
From Stakeholder Goals to High-Variability Software Designs

Yijun Yu1, John Mylopoulos1, Alexei Lapouchnian1, Sotirios Liaskos1,
Julio Cesar Sampaio do Prado Leite2

1Dept. of Computer Science, Univ. of Toronto,{yijun,jm,liaskos,alexei}@cs.toronto.edu
2Dept. of Computer Science, PUC-Rio, julio@inf.puc-rio.br

Abstract

Traditionally, software requirements consist of a list of
desirable functions to be accommodated by the proposed
software system. Through goal-oriented requirements en-
gineering, stakeholder goals are analyzed into goal mod-
els that concisely define a space of alternative sets of func-
tional requirements. We adopt this framework and propose
a systematic generation of generic (high-variability) soft-
ware designs that can accommodate ALL alternatives for
the fulfillment of these stakeholder goals. In this paper, we
enrich goal models with design-related annotations to gen-
erate three views of high-variability software design: fea-
ture models, statecharts, and component-connector models.
Our process has been applied to an extensive study of the
meeting scheduling problem, from which an initial high-
variability design for the system-to-be is derived.
Keywords Goal-oriented requirements engineering, goal
models, software variability, software architectures, feature
models, statecharts, architectural description languages

1 Introduction

Traditionally, requirements consist of a list of functions
the system-to-be should support [6], along with informally
stated qualities (or non-functional requirements, NFRs [3]).
In goal-oriented reequirements approaches [24, 19], early
requirements represent stakeholder goals to be fulfilled by
the system-to-be, and a list of qualities that serve as criteria
for selecting a solution that fulfils these goals [18]. Goal
models were proposed as vehicles for bridging “early re-
quirements” with “late” ones (KAOS Project [26]). In goal
models, root-level (stakeholder) goals are refined into leaf-
level goals that model requirements, or tasks that system or
external actors have to perform. The requirements engineer
has then to choose a set of leaf-level goals which together
describe a single solution to the problem.

We view the requirements as something more: our goal
models characterize a space of alternatives for meeting

stakeholder needs. The alternatives’ space can be used as
a basis for designing high variability software. There is a
growing need for such software, due to the raise of applica-
tions where software has to accommodate an unpredictable
set of operational environments and users (e.g., web ser-
vices, peer-to-peer services, homecare software). In order
to map a stakeholder goal model into high-variability design
– while taking into account a set of qualities – we propose
a systematic process to transform goal models into an ini-
tial software design that supports high-variability. The pro-
cess generates three complementary design views: a feature
model, a collection of statecharts and a component model.
The feature model prescribes the system-to-be as a variable
combination of configurable features. The statecharts pro-
vide a view of the alternative system behaviors. Finally, the
component model describes variable structural bindings of
software components.

In this work, the stakeholder goal model is treated as
the logical view that underlies design views, similar to the
global view in the 4+1 views [15] of theRational Unified
Process. To derive design views from a goal model, we
propose light-weight annotations that represent design-level
choices.

The rest of the paper is organized as follows: Section 2
introduces goal models with an example; Section 3 presents
a variability view represented in terms of feature models,
Section 4 presents a behavioral view modeled in terms of
statecharts, while Section 5 presents a structural view as
generated component models; Section 6 discusses tool sup-
port for the process of generating designs from a given goal
model; Finally, section 7 contrasts our results with the re-
lated work and concludes.

2 Goal-oriented requirements

A goal modelis an AND/OR graph where a goal node is
refined into a number of subgoal nodes through either AND-
or OR-decomposition links. Every goal has a name. A
hard goal has a truth value to indicate whether it is satisfied
(true) or denied (false). A soft goal has a multi-value

label to indicate the degree of its satisficing and denial: fully
satisfied (FS), partially satisfied (PS), fully denied (FD) or
partially denied (PD). An AND/OR decomposition of a goal
G into its subgoalsG1, . . . , Gn (n > 1) is denoted by either
AND(G1, . . . , Gn) ⇒ G or OR(G1, . . . , Gn) ⇒ G respec-
tively. The logic rule has 2-value logic semantics for hard
goals and multi-value logic semantics for softgoals. To rea-
son about softgoals, not only their AND/OR decomposition
rules are interpreted by the multi-value logic, but new label-
propagation rules such as help (+), hurt (-), make(++),
break(--) are introduced [8] as well.

This simple language is sufficient for modeling prob-
lems during early requirements, covering both functional
and non-functional requirements in terms of hard goals and
softgoals (quality criteria). Thus, non-functional require-
ments (NFRs) are treated as the first-class citizens in our
framework [3].

The treatment of NFR naturally leads to system alterna-
tives addressing various quality concerns of stakeholders,
i.e. the alternatives are compared on the basis of their con-
tributions to softgoals. Alternative solutions to a goal model
arise thanks to OR decompositions. As we present in the
paper, at a later stage, alternatives are accounted for in dif-
ferent views as configuration variability in feature models,
behavioral variability in statecharts, and structural variabil-
ity in components.

Throughout the paper, we use theMeeting Schedulerex-
ample to illustrate the proposed processes [25]. In order
to “schedule a meeting” (a stakeholder goal) one needs to
“collect timetables”and “choose schedules”. Each of the
subgoals has two alternative solutions, either done “manu-
ally by person” or “automatically by system”. A system can
collect a timetable “from agents” or directly “from users”,
which can be done by “sending requests” and “receiving re-
sponses”.

Quality attributes such as “minimal (scheduling) effort”,
“good quality schedule”, “minimal disturbance” and “ac-
curate (timetable) constraints” are represented as softgoals.
They can be broken down into subcriteria. For example,
the “minimal effort” softgoal can be achieved by minimiz-
ing “collection effort” and minimizing “matching effort”.
Similarly, “good quality schedule” is guaranteed by having
“minimal conflicts” and “good participation”. Apparently,
collecting timetable manually is a tedious task for a meeting
scheduler, thus it hurts the criteria to minimize “collection
effort”. Such correlations can be explicitly expressed in the
goal model (Figure 1).

Goals can be formally represented using a linear tem-
poral logic (LTL) formula as in KAOS [25]. Using such a
formal language, one can either define a goal, or give pre-
conditions for its fulfillment. These preconditions may in-
volve the availability of certain data (e.g., a participant list
for a “schedule meeting” goal). Moreover, the fulfillment of

���������

	��
��

������
�

�	�
�����

�������

��������

��������� ������
�	

�������� ��
�	�
������

����	���

�����

������
����

�����

��
�����

�����

����������
��

��������

����	���

�������
�

�����

���
�����
���

�����

������

��������

��������

��
��

��
��

���

���

���

���

��� ���

���

���

�

�

� �
��

�
�

������
����	�

�����

������
����	�

���
�

��
��

������
�

����
����
�

����	��

 ��
��������

� �

��

Figure 1. A goal model shows interdependen-
cies among goals, qualities

a goal may result in the creation of information. For exam-
ple, scheduling of a meeting results in the creation of time
and location information for the scheduled meeting. Such
conditions define input and output data for the design-level
processes that operationalize a goal.

In the following three sections, we discuss the generation
of three design views from goal models. For each view, we
first describe its notation and explain why it is of interest to
us. Then we analyze what information is needed to generate
that view from a goal model. Finally, we illustrate a process
of generating the view from an enriched goal model, using
the same example throughout the paper.

3 Generating feature models

The systematic discovery and exploitation of common-
ality across related software systems is a fundamental
technical requirement for achieving successful software
reuse [21]. Thus, the software reuse community has
long been interested in analyzing the commonality among
closely-related software systems which consitute aprod-
uct line. One such method is the Feature-Oriented Domain
Analysis (FODA) [12]. Afeaturerepresents system func-
tionality realzed by a software component. Hence, a feature
constitutes a design-level concept. FODA assumes that fea-
tures can be the basis for analyzing and representing com-
monality and variability of applications in a domain [13].
A product lineis defined in terms of a feature model which
represents variability within that family. The concept of a

�!

�" �#

�!

�"

�!

�" �#

�!

�" �#

	����
��� ��
����� ��
����
��� ��

!

" #

��� ���

!

" $%�

�� ��

!

" #

�� ��

!

" #

�� ��&

'�('�('�(' (

Figure 2. Goal model patterns and their cor-
responding feature types

feature is also popular in the software industry. For exam-
ple, the Eclipse framework structures its design as a collec-
tion of plugin and fragment components that are grouped
together into features [28]. Eclipse product features are or-
ganized into trees starting from the root feature that repre-
sents the entire product. The capability to group feature hi-
erarchically allows products to be stacked using a “Russian
doll” style.

There are four types of features in feature modeling (see
Figure 2): Mandatory, Optional, Alternative, and Or [5].
A Mandatory feature must be included in every member
of a product line family provided that its parent feature is
included; anOptional feature may be included if its parent
is included; exactly one feature from a set ofAlternative
features must be included if a parent of the set is included;
any non-empty subset of anOr feature setcanbe included
if a parent feature is included.

Feature models represent configuration variability in the
solution domain, whereas goal models capture variability in
the problem domain, i.e., the ways that stakeholder goals
can be achieved. The generation of a feature model from
a goal model produces a representation that is well un-
derstood by and familiar to the software reuse community.
Moreover, since feature modeling is a domain analysis tech-
nique, it is part of an encompassing process for developing
software for reuse (referred to as Domain Engineering [5]),
and thus can directly help in generating domain-oriented ar-
chitectures and software components [13].

Goal models model how the system-to-be and its en-
vironment can together achieve root-level goals. Feature
models, on the other hand, are only used to represent vari-
ability within the system-to-be. Therefore, in order to be
able to generate feature models, we need to identify the sub-
set of a goal model that is intended for the system-to-be and
then map it into a feature model.

First, we need to know which leaf-level goals are as-
signed to the system-to-be and which are assigned to the

actors in its environment. Given an initial goal model and
such an assignment, where leaf-level goals to be achieved
by the system’s environment are replaced with NOP (no op-
eration) goals, we can identify parts of the goal model that
are not assigned to the system and must not be mapped into
features. We replace a non-leaf goal with an NOP goal to
indicate that it is not the responsibility of the system if all
of its subgoals are NOP goals.

Next, every non-NOP goal node can be mapped into
a feature with the same name. It is now easier to see
that AND/OR decompositions of goals (Figure 2a/2d), if
mapped into features, produce sets of Mandatory and OR-
features respectively. However, Alternative and Optional
feature sets do not have counterparts in the AND/OR goal
models. Thus, in order to be able to generate these types
of features we need to annotate goal models. First, we an-
alyze whether some of the OR decompositions are, in fact,
XOR decompositions (where exactly one subgoal must be
achieved) and then annotate these decompositions with the
symbol “|” (Figure 2c). The annotated OR decomposition
corresponds to a feature refined into a set of alternative fea-
tures. Similarly, to produce optional features we identify
patterns where a goal is OR-decomposed into a number of
subgoals with at least one subgoal (NOP) being delegated to
an agent in the environment of the system-to-be (Figure 2b).
Then, the non-NOP sibling subgoals will be mapped into
optional features. The generated feature models reflect the
fact that decompositions in goal models are more restric-
tive than in feature models. Thus, we produce feature mod-
els where features must have subfeatures of a single type
and cannot have more than one set of Alternative or OR-
features. One can further group them into mixed-type fea-
ture decompositions if appropriate.

Constraintscan be used in feature diagrams to repre-
sent relationships among variable features that cannot be
captured by feature decompositions. These constraints in-
clude, for example,mutual exclusionand mutual depen-
dency. Goal models allow the analysis of alternative goal
decompositions with respect to their contributions to cer-
tain quality criteria. However, feature models provide no
such facility and therefore the selection of features for a
member of a product line family is not guided by non-
functional requirements. To alleviate this, softgoal contri-
butions present in goal models can be used to generate fea-
ture model constraints that relate features with correspond-
ing goals contributing (positively or negatively) to the same
softgoal. For instance, if two system-delegated goals con-
tribute positively (respectively, negatively) to the softgoal
S, then both their corresponding features will most likely
have to be included in (respectively excluded from) the sys-
tem provided that the softgoal is of importance for that sys-
tem variant. Thus, we generate a mutual dependency con-
straint between the two features. The constraint’s label in-

���������

	��
��

������
�

�	�
�����

�������

��������

������
�	 ��
�	�
������

������
����	�

���
�

������

���	������

��������
���	���	������
���������

��������
���������
������
����
��

�����

������

��������

��������

���������

	��
��

������
�

�	�
�����

�������

��������

��� ����� ������
�	 !������� ��
�	�
������

�����

������

��������

��������

�� �� ����

��� ���

��� ���

������
����	�

�����

������
����	�

���
�

����

������
�

����
����
�

!���	��

"��
��������

� �
��

#$ #$

%�& %�&

�

��� ���

���

��� ���

���

Figure 3. A feature model generated from the goal model in Figure 1

cludes the strength of softgoal contribution and the name
of the softgoal to document the source of the constraint
(e.g.,+depends[S], if both goals contributed positively to
S). Similarly, if two system-delegated goals have opposite
contributions to a softgoal, then selecting both correspond-
ing features in a system that tries to satisfice the softgoal
will be counterproductive. This will result in a mutual ex-
clusion constraint between the two features. Thus, the con-
straints help in the feature selection process by accounting
for stakeholders’ quality concerns.

In general, to obtain a constraint between two features
fX andfY based on the softgoalS contributions from their
corresponding goalsX andY , we use the following rules.
Here,+(X, S) indicates that the goalX contributes posi-
tively to the softgoalS, −(X, S) indicates that the goalX
contributes negatively to the softgoalS, etc.

+conflicts[S](X, Y) <=>
(+(X, S) AND -(Y, S) OR -(X, S) AND +(Y,S))

++conflicts[S](X, Y) <=>
(++(X, S) AND --(Y, S) OR --(X, S) AND ++(Y,S))

+depends[S](X, Y) <=> (+(X, S) AND +(Y, S))
-depends[S](X, Y) <=> (-(X, S) AND -(Y, S))
++depends[S](X, Y) <=> (++(X, S) AND ++(Y, S))
--depends[S](X, Y) <=> (--(X, S) AND --(Y, S))

The constraints are parameterized by a softgoalS to indi-
cate that they are significant only whenS is important to the
stakeholders. As well, the strength of the softgoal contribu-
tions determines the strength of the constraints (as shown
by + + |+ | −−|−). The process can be easily extended to
support constraints among feature sets.

For example, the stakeholder goal model in Figure 1 is
simplified into a system-only goal model (Figure 3a), then
four types of features are created, and two conflicting con-
straints are generated based on the two pairs of conflicting
contributions to softgoals (Figure 3b). In the figure, one can

see the correspondence between variation points (VP) in the
two models.

4 Generating statecharts

Statecharts [10] constitute a visual formalism for de-
scribing the behavior of complex systems. In addition to
states and transitions adopted from state machines, state-
charts introduce nested super-/sub-state structures for ab-
straction. Specifically, a state can be decomposed into a
set ofAND substates (visually separated by swimlanes) or
a set ofXORsubstates (without swimlanes) [10]. A tran-
sition can also be decomposed into transitions among the
substates.

������������������������
��������������

�������	��
���

�	
 �
��������

����������������������������

�������	��
���

�	
����

���

��� ��������

Figure 4. Mapping a goal into a statechart

Figure 4 shows a mapping from a goal in a requirements
goal model to a state in a statechart. Here we explain the
mapping for the four types of goals:achieve, cease, main-
tain andavoidon the basis of their definitions [25]. In Fig-
ure 4a, anachievegoal is expressed as a temporal formula
(P ⇒ 3Q) with P being its precondition, andQ being
its postcondition. In the corresponding statechart, one en-
try substate and one exit substate are created:P describes
the condition guarding the transition from the entry to the
exit; Q prescribes the condition that must be satisfied at the
exit. The transition is associated with an activity to reach

�

�� ��

�� ��

�

�� ��

�

�� ��

��

��

��� ���� �� ���� ��� ����

�

�� ��

��

��

����

��� ��� ��� �	�

�

�� ��

��� ���

�
�

��

��
�� ��

(a)
�

�� ��

��� ���

��� ��� ��� ���

��� ��� ��� ����� ��

�

��� ���

��� ���

��� ��� ��� ���

��� ��� ��� ���

��

��

��� ���

(b)

0��
���

0��
���

0��
���

0��
���

'!('"(

(c)

Figure 5. State decomposition patterns

the goal’s desired (exit) state. Theceasegoal (P ⇒ 3¬Q)
is mapped to a similar statechart by replacing the condition
at the exit state with¬Q. Figure 4b shows the mapping from
a maintaingoal (P ⇒ 2Q) to a statechart, where the two
substates are combined into one characterized byQ; this re-
sults in a cyclic transition, as shown in the figure. Likewise,
the statechart of anavoidgoal (P ⇒ 2¬Q) replacesQ with
its negation.

These templates are used as a basis for the generation
of an initial statechart view, without necessarily expressing
the conditions as temporal logic predicates. At the detailed
design stage, the designer may provide solution-specific in-
formation to specify the predicates that are required to make
the refined statechart model executable.

A requirements goal model is basically an AND/OR hi-
erarchy, where the AND decomposition of the goals are un-
ordered and the OR decompositions are inclusive. These
properties require further design-specific annotations on the
decompositions in order to generate statecharts. First, the
goal decomposition hierarchy is mapped into a nested stat-
echart, i.e., the state corresponding to a goal becomes a su-
perstate of the states associated with its subgoals; secondly,
dependencies are analyzed so as to derive the order that
specifies whether the subgoals can be performed in paral-
lel or in sequence; and finally whenever possible, exclusive
OR is used to simplify the combinational complexity of the
inclusive OR goal decompositions.

Given a root goal, our statechart generation procedure
descends along the goal refinement hierarchy recursively.
For each goal, a state is created according to Figure 4. The

created state has an entry and an exit substates. Next, an-
notations are given to the AND/OR decompositions. Af-
ter that, patterns in Figure 5 are used to add transitions be-
tween the subgoal states. We useachieve/ceasegoal to il-
lustrate the mapping patterns whereasa themaintain/avoid
goals can be similarly composed by merging the entry and
exit substates into one state. Specifically:

1. When a goal is AND-decomposedsequentially(;) into
N subgoals (Figure 5a1) we createN + 1 transitions
that connect theN subgoal states with the entry and
exit states of the goal as a sequential chain.

2. When a goal is AND-decomposedin parallel (||) into
N subgoals (Figure 5a2), we createN pairs of transi-
tions that connect each subgoal state with the entry and
exit states of the goal respectively. Here the states are
the AND decomposition (with swimlanes) of the su-
perstate in the statechart.

3. When a goal is AND-decomposed intoN subgoals,
with neither sequential nor parallel annotation, there
must be mutual dependencies among its subgoals (Fig-
ure 5b1). If the analyst knows all the dependencies
among the leaf goals, then the mutual dependencies
can be resolved through the restructuring that is shown
in (Figure 5b2). Since such restructuring is applied
bottom-up and the goal model has finite depth, in the
end, all such uncertain cases can be resolved:

Theorem 1 Given all the dependencies among the
leaf-goals, an AND/OR goal model can be restructured
such that any AND-decomposed goal is either sequen-
tial or parallel composition of its subgoals.

Proof. Given that all the dependencies among the leaf
goals are known, if one can prove the propertyP that
after restructuring, every goal in the goal model is ei-
ther a leaf-goal, an OR-decomposed goal or an AND-
decomposed goal that is sequential/parallel composi-
tion of its subgoals, then the theorem is proven.
We construct the proof bottom-up:

(a) All the leaf goals are not decomposed, thus they
satisfyP .

(b) Suppose for all the goals at the lastn depth are
restructured such that the sequential/parallel de-
composition is known. For any goal at depth
n + 1 (a parent goal) that is AND-decomposed
into m subgoals, if the AND-decomposition is
known as sequential or parallel, then there is no
need for restructuring. Otherwise, as it is not
parallel, there exist dependencies among its sub-
goals, and as it is not sequential, there exists at
least a mutual dependency among two subgoals

g1 andg2 such that one can not decide which one
is executed first. Essentially,g1 andg2 must have
been annotated as parallel decomposition, other-
wise, if, e.g.,g1 is a sequential decomposition,
then the mutual dependency among subgoals of
g1 andg2 will lead to an impossible cyclic de-
pendency. In this case, we consider the follow-
ing restructuring. The subgoals ofg1 andg2 are
first partitioned into disconnected sets in the de-
pendency graph: since bothg1 andg2 have par-
allelism, the combined dependency graph of the
subgoals ofg1 andg2 can be partitioned into par-
allel connected subgraphs where each subgraph
is executed sequentially. Based on the partitions,
the restructuring marksg as a parallel decompo-
sition ofg′

1 andg′
2 as they represent the new par-

titions. Figure 5b1 and 5b1 show an example of
such restructuring.

If the goal g is OR-decomposed, one does not
need to mark it either sequential or parallel, as
the subgoals are alternatives. To facilitate the re-
structuring of its parent goal, one can propogate
the dependencies among each alternative subgoal
up.

(c) Since the goal model has finite depth, the bottom-
up restructuring must terminate at the root goal.
Thus the propertyP holds for all the goals.2

However, if a goal is decomposed into leaf goals with
unknown dependencies due to the lack of detailed in-
formation, a shorthand transition will be generated as
an indicator of unknown mutual dependencies, so that
the statechart can be completed later (Figure 5a3).

4. When a goal is OR-decomposed intoN subgoalsin-
clusively(Figure 5a4), we createN pairs of transitions
that connect each subgoal state with the entry and exit
states of the goal respectively, and also create a transi-
tion for each pair of intermediate states.

5. When a goal is OR-decomposed intoN subgoalsex-
clusively (|) (Figure 5a5), we just createN pairs of
transitions that connect each subgoal state with the en-
try and exit states of the goal respectively.

As a result, assuming the number of subgoals isN , the num-
ber of transitions introduced will beN +1, 2N,N +N2 and
2N for the “sequential AND”, “parallel AND”, “inclusive
OR” and “exclusive OR” patterns respectively.

The statechart generated using these patterns can be sim-
plified when the goals are at the leaf level (Figure 5c): Since
no new intermediate state is introduced between the entry
and the exit state, the action on the single transition will
be moved to an incoming transition from the sibling entry

superstate (Figure 5c1) or to an outgoing transition to the
sibling exit superstate (Figure 5c2).

For the “schedule a meeting” goal model in Figure 1,
we first identify the sequential/parallel control patterns for
AND-decompositions through an analysis of the data de-
pendencies. For example, there is a data dependency from
“have updated time table” to “collect the updates” because
the time table needs to be updated before it is collected.
Similarly, “collect timetables” needs to be done before
“choose schedule” because the timetables need to be col-
lected before they are used in choosing a schedule. Sec-
ondly, we identify the inclusive/exclusive patterns for the
OR-decompositions. For example, the “collect timetable by
person” goal is OR-decomposed into “by email” and “by all
means” inclusively, whereas the “choose schedule” is done
either “manually” or “automatically”. Then we add transi-
tions according to the patterns in Figure 5a. The statechart
is further simplified according to the patterns in Figure 5b.
As a result, we obtain a statechart with hierarchical state
decompositions (see Figure 6b). It describes an initial be-
havioral view of the system. The preliminary statechart can
be further refined using information specific to the design
stage. For example, the state “have updated timetable” can
be further decomposed into a set of substates such as “have
updated time from participant” for every participant; if the
goal “collect timetables by all means” has been tried, s/he
may not need to “collect timetables by email” again. As one
can see in our more detailed case study, the refinements of
the statecharts can still be traced back to the annotated goal
models.

5 Generating component models

A fundamental software engineering principle is to mod-
ularize a software system into a set of subsystems (i.e. mod-
ules, components) that have low coupling and high cohe-
sion [20]. The typical way to formally describe a compo-
nent model view is via an Architecture Description Lan-
guage (ADL). Numerous ADLs have been proposed [17].
Here, we use an adapted version of Koala [27], a simple
ADL based on Darwin [16].

A representation in Koala is organized around interface
types and components. Aninterface typedefines a collec-
tion of message signatures as member functions with which
an implementing component can interact with its environ-
ment. Acomponent, on the other hand, is defined in terms
of instances of interface types (i.e. interfaces).

A PROVIDES interface shows how the environment can
access the functionality that is implemented by the compo-
nent, whereas a REQUIRES interface shows how the com-
ponent will access the functionality provided by the envi-
ronment. Usually, each REQUIRES interface of a com-
ponent in the system isboundto exactly one PROVIDES

���������

	��
��

������
�

�	�
����� �������

��������

���

������

���

���
�	
�������� ��
�	�
������

�����

������

��������

��������

�� ��
����

��� ���

��� ���

������
����	�

�����

������
����	�

���
�

��
��

� �
� �

!�" !�"

���������	��
��

###

$%�&'()
�����

������

��������

��������

$%�*'*)+��,������

���������������

$%�('*)+	�������

$%�()'(+��
�	�
������

�

�

���

���

���

�������

�
�

$%�&'*)+������
�����
�

�

Figure 6. The statecharts generated from the goal model in Figure 1

interface of some other component. Koala allows alterna-
tive bindings of interfaces through the use of a switch. In
general, aswitch associates one REQUIRES interface of
one component with two or more alternative PROVIDES
interfaces of other components, assuming they are all of the
compatible type. Thus, a switch represents alternative bind-
ings among interfaces. Furthermore, Koala allows thecon-
tainmentof components into compound ones. If a switch
is within a compound component, its REQUIRES interface
must be compatible to all the contained subcomponent’s
PROVIDES interfaces.

In order to automatically produce a first draft of a com-
ponent model, we need an AND/OR goal decomposition
tree and a specification of the inputs and the outputs of each
goal, where applicable. Inputs are the data entities that need
to be supplied to the agent responsible for the goal in or-
der to fulfill it. Outputs are data entities that the agent pro-
vides to its environment as part of the fulfilment of the goal.
For example, the entities “User Name” and “User Address”
are the input and output of the goal “Find Address” respec-
tively.

The component model is produced from a goal model
as follows. We first specify the inputs and outputs of each
goal. Then anassociated interface typeand anassociated
componentare created for each goal. The associated inter-
face type of a goal initially contains one member function
signature, the name of which is directly derived from the
description of the goal. The inputs and outputs of the goal
become the IN and OUT parameters of the signature. For
example, a goal “Collect Timetables” that inputs “Users”
and an “Interval” and outputs “Constraints” produces the
following associated interface type in Koala:

interface type ICollectTimetables {
CollectTimetables(IN Users, Interval,

OUT Constraints);
}

As an instance of the associated interface type, thedefault
PROVIDES interfaceof the goal is added to the associ-

ated component of the goal. The REQUIRES interfaces
of the associated component, though, are defined depend-
ing on how the goal is decomposed. If the goal is AND-
decomposed, the associated component has as many RE-
QUIRES interfaces as the interface types of its subgoals.
Thus in our example, the component of the goal “Collect
Timetables” is generated as follows:

component CCollectTimetables {
provides ICollectTimetables ct;
requires IHaveUpdatedTimetables ht,

ICollectUpdates cu;
}

In the generated component, the REQUIRES interfaces are
bound to the appropriate default PROVIDES interfaces of
the subgoals. Also, a compound component is created that
contains both the component of the parent goal and the as-
sociated components of the subgoals.

If the goal is OR-decomposed, the associated compo-
nent itself becomes a compound one. Further, the associ-
ated interface types of the subgoals arereplacedwith the
associated interface type of the parent goal. Thus, the de-
fault PROVIDES interface of the parent goal is now of the
same type as the default PROVIDES interfaces of the sub-
goals. In the generated compound component, a switch is
introduced in order to bind these interfaces. Hence, the
default PROVIDES interface of the component associated
with the parent goal can be bound to any one of the sub-
goal’s default PROVIDES interfaces. Both the switch and
the components of the subgoals are placed inside the com-
ponent of the parent goal, andhiddenbehind its interface.
Figure 7 shows the result of this process using a graphical
notation directly adopted from Koala. The boxes are com-
ponents and the arrows attached to them represent PRO-
VIDES and REQUIRES interfaces, depending on whether
the arrow points inwards or outwards respectively. The lines
show how interfaces are bound for the particular configura-
tion and are annotated with the name of the respective in-
terface type. The shape of the overlapping parallelograms

�

�� ��

�� ��

��������

���	��	�

��������

���	��	�

��������

���	��	�

�
��������������������

��������������

�������	�������	���

�

��

�� ��

�

�� ��

��������

���	��	�

����������

���	���	��

����������

���	���	��

�
���������������

���������������������	�������	���

�

�
����������������

������������������������	��������	����

�

�
����������������

������������������������	��������	����

�

��
��

��� ���

��

Figure 7. Patterns to generate the Koala com-
ponent models

represents a switch (see Figure 13).
After the initial components model generation described

above, technical intuition from the designers needs to be
applied to complete the representation. First, each interface
type and component need to be named after the associated
goal. This can be done by converting the optative clause
that describes a goal into a phrase that describes a compo-
nent or an interface (e.g. from “Find Address” to “Address
Finder”). More importantly, the designers may choose to
merge two or more components into one, if they think their
functionalities are too restricted to justify their independent
existence. This can be done by introducing compound com-
ponents and merging individual interface types into ones
that contain the union of the member signatures of the origi-
nal interface types. Conversely, the designers may introduce
new interface types and components in order to describe
functionality in more detail.

6 Tool support and detailed case study

We have designed the processes for generating the first
draft of the feature models, statecharts and component mod-
els as parts of an initial software design. The goal models
and the three kinds of design views were represented us-
ing the Eclipse Modeling Framework (EMF) [28]. EMF
is an implementation of the OMG Meta-object framework
(MOF) for the model-driven development. It supports seri-
alizing the models into XMI format to allow sharing them
with other modeling tools such as Rational Rose and gener-
ating annotated Java programs that manipulate the model.

A UML class diagram (Figure 8) models the data struc-
tures in EMF that are used by our processes. A basic
goal model is represented by aGoal class, which has
a recursivesubgoal relation associating aparent with
zero to manychildren. This relation is modeled as an ab-

stract association classRefinement . In the goal model,
a GoalRefinement allows for AND/OR decomposi-
tions of the parent goal. ASoftgoal is a subclass of
a Goal that models a quality concern. It can be partially
satisfied or denied. A refinement of a softgoal is called
SoftgoalRefinement , representing one of thehelp /
hurt/ make/ breakcontributions from a goal to a softgoal.

We extend the goal model by adding design annotations
that are sufficient to generate the three design views pre-
sented in the previous sections.

For feature models generation, we extend aGoal into a
FeatureAnnotatedGoal , indicating the configuration
variability, i.e., whether the goal is done by the system or
not. Besides theFeature hierarchy, our process will pro-
duce the feature model with the constraints derived from the
associatedSoftgoalRefinements .

For statecharts generation, we extend aGoal into
a StateAnnotatedGoal , indicating the pre-/post-
conditions of the goal. In addition, theGoalRefinement
is associated with aStateRefinement , indicating the
control variability, i.e., whether the AND composition is se-
quential or parallel. TheFeatureAnnotatedGoal can
also be used to tell whether the OR composition is inclusive
or exclusive. Our process will further generate Transitions
based on these annotations.

For the component models generation, we extend a
Goal into a ComponentAnnotatedGoal which pro-
videsinputandoutputinformation for the goal. Such infor-
mation can be used to generate for the goal anInterface
to bind with its parent goal through therequires and
provides associations. Our process will generate the
specification for each Component in the Koala ADL.

By the extensibility of the model through the inheritance
of a Goal and itsRefinement , our representation is not
limited to the discussed design views. Without making rad-
ical changes to our EMF model, one can implement other
views, such as an aspect-oriented view [29] or a service-
oriented view [30], by adding appropriate semantic infor-
mation and mapping processes.

Based on the problem description in [22], our meeting
scheduler requirements case study has a more refined goal
model, which has 73 goals, 13 softgoals, 68 AND/OR de-
composition links and 36 correlation dependencies . A
simplified goal model is shown in Figure 10, which has
been annotated to allow for the mappings into the three de-
sign views. Figure 11, Figure 12, and Figure 13 show the
generated design views. The variation points (VP) in the
goal model are reflected in the design views through proper
mechanisms: OR feature VP1 and optional features VP2 in
the feature model (Figure 11), triggering conditions in the
statechart (Figure 12) and switches of VP1 and VP2 in the
component model (Figure 13). The three views are comple-
mentary to each other as they were derived from the same

SoftGoal

Boolean isFullySatisficed()
Boolean isPartiallySatisficed()
Boolean isFullyDenied()
Boolean isPartiallyDenied()

Refinement

GoalRefinement

Boolean isAnd()
Boolean isOR()

SoftgoalRefinement

Boolean isHelp()
Boolean isHurt()
Boolean isMake()
Boolean isBreak()

StateRefinement

Boolean isSequential()
Boolean isParallel()

Feature

String getName()
Boolean isMandatory()
Boolean isOptional()
Boolean isAlternative()
Boolean isOr() 1

0..n

+parent

1

subfeatures

+children

0..n

FeatureAnnotatedGoal

Boolean isOptional()
Boolean bySystem()

0..1

1

0..1

1

ComponentAnnotatedGoal

StringList getDataInput()
StringList getDataOutput()

Interface

String getActivity()
StringList getInput()
StringList getOutput()

Component

Boolean isSwitchComponent()

1

0..n

+parent

1

subcomponents

+children
0..n

0..1

1

0..1

1

0..n

1

0..n

+requires

1

0..n

1

0..n

+provides

1

Goal

String getName()
Boolean isSatisfied() 1

0..n

+parent
1

subgoals

+children

0..n

Transition

String getTriggerEvent()
String getCondition()
String getActivity()

State

String getName()
1

0..n

+from
1

+outgoing

0..n
0..n

1

+incoming
0..n

+to1
1

0..n
+parent

1

substates

+children

0..n

StateAnnotatedGoal

String getPrecondition()
String getPostcondition()

0..1

1

0..1

1

Figure 8. A data model of our system

Figure 9. A detailed goal model

���������

���
��

������
�

����
����
�

������
�

����
����
�

���

��

�����
����

���

�����

����
������

����
����
�

��
��������

����
����
�

���

�������
���

7���������

�������

���

��		�����
��

������

���

�

�

��
�	�
������0�

�����	��

��������

��
��

��
������

��
�8�
�����

���
���
��

�

���

����

���������
����

����
�� �!

�����"

������

���#$$���

��%

���#$$�����

����
�� �!

����

����������

�����
�� �!

���&	
����
����

�������

����
�� �!

������&	
����
��

����������

�����
�� �!

���&	
����
����

������������
�� �!

���&	
����
����

���&	
����
����

���'����
(��"�

���&	
����
����

���'����
(��"�

����

���'����
(��"�����

����
�� �!��������

���

8��
��

�������

9	���

��
��

���#$$�����'����(�

����
���#$$�����'����(�

����

������
��

%����
��

:���������
�

����	�;�
���

�������
�

����	�;�
���

��

��

��

���&	
����
����

���'����
(��"�

���&	
����
����

���'����
(��"�

���&	
����
����

���'����
(��"�

���

���

�

�

�

Figure 10. A refined goal model from Figure 1

���������

	��
��

������
�

����
����
� �����
����

�����	���
������

����
����
�
��
�	�
������

��		�����
��

������

��������

����
����
�

���

�������

��
�

�����

��
�

8�
������

������
�

����
����
�

7���������

�������

�����

������

���

8��
��
�

�������
9	���

���

������
��

%����
��

:���������
�

	���	�;�
���

�������
��

����	�;�
���

���

Figure 11. Generated feature model

variability goal model.

7 Related work and conclusions

Models and tools for going from requirements to soft-
ware architectures is a subject getting growing attention.
Brandozzi et al [2] attempt to link goal-oriented require-
ments with software architectures. They recognized that re-
quirements and design are respectively in problem and so-
lution domains. Therefore, a mapping between a goal and
a component is proposed for increased reusability. More
recent work by van Lamsweerde et al [23] derives soft-
ware architectures from the formal specifications of a sys-
tem goal model using heuristics, that is, by finding design
elements such as classes, states and agents directly from the
temporal logic formulae representing the goals. This work

������������
��

�������0��������
���������
����
�

�������07����������������

0��
8�
�����

*5�#.!+08��
��
�������

*5�#."+09	���

0��
�����

0����������

*5�"."+

*5�".!+0$%�

*5�2.!+0������
�%����
��

*5�2."+0:��������
����	�;�
���

*5�2.#+0�������
�����	�;�
���

Figure 12. Statechart generated from Fig-
ure 10

���
������������

����
����
�

������
���

������

����
����
�

������

������

��		�����
���

������

���
��������
��

�����������

�&	!!���&	
��

������
���
�

��
�	�
���

������
���

����
����
�

8���
��8

����&	
����
��

���)�$*!�'����
(

���������8 �%����

�
�
�
!
�
�
�
�
!
	
�
#
*
�
	

7����

�������

������
�

8��
��
�

�������

�+�
$���#$$

���

������
�

������

���

���

�&	""*
�����,�-�

������
�

�����

�����
�	

:��������

����	�;�
���

�����
�	

�������
�

����	�;�
���

�����
�	

Figure 13. Component view from Figure 10

assumes that one starts with a precise specification of the
goals. Complementary to their work, we apply light-weight
annotations to the goal model in order to derive the design
views. Our work is fundamentally different from these other
works in that it aims to generate a high-variability design
where all solutions to a goal model are to be accomodated.

Variability has been studied either as part of require-
ments models or as part of design. At the requirements
level [9] represents variation points in use cases whereas
we use OR goals to represent them in goal models. At
the design level, product-families techniques [4] can rep-
resent structural variability in module diagrams [1] or
ADL [27, 7]. Configuration variability is supported in fea-
ture model through generative programming [5]. In addi-
tion, we also use statecharts [10] for behavioral variability.
We show the connection between these design-level vari-
ability as they all arise from the OR goals in the early re-
quirements. Within this paper, we do not address how to
obtain a high-variability goal model. Elsewhere [11], we
describe a configuration process that results in a require-
ments goal model with1020 possible solutions for person-
alized email software system. The configuration process
drawn from the knowledge of variable user skills and stake-
holder preferences to generate the space of possible so-
lutions. High-variability software designs generated from
high-variability goal models can serve as the basis for auto-
nomic computing [14] systems that exhibit self-configuring,
self-optimizing, self-healing and self-protecting bahaviours
by autonomously adapting to the changes in the stakeholder
requirements and the environment.

In summary, we have proposed a systematic process for
generating a high-variability design from a goal model. Our
process generates three design views: feature models, state-
charts and components models. The process is supported by
algorithms and has been illustrated with a standard example
from the literature.

For the future, we hope to refine the process and build
tools that incorporate the algorithms we have proposed. We
also hope to apply it to the design of real-world case studies,
such as homeware that helps users with cognitive impair-
ments live their lives (in the spirit of [11]); or web services
for a telecommunications company.

Appendix. The algorithms to generate design
views from a goal model

Algorithm 1 Generating Feature Models

CreateFeatureModel(Goalg, FeatureType type, Feature parent){

if (g == NOP or g has no subgoals)return ;

gFeature = CreateFeature (g,type,parent);

if g == AND (g1,. . . ,gn) {
for eachgi { CreateFeatureModel(gi,Mandatory,gFeature);}

} else/* g== OR (g1,. . . ,gn) */ {
if there existsgi == NOP {

for eachgi {
if (gi != NOP) { CreateFeatureModel(gi,Optional,gFeature);}

} } else/* all gi != NOP */ {
if g == OR(g1|. . .|gn) {

for eachgi {CreateFeatureModel(gi,Alternative,gFeature);}
} else{

for eachgi { CreateFeatureModel(gi, Or,g); }
}

} } /* end of CreateFeatureModel */

Algorithm 2 Generating Statecharts

State createStateChart(Goalg) {
s = CreateState(g); if (s==null) return null ;

if g has no subgoal{ return s; }
for eachgoalg that hasn sub-goalsg1, . . . ,gn {
if g == AND(g1; . . . ; gn) /* sequential AND */{

for i=1, n {
si = CreateStateChart(gi); addSubstate(s, XOR,si);

if i =1 { t0 = CreateTransition (s.entry,s1); }
else{ ti = CreateTransition (si-1, si);

if i = n {ti = CreateTransition (si, s.exit);}
} } } else ifg == AND (g1 || . . .|| gn) /* parallel AND */ {
for i=1, n {

si = CreateStateChart (gi); addSubstate(s, AND,si);

t2i-1 = CreateTransition (s.entry,si);

t2i = CreateTransition (si, s.exit);

} else ifg == OR (g1, . . . ,gn) /* inclusive OR */{
for i=1, n {

si = CreateStateChart (gi); addSubstate(s, XOR,si);

t2i−1 = CreateTransition (s.entry,s1);

t2i = CreateTransition (si, s.exit);

for j=1, n {
if (i!=j)

tn(i+1)+j = CreateTransition (si, sj);

}
}

} } else ifg == OR(g1 | . . .| gn) /* exclusive OR */{
for i=1, n {

si = CreateStateChart (gi); addSubstate(s, XOR,si);

t2i-1 = CreateTransition(s.entry,si);

t2i = CreateTransition(si, s.exit);

} } elseg = Enrich(g, g1, . . . ,gn); /* based on data dep. */

return s;

}

void SimplifyStatechart(Goalg) {
if (g has no subgoals, state s =g.getState()and there exist unique

transitionst0==(s.entry, s.exit),t1==(s1, s),t2==(s, s2)

wheres1, s2 are sibling states of s in the same statechart){
removeState(s); removeTransitions(t0, t1, t2);

Transition t = createTransition(s1, s2);

t.setFunction(t0.getFunction());

}

Algorithm 3 Generating Component views

Component CreateComponentView(Goalg) {
if (g is not a system goal)return ;

i=CreateInterfaceType(g.name,g.input,g.output)

if (g has no subgoals){
c = CreateComponent(); setProvides(c, i);

} else if(g == AND(g1, . . . ,gn) {
c = CreateCompoundComponent(); setProvides(c, i);

c0 = CreateComponent(); setProvides(c0, i);

addSubcomponent(c, c0);

for eachsubgoalgi {
ci = CreateComponentView(gi);

addSubcomponent(c, ci);

pi = getProvides(ci); r = addRequires(c0, pi);

bindInterface(r,pi);

}
} else/* g == OR(g, . . . ,gn) */ {

c = CreateCompoundComponent(); setProvides(c, i);

c0 = CreateSwitchComponent(); setProvides(c0, i);

addSubcomponent(c, c0); setRequires(c0, i);

for eachsubgoalgi {
ci = CreateComponentView(gi);

addSubcomponent(c, ci);

pi = getProvides(ci); bindInterface(i,pi);

}
}

}

References

[1] F. Bachmann and L. Bass. Managing variability in software
architectures. InSSR ’01, pages 126–132. ACM Press, 2001.

[2] M. Brandozzi and D. E. Perry. Transforming goal oriented
requirements specifications into architectural prescriptions.
In STRAW at ICSE01, 2001.

[3] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishing, 2000.

[4] P. Clements and L. Northrop.Software Product Lines: Prac-
tices and Patterns. Boston, MA, Addison-Wesley, 2001.

[5] K. Czarnecki and U. Eisenecker.Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, Read-
ing, MA, USA, June 2000.

[6] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition.Science of Computer Pro-
gramming, 20(1–2):3–50, Apr. 1993.

[7] E. M. Dashofy and A. van der Hoek. Representing product
family architectures in an extensible architecture description
language. InPFE ’01, pages 330–341, 2002.

[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebas-
tiani. Reasoning with goal models.LNCS, 2503:167–181,
2002.

[9] G. Halmans and K. Pohl. Communicating the variability of a
software-product family to customers.Software and Systems
Modeling, 1, 2003.

[10] D. Harel and A. Naamad. The statemate semantics of stat-
echarts.ACM Trans. on Software Engineering and Method-
ology, 5(4):293–333, Oct. 1996.

[11] B. Hui, S. Liaskos, and J. Mylopoulos. Goal skills and pref-
erence framework. InRE’03, pages 117–126, 2003.

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-Oriented Domain Analysis (FODA)
feasibility study, (cmu/sei-90-tr-21, ada235785). Technical
report, SEI/CMU, 1990.

[13] K. C. Kang, S. Kim, J. Lee, and K. Lee. Feature-oriented en-
gineering of pbx software for adaptability and reuseability.
SPE, 29(10):875–896, 1999.

[14] J. Kephart and D. Chess. The vision of autonomic comput-
ing. Computer, 36(1):41–50, 2003.

[15] P. Kruntchen. Architectural blueprints – the ”4+1” view
model of software architecture.IEEE Software, 12(6):42–
50, Nov. 1995.

[16] J. Magee and J. Kramer. Dynamic structure in software ar-
chitectures. InThe 4th ACM SIGSOFT symposium on Foun-
dations of software engineering, pages 3–14, 1996.

[17] N. Medvidovic and R. N. Taylor. A framework for classify-
ing and comparing architecture description languages.SIG-
SOFT Softw. Eng. Notes, 22(6):60–76, 1997.

[18] J. Mylopoulos, L. Chung, and B. Nixon. Representing and
using nonfunctional requirements: A process-oriented ap-
proach.TSE, 18(6):483–497, Jun 1992.

[19] J. Mylopoulos, L. Chung, and E. Yu. From object-oriented
to goal-oriented requirements analysis.CACM, 42(1):31–
37, Jan. 1999.

[20] D. Parnas. On the criteria to be used in decomposing systems
into modules.CACM, 15(12):1253–1058, 1972.

[21] R. Prieto-Diaz. Domain analysis: An introduction.ACM
SIGSOFT Software Engineering Notes, 15(2):47–54, 1990.

[22] M. Shaw, D. Garlan, R. Allen, D. Klein,
J. Ockerbloom, C. Scott, and M. Schumacher. Can-
didate model problems in software architecture.
www.cs.cmu.edu/ vit/paperabstracts/modprb1-3.html.

[23] A. van Lamsweerde. From system goals to software ar-
chitecture. InFormal Methods for Software Architectures,
LNCS 2804, 2003.

[24] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: From system objectives to UML models to precise soft-
ware specifications. InICSE 2003, pages 744–745, 2003.

[25] A. van Lamsweerde, R. Darimont, and P. Massonet. Goal-
directed elaboration of requirements for a meeting sched-
uler: problems and lessons learnt. InRE’95, pages 195–203.

[26] A. van Lamsweerde and L. Willemet. Inferring declar-
ative requirements from operational scenarios.TSE,
24(12):1089–1114, Nov. 1998.

[27] R. van Ommering. Koala, a component model for con-sumer
electronics product software. InESPRIT-ARES, pages 76–
86, 1998.

[28] www.eclipse.org. Eclipse 3.0.1, 2005.
[29] Y. Yu, J. Leite, and J. Mylopoulos. From requirements goal

models to goal aspects. InRE’04, 2004.
[30] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,

J. Kalagnanam, and H. Chang. Qos-aware middleware for
web services composition.TSE, 30(5):311–327, 2004.

