
Removing False Code Dependencies to Speedup Software

Build Processes

Yijun Yu, Homy Dayani-Fard, John Mylopoulos
{yijun,jm}@cs.toronto.edu, homy@ca.ibm.com

University of Toronto, IBM Toronto Lab

Abstract

The development of large software systems in-
volves a continual lengthy build process that
may include preprocessing, compilation and
linking of tens of thousands of source code
files. In many cases, much of this build time is
wasted due to false dependencies between im-
plementation files and their respective header
files. We present a graph algorithm and a pro-
gramming tool that discovers and removes false
dependencies between files. We show experi-
mentally that the resulting preprocessed code
is more compact, thereby contributing to faster
build processes.

1 Introduction

Large software systems typically consist of a
number of source files. These codes include
headers (e.g., *.h) and implementations (e.g.,
*.c). The header files contain the necessary
program units for the implementation files.
Such units, in C, include external function dec-
larations, global variable declarations, struc-
ture definitions, enumerations and type defini-
tions. By including header files through pre-
processor directives (e.g., #include), an im-
plementation file creates dependencies on other
implementation files (or libraries) that facili-
tate the use of the program units in the in-
cluded headers. In an ideal scenario, an imple-
mentation file includes only the necessary defi-

nitions and declarations that it will use. How-
ever, due to lack of information and support-
ing tools, as a software system evolves, these
dependencies grow and result in excessive re-
dundant inclusions. While optimizing compil-
ers can remove such redundancies from the exe-
cutable binary image, the duration of the build-
ing process can drastically increase due to the
size of the preprocessed files.

While excessive inclusions and false depen-
dencies do not affect the functionality of a sys-
tem, they affect the efficiency of the develop-
ment process and result in the waste of re-
sources. Furthermore, a false dependency be-
tween an implementation file and its header
can cause unnecessary compilation of the im-
plementation file when an independent part of
the header has changed. Consequently the in-
cremental build time is also prolonged by false
dependences. Hence, the efficiency of the build
process can be affected both during incremen-
tal build (i.e. compiling what has changed) as
well as fresh build (i.e. compiling everything
from scratch). Considering the nightly build
paradigms [3] the overall effect of false depen-
dencies can add up rapidly.

Traditional approaches to improving the effi-
ciency of the build processes focus on removing
false target dependencies in make files. These
approaches do not consider the internal de-
tails of implementation files , however, this pa-
per presents a novel approach to the removal
of false dependencies based on analyzing the
header files. The approach is incremental and

1

can be applied at various levels of complex-
ity (e.g. function declaration only or global
variables only) based on the non-functional re-
quirements. The main steps of this approach
involve:

1. constructing a dependence graph of file de-
pendencies;

2. partitioning the dependence graph to re-
move false dependencies between files; and

3. reorganizing the header files to reduce cou-
pling between files and improve cohesion.

The rest of the paper is organized as follows:
section 2 describes the refactoring algorithms
for discovering and removing false dependen-
cies between files; section 3 demonstrates the
application of the refactoring algorithm to an
example program; section 4 shows result of ap-
plying the tool to a public-domain software
VIM 6.1 [11]; section 5 compares the presented
approach with related work; section 6 discusses
the future work; and section 7 provides some
concluding remark as the potential application
of this tool.

2 Refactoring software de-
pendencies

Software refactoring [7] is a process of applying
a sequence of small non-functional changes to
a software system to improve its overall qual-
ity. To effectively manage software quality, we
must manage the code-base health as well as
the overall quality of the end product. One
aspect of the code-base health in this study in-
volved file dependencies [4]. As the code-base
evolves, the number of false dependencies grow
rapidly, which contributes to the longer time
for building of the product and potential loss
of component (e.g. a group of related files) in-
terfaces.

To reduce the dependencies among different
files, Makefile optimization can be performed
to discover target dependencies: a set of files
that depend on others. However, this approach
tolerates false dependencies at the code level,
which can contribute to timely builds. An in-
crease in the build time, in turn, can reduce the

availability of the product for testing and other
quality assurance tasks.

The loss of component independence is an-
other effect of false code dependencies. When
the dependent component is outside the scope
of the developer, she will have to wait for the
whole system to be built before a thorough inte-
gration test can be done. To overcome the test
problem, code stubs of the interfacing modules
are created to replace the dependent compo-
nent in order to allow earlier unit tests before
the whole system is built. Code stubs are a
work-around to tolerate the false code depen-
dencies for speeding up the development pro-
cess, but a final integration test has to be per-
formed to demonstrate their smooth integra-
tion with the rest of the system.

The approach proposed in this paper differs
from the above mentioned in that it relies on
fine-grain source code dependence checks. This
approach analyzes the dependencies at the pro-
gram units level to minimize build time.

2.1 Exposing false code depen-
dencies

The first step in identifying false dependen-
cies involves the construction of a depen-
dence graph. Using parsing technologies (e.g.
CPPX [9] or Datrix [2]), a set of relations can
be extracted from the source files. These re-
lations determine in which file a program unit
entity (e.g. a function, type, or variable) is de-
fined and where it has been used. Furthermore,
these relations provide the exact location (i.e.
line number) where the program unit is defined
or used. The dependence relations between the
define and the uses of a program unit form a
graph, where the program unit define/use in-
stances form the set of vertices and the edges
connect the corresponding define and uses ver-
tices. We call this graph a code dependence
graph to differentiate its semantics from the
program (data/control) dependence graph [6].

Formally, a code dependence graph is a di-
graph [1] G = (V,E) where the vertices in V
represent the defines/declares of program units,
and the edges in E ⊂ V × V represent the de-
pendencies between program units. The ver-
tices are further divided into two mutually ex-
clusive sets: V = VH ∪ VC . VH represents

2

the set of program units that should be placed
in header files such as declarations of variables
and functions, and definitions of types, struc-
tures and enumerations. VC represents the set
of program units that should be placed in the
implementation files such as definition of vari-
ables and functions. For example, consider the
two files main.c and its included header foo.h
as shown below:

--main.c--
#include ‘‘foo.h’’
int main () {

foo ();
}
--foo.h--
void foo ();
void bar ();

The set VH has two vertices foo declare and
bar declare and the set VC has one vertex
foo define. The only edge in this graph con-
nects the two vertices declaring and defining
the function foo.

In a complete system, a program unit that
occurs both in VH and VC causes a true depen-
dencies between them. If a header file contains
two program units u, v ∈ VH , where w ∈ VC

depends on u but not on v, then a false depen-
dence (v, w) forms. Having false dependencies
implies not only potential increasing of prepro-
cessed file sizes, but also an unnecessary re-
building of any files containing w any time v
is modified.

To construct a code dependence graph, we
use the Datrix parser [2]. Datrix constructs
an Abstract Syntax Graph (ASG) expressed in
Tuple Attributes format (TA [8]). Using the
data from the ASG, we construct the code de-
pendence graph. Using the code dependence
graph, we remove the unused program units for
the definitions in the program, i.e., remove all
nodes in VH that have an empty dominate set
in VC . Then we apply the code partitioning
algorithm.

2.2 Code partitioning algorithm

Given a code dependence graph G = (V,E), all
false dependencies can be removed by putting
each element of VH in a separate header file.

This trivial partitioning has undesired side-
effects: the code is scattered into |VH | header
files that blur the big picture of the data struc-
tures. A better partition condenses related def-
initions into a smaller number of headers while
avoiding false dependencies. As a result, we
need to devise a non-trivial partitioning algo-
rithm to obtain the largest partitions granular-
ity without false dependencies.

Before partitioning, we preprocess the graph
to determine the influence of a header file over
an array of the implementation files. For each
vertex in the sets VH and VC , we first calcu-
late two transitive closures as Dominates D and
Dominated D′ defined as:

1. for each u ∈ VH

2. D(u) = {v|(u′, v) ∈ E, u′ ∈ D(u), v ∈ VC}
3. for each v ∈ VC

4. D′(v) = {u|(u, v′) ∈ E, v′ ∈ D′(v), v ∈ VH}
These calculations require O(|V |) transitive
closure operations if all vertices are calculated
separately. We can avoid this complexity by
finding a spanning tree of the graph, then cal-
culate the dominate set of a vertex as the union
of all its child vertices. Thus less than O(|V |)
set union operations are required.

Next, we merge the vertices which belong to
the same Dominates or the same Dominated
sets:

1. for each u, v ∈ V
2. if u, v ∈ VH and D(u)=D(v)
3. or u, v ∈ VC and D’(u)=D’(v)then
4. condense(u, v)
5. end if

The complexity of the partitioning proce-
dure is O(|V |2) set comparison operation plus
less than O(|E|) condense operations. Here
condense(u, v) is a procedure that removes the
vertex v while replacing any edges (v, w) by
(u, w) and (w, v) by (w, u) as long as w 6= u.
When w = u, the edges (u, v) and (v, u) are
removed to prevent cycles:

Input: u, v ∈ VH ∪ VC

1. for each e ∈ E
2. if e.to = v and e.from 6= u then
3. E = E \ {e} ∪ {(e.from, u)}
4. else if e.from = v and e.to 6= u then
5. E = E \ {e} ∪ {(u, e.from)}

3

6. else if e = (u, v) or e = (v, u) then
7. E = E \ {e}
8. end if
9. VH = VH \ v

The complexity of the condense operation is
O(|E|). Therefore, the above partitioning pro-
cedure costs O(|V |2+|E|2) operations. As a re-
sult, the partitioning algorithm groups not only
header files, but also the implementation files.
The granularity is as large as possible while
false dependencies are fully removed, stated as
follows.

Given the digraph G = (V, E) where V =
VH ∪ VC , the algorithm obtains a condensed
graph G′ = (V ′, E′) where V ′ = V ′

H ∪ V ′
C and

V ′
H , V ′

C are partitions of VH , VC respectively.
The following properties hold for the graph G′:

1. No false dependencies. For any two
vertices u, v in u′ ⊂ VH where u′ ∈ V ′

H ,
if there is a path from u to w ∈ VC , then
there is also a path from v to w; for any
two vertices u, v in u′ ⊂ VC where u′ ∈ V ′

C ,
if there is a path from w ∈ VH to u, then
there is also a path from w to v.

2. Largest granularity. For any two ver-
tices u ∈ u′ and v ∈ v′ where u′, v′ ∈ V ′

H ,
there is a w ∈ VC such that either there is
a path from u to w but no path from v to
w, or there is a path from v to w but no
path from u to w.

In practice, it is not desirable to partition
the implementation files because the generated
code may become unfamiliar to the developers.
Thus we provide a second mechanism to impose
a constraint on the graph partitioning that all
the function definitions in one file are still in the
same file. Therefore we desire to remove all the
false dependencies between different files, and
tolerate the false dependencies within the files.

For this purpose, the partitioning algorithm
can still be applied, with an exception that
V ′

H = {f | file(u, f), u ∈ VH} is used instead
of VH and E′ = {(file(u), file(v))|u, v ∈ V } is
used for E where file(u, f) is the relationship
between a program unit u and a filename f . If
u ∈ VC , then let file(u) = u.

The same algorithm also applies to still
larger granular modules such as components,
which can be considered as the abstraction of

a collection of files. Generally, the larger the
granularity, the more false dependencies are
tolerated.

2.3 Generating the code

The code generation for the target system is
based on the location information stored with
the program units. A program unit is associ-
ated with an original source program file name
and the beginning and ending line numbers. So
once the partitions are calculated, the corre-
sponding code segments can be extracted from
the original source program. Along with the
moved code, we attach a line # line file in-
dicating the source of the program unit so that
the developer can still see where they are taken
from. The names of the implementation files
are the same as the original implementation
files, but the names of new header files are gen-
erated by a sequence number.

For each partition, the program units must
be output in the topological order of the depen-
dence graph. However, the topological ordering
requires that the graph be acyclic. In our code
dependence graph, such cycles do exist. For ex-
ample, the following code segment can produce
a cycle between definitions of a typedef unit
and a struct unit:

typedef struct list list T; struct list {
int key;
list T * next;

};
We break a cycle a ↔ b, e.g. struct list as a
and typedef list T as b, by removing a → b
while for each vertex c in the graph such that
c → a, we add an edge c → b to make sure
all the uses of a and b in c still follow the def-
initions of a and b in the generated code. For
independent vertices, we generate the code in
the same lexicographical order as they were in
the original code for the programmer to recog-
nize the code in relation to the original code.

Having the partitions of header files and im-
plementation files, one can think of an addi-
tional optimization to move the header files and
associated implementation files together into a
local directory. As long as other implementa-
tion files do not refer to the header file that
was removed, such a restructuring can improve

4

the cohesion of the system1. This process is
done by checking the number of implementa-
tion files a header serves. If this number is one,
we move the header file to the corresponding
module directory in order to increase compo-
nent cohesion.

The next step in the code generation is to
inline the included files. An header file with
single out-degree will be embedded into the file
that includes it. In this way even fewer new
header files will be generated. Finally a Make-
file is generated with the new file names to
avoid manual intervention.

3 An example

To illustrate the code partitioning algorithm,
this section provides a simple example. The
subject program has the following file struc-
tures:

./
include/

header.h # declares a, b, ..., i
module1/

1.c # defines a, b, c
2.c # defines d, e, f, g

module2/
3.c # defines h, i

main.c # defines main

header.h contains declarations for 9 func-
tions a, b, c, d, e, f, g, h, i. Every .c file includes
header.h in order to use the external functions.
However, as it can be seen, not all included
function declarations are necessary. The pre-
processed size of the implementation files can
be obtained by running a preprocessor (e.g.
gcc -E -P). The above example has 69 lines of
code. The following list shows the caller-callee
relation between functions.

main -> f, g, h, i
d -> a
f -> b
g -> c
i -> c, d
h -> e

1This restructuring creates a similar structure as
Java packages.

Using the above list, the partitioning algorithm
produces the following code structure which
also satisfies file-scale granularity constraints
and localizing requirements

./
include/

2.h # declares c
module1/

1.h # declares a, b
1.c # no inclusion
2.c # include 1.h, 2.h

module2/
3.h # declares d, e
3.c # include 2.h, 3.h

0.h # declares f, g, h, i
main.c # include 0.h

After the reorganization, the size of the prepro-
cessed files is reduced to 42.

In practice, size reduction can be larger. This
is due to inclusion of the entire library header
files for a small number of program units. For
example, most implementation files include the
entire <stdio.h> while using only one or two
functions, e.g. printf. Our algorithm can re-
duce the preprocessed file size dramatically by
leaving out unnecessary program units.

4 Experiments

The header refactoring system is shown in fig-
ure 1. First, the C implementation files are
compiled with gcc (step 1). Next, running the
preprocessor gcc -E -P we measure the size of
the resulting files (step 2). The preprocessed
files are parsed by Datrix and passing the pro-
gram units for the header refactoring to be car-
ried out (step 3). The new program files are
compiled once again to assure that previous
steps did not remove any necessary dependence
(step 4). Finally, we measure the new code size
using the preprocessor only(step 5).

For large systems, the refactoring of multi-
ple files can be done incrementally by replac-
ing some of the object files with the refactored
ones. This facilitates the incremental build of
the system. Developers can perform the refac-
toring of their own headers without waiting for
the whole system to be ready.

5

Figure 1: The overview of the header refactor-
ing system. The usage is shown in steps: (1)
compiling the original program; (2) measuring
the original code size; (3) refactoring headers
(4) compiling the result program; (5) measur-
ing the result program.

We have applied the header optimization on
a public domain software system VIM (Vi IM-
proved) 6.1 [11]. We consider the source code
of version 6.1 which includes 65 .c implementa-
tion files, 28 .h header files and 56 .pro header
files generated for function declaration proto-
types using cproto. A successful compilation
on the Linux platform requires 47 .c files.

To demonstrate the idea of the incremental
build, we just refactor 15 of the 47 files, and link
the new object files with the other 32 to ensure
that the program compiles. Table 1 lists the
result of refactoring in terms of lines of code,
number of words, and number of bytes before
and after using word count (wc).

The refactored file size include the #pragma
which says where the program units are ex-
tracted from. If these pragma’s are removed,
there are more reductions. In summary, the
reduction of build size in bytes is 89.70% for
the incremental build and 26.38% for the fresh
build.

Table 2 shows the build time gain after refac-
toring. Initially we compare the build time
using the preprocessed files and the refactored
files. This comparison shows a 39.58% reduc-
tion for an incremental build and a 10.70% re-
duction for a fresh build. The preprocessed
files, however, are larger than the original files

because all inclusions are included. For ex-
ample, the buffer.c explodes from 108916
bytes to 365106 bytes after preprocessing, and
shrinks back to 134138 bytes after refactor-
ing the headers, and shrinks further to 113861
bytes by removing the unnecessary # pragma’s.
Therefore we shall compare the compilation
time between all the four sets of equivalent pro-
gram files.

A developer would choose a normal compi-
lation for the incremental build, and choose
an optimizing compilation for the fresh build
before the release of the software. Therefore
time for both the normal gcc build and the
optimized gcc -O3 build were measured. It is
interesting to see that the absolute time gain
for both build are about the same (1.34 vs.
1.28 sec.), which indicates that the large build
size reduction helps mostly for reducing syntax
parsing time while the other optimization pro-
cess time are not much influenced. Therefore
we may expect that the time reduction ratio
for the fresh build is smaller than that for the
incremental build. Since the software develop-
ment is a process of frequently rebuilding the
code, the normal time reduction ratio 32.24%
for incremental build matters to the develop-
ment time.

5 Related work

Our approach is compared with existing tools
and related topics.

5.1 Existing tools

Existing tools such as make and makedepend
are commonly used to maintain the code depen-
dencies and speedup the build process by avoid-
ing the unnecessary compilation of files that
were not modified. However, the build-time de-
pendencies have larger granularity in compari-
son to variables and functions at the program
unit level. For example, every implementation
.c file of VIM includes vim.h, which in turn
includes almost every exported functions from
the *.pro files. That means a change to a sin-
gle .c file requires almost all other files to be
rebuilt. Having a function prototype extractor
like cproto helps creating headers, but the use
of them can potentially slow down the build of

6

Table 1: Measuring the size of the original and the refactored VIM program files after gcc -E -P.
Refactoring 15/47 of the source files leads to about 26.38% reduction of total size in bytes.

Size # lines # lines’ # words # words’ # bytes # bytes’

buffer.c 23531 4155 64414 11463 724131 112228
charset.c 21485 1345 58625 3933 660718 32354
diff.c 22108 2488 60471 6584 683455 63393
digraph.c 21072 448 57307 1458 651256 11590
edit.c 24929 5120 68136 14847 767021 148998
fold.c 22770 2663 62257 7771 701359 74801
mark.c 21601 2019 59742 5777 672967 52969
memfile.c 21411 1277 58302 3383 660857 31604
memline.c 23396 3862 64748 11016 733120 115647
misc1.c 24606 4932 67487 14424 755816 141171
ops.c 24434 4981 67385 14184 757182 142253
pty.c 20824 42 56711 139 645466 1067
tag.c 22396 2938 61232 7819 699744 83291
undo.c 21479 1335 58541 3598 665507 35988
version.c 21024 1331 57090 2699 651200 26684

subtotal 337066 38936 922448 109095 10429799 1074038
reduction -88.45% -88.17% -89.70%

other 32 files 743885 743885 2356587 2356587 25033807 25033807

total 1080951 782821 3279035 2465682 35463606 26107845
reduction -27.58% -24.80% -26.38%

the whole program. Other techniques such as
pre-compiled headers help reducing the time for
file inclusions, however, they do not remove the
redundant program units except for macros.

To extract finer granularity code dependen-
cies, a code factor extractor based on a parser
is necessary. Existing parsers such as CPPX,
Datrix [9] extract facts from a C program and
store them in usable formats such as TA [8] and
GXL [10]. Among them, CPPX reports program
units relations including macros, while Datrix
does not report any data on macro definitions
but reports more accurate line numbers. Since
we are not only going to analyze the code, but
also going to generate the code, we used Datrix
to locate the right line numbers. Datrix out-
puts abstract syntax graphs (ASG) in various
formats including TA. We developed an ana-
lyzer to extract header-related code dependen-
cies from the resulting ASG.

Other programming languages
like C++/Java can also be analyzed. Java pro-
grams, however, use packages that are cleaner
than legacy C code. There are also tools that

can clean up false code dependencies in Java
code. It will be interesting to know how good
our partitioning algorithm can perform com-
pare to existing Java optimizers. For C++, we
believe it is necessary to do header file opti-
mizations.

5.2 Related topics

The graph algorithm proposed for code par-
titioning is not the strongly connected com-
ponent partitioning algorithm for general di-
graphs [1] because this is the case not all ver-
tices in a connected component are treated the
same way. Instead, we treat “define” and “use”
vertices differently in order to ensure that false
code dependencies are not introduced. The
topological ordering is applied to generate code
for a partition with a variation that cycles are
removed by updating the edges incident on one
vertex to be incident on other vertices in the
cycle.

The code dependence partitioning is also dif-
ferent from the partitioning algorithms for data

7

Table 2: Measuring build time in seconds. Columns 2–3 compare the build time using preprocessed
file with that using refactored files; columns 4–6 compare the normal build time of gcc -c using the
original files to that using refactored files with/without the #pragma’s; columns 7–9 compare the
build time of gcc -O3 optimizing options between the same sets of files. The first 15 rows are the
incremental refactored files, and the total build including the other 32 files are also measured.

Time cpp cpp’ gcc -c gcc -c’ gcc -c’ \# gcc -O3 gcc -O3’ gcc -O3’\#
buffer.c 0.64 0.46 0.58 0.46 0.46 1.23 1.10 1.09

charset.c 0.35 0.16 0.28 0.16 0.17 0.50 0.37 0.36
diff.c 0.44 0.26 0.37 0.26 0.26 0.71 0.58 0.57

digraph.c 0.26 0.07 0.19 0.07 0.06 0.26 0.12 0.12
edit.c 0.72 0.53 0.65 0.53 0.54 1.77 1.64 1.62
fold.c 0.52 0.33 0.45 0.33 0.33 1.01 0.89 0.89

mark.c 0.41 0.23 0.34 0.23 0.22 0.81 0.53 0.53
memfile.c 0.32 0.14 0.22 0.14 0.13 0.34 0.27 0.27
memline.c 0.63 0.44 0.46 0.44 0.43 1.00 0.99 0.98

misc1.c 0.79 0.61 0.61 0.61 0.60 1.93 1.95 1.91
ops.c 0.75 0.56 0.62 0.56 0.56 1.58 1.61 1.60
pty.c 0.25 0.04 0.17 0.04 0.04 0.18 0.05 0.07
tag.c 0.44 0.26 0.27 0.26 0.26 0.51 0.66 0.66

undo.c 0.33 0.15 0.26 0.15 0.14 0.41 0.30 0.33
version.c 0.30 0.08 0.19 0.08 0.08 0.25 0.15 0.15

subtotal 7.15 4.32 5.66 4.32 4.28 12.49 11.21 11.15
reduction -39.58% -23.67% -32.24% -10.25% -12.02%

other files 19.30 19.30 13.00 13.00 13.00 29.77 29.77 29.77

total 26.45 23.62 18.66 17.32 17.28 42.26 40.98 40.92
reduction -10.70% -7.18% -7.40% -3.03% -3.17%

dependencies [13, 5]. Data dependence par-
titioning looks for parallelism in independent
partitions, while the code dependence parti-
tioning may create partitions that still depend
on each other. The code dependence partition-
ing is a refactoring technique aiming at main-
tainability, while the data dependence parti-
tioning is an performance optimization trans-
formation technique. Using parallelism speeds
up the execution of the code while removing
code dependencies speeds up both complete
and incremental builds and consequently accel-
erates the development process. In this sense
they are complementary.

Another related topic is link-time optimiza-
tion [12], which tries to remove excessive vari-
able and function inclusions in order to make
the static binary size and the dynamic code size
(footprint) smaller. When the whole library
headers are included, it is often safer for the

developer to include the whole library to avoid
link error. After refactoring the headers at the
source level, such situations would be less com-
mon. A cleaner binary code can be generated
if we can further refactor the libraries being
linked. The combined approach may strip the
unused library functions completely and thus
lead to smaller binary size.

Among these possibilities, we believe the
header refactoring is most suitable for speed-
ing up the development, while time and space
performance optimizations are still possible.

6 Future work

There are several enhancements to our work
that we are currently investigating. The ini-
tial aim is to complete the refactoring of the
VIM. The observations that we have made on
VIM have enabled us to formulate a strategy

8

for tackling larger systems. In terms of po-
tential impact, our data suggests that for a
large commercial software product, there are
tens of thousands of files on average. In one
experiment we observed that an implementa-
tion file, on average, grows by a factor of 50.
In other words, while the implementation file
size is around 50 KB, the preprocessed file be-
comes 2.5 MB. Based on our VIM experiments
and preliminary assessments, we estimate that
the size of preprocessed files can be reduced, on
average by 30 to 40 %. This results in a sav-
ing of around 1MB. Assuming there are 1000
files in the system, there will be 1GB of space
savings. Furthermore, taking into account the
continuous build paradigms used in commer-
cial software development, this number has be
multiplied by 7 to compute the weekly savings,
i.e. 7 GB. Considering the average release cycle
varies from 12 to 16 months, the weekly saving
is multiplied by the number of weeks in the re-
lease cycle. This is a significant saving that
justifies the overall effort of refactoring as put
forward by this paper.

Another challenge facing a refactoring effort
for a large software system involves the preva-
lent use of conditional compilation directives.
Most parsing technologies rely on preprocessed
programs and as such fail to provide any in-
formation about the conditional compilations.
In other words, we do not know exactly what
directive occurs on which line. Furthermore,
we gather data from on possible compilation
based on one set of conditional compilation di-
rectives per platform. Our initial strategy for
dealing with conditional compilations involves
the splitting of the conditional guards. For ex-
ample, consider the header file foo.h shown
below:

#ifdef FOO
#define EXTERN extern
EXTERN int foo ();
EXTERN int
bar ();

#else
#define EXTERN
EXTERN float moo();
EXTERN float
bar();

#endif

Here we split the header file into three files as
shown below:

----foo.h----
#ifdef FOO

#include "foo1.h"
#else

#include "foo2.h"
#endif

---foo1.h----
extern int foo ();
extern int bar ();
---foo2.h----
float moo();
float bar();

We can proceed with refactoring as before by
analyzing foo1.h and foo2.h without touch-
ing the foo.h. This requires enumeration of all
combinations of macros used in the program as
different scenarios which can be exhausting for
large systems. Another way is to treat macros
as code dependencies from macro units to pro-
gram units. It works only when every single
macro can be located accurately in the code, in
which case there is only one scenario. However,
such accuracy is very hard to achieve. Cur-
rently we are investigating a way to confine the
scenario enumeration only to the explicit con-
ditional directives, while treating other macros
the same way as other program units. In this
way we hope to get a fast and accurate solution
in the near future.

7 Conclusions

False dependencies among implementation files
in large software systems can significantly in-
crease the build time. This paper described a
refactoring tool for discovering and removing
these dependencies from the header inclusions.
This tool can be applied incrementally to a sub-
set of files or its scope can be adjusted include
one or more types of program units (e.g. func-
tions, global variables to type definitions). As
shown through a series of experiments, the re-
sulting code is substantially reduced, thereby
reducing build time.

About the Authors

9

Dr. Yijun Yu is a research associate at the
University of Toronto. His Internet address is
http://www.cs.toronto.edu/∼yijun.

Dr. Homy Dayani-Fard is a member of the
IBM Toronto Lab. His Internet address is
http://www.cs.queensu.ca/∼dayani.

Prof. John Mylopoulos is the director of
the Knowledge Management lab at the Uni-
versity of Toronto. His Internet address is
http://www.cs.toronto.edu/∼jm.

References

[1] Jorgen Bang-Jensen and Gregory Gutin.
Digraph: Theory, Algorithms and Appli-
cations. Springer-Verlag, 2002.

[2] Bell Canada. DATRIX abstract seman-
tic graph reference manual (version 1.4).
Technical report, Bell Canada, May 2000.

[3] M. A. Cusumano and R. W. Selby. How
Microsoft builds software. Communica-
tions of the ACM, 40(6), June 1997.

[4] H. Dayani-Fard. Quality-based software re-
lease management. PhD thesis, Queen’s
University, 2003.

[5] Erik H. D’Hollander. Partitioning and la-
beling of loops by unimodular transfor-
mations. IEEE Transactions on Parallel
and Distributed Systems, 3(4):465–476, jul
1992.

[6] J. Ferrante, K.J. Ottenstein, and J.D.
Warren. The program dependence graph
and its use in optimization. ACM Transac-
tions on Programming Languages and Sys-
tems, 9(3):319–349, JUL 1987.

[7] Martin Fowler, Kent Beck, John Brant,
William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[8] R. C. Holt. Structural manipulations
of software architecture using tarski rela-
tional algebra. In Working Conference on
Reverse Engineering, October 1998.

[9] Richard C. Holt, Ahmed E. Hassan, Bruno
Lague, Sebastien Lapierre, and Charles

Leduc. E/R schema for the Datrix
C/C++/Java exchange format. In Work-
ing Conference on Reverse Engineering,
pages 284–286, 2000.

[10] Richard C. Holt, Andreas Winter, and
Andy Schürr. GXL: Towards a standard
exchange format. In Proceedings WCRE
’00, November 2000.

[11] Bram Moolenaar. Vim 6.1,
http://www.vim.org, 2003.

[12] R. Muth, S. Debray, S. Watterson, and
K. De Bosschere. Alto: A link-time op-
timizer for the compaq alpha. Software -
Practice and Experience, 31(1):67–101, 1
2001.

[13] Y. Yu and E. D’Hollander. Partition-
ing loops with variable dependence dis-
tances. In Proceedings of 2000 Interna-
tional Conference on Parallel Processing
(29th ICPP’00), Toronto, Canada, August
2000. Ohio State Univ.

10

