for locally weighted predictions, direct prediction
using the learned regressor parameters [3, 2, 16], or affine reconstruction from joint centers [33, 57,
35].

Among discriminative methods, a notable exception is [42], who clustered their dataset into soft
partitions and learned functional approximations (e.g. perceptrons or regressors) within each. How-
ever, clusterwise functional approximation [40, 13, 42] is only going halfway towards a multivalued
inversion, because inference is not straightforward. The problem is that the model represents the
joint distribution and not the conditional. Therefore, for new inputs, cluster / perceptron member-
ship probabilities cannot be computed as during (supervised) learning, because the state is missing.
The learned mixture coefficients are not useful either because they are (the fixed) averages over the
training set. Therefore it is not clear what approximator or set of approximators to use for any new
observation. Various post-hoc strategies based on finding input cluster neighbors may be used, but
these fall out of the estimated model that is not optimized to consistently compute such queries.
On the other hand averaging across different cluster predictors can give poor results (see fig. 2 for
a discussion). Nevertheless, clusterwise regression [40, 13, 42] is useful as a proposal mechanism,
e.g. during generative inference based on quadrature-style Monte-Carlo approximations and indeed
this is how it has been primarily used [42]. A related method has been proposed by [31], where
a mixture of probabilistic PCA is fitted to the joint distribution represented as silhouette features
in multiple views paired with their 3D pose. Reconstruction is based on MAP estimates. In this

1This reflects the structure of the problem and not a particular modeling. E.g. think of conversations observed from
a side, where gestures pointing towards or away from the camera are common. Humans can initiate a large variety of
motions starting from passive (e.g. stand-up) positions. Many state trajectories will intersect and produce ambiguity in
such regions.
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imaging setting the state conditional could be unimodal, but missing data makes inference (i.e.
conditional computation) non-trivial, demanding in principle, an application of Bayes’ rule and
marginalization (see our � 2.2.3).

To summarize, it has been argued that discriminative models can provide fast inference and can
interpolate flexibly in the trained region. But they can fail on novel inputs, especially if trained
using small datasets. Increasing the training set or the complexity of motion inevitably leads to
multimodal state conditionals (see also our � 3). But learning such distributions is difficult and
most exiting methods [45, 60, 31, 3, 2, 16] are unimodal. Finally, discriminative methods lack a
clear probabilistic temporal estimation framework that has been so fruitful with generative models
[24, 14, 46, 54]. Existing tracking algorithms [41, 60, 3, 2, 16] involve per-frame state inference,
possibly using estimates at previous timesteps [60, 3, 2, 16], but do not rely on a proved set of inde-
pendence assumptions or propagation rules. What distributions should be modeled and how should
they be combined for optimal solutions? This problem is non-trivial and the answer has important
implications for the correctness of tracking results.

The work we present has three contributions:

1. We propose a probabilistic framework and derive the density propagation rules in discrim-
inative, continuous, temporally chained models. There exist, of course, belief propagation
algorithms [39, 23, 56] that in principle apply to any graphical model. However, they haven’t
been used in a discriminative tracking framework and we are not aware of prior work that
derived conditionals that are relevant for this problem. Also, differently from [23, 56], we
work parametrically to estimate and propagate mixtures.

2. We describe Bayesian conditional mixture of experts2 representations that allows flexible dis-
criminative modeling. Our algorithms are based on hierarchical [25, 29, 64, 7] and joint mix-
ture of experts [66, 62], which are elaborated versions of clusterwise or switching regression
[40, 13, 42], where the expert mixture proportions (called gates) are themselves observation-
sensitive predictors, synchronized across experts to give properly normalized state distribu-
tions for any input observation. Inference is simple and produces multimodal state condition-
als. Learning is different from [64] in that we use sparse greedy approximations, and differs
from [7, 62] in that we use type-II maximum likelihood Bayesian approximations [34, 59]
and not structured variational ones. The conditional state distributions we learn can also be
used as proposals, e.g. importance samplers (to initialize) in generative inference algorithms
[14, 47, 54, 51].

3. We demonstrate our methods for real and motion capture-based test sequences and give com-
parisons with nearest neighbor and regression methods.

2 Formulation

We work with discriminative graphical models with a chain structure, as shown in fig. 1, These have
continuous temporal states ��� , � � ���������

, prior � � � � � , observations ��� . For notational compact-
ness, we also consider joint states �	� � � � � 	�� � 	 ����� 	��
� � or joint observations ��� � ��� � 	 ����� 	 �� � .
Learning and inference is based on local conditionals: � � ����� �
��� � � , � � �
��� ��� � and � � ����� �
��� � 	 �� � .

2An expert is any function approximator, e.g. a perceptron or regressor.

3



2.1 Discriminative Density Propagation

Figure 1: A discriminative chain model (a, left) reverses the direction of the arrows that link the state
and the observation, compared with a generative one (b, right). The state conditionals � � � ��� �� � or
� � �
��� �
��� � 	 ��� � can be learned using training pairs and directly predicted during inference. Instead, a
generative approach (b) will model and learn ����� ��� �
� � and do a more complex probabilistic inversion
to compute � � � � � � � � via Bayes’ rule.

For filtering, we wish to compute the optimal distribution � � � � � � � � for the state � � , conditioned
by observations � � up to time � . The filtered density can be derived as:

��� �
��� � � � �
�������	�

��� �
��� �
��� � 	 �� � � � �
��� � � � ��� � � (1)

Proof

The following properties can be verified visually in fig. 1a, using a Bayes ball algorithm:

�
��
�
 � ��� � � �
��� � (2)

����
�
 � ��� � (3)

�
��
�
 � ��� � � �
��� � 	 �� (4)

� ��� � 
�
 � � (5)

In this model the observations are marginally independent. Notice how this is different from
a generative chain model (fig. 1b), where the observations are conditionally independent, given the
states.

� � �
��� � � � �
� � ��	�

� � �
��	��
��� � � � ��� � 	 �� � � (6)

�
� � ��	�

� � � � � � ��� � 	�� ��� � 	 � � � � � � ��� � � � ��� � 	 � � � � (7)

�
� � ��	�

� � � � � � ��� � 	 � � � ��� � ��� � � � ��� � � (8)
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where in the last line we used:

(4) � � � � � � � ��� � 	�� ��� � 	 � � � � � � � � � � ��� � 	 � � �
(5) � � � �
��� � � � ��� � 	 ��� � � � � �
��� � � � ��� � �

In practice, we do estimation using the mixture conditionals for � � � ��� �
��� � 	 ��� � (a Bayesian
mixture of experts c.f . � 2.2) and the prior � � � ��� � � � ��� � � , each having, say � components. We
first integrate � �

pairwise products of Gaussians analytically. This requires the linearization of our
(generally) non-linear, but parametric (i.e. easily differentiable) state conditionals. The means of
this expanded posterior are clustered and the centers are used to initialize a reduced � -component
approximation that is refined using variational optimization [51].

A filtering propagation rule like (1) can also be derived for a generative chain model3 (fig. 1b)
[49], where we directly learn observation-based state conditionals � � � ��� �� � , to simplify inference:

� � �
��� � � ��� ��� �
��� �� �
� � �
� �

� � �����
� � �
��� �
��� � � ��� �
��� � � � ��� � � (9)

with normalization factor ����� � ��� � ������� � ��� � � and ��� �
� � ���
� ���	�

� � �
��� �
��� � � � � �
��� � � .
The form (9) shows a striking analogy with the generative propagation one [19, 24] (based

on which it is derived), except from the unpleasant state-dependent division (weighting) by � � � � �
that results from the application of Bayes’ rule to invert the generative conditional � ��� ��� �
� � . Over
long time series, ��� � � � approaches the state equilibrium distribution, under conditional dynam-
ics � � ����� �
��� � � and an approximation could be precomputed. But (9) remains more complex to
implement. It requires recursively propagating � � � ��� � � � and computing � � ��� � , two mixture sim-
plification levels (inside the integrand and outside it through the multiplication by � � � ��� ��� � ) and a
division (weighting) by ��� ��� � . On the other hand � � ����� �
��� � 	 �� � requires more training data because
of higher input dimensionality4 . It would be interesting to study such practical trade-offs, as well as
the subtle difference between estimates based on discriminative and generative chain models (with
different independence properties [49]), but we will not pursue this here.

2.2 Bayesian Mixture of Experts (BME)

This section describes our methodology for learning multimodal conditional distributions for dis-
criminative tracking (e.g. ��� ����� �
��� � � , � � �
��� ��� � or � � ����� �
��� � 	 �� � in � 2.1). Our proposal is motivated
by the fact that many perception problems like reconstruction or tracking involve the recovery of
inverse, intrinsically multivalued mappings. Static or dynamic state estimation ambiguities trans-
late into multimodal conditional distributions in fig. 1. To represent them, we use several ‘experts’
that are simple function approximators. The experts transform their inputs5 into output predictions
that are combined in a probabilistic mixture model based on Gaussians centered around them. The

3Notice that ‘explaining away’ [28] prevents a simple factorization of �
	��
�
 �
���	�

���
�
�

in (1), corresponding to the
discriminative chain model in fig. 1a, based on �
	��

�
 �
�
�

and �
	��
�
 �
�����

�
. While �

�����
and �

�
are marginally independent,

they become conditionally dependent when observing �
�
.

4In fact, (1) can be derived even more generally, based on a predictive conditional that depends on a larger window of
observations up to time � [49].

5The ‘inputs’ can be either observations �
�
, when modeling �
	��

�
 �
�
�
, states for �
	��

�
 �
�����

�
, or observation-state pairs

	��
���	�

���
�
�

for �
	��
�
 �
���	�

���
�
�
. The ‘output’ is the state throughout.
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model is consistent across experts and inputs, i.e. the mixing proportions of the experts reflect the
distribution of the outputs in the training set and they sum to 1 for every input. Some domains
can be predicted competitively by multiple experts and will have multimodal conditionals. Other
‘unambiguous’ inputs may be predicted by a single expert, with the others effectively switched-off,
having negligible probability (see fig. 2). This is the rationale behind a Bayesian mixture of experts
and provides a powerful mechanism for a contextual modeling of complex multimodal distributions.
Formally this is described by:

� � � � ��	�� 	�� 	�� � �
��
�	� ��
 ��� � � ��� � � � � ��	�� ��	�� � �� � (10)

where:


 ��� � � ��� � � ��� � ����� �� � � � ��� � � � �
(11)

� � � � ��	�� � 	�� � � ��� � � � � ��� ��� ��	�� � �� � (12)

Here � are input or predictor variables, � are outputs or responses, 
 are input dependent positive
gates, computed in terms of functions � ��� � � � � , parameterized by � � ( � should produce gates 
 within� � 	 ��� , functional choices are given in � 2.2.2 and � 2.2.3). Notice how 
 are normalized to sum to
1 for consistency, by construction, for any given input � . Also � are Gaussian distributions (12)
with covariances � � �� , centered at different ‘expert’ predictions, here kernel ( � ) regressors with
weights � � . The parameters of the model including experts and gates are collectively stored in� � ����� � 	�� � 	�� � 	�� � � � � � ������� � �

. As in many Bayesian settings [34, 59, 7], the weights
� � (and gates � � ), are controlled by hierarchical priors, typically Gaussians with 0 mean, and
having inverse variance hyperparameters ��� controlled by a second level of Gamma distributions.
This gives an automatic relevance determination mechanism [34, 59] that avoids overfitting and
encourages compact models with fewer non-zero weights for efficient prediction.

Learning the mixture of experts is somewhat complex, various models and algorithms are given
in the next sections. As in many prediction problems we optimize the parameters

�
to maximize

the log-likelihood of a data set, � � ����� � 	�� � � � � � �����������
, i.e. the accuracy of predicting �

given � , averaged over the data distribution. For learning, a full Bayesian treatment requires com-
puting posterior distributions over parameters and hyperparameters. Because exact computations
are intractable, we rely on approximations and design iterative Bayesian EM algorithms, based on
type-II maximum likelihood [34, 59]. These use Laplace approximation for the hyperparameters
and analytical integrate the weights, which in this setting become Gaussian [34, 59].

Our algorithms proceed as follows. In the E-step we estimate the posterior:

� � � 	 ��� � ��	�� � 	�� ��� � 
 ����� � � � ��� � � � 	�� � 	�� � �� � �� � � 
 ����� � � � � � � � ��	�� � 	�� � �� � (13)

This gives the probability that the expert � has generated the data, and requires knowledge of
both inputs and outputs (there is one

�
for each expert-training pair). In the M-step we solve

two optimization problems, one for each expert and one for its gate. The first learns the expert
parameters ��� �
	�� � � , based on training data � , weighted according to the current membership
estimates

�
(the covariances � � are estimated from expert prediction errors [64]). The second
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Figure 2: Experts and gates fitted using different models (see text). First two rows show results
using the model in � 2.2.2. The bottom two rows show results based on models in � 2.2.3. Notice
that the estimates for the experts are similar, but the gates are somewhat different. However, despite
minor inaccuracies, all methods produce well-fitted models, with output distributions close to the
original training set.

optimization teaches the gates 
 how to predict
�

.6 The solutions are based on ML-II, with greedy
(regressor weight) subset selection. This strategy aggressively sparsifies the experts by eliminating
inputs with small weights after each iteration [59, 32].

Inference is straightforward using (10). The result is a conditional mixture distribution with
components and mixing probabilities that are input-dependent.

In fig. 2 we explain the Bayesian mixture of experts modeling through an illustrative toy ex-

6Prediction based on the input only is essential for inference, where membership probabilities (13) cannot be com-
puted because the output is missing.
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ample. We show different models that use linear and Gaussian kernel experts, as well as different
gating functions, as presented in � 2.2.2 and � 2.2.3. Our dataset, shown also in [7], consists of about
250 values of � generated uniformly in � � 	 � � and then evaluated as � ��� � � �����	��
 ������� ���

, with�
drawn from a zero mean Gaussian with standard deviation 0.05. Notice that � ����� � � is multimodal.

The first two rows show a model fitted as in � 2.2.2 wheres the last uses a model described in � 2.2.3.
(a) First row, left shows the data colored by the posterior membership probability

�
(13) of three

expert kernel regressors. (b) First row, middle shows the gates 
 (11), as a function of the input (first
iteration), but also the three uniform probabilities that would be computed by a clusterwise regres-
sor [40, 13, 42]. (c) First row, right shows samples from a generative conditional model that has
not yet converged (second gate iteration corresponding to (b). Notice the overestimated variance
of the middle gate with excess contributions away from its true, central, input operating range. (d)
Second row, left gives the most probable expert as a function of the input as well as their weighted
average using the uniform mixing coefficients of the joint. (e) Second row, middle show the gates at
convergence (f) Second row, right shows 400 samples from the estimated model. (g,j) Third / Fourth
row, left shows the data fitting using a mixture of Gaussian kernel / linear regressors in � 2.2.3. (h,k)
middle and (i,j) right show the gates and data generated from the model. In (k) we also show the
mixing proportions of the joint, see � 2.2.3.

2.2.1 Mixture of Experts Modeling Assumptions

Conditional mixture of experts models differ in their assumptions about the input distribution and in
the way the (conditional) target is computed. Direct methods [25, 29, 64, 7] estimate the conditional
directly using EM double loop algorithms. Internal M-step iteration is often required (at least) for
estimating the gate parameters, see � 2.2.2. Other algorithms used variational approximations in or-
der to bound the conditional likelihood update and avoid iterative M-steps [26]. Direct conditional
methods often do not model the distribution over the inputs (fig. 3a), although this needs not be the
case. Indirect methods [66, 62] model the joint distribution and often represent their input stochasti-
cally (fig. 3b). The conditional can in principle be obtained from the joint [40, 13, 42], using Bayes’s
rule, conditioning and marginalization (see � 2.2.3). Earlier methods [42], however, assumed uni-
form inputs and did not compute a conditional. Instead, they clustered the joint distribution based
on the accuracy of expert (regressor, perceptron) predictions and worked with this representation.
In the next two sections we describe both direct conditional mixture of experts models and indirect
joint methods based on random regression and give their learning algorithms.

Figure 3: Graphical representations for two conditional models. (a) Left shows a direct conditional
model, whereas the variation in (a) middle) does not include a distribution over the inputs � ; The
model in (b) right) assumes both the inputs and the outputs are stochastic variables. See fig. 4 and
fig. 5 for details on possible instantiations.
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2.2.2 Bayesian Conditional Mixture of Experts

In this conditional mixture model, the data generation process assumes
�

datapoints are produced
by one of � experts, selected in a stochastic manner. This can be modeled by indicator (hidden)
variables � � ��� ������ � � � ������� � 		��� ������� ���

where �
�
���
� is 1 if the output datapoint � �
���

has been
produced by expert � and zero otherwise. The model has parameters and hyperparameters stored in�

, where
� � ����� �
	�� � 	�� � 	�� �� ��� � 	�� � ������� � ������� � �

, with � � , � � individual gate and expert
predictor parameters, we omit bias terms for clarity. The conditional probability of output � �����

(of
dimension � ) for input � ����� (of dimension � ) is a mixture model with � components:

� � � ����� � � ����� 	 � � �
��
� � � � ���

�
���
� � � �
��� 	���� � � � � ����� � � ����� 	�� �
	�� � �� � (14)

Figure 4: The graphical model for a conditional Bayesian mixture of experts.

The probability of each expert is a Gaussian centered at its prediction � � � ��� �
��� � , where � is
a vector of kernel functions:

� �
���
� � � � � ����� � � ����� 	�� �
	�� � �� � � � � � ����� � � � � ��� �
��� ��	�� � �� � (15)

The conditional (prior) probability of selecting expert � , given the input only, is implemented
using softmax. This ensures that the expert outputs are probabilistically consistent (positive and
sum to 1), for any given input:



�����
� � � ��� �
���� � � � � ����� 	�� ��� � �

������ �
� �"!$#%�
 �� � � �

���& � �'� �"!(# � (16)

The conditional (posterior) probability
� �����
� of selecting expert � , given both the input � �
��� and

the output � ����� , is:

� ������ � � ��� ������ � � � � �
��� 	 � �
��� 	�� � 	�� � 	�� ��� � 

�����
� � �����

� �� � � 

�
���� � �
���� (17)

The posterior is only available during learning. For inference (prediction) based on (14), the
learned prior (16) is used.

The gate and expert weights have Gaussian priors centered at zero, with variance controlled by
a second level of Gamma hyperpriors. This avoids overfitting and provides an automatic relevance
determination mechanism, encouraging compact models with few non-zero expert and gate weights,
for efficient prediction [34, 36, 59, 7]:
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� ����� � � � � �
��

� � � � ��� �� � � 	
�
� �� � (18)

� ��� ��� � ��� � ��� � �

��
� � � � ��� � �� � � 	

�
� �� � (19)

� ��� � � �
��

� � � Gamma � � �� � 	 	�
�� (20)

� � � � � �
��

� � � Gamma � � �� � 	 	�
�� (21)

Gamma ��� � 	 	�
 � � 
��� �  � � �
�
�����

� ��	�� (22)

The parameters ��	 	�
�� are set to 	 � � � � �
and 
 � � � ��� to give broad hyperpriors [7, 34, 36, 59].

We train our BME model in a maximum likelihood framework using EM. We work with a
complete data set � � 	�� � , including the observed training data � and the hidden variables � .
Given the current values of the parameters

�
, the E-step computes the distribution over the hidden

variables � ��� � � 	 � � . This is done using (17). The M step maximizes the expected value of the
complete data likelihood � ��� 	�� � � � . This EM scheme can be cast in a variational framework where
we optimize the ��� ��� � � � � divergence that involves the intractable joint � ��� 	�� 	�� 	���	�� � � � and
an approximate separable factorization � ��� 	�� 	�� 	�� 	�� 	�� � (dependency on input � is omitted):

� � � 	�� � ��� ��� 	�� 	�� 	�� 	�� 	�� � ��� ��� 	�� 	�� ��� ��� 	�� ��� ��� � (23)

This is equivalent to minimizing the variational free energy:

� ��� � �
�

� ��� 	�� 	�� 	�� 	�� 	�� � �"!$# � ��� 	�� 	�� 	�� 	���	�� �
� ��� 	�� 	�� 	�� 	�� 	 � � � � � � � � � � ��� (24)

where:

� ��� 	�� 	�� 	�� 	�� 	�� 	 � � �
��
� � � � ��� ��� � � � � � � ��� � � � � � � ��� � � � � �&% (25)

%('�� � � � ���
�
���
� � � �
��� 	������ � � � ����� � � ��� �
��� 	�� � �� �*) �"!$#� (26)

Optimizing � ��� 	�� 	�� � involves the computation of � Gaussian distributions for the weights
of each expert. One possibility, followed in [64] is to use a weight decay prior (corresponding to
ridge regression) and not an ARD mechanism. In this case, estimating the expert parameters leads
to convex least-squares problems whereas estimating the gates requires Laplace approximations.
Instead, we use sparse priors and this makes both problems non-convex. For the experts, we use
Laplace approximation for the hyperparameters ( � ) and analytically integrate the weights ( � ), that
in this setting become Gaussian [34, 36, 59, 58]. For the gates, we compute a set of � Gaussian
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distributions � ��� 	�� � using Laplace approximation, by maximizing the cross-entropy between the
posterior probability 
 and the posterior probability

�
(17) [29]. This is based on an iterative

procedure (the equations for the gates are coupled) that uses a second-order damped trust region
optimization method [18, 15] and not IRLS [29]. This double-loop algorithm is summarized below
[29, 64]:

1. E-step: For each data pair ����� ����� 	�� �
��� � ��� � �����������
compute posteriors

� ������ for each
expert ��� ������� � , using the current value of parameters ��� � 	�� � 	�� � 	�� � 	�� � � .

2. M-step: For each expert, solve weighted regression problem with data ����� ����� 	�� ����� � � � �������� � �
and weights

� ������ to update ��� �
	�� � 	�� � � . This involves Laplace approximation for
the hyperparameters and analytical integration for the weights and optimization with greedy
weight subset selection [59, 32].

3. M-step: For each gating network � , solve regression problem with data ��� �
��� 	 � ������ � to update
��� � 	�� � � . This involves maximizing the cross-entropy between 
 and

�
, with sparse priors on

the gate weights and greedy subset selection [59, 32]. We use Laplace approximation for the
hyperparameters and for the weights.

4. Iterate using the updated parameter values
� � ����� �
	�� � 	�� � 	�� � 	�� � � ����� ������� � �

.

2.2.3 Mixture of Experts based on Random Regression and Joint Density

A different approach to estimate a conditional distribution is to model the joint distribution over
inputs and outputs and then obtain the conditional using Bayes’ rule. While this model is somewhat
indirect, potentially wasteful of resources, i.e. more difficult to estimate due to higher dimension-
ality, working with a Gaussian mixture eases some of the computations, which in this case can be
performed analytically. Assume for generality, a full covariance mixture model of the joint distri-
bution over input-output pairs � � 	�� � , given by (33) and (35):

�
��� �

�������
� � �

��
� � �	� � � �
� �

�������
�	������� � 	

��� �� � ���� ��� � ���� ��� (27)

The conditional � � � � � 	 � � can be obtained from (27) using Bayes’ rule:

� � � � ��	 � � � � ����	�� � � �
� � ����	�� � � � � � (28)

The Gaussian family is closed under marginalization. This removes lines and columns for the
variables that are integrated. The numerator is obtained by Gaussian conditioning:

� � � � � 	 � � �
 �� � � � �	� ��� � ��� 	 � �� ��� � � � ���� � � ��� � � �� � � � ����� ��� ��	 � ���� � � ��� � � �� � � � � ��� � �� � � � � � ��� � � � 	 � �� � �

(29)

�
��
� � � � � � ��� � ��� 	 � �� � �� � � � � � ��� � � � 	 � �� � � � � � � �� � � ��� � � �� � � � ����� � � ��	 � ���� � � ��� � � �� � � � � ��� � (30)
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Working with a mixture mixture of regressors, further constrains the general form above. As-
suming a distribution over both inputs and outputs, the mixture of random regressions [44, 62] is
given by the graphical model in fig. 5. It is a constrained joint mixture model with component pro-

Figure 5: The graphical model of a joint mixture based on random regression.

portions � � , input means and covariance matrices � � � 	 � � � and expert parameters ��� � 	�� �
	�� ��� (as
in the conditional model of � 2.2.2).

For a mixture of random linear regressions model, with parameters
� � ����� �
	�� � 	�� � 	�� � �

� � �
	 � � 	 � ����� � � � ������� � �
, the joint distribution is:

�
�
� �

� �����
� � �

��
� � � � � �

� � �
� �����

� � �� � � � � 	
� � � � � �� � � � � � � � � � �� � � � � � � � � ���

(31)

The conditional distribution over the responses � , given the covariates � , in the mixture of linear
regressions model is:

� � � � � 	 � � �
��
� � � � � � ��� � � � 	 � � �� � �� � � � � � ����� � � 	 � � �� � � � � � � � � 	�� � �� � �

��
�	� � 
 ��� � � � ��� � � � � � ��	�� � �� � (32)

Proof: We write the joint distribution as a mixture model, with Gaussian input and output
marginal components:

�
��� �

��� ���
� � �

��
� � �	� � � ����� � � 	 � � �� ��� � � � � ����	�� � �� � � (33)

�
��
� � � ���� �����	�
 � � � � ��� � � � ��� ��� �������� � �� ����� � � � � � �
����� � � � � � � � � � � � � � �
� � � � ��� ��� (34)

Denote the quadratic form in the exponent of (33) as � , and rewrite it as:

��� � ��� � �� � � ��� � � � � � � �
x

��
�

x
� � � � � ��� � �� � � ��� � (35)
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� ��� � �
� � � � � � �

��� � � �
x

�� � � �
�
� � �
� � �

� � � � � � � (36)

� �
� ��� � �� � � � � � � � � � � � � ���

�
x
� �

�
� � � � � �

x

��
�

x
� � � � ��� � � �

x

�� � � �
�
� � ��� � �� � � � � � � (37)

�
� ��� � �� � � � � � � � � � � � � �� � � � � � � �� � �� � ��� � � � � � ��� � �� � � � � � � (38)

The joint covariance matrix for component � , � � is:

� � �
� � � � � � � � ��� � � � � � � �� � � � � � � � � �

�
� � � � � � ��� � � � � � � � ���� � � � � (39)

The joint distribution (33) can thus be shown to give (31), as claimed. However, at first glance,
it is not obvious why the conditional should have the form in (32). It indeed qualifies as a gate
function with mixing proportions that are positive and sum to 1. The mixing proportions � � of the
joint also appear inside the formula for the gates. Authors working with this form (32), e.g. [66, 62]
introduced it as as one convenient parametric choice of gate function, motivated by simplified es-
timation and improved input modeling, now measured with error (see fig. 4, fig. 5). Moreover, the
conditional (32) is precisely the distribution obtained from the joint (31) using Bayes’ rule. By
replacing the means and covariances of the mixture of linear regressions in (31) and (39), into (29),
we obtain (32). Therefore, estimating the joint model in (33) gives the necessary parameters for
computing the conditional using (32). To estimate the joint model, we introduce hidden variables
with similar interpretation as for the conditional in � 2.2.2. Then the joint distribution over param-
eters, hyperparameters and complete data � � 	�� � can be written, similarly with (25), using (33)
as:

� ��� 	�� 	�� 	�� 	�� 	�� 	 � � �
��
� � � ����� � � � ��� � � � � �&% (40)

% '�� � � � � � ����� �
��� � � � 	 � � �� � � � � �
��� � � � � ����� 	�� � �� � � )
� !(#�

(41)

The gate distribution is:



�����
� � ����� ������ � � � � ����� 	���� � � � � 	 � � 	 � � ��� � � � � ����� � � 	 � � �� � �� � � � � � ��� � � � 	 � � �� � (42)

Based on (13) and (42), the posterior distribution over the hidden variables is:

� ������ � � ��� ������ � � � � ����� 	 � ����� 	�� � 	�� � 	�� � 	 � �
	 � � 	 � � � � (43)

� � � � ��� � � � 	 � � �� ��� � � � � � ��	�� � �� � �� � � � � � ��� � � � 	 � � �� ��� � � � � � ��	�� � �� � (44)
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The mixing proportions, means and covariance update can be obtained by maximizing the cross-
entropy between the prior 
 and the posterior

�
[29, 66]:

� � � 
'� � � � �
����� (45)

� � � 
'� � � � ������ � �����
'� � � � ������ (46)

� � � 
'� � � � �
���� ��� �
��� � � � � ��� �
��� � � � � �

'� � � � �
���� (47)

1. E-step: For each data pair ����� �
��� 	�� ����� � ����� ������� � �
compute posteriors

� ������ (43), for each
expert ��� ������� � , using the current value of parameters ��� � 	�� � 	�� � 	 � �
	 � � 	 � ��� .

2. M-step: For each expert, solve weighted regression problem with data ����� ����� 	�� ����� � � � �������� � �
and weights

� ������ to update ��� �
	�� � 	�� � � . This involves Laplace approximation for
the hyperparameters and analytical integration for the weights. Optimization uses greedy
weight subset selection [59, 32].

3. M-step: For each gating network � , compute mixing proportions, means and covariances by
maximizing the cross-entropy between 
 and

�
. The updates are given by (45),(46) and (47).

4. Iterate using the updated parameter values
� � ����� �
	�� � 	�� � 	 � �
	 � � 	 � � � � ��� ������� � �

.

A note on mixture of experts algorithms. Both algorithms given in � 2.2.2 and � 2.2.3 are useful
for estimating compact conditional mixture of experts models. They are based on different assump-
tions randomness in the input and they have different computational demands. The conditional
model in � 2.2.2 requires internal M-step iterations when estimating the parameters of the gates.
But computing the gates for prediction has complexity

� �����
� � � � where � controls the sparsity

of each expert, e.g. ��� � ����� in our experiments. The random regression model � 2.2.3 gives a
somewhat simpler M-step when learning the gates although computationally this involves inverting
possibly large covariance matrices. Gate computation has

� ��� �	� � complexity (both these may be
simplified using sparsity priors on the input means and covariances, e.g. using Wishart distributions
[62], but the factor is cubic in the input dimension vs. quadratic in the direct conditional model).
These differences may not be significant for moderate input dimensions, but may be important when
training conditionals like ��� ����� �
��� � 	 ��� � , for high-dimensional state and feature spaces.

3 Experiments

This section describes our experiments as well as the training sets and features we use. We show
results on real and artificially rendered motion capture-based test sequences and give comparisons
with existing methods.

Training Set, Model Representation and Image Features It is difficult to obtain ground truth for
human motion and even harder to train using many viewpoints or lighting conditions. Therefore, to
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gather data, we use as others [42, 45, 3, 2, 60], packages like Maya (Alias Wavefront), with realis-
tically rendered computer graphics human surface models which we animate using human motion
capture [1]. Our human representation ( � ) is based on an articulated skeleton with spherical joints
and has 56 d.o.f. including global translation. Our database consists of about 3000 samples that
involve a variety of human activities including walking, running, turns, gestures in conversations,
quarreling and pantomime.

We have done an empirical analysis on how ambiguous a 2000 sample training subset is. This
is shown and discussed in fig. 6.
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Figure 6: Analysis of ‘multimodality’ for a training set (the ‘number of clusters’ axis on logscale):
(a) Left: � � ��� � ��� � (1912 clusters / 2000 points). (b) Right � � � ��� �
��� � 	 �� � (1912 clusters / 2000
points). (c) ��� ����� �
��� � 	 �� � (1409 clusters / 2000 points). We cluster the features and joint angle
vectors, independently, into a large number of clusters. We build histograms for the number of joint
angle clusters that fall under the same feature cluster. This quantifies how much ambiguity is there
in the database, at the feature and joint angle cluster scale. We select many clusters to simulate
the effect of small perturbations in the input. In those cases any feature neighbor (not necessarily
the desired one) may be the closest to an input silhouette query. The input neighborhood induces
a distribution over clusters of joint angles. We notice that even at this fine scale, the conditionals
are multimodal. Decreasing the number of clusters in (c) sharply increases multimodality. Work-
ing with the previous state and the current observation (middle and right plot) does not eliminate
ambiguity. This is not wild, but severe enough to cause tracking failure or significant errors during
initialization (so we observe in various tests). We expect increasing ambiguity for larger training
sets.

Our choice of image features is based on previously developed methods for shape and texture
modeling [12, 35, 6, 35]. We work with silhouettes and we assume that in real settings these can be
obtained using a statistical background subtraction method (we use one based on separately built
foreground and background models, using non-parametric density estimation [17] and motion seg-
mentation [8]). Silhouettes are informative for human pose estimation [48, 52], although prone to
certain ambiguities (e.g. the left / right limb assignment in side views) or occasional lack of observ-
ability of some of the d.o.f. (e.g.

��� ���
ambiguities in the global azimuthal orientation for frontal

views). These are multiplied by intrinsic forward / backward monocular ambiguities [54] that are
common in many human interaction scenarios.7 As image features, we use shape contexts extracted
on the silhouette [6, 35] (5 radial bins, 12 angular bins, with bin size range 1/8 to 3 on log scale).

7While no image descriptor set is likely to easily help discriminate them, this further motivates our probabilistic,
multiple hypothesis approach.
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We have also experimented with pairwise edge angle and distance histograms [4] collected inside
the silhouette. The features are computed at a variety of scales and sizes for points sampled on the
silhouette. To work in a common coordinate system, we cluster all features in the training set into
� ��� � clusters (in our experiments). To compute the representation of a new shape feature (a
point on the silhouette), we ‘project’ onto the common basis by (inverse distance) weighted voting
into the cluster centers. To obtain the representation ( � ) for a new silhouette we regularly sample
(about 100-200) points on it and add all their feature vectors into a feature histogram. This repre-
sentation is semi-local, rich and has been effectively demonstrated in many applications, including
texture recognition [12] or pose prediction [35, 45, 3, 2].

Figure 7: Affinity matrices for (from left to right, on each row) joint angles (JA), external contour
shape context (SC) and internal contour pairwise edge (PE) silhouette features: (a) Top row: side
walk. Notice the periodicity as well as the higher frequencies in the (SC) matrix caused by half-
cycle ambiguities for silhouettes; (b) Middle row: complex walk; Bottom row: conversations. The
joint angle and image features correlate far less.

Comparisons We compare our Bayesian mixture of experts (BME) conditional models with other
competing methods like weighted nearest neighbor (NN) or the relevance vector machine (RVM)
[59]. Our test set consists of a variety of human activities obtained using motion-capture and ar-
tificially rendered. This provides ground truth and allows us to concentrate on the algorithms and
factor out the variability given by the imperfections of our human model, or the noise in the silhou-
ette extraction in real images. The results are shown and discussed in (the caption of) table 1. In
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general our BME gives better average estimates and significantly lower maximum errors and the
errors can still be reduced. Since the tests do not use any form of temporal coherence, it is clear
that a multiple hypothesis tracker and smoother can significantly improve the results, especially for
a Bayesian multiple hypothesis method like ours, where we explicitly model uncertainty. It may be
the case that occasionally the incorrect mode was selected, but this may be far less often the case
in tracking, because of composing with the temporal prior. Various visual results for these tests
are shown in: fig. 8 (walking); fig. 9 (running); fig. 10 (complex walk); fig. 12,13 (conversations);
fig. 14 (pantomime).

Figure 8: Reconstruction of a walking sequence using � � ����� �
��� � 	 �� � . First row: original images;
Second row: reconstructed poses seen from the same viewpoint.

Real Image Sequences. Walking, Picking and Dancing We have also run Bayesian trackers on
different real image sequences with humans doing different activities like walking fig. 15, picking
fig. 17 and dancing fig. 19. We track using the propagation rule in (9) and mixture of experts in
� 2.2.3, with 5 hypotheses and the training set contains about 75 frames of side-viewed walking
among examples. Tracking walking is successful, here we show frames from a 3s sequence, 60fps.
Occasionally, there are leg assignment ambiguities that may confuse a unimodal tracker as can be
seen in the bottom row of fig. 15. Notice also that the affinity matrices for 3D joint angles and
for image features correlate quite well (fig. 7), far better that for other motions like conversations
or complex walking. This may give an intuition about the difficulty of learning various inverse
mappings for these activities.

In fig. 17, we show the result of tracking a real image sequence consisting of 2 seconds of
video, 60 fps. Our experiments involve both Bayesian single hypothesis tracking using a single
expert, propagated using (1), as well as multiple hypotheses tracking based on a BME model in
� 2.2.3, learned using 5 experts that are regressors with RBF kernels and degree of sparsity varying
between 5%-25%. We initially tested the single hypothesis tracker. This failed to track, as shown
in fig. 16, most likely because its input kernels stop firing due to an out-of-range input predicted
from the previous timestep. To factor out the effect of imperfect silhouettes or initialization8 and
to make sure that failure is due to motion or feature representation ambiguities, we also tried to

8In all cases, we initialize using the conditional �
	��
�
 �
�
�
, learned using BME. For single hypothesis tracking, we

select the most probable component.
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Figure 9: Tracking a ‘running’ sequence using ��� � ��� �
��� � 	 ��� � . First row: Original image sequence.
Second row: Reconstruction seen from the same viewpoint. Third row: Reconstruction seen from
a different synthetic viewpoint (notice how the right forearm slightly penetrates the body in the
second image on the bottom row).

track a similar sequence using artificially rendered images, generated from a similar motion in our
database. Even in that case, the single hypothesis tracker failed. In fig. 17 we show results from a
multiple hypothesis BME tracker, that successfully tracks and reconstructs the motion. While the
reconstruction is perceptually plausible, there are imperfections – e.g. notice that the knee of the
model is tilted outward whereas the knee of the human is tilted inward. In fact, we observe persistent
multimodality for those joints more actively moving, e.g. the right wrist, the right femur and the
right shoulder, which have, quite constantly, about 5 modes in their posterior. In general, in the
beginning of the sequence there is more ambiguity for almost all the joints, but it tends to fade away
during tracking. However, the joints that are occluded or very much project inside the silhouette
tend to have persistent ambiguities. Some relevant quantitative results are shown in fig. 18.

We conclude with some experiments where we track and reconstruct using a BME tracker based
on the propagation rule (1) and conditional model in � 2.2.2. We work with a more challenging
dancing sequence and include about 100 dancing examples in the training set. The results are
shown in fig. 19. Although the poses we reconstruct are not geometrically perfect and there are
some errors at the arms and legs, they give good perceptual results. Quantitative tracking results are
shown in fig. 20.

4 Conclusions

We have presented a mixture density propagation framework for temporal inference using discrim-
inative models. We argued that despite their success, existing methods do not offer a formal man-
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Figure 10: Tracking a complex ‘walking, shake hand and turning’ sequence using � � � ��� �
��� � 	 �� � .
First row: Original image sequence. Second row: Most probable reconstruction (hypothesis) seen
from the same viewpoint. Third row: the second most probable reconstruction (notice

��� � �
turn

ambiguities) as well as ambiguities of the arms and legs that very much resemble forward-backward
flipping ambiguities [54, 55].
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Figure 11: Joint angles for a complex walking sequence: (a), left shown in fig. 10 and conversation,
(b) middle and (c) right, shown in fig. 12,13. Notice that the bimodality in (a) cannot be resolved
by an RVM or NN estimator. Occasionally there are errors in the multiple hypothesis estimator,
but these are quite infrequent, about ��� , reflecting fundamental

��� � �
orientation ambiguities for

very similar input features. In many such cases the correct pose will be either the first or the second
most probable mode. Notice also �

� �
ambiguities in the conversation sequence (b) as apparent in

the second most probable mode.

agement of uncertainty and we explained why current representations cannot model multivalued
relationships that are pervasive in inverse, perception problems. We contribute by deriving the in-
dependence properties and discriminative density propagation rules in continuous, temporal chain
models, and by proposing compact Bayesian mixture of experts models capable of learning mul-
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Figure 12: Conversation sequence. Estimates obtained using � � � � � �� � . First row: Original image
sequence. Second row: Most probable reconstruction (hypothesis) seen from the same viewpoint.
Third row: Most probable reconstruction seen from a different viewpoint. Notice various recon-
struction errors. Similar configurations may be also found as local optima when doing inference
based on generative models. For silhouette features, many spurious peaks may be eliminated (or
significantly downgraded) using more consistent observation likelihoods [48, 52]. This is one ad-
vantage of constructive observation modeling in generative approaches.

timodal conditionals. These can be used both as building blocks within genuine discriminative
propagation rules, as we show, e.g. (1) or (9), and as importance samplers for generative inference
(e.g. state initialization or recovery from failure). We present results on real and synthetically gener-
ated image sequences and give comparisons against nearest neighbor and regression methods. Our
study suggests that flexible conditional modeling and uncertainty propagation are both essential for
successful tracking. We hope that this work will bring discriminative and generative tracking al-
gorithms closer and help stimulate a fruitful debate on their relative advantages, within a common
probabilistic framework.
Future Work We plan to do a detailed sensitivity analysis w.r.t. motions and shapes that deviate
from the training set. We will also study alternative, more compact state and feature representa-
tions based on dimensionality reduction and investigate scaling aspects for large motion capture
databases.
Acknowledgments: Cristian Sminchisescu wants to thank Allan Jepson for many insightful dis-
cussions on the topics presented in this paper. The authors acknowledge funding from NSERC,
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