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Abstract

Software requirements consist of functionalities and
qualities to be accommodated during design. Through goal-
oriented requirements engineering, stakeholder goals are
analyzed into a model that defines a space of alternative
functionalities that can fulfill these goals. We adopt this
framework and propose a decision-making process to gen-
erate a generic software design that can accommodate the
full space of alternative functionalities each of which can
fulfill stakeholder goals. Specifically, we present a process
for generating three complementary design views from a
goal model: a feature model, a set of statecharts and a com-
ponent/connector architecture. The process is supported by
heuristic rules that guide the design. We demonstrate the
process through a case study of an open-source email sys-
tem.

1 Introduction

Traditionally, requirements consist of functions and
qualities the system-to-be should support [6, 3]. In goal-
oriented approaches [22, 17], requirements are derived from
the list of stakeholder goals to be fulfilled by the system-to-
be, and the list of quality criteria for selecting a solution to
fulfil the goals [17]. Goal models have been proposed as
vehicles for bridging “early” and “late” requirements [23].
Root-level goals model stakeholder intentions, leaf-level
goals model functional system requirements. [22] offers a
nice overview of Goal-Oriented Requirements Engineering,
while the KAOS approach [6] represents the state-of-the-art
for research on the topic.

We are interested in using goal models to generate
generic software solutions that can accommodate many/all
possible functionalities that fulfill stakeholder goals. This
is possible because our goals models are extensions of
AND/OR graphs. The space of alternatives defined by a
goal model can be used as a basis for designing fine-grain
variability for highly customizable software. Customiza-
tions can be selected by using softgoals as criteria. Soft-

goals represent stakeholder preferences, and may represent
qualities that lead to non-functional requirements.

The main objective of this paper is to propose a process
that generates a high variability software design from a goal
model. The process we propose is supported by heuristic
rules that can guide the design. Of course, these rules are
only suggestive of how the design is to be moved forward
and can be overridden by the designer.

Our approach to the problem is to accommodate the
variability discovered in the problem space by a variability
model in the solution space. To this end, we employ three
complementary design views: a feature model, a statechart
and a component model. The feature model prescribes the
system-to-be as a variable combination of configurable fea-
tures. The statechart provides a view of the alternatives in
the system behavior. Finally, the component model reveals
the view of alternatives as variable structural bindings of the
software components.

The goal model is used as the logical view at the require-
ments stage, similar to the global view in the 4+1 views [14]
of the Rational Unified Process. This goal model transcends
and circumscribes design views. On the other hand, a goal
model is missing useful information that will guide deci-
sions regarding the structure and behavior of the system-to-
be. Our proposed process supports lightweight annotations
for goal models, through which the designer can introduce
some of this missing information.

The rest of the paper is organized as follows: Section
2 introduces goal models through an example. Section 3
presents the configuration variability view represented by a
feature model, while Section 4 presents the behavioral view
as generated statecharts. The structural view is presented in
Section 5 in terms of component models. In Section 6, we
discuss tool support and a case study undertaken to validate
the proposed process. Finally, Section 7 presents related
work and summarizes the contributions of the paper.

2 Requirements Expressed in Goal Models

We adopt the formal goal modeling framework proposed
in [8, 20]. According to this framework, a goal model con-



sists of one or more root goals, representing stakeholder ob-
jectives. Each of these is AND/OR decomposed into sub-
goals to form a forest. In addition, a goal model includes
zero or more softgoals that represent stakeholder prefer-
ences. These can also be AND/OR decomposed. More-
over, there can be positive and negative contribution rela-
tionships from a goal/softgoal to a softgoal indicating that
fulfillment of one goal/softgoal leads to partial fulfillment
or denial of another softgoal. The semantics of AND/OR
decompositions is adopted from AI planning. [8] and [20]
provide a formal semantics for different goal/softgoal re-
lationships and propose reasoning algorithms which make
it possible to check (a) if root goals are (partially) satis-
fied/denied assuming that some leaf-level goals are (par-
tially) satisfied/denied; (b) search for minimal sets of leaf
goals which (partially) satisfy/deny all root goals/softgoals.

Figure 1 shows a goal model where the root goal is
“schedule meeting”, while softgoals include “minimal ef-
fort” (to schedule a meeting) and “minimal disturbance”.
Each goal is AND/OR decomposed repeatedly into leaf-
level goals such as “send request for topics” and ”decrypt
received message”. These goals are assumed to have cor-
responding actions that an (external) actor or the system
itself can perform to fulfill them. OR decompositions in-
troduce variation points which lead to alternative ways of
fulfilling higher-level goals, for example, the four variation
points of the goal model in Figure 1 are marked VP1-VP4.
VP1 contributes two alternatives, VP2 and VP4 combined
contribute 3, while VP3 contributes 2. Then, the total space
of alternatives for this goal model includes 2*3*2 = 12 so-
lutions. Accordingly, we’d like to have a systematic process
for producing a generic design that can accommodate all 12
solutions.

Since a generic goal model is a highly abstract descrip-
tion of the early requirements, it needs to be annotated with
extra information in order to facilitate design decisions (see
patterns in Figure 3, 6, 8). Figure 2 shows an annotated goal
model for feature model and statecharts generation, where
the semantics of the goal decompositions are further ana-
lyzed: (1) VP1, VP2 and VP3 are exclusive (|) and VP4
is inclusive; (2) based on the temporal relationships of the
subgoals, AND decompositions are annotated as sequential
(;) or parallel (||) and (3) non-system goals (NOP) are also
indicated by dotted shapes. We will explain the detailed an-
notations for deriving a component-connector architecture
in Section 5.

To deliver a generic design, the alternatives must be pre-
served in different design views such as configuration vari-
ability in feature models, behavioral variability in state-
charts, and structural variability in components. The de-
signer can make detailed changes to these views. However,
they must maintain the variability as needed by the stake-
holders.
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Figure 1. An example generic goal model of
the meeting scheduler. Variation points by
OR decompositions are indicated as VP1-4.
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Figure 2. An annotated goal model

In the following three sections, we discuss the generation
of the three above-mentioned views from goal models. For
each view, we first describe its notation and explain why it
is of interest to us. Then we analyze what is the minimal
information needed for generate that view from the generic
goal model. Finally, we illustrate a process of generating the
view from an enriched goal model, using the same example
throughout the paper.

3 Generating feature models

The systematic discovery and exploitation of common-
ality across related software systems is a fundamental
technical requirement for achieving successful software
reuse [19]. Thus, the software reuse community has long



been interested in analyzing commonality among closely
related software systems (called a product line or a domain).
A method called Feature-Oriented Domain Analysis [12]
was the first to use features for analyzing and representing
commonality and variability among applications in a do-
main. There, members of a software product line are char-
acterized by their features, so variability in a product line
can be represented by a feature model.

Feature modeling is a domain analysis technique that is
part of an encompassing process for developing software
for reuse (referred to as Domain Engineering [5]). As such,
it can directly help in generating domain-oriented architec-
tures and software components [13].

There are four main types of features in feature model-
ing: Mandatory, Optional, Alternative, and OR features [5].
A Mandatory feature must be included in every member of
a product line family provided that its parent feature is in-
cluded; an Optional feature may be included if its parent
is included; exactly one feature from a set of Alternative
features must be included if a parent of the set is included;
any non-empty subset of an OR-feature set can be included
if a parent feature is included. Features can also be distin-
guished based on their mapping into software components
[5]. There can be concrete features that may be realized as
single components, aspectual features that affect a number
of components, abstract features such as performance, and
so on, and grouping features that may either correspond to a
common component interface or be used for organizational
purposes.
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Figure 3. Patterns for generating feature mod-
els.

There are fundamental differences between goals and
features. Goals represent stakeholder intentions and can be
much-removed from any software system-to-be (e.g., “in-
crease production”). Features, on the other hand, represent
properties of concepts or artifacts [5]. Goals will use the
services of the system-to-be as well as those of external ac-
tors for their fulfillment. Features in product families repre-
sent system functions or properties. Goals may be partially
fulfilled in a qualitative or quantitative sense [8], while fea-
tures are either elements of an allowable configuration or
they are not. Goals come with a modality: achieve, main-
tain, avoid, cease [6], while features have none. Likewise,

AND decomposition of goals may introduce temporal con-
straints (e.g., fulfill subgoal A before subgoal B) while fea-
tures do not.

As noted in [5], feature models must include the seman-
tic description and the rationale for each feature (why it is in
the model). Also, variable (OR/Optional/Alternative) fea-
tures should be annotated with conditions describing when
to select them. Goal models already capture the rationale
(stakeholder goals) and the quality criteria driving the selec-
tion of alternatives. Thus, they can be used for generating
feature models.

Feature models represent the variability in the system-
to-be. Therefore, in order to generate feature models, we
need to identify the subset of a goal model that is intended
for the system-to-be. Further annotations can be applied
to generate the corresponding preliminary feature model.
AND decompositions of goals generally correspond to sets
of Mandatory features (see Figure 3a). For OR decom-
positions, it is important to distinguish two types of vari-
ability in goal models: design-time and runtime. Design-
time variability is high-level and independent of input. It
can be bound at design-time. On the other hand, runtime
variability depends on the runtime input and must be pre-
served at runtime. For example, meeting participants can
be selected explicitly (by name) or chosen by matching the
topic of the meeting with their interests (see Figure 4). The
choice will depend on the meeting type and thus both al-
ternatives must be implemented. When subgoals cannot
be selected based on some quality criteria (softgoals), they
are considered runtime variability, thus, runtime variabil-
ity in goal models corresponds to mandatory features (Fig-
ure 3e). Otherwise, as design-time variability, other OR de-
compositions can be mapped into sets of OR-features (Fig-
ure 3d). However, Alternative and Optional feature sets do
not have counterparts in the AND/OR goal models. So, in
order to generate these types of features we need to ana-
lyze whether some of the OR decompositions are, in fact,
XOR decompositions (where exactly one subgoal must be
achieved) and then annotate these decompositions with the
symbol “|” (Figure 3c). The inclusive OR decomposition
corresponds to a feature refined into a set of OR features
(Figure 3d). Finally, when a goal is OR-decomposed into at
least one non-system subgoal (specified by a goal annota-
tion NOP), the sibling system subgoals will be mapped into
optional features (Figure 3b).

Constraints in feature models represent relationships
among variable features that cannot be captured by feature
decompositions. These constraints include, for example,
mutual exclusion and mutual dependency. To help in feature
selection, feature model constraints can be generated by re-
lating features with their corresponding goals contributing
(positively or negatively) to the same softgoal. For instance,
if two system-delegated goals contribute positively (respec-



tively, negatively) to the softgoal S, then both their corre-
sponding features will most likely have to be included in
(respectively, excluded from) the system provided that the
softgoal is of importance for that system variant. Thus, we
generate a mutual dependency constraint between the two
features. The constraint’s label includes the strength of the
softgoal contribution and the name of the softgoal to docu-
ment the source of the constraint (e.g., +depends[S], if both
goals contributed positively to S). Similarly, if two system-
delegated goals have opposite contributions to a softgoal,
then selecting both corresponding features in a system that
tries to satisfice the softgoal will be counterproductive. This
will result in a mutual exclusion constraint between the two
features. Thus, the constraints help in the feature selection
process by accounting for stakeholders’ quality concerns.

In general, to obtain a feature model constraint between
two features fX and fY based on the softgoal contributions
of their corresponding goals, we use the following rules fea-
turing the corresponding goals X and Y and a softgoal S.
Here, +(X, S) indicates that the goal X contributes posi-
tively to the softgoal S, −(X, S) indicates that the goal X
contributes negatively to the softgoal S, etc.

+conflicts[S](X, Y) <=>
(+(X,S) AND -(Y,S) OR -(X,S) AND +(Y,S))

++conflicts[S](X, Y) <=>
(++(X,S) AND --(Y,S) OR --(X,S) AND ++(Y,S))

+depends[S](X,Y) <=> (+(X,S) AND +(Y,S)) (1)
-depends[S](X,Y) <=> (-(X,S) AND -(Y,S))
++depends[S](X,Y) <=> (++(X,S) AND ++(Y,S))
--depends[S](X,Y) <=> (--(X,S) AND --(Y,S))

The constraints are parameterized by a softgoal S to in-
dicate that they are significant only when S is important to
the stakeholders. As well, the strength of the softgoal con-
tributions implies the strength of the constraints (as shown
by + + |+ | −−|−). The process can be easily extended to
support constraints among feature sets.

Below we present the proposed process to generate a pre-
liminary feature model from an annotated goal model.

FeatureGenerationProcedure
input: Goal models with annotations (1) inclusive/exclusive OR
(2) system/non-system goals.
output: An initial feature model with traceability
established between goals and features.
procedure
For every root goal
1. if it is a non-system goal, return NOP
2. if it is AND-decomposed (Figure 3a)

map its subgoals into a set of Mandatory features
3. if it is OR-decomposed
3.1 if there is no softgoal to guide the selection of its subgoals

(Figure 3e), map its subgoals into a set of Mandatory features
goto step 4.

3.2 if it has both system and non-system subgoals (Figure 3b)
map its system subgoal(s) to Optional feature(s)

3.3 if it is annotated as an exclusive OR (Figure 3c)
map it to an Alternative feature

3.4 if it is annotated as an inclusive OR (Figure 3d)
map it to an OR feature

4. create the mapping recursively for each subgoal
5. for each softgoal with contributions from multiple goals

create appropriately parameterized constraints using rules (1)
end

The generated feature models reflect the fact that decom-
positions in goal models are much more restrictive than in
feature models. Thus, we produce feature models where
features have sub-features of a single type and cannot have
more than one set of Alternative or OR-features. One can
further group them into mixed-type feature decompositions
if appropriate.

The above procedure generates a preliminary design
view. In a more complex design, the system may need to fa-
cilitate the actors in its environment in achieving their goals
or monitor the achievement of these goals. Here, the goals
delegated to the environment can be replaced with user in-
terfaces, monitoring or other appropriate features. In gen-
eral, there is no one-to-one correspondence between goals
delegated to the system and features. While high-level goals
may be mapped directly into grouping features in an initial
feature model, a leaf-level goal may be mapped into a sin-
gle feature or multiple features, and several leaf goals may
be mapped into a feature, by means of factoring. For exam-
ple, a number of goals requiring the decryption of received
messages in a secure meeting scheduling system may be
mapped into a single feature “Message Decryptor” (see Fig-
ure 41).
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Figure 4. A feature model derived from the
goal model in Figure 1

1One can systematically derive feature names from the hard goal de-
scriptions by, for example, changing the action verb into the corresponding
noun (e.g., “schedule meeting” becomes “meeting scheduler”).



4 Generating statecharts

Statecharts, as proposed by David Harel [10], are a vi-
sual formalism for describing the behavior of complex sys-
tems. On top of states and transitions of a state machine,
a statechart introduces nested super-/sub-state structure for
abstraction (from a state to its super-state) or decomposi-
tion (from a state to its substates). In addition, a state can
be decomposed into a set of AND states (visually separated
by swimlanes) or a set of XOR states [10]. A transition can
also be decomposed into transitions among the substates.

This hierarchical notation allows the description of a sys-
tem’s behavior at different levels of abstraction. This prop-
erty of statecharts makes them much more concise and us-
able than, for example, plain state machines. Thus, they
constitute a popular choice for representing the behavioral
view of a system.

Figure 5. Mapping a leaf goal into a statechart

Figure 5 shows a mapping from a goal in a requirements
goal model to a state in a statechart. In Figure 5a, an achieve
goal is expressed as a temporal formula with P being its
precondition, and Q being its postcondition. In the corre-
sponding statechart, one entry state and one exit state are
created: P describes the condition triggering the transition
from the entry to the exit state; Q prescribes the condition
that must be satisfied at the exit state. The transition is as-
sociated with an activity to reach the goal’s desired state.
The cease goal is mapped to a similar statechart by replac-
ing the condition at the exit state with ¬Q. Figure 5b shows
the mapping from a maintain goal to a statechart, where the
mapped transition restores the state back to the one that sat-
isfies Q whenever it is violated while P is satisfied. Similar
to the maintain goal’s statechart, the statechart for an avoid
goal swaps Q with its negation.

These conditions can be used symbolically to generate
an initial statechart view, i.e., they do not need to be explicit
temporal logic predicates. At the detailed design stage, the
designer may provide solution-specific information to spec-
ify the predicates for a simulation or an execution of the
refined statechart model.

A goal hierarchy can also be mapped into a state hierar-
chy in a statechart. That is, the state corresponding to a goal
becomes a super-state of the states associated with its sub-
goals. Here, the runtime variability in the goal model will
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Figure 6. Statechart composition patterns

be preserved in the statecharts through alternative transition
paths.

The transformation from a goal model to an initial stat-
echart can be automated even when the temporal formu-
lae are not given: we first associate each leaf goal with a
state that contains an entry substate and an exit substate.
A default transition from the entry substate to the exit sub-
state is labelled with the action corresponding to the leaf
goal (Figure 5). Then, the AND/OR goal decompositions
are mapped into compositions of the statecharts. In order
to know how to connect the substates generated from the
corresponding AND-decomposed subgoals, temporal con-
straints are introduced as goal model annotations, e.g., for
an OR decomposition, one has to consider whether it is in-
clusive or exclusive (see Figure 6).

Given root goals, our statechart generation procedure de-
scends along the goal refinement hierarchy recursively. For
each leaf goal, a state is created according to Figure 5. The
created state has an entry and an exit substates. Next, an-
notations that represent the temporal constraints with the
AND/OR goal decompositions are considered. Composi-
tion patterns in Figure 6 can then be used to combine the
statecharts of subgoals into one statechart. Specifically:

1. When a goal is AND-decomposed sequentially (;)
into N subgoals (Figure 6a1) we create N + 1 transi-
tions that connect the N subgoal states with the entry
and exit states of the goal as a sequential chain. The
decomposition of a sequential AND is achieved by a
set of sequential sub-goals according to the left to right
order of the goal graph2.

2. When a goal is AND-decomposed concurrently (||)
into N subgoals (Figure 6a2), we create N pairs of
transitions that connect each subgoal state with the en-
try and exit states of the goal respectively. The states

2Note that in Statecharts semantics, the substates are XOR-decomposed
since only one state can be active in the system at any given time.



are the AND decomposition of the superstate in the
statechart.

3. When a goal is OR-decomposed into N subgoals in-
clusively (Figure 6a3), we create N pairs of transitions
that connect each subgoal state with the entry and exit
states of the goal respectively, and also create a cyclic
transition for fulfilling any number of subgoals in the
OR decomposition. The states here are the XOR de-
composition of the superstate in the statechart.

4. When a goal is OR-decomposed into N subgoals ex-
clusively (Figure 6a4), we just create N pairs of transi-
tions that connect each subgoal state with the entry and
exit states of the goal respectively. The states are the
XOR decomposition of the superstate in the statechart.

As a result, given the number of subgoals to be N , the num-
ber of transitions introduced will be N + 1, 2N,N + 1 and
2N for the “sequential AND”, “parallel AND”, “inclusive
OR” and “exclusive OR” patterns respectively.

The statechart generated using these patterns can be sim-
plified when the goals are at the leaf level (Figure 6b): since
no new intermediate state is introduced between the entry
and the exit state, the action on the single transition will
be moved to an incoming transition from the sibling entry
superstate (Figure 6b1) or to an outgoing transition to the
sibling exit superstate (Figure 6b2).

For the schedule meeting goal model in Figure 1, we first
identify the sequential/parallel control patterns for AND-
decompositions through an analysis of the data dependen-
cies. For example, there is a data dependency from “send re-
quest for timetable” to “decrypt received message” because
the time table needs to be requested first, then received and
decrypted. Secondly, we identify the inclusive/exclusive
patterns for the OR decompositions. For example, “choose
time slot” is done either “manually” or “automatically”.
Then we add transitions according to the patterns in Fig-
ure 6a. The statechart is further simplified based on the
patterns in Figure 6b. As a result, we obtain a statechart
with hierarchical state decompositions (see Figure 7). It de-
scribes an initial behavioral view of the system.

An initial behavioral model for the preliminary design is
generated as statecharts by the following procedure.

StatechartsGenerationProcedure
input: Goal models with annotations (1) inclusive/exclusive OR

(2) sequential/parallel AND.
output: An initial statechart with traceability established between

goals and state transitions.
procedure
For every root goal apply the patterns in (Figure 6a):
1. if it is AND decomposed with annotation (;)

map it into a statechart connecting XOR substates sequentially
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Figure 7. A statechart generated from the
generic goal model in Figure 1. The softgoal
names are abbreviated.

2. if it is AND decomposed with annotation (||)
map it into a statechart partitioned into parallel AND substates

3. if it is OR decomposed
map it into a statechart with each path of transition
corresponding to one alternative

4. if it is annotated as an inclusive OR
add one cyclic transition on the statechart

5. recursively apply step 1-5 on every subgoal
6. simplify the leaf statecharts according to the rules in Figure 6b
end

The generated statechart can be further modified by the
designer. For examples, the abstract “send requests for
timetable” state can be further decomposed into a set of
substates such as “send individual request for timetable” for
each of the participants. Since the variation point selection
and the softgoals used to make decisions are recorded by
the guard conditions on the transitions, the changes of the
statecharts can still be traced back to the composition of the
annotated goal models.

5 Generating component-connector view

An important software engineering principle is to mod-
ularize a system into a set of subsystems (i.e. mod-
ules, components) that have low coupling and high co-
hesion [18]. The typical way to formally describe a
component-connector architecture is via an Architecture
Description Language (ADL). Numerous ADLs have been
proposed [16]. Here, we use an adapted version of
Koala [24], a simple ADL based on Darwin [15].

A representation in Koala is organized around interface
types and components. An interface type defines a collec-
tion of message signatures as member functions with which



an implementing component can interact with its environ-
ment. A component, on the other hand, is defined in terms
of instances of interface types (i.e. interfaces).

A PROVIDES interface shows how the environment can
access the functionality that is implemented by the compo-
nent, whereas a REQUIRES interface shows how the com-
ponent will access the functionality provided by the envi-
ronment. Usually, each REQUIRES interface of a com-
ponent in the system is bound to exactly one PROVIDES
interface of some other component. Koala allows alterna-
tive bindings of interfaces through the use of a switch. A
switch associates one REQUIRES interface of one compo-
nent with two or more alternative PROVIDES interfaces of
other components, assuming they are all of the same type.
Thus, a switch represents alternative bindings among inter-
faces. Furthermore, Koala allows the containment of com-
ponents into compound ones.

In order to automatically produce a component-
connector architecture, we will need an AND/OR goal
graph and a specification of the inputs and the outputs of
each goal, where applicable. Inputs are the data entities that
need to be supplied to the agent responsible for the goal in
order to fulfill it. Outputs are data entities that the agent pro-
vides to its environment as part of the delivery of the goal.
For example, the entities “Initiator Address” and “Topics”
are the input and output of the goal “Get Topics from Initia-
tor” respectively.

The architecture is produced from a goal model as fol-
lows. We first specify the inputs and outputs of each goal.
Then an associated interface type and an associated com-
ponent are created for each goal. The associated interface
type of a goal initially contains one operation signature, the
name of which is directly derived from the description of the
goal. The inputs and outputs of the goal become the IN and
OUT parameters of the signature. For example, a goal “Col-
lect Timetables” that inputs “Users” and an “Interval” and
outputs “Constraints” produces the following associated in-
terface type in Koala:

interface type ICollectTimetables {
CollectTimetables( IN Users, Interval,

OUT Constraints);
}

By default, the associated component of the goal imple-
ments the associated interface type as a PROVIDES inter-
face. The REQUIRES interfaces of the associated com-
ponent, though, are defined depending on how the goal is
decomposed. If the goal is AND-decomposed, the associ-
ated component has as many REQUIRES interfaces as the
subgoals. Thus in our example, the initial component of
the goal “Collect timetables from users” is generated as fol-
lows:

component TimetableCollectorFromUsers {
provides ICollectTimetables;

requires IGetTimetable, IDecryptMessage;
}

In the generated component configuration, the REQUIRES
interfaces are bound to the appropriate default PROVIDES
interfaces of the subgoals. The name of the associated com-
ponent is defined to reflect the name of the performer of the
default PROVIDES interface operation.

If the goal is OR-decomposed, the associated component
itself becomes a compound one. Further, the associated in-
terface types of the subgoals are replaced with the asso-
ciated interface type of the parent goal. Thus, the default
PROVIDES interface of the parent goal is now of the same
type as the default PROVIDES interfaces of the subgoals.
In the generated compound component, a switch is intro-
duced in order to bind these interfaces. Hence, the default
PROVIDES interface of the component associated with the
parent goal can be bound to any of the subgoal’s default
PROVIDES interfaces. Both the switch and the components
of the subgoals are placed inside the component of the par-
ent goal, and hidden behind its interface.

g
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OR OR

I: i1,i2
O: o1,o2

I: i1,i2
O: o1,o2

I: i1,i2
O: o1,o2

interface type Ig{
G(IN i1,IN i2,
  OUT o1, OUT o2);

}

Ig

Ig Ig

g

g1 g2

I: i1,i2
O: o1,o2

I: i21,i22
O: o21,o22

I: i11,i12
O: o11,o12

interface type Ig {
G(IN i1, IN i2, 
OUT o1, OUT o2);}

interface type Ig1 {
G1(IN i11,IN i12,

OUT o11,OUT o12);}
interface type Ig2 {
G2(IN i21,IN i22,

OUT o21,OUT o22);}

Ig1 Ig2

AND AND

Ig

Ig1 Ig1Event

g

g1

I: i1,i2
O: o1,o2

I: i11,i12
O: o11,o12

AND

interface type Ig1 {
G1(IN i11, IN i12);

}
interface type Ig1Event {

G1Event(OUT o11,OUT o12);
}

...

AND

Figure 8. Patterns to generate component
configurations.

The process is summarized into the following procedure.

ComponentConnectorGenerationProcedure
input: Goal model with annotations (1) inputs/outputs entities
of a goal (2) whether the goal is delegated to a non-system actor
output: A configuration of the mapped components
are connected through generated interfaces and switches.
procedure
For every root goal g

1. Generate a component Cg and an interface type Ig

2. Add an interface i ∈ Ig into Cg.PROVIDES
3. if the goal g is OR decomposed (Figure 8a)

turn Cg into a compound component;
introduce a switch subcomponent Cg.switch;

4. if the g has a parent goal p
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4.1 if p is OR decomposed (Figure 8a)
add Cg into Cp;
create an interface of type Ip into Cg .PROVIDES;
bind the Cp.PROVIDES interface with Cp.switch.IN;
bind the Cp.switch.OUT with Cg.PROVIDES;

4.2 if p is AND decomposed (Figure 8b)
create an interface j ∈ Ig into Cp.REQUIRES;
bind j with i

4.3 if g is a leaf goal delegated to a non-system actor
Bind an event interface in Cg.REQUIRES to
an interface in Cp.PROVIDES;

5. apply steps 1-5 recursively on the subgoals of g

end

In Figure 8, a graphical notation is directly adopted from
Koala/Darwin. The boxes are components and the arrows
attached to them represent PROVIDES and REQUIRES in-
terfaces, depending on whether the arrow points inwards
or outwards respectively. The lines show how interfaces
are bound for the particular configuration and are annotated
with the name of the respective interface type, the shape
of the overlapping parallelograms represents a switch. Pat-
terns show how AND/OR decomposition of system goals
are mapped into the component-connector architecture.

In order to accommodate a scheme for event propaga-
tion amongst components, we follow an approach inspired
by the C2 architectural style [16], where requests and no-
tifications are propagated towards the opposite directions.

In our case, as requests flow from high level components
to low-level ones, notifications (events) originated from low
level components propagate to higher-level ones. Specifi-
cally, leaf level goals can be delegated to non-system actors.
In this case, the derived components are responsible for sup-
porting the external actors’ activity to attain the associated
goal, sense the progress of this attainment and communi-
cate it to the components of higher level by generating the
appropriate events. We name such components user inter-
face (UI) components to signify that they lay between the
core of the system and the activities of the environment. UI
components will introduce an additional REQUIRES inter-
face that channels the events that the component produces.
This interface will be bound to an additional PROVIDES in-
terface at the parent component, which is set as the default
handler. A typical binding example is a Listener interface
in Java, implemented in the parent component for receiving
events from the UI Component. The naming convention
I[GoalName]Event can be used to distinguish event in-
terfaces.

In our example, three goals “Send request for top-
ics/interests/timetable” are delegated to external actors (e.g.
initiator, participants and users), and will therefore yield a
UI component, e.g.:

component TimetableCollectorFromUsers {
provides ICollectTimetable, ITimetableEvent;
requires IGetTimetable, IDecriptMessage;

}

The RequestMessenger component is a result of merg-
ing components of lower level and is being reused by three
different components of higher level through parameteriza-
tion. These are examples of modifications the designer may
chose to make, after the default configuration has been pro-
duced.

6 Tool support and A case study

We tested the applicability of our framework in two
stages. In the first stage we developed the goal model of
an exemplar requirements specification problem, the meet-
ing scheduler. We developed a model of 73 goals, 13 soft-
goals, 68 AND/OR decomposition links and 36 correlation
dependencies. We then applied the transformation proce-
dures in order to produce the design views. The technical
soundness that the result demonstrated, served as an initial
“sanity check” of our derivation procedures that were im-
plemented using Eclipse Modeling Framework (EMF).

A basic goal model is represented by a goal class,
which has a subgoal relation associating a parent with
zero to many children. A goal is associated with a
DecompositionType. If it is decomposed, the decom-
position type is either AND or OR, otherwise, its decompo-
sition type is LEAF. A goal can be associated with zero



to many contribution rules to a target goal. Each contri-
bution rule is one of the ContributionType: Help,
Hurt, Make, Break. Under the reasoning process, a goal
is associated with a satisfaction label. The LabelType is
one of Satisfied, Denied, PartiallySatisfied,
PartiallyDenied, Conflict or Unknown.

We extend the goal model by adding design annotations
that are sufficient to generate the three design views pre-
sented in the previous sections.

For feature models generation, we extend a Goal into a
FeatureAnnotatedGoal, indicating the configuration
variability, i.e., whether the goal is done by the system or
not. Besides the Feature hierarchy, our process will pro-
duce the feature model with the constraints derived from the
associated SoftgoalRefinements.

For statecharts generation, we extend a Goal into
a StateAnnotatedGoal, indicating the pre-/post-
conditions of the goal. In addition, the GoalRefinement
is associated with a StateRefinement, indicating the
control variability, i.e., whether the AND composition is se-
quential or parallel. The FeatureAnnotatedGoal can
also be used to tell whether the OR composition is inclusive
or exclusive. Our process will further generate Transitions
based on these annotations.

For the component models generation, we extend a
Goal into a ComponentAnnotatedGoal which pro-
vides input and output information for the goal. Such infor-
mation can be used to generate for the goal an Interface
to bind with its parent goal through the requires and
provides associations. Our process will generate the
specification for each Component in the Koala ADL.

By the extensibility of the model through the inheritance
of a Goal and its Refinement, our representation is not
limited to the discussed design views. Without making rad-
ical changes to our EMF model, one can implement other
views, such as an aspect-oriented view [26] or a service-
oriented view [28], by adding appropriate semantic infor-
mation and mapping processes.

In EMF, a simplified goal model can be generated from
the code listed in the appendix 7. The enriched goal model
can be generated from the extended model by using the
properties.

At a second stage we compared the derived design views
with a real design of an existing email system. We analyzed
the user goal Prepare an Electronic Message, and devel-
oped a goal model of 48 goals with 10 AND and 11 OR
decompositions. Then we derived the design views accord-
ingly. At the same time, we considered Columba [7, 27],
an open source e-mail client written in Java, and identified
the subset of its source code that implements its message
preparation goal.

The derived feature view consists of 39 features where
9 non-system goals were turned into NOP. Among the 11
variation points, 2 of them were turned into mandatory fea-
ture decompositions because there is no apparent softgoals
associated with them as the selection criteria.

The derived statecharts view consists of 21 “leaf-level”
states, which would provide an accurate representation of
the admissible message composition behaviors of Columba,
without the need of significant changes.

The component-connector view consists of 33 concrete
components controlled by 9 switches. However, as ex-
pected, they did not directly represent Columba’s architec-
ture. Thus, our investigation focused on whether Columba
can potentially be re-engineered so that its design fits to the
component-connector view. The evidence that we found in-
deed support this claim. For every component that appeared
in the generated component-connector view, we were able
to identify one or more Java classes that could be seen as
the detailed implementation of that component. For exam-
ple, the org.columba.core.addressbook.gui.
SelectAddressDialog class is identified as part of the
AddressBook-based Capture component. It was
also observed that the components derived from goals del-
egated to user (i.e. The UI Components) can be associ-
ated with Java classes implementing visual controls such
as JButtons or JTextComponents.

More interestingly, for most of the derived inter-
faces we were able to identify functions that could
have implemented them. These functions were mem-
bers of classes that were considered as implementations
of the associated components. For example, the function
org.columba.addressbook.gui.autocomplete.
AddressCollector.getMatchingOptions(String)
which searches the address book for auto-completion can-
didates can be identified as the default member of the
interface IFindandShowSuggestions which was de-
rived from the goal model through our procedures. Further,
interfaces associated with Java visual components follow
the same pattern as the one that “UI Components” of the
component-connector view do: interfaces that are “incom-
ing” to the UI Component are used for accessing data (e.g.
javax.swing.text.JTextComponent.getText)
whereas “outgoing” interfaces identify with Java “listener”
interfaces (e.g. CaretListener) which the higher level
components implement in order to sense the events that
originate from the corresponding component. We found
that in most cases one of the two interfaces associated
with a “UI Components” was not needed in the design.
For example, no data acquisition was needed for buttons,
whereas events produced by textboxes were rarely of
interest by the components of the higher level, in the part
of Columba that we studied.

Our study of Columba also showed how our goal ori-
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ented approach leads to a design whose customizability is
well grounded on the requirements. In our goal models, for
example, having the e-mail address being auto-completed
while being typed is a function some users may not prefer,
because it hurts performance and introduces a mistake prob-
ability. In Columba, however, where apparently such analy-
sis did not precede the design, auto-completion is a function
that cannot be trivially taken away. The specially designed
ComboBox which implements the auto-completion feature
needs to be replaced by a plain TextBox. But its interac-
tion with the rest of the system needs to be carefully stud-
ied before this replacement is possible. In our design, on
the other hand, there is simply an interface for collecting
addresses from the address provision component; whether
auto-completion is included or not in the implementation
of the interface is hidden behind the switch which directs
the binding to alternative components. Thus, the newly in-
troduced TextBox only needs to implement the generic
interface and take its place behind the switch.

Although reengineering Columba to cleanly comply
with the derived component-connector view would require
significant effort, our observations clearly suggest that this
would be possible, and that it would lead to a more cus-
tomizable e-mail system.

7 Related work and conclusions

There is growing interest on the topic of mapping soft-
ware requirements to architectures. Brandozzi et al [1] first
tried to link goal oriented requirements with software archi-
tectures. They recognized that requirements and design are
respectively in problem and solution domains. Therefore,
a mapping between a goal and a component was proposed
for increasing reusability. A more recent work by van Lam-
sweerde et al [21] derives software architectures from the
formal specifications of a system goal model using heuris-
tics. Specifically, the heuristics discover design elements
such as classes, states and agents directly from the temporal
logic formulae that define the goals. Unlike our proposal,
this work assumes that one starts with a formal specifica-
tion of the goal model, which may not always be viable.
Complementary to their work, we apply light-weight anno-
tations to the goal model in order to derive design views. If
one has the formal specifications for each goal, some heuris-
tics provided in [21] can be used to find the annotations we
need, such as system/non-system goals, inputs/outputs and
dependencies among the subgoals. Generally, this line of
research has not addressed variability issues at the design
level.

Variability within a product family is another topic that
is receiving considerable attention [4, 5]. Variability is
captured there through generative programming or domain-
specific languages. This line of research generally has not

addressed the problem of linking product family variability
to stakeholder goals (and the alternatives ways these can be
achieved). Closer to our work, [9] propose an extension
of use case notation to allow for variability in the use of
the system-to-be. More recently [2], the same group tack-
led the problem of capturing and characterizing variability
across product families that share common requirements.

In summary, this paper proposes a systematic process for
generating complementary design views from a goal model
while preserving variability (i.e., the set of alternative ways
stakeholder goals can be fulfilled). The process is supported
by heuristic rules. To illustrate our proposal, we have con-
ducted a case study using public domain software. The case
study suggests that the designs generated are comparable in
size (i.e., in the number of features, states or components)
to the initial goal model.

We are currently integrating rule-specific tools into a de-
velopment environment that supports the process. We are
also planning further experiments to validate and refine the
proposed process. Specifically, we would like to test the
process for scalability. Preliminary work on this topic was
published in [11]. In addition, we are interested in under-
standing better the sources of variability at the requirements
level. Clearly, our proposed process deals with some of
these sources, such as functional variability (i.e., there is
more than one way to fulfill a given goal). None of our
examples show variability in use (in the spirit of [9]) and
perhaps other forms of requirements-level variability that
cannot be captured by goal models. We would also like to
integrate delegation variability (a leaf goal can be delegated
to different actors, leading to different designs) into our pro-
cess.

Appendix. The algorithms to generate design
views from a goal model

Algorithm 1 Generating Feature Models

CreateFeatureModel(Goal g, FeatureType type, Feature parent) {
if (g == NOP or g has no subgoals) return;

gFeature = CreateFeature (g,type,parent);

if g == AND (g1,. . . ,gn) {
for each gi { CreateFeatureModel(gi,Mandatory,gFeature); }

} else /* g== OR (g1,. . . ,gn) */ {
if there exists gi == NOP {

for each gi {
if (gi != NOP) { CreateFeatureModel(gi,Optional,gFeature); }

} } else /* all gi != NOP */ {
if g == OR(g1|. . . |gn) {

for each gi {CreateFeatureModel(gi,Alternative,gFeature); }
} else {



for each gi { CreateFeatureModel(gi, Or,g); }
}

} } /* end of CreateFeatureModel */

Algorithm 2 Generating Statecharts

State createStateChart(Goal g) {
s = CreateState(g); if (s==null) return null;
if g has no subgoal { return s; }
for each goal g that has n sub-goals g1, . . . , gn {
if g == AND(g1; . . . ; gn ) /* sequential AND */ {

for i=1, n {
si = CreateStateChart(gi); addSubstate(s, XOR, si);

if i =1 { t0 = CreateTransition (s.entry, s1); }
else { ti = CreateTransition (si-1, si);

if i = n {ti = CreateTransition (si, s.exit); }
} } } else if g == AND ( g1 || . . . || gn) /* parallel AND */ {
for i=1, n {

si = CreateStateChart (gi); addSubstate(s, AND, si);

t2i-1 = CreateTransition (s.entry, si);

t2i = CreateTransition (si, s.exit);

} else if g == OR (g1, . . . , gn ) /* inclusive OR */ {
for i=1, n {

si = CreateStateChart (gi); addSubstate(s, XOR, si);

t2i−1 = CreateTransition (s.entry, s1);

t2i = CreateTransition (si, s.exit);

for j=1, n {
if (i!=j)

tn(i+1)+j = CreateTransition (si, sj );

}
}

} } else if g == OR(g1 | . . . | gn) /* exclusive OR */ {
for i=1, n {

si = CreateStateChart (gi); addSubstate(s, XOR, si);

t2i-1 = CreateTransition(s.entry, si);

t2i = CreateTransition(si, s.exit);

} } else g = Enrich(g, g1, . . . , gn); /* based on data dep. */

return s;

}

void SimplifyStatechart(Goal g) {
if (g has no subgoals, state s = g.getState() and there exist unique

transitions t0==(s.entry, s.exit), t1==(s1, s), t2==(s, s2)

where s1, s2 are sibling states of s in the same statechart) {
removeState(s); removeTransitions(t0, t1, t2);

Transition t = createTransition(s1, s2);

t.setFunction(t0.getFunction());

}

Algorithm 3 Generating Component views

Component CreateComponentView(Goal g) {
if (g is not a system goal) return;

i=CreateInterfaceType(g.name,g.input,g.output)

if (g has no subgoals) {
c = CreateComponent(); setProvides(c, i);

} else if (g == AND(g1, . . . , gn) {
c = CreateCompoundComponent(); setProvides(c, i);

c0 = CreateComponent(); setProvides(c0, i);

addSubcomponent(c, c0);

for each subgoal gi {
ci = CreateComponentView(gi);

addSubcomponent(c, ci);

pi = getProvides(ci); r = addRequires(c0, pi);

bindInterface(r, pi);

}
} else /* g == OR(g, . . . , gn) */ {

c = CreateCompoundComponent(); setProvides(c, i);

c0 = CreateSwitchComponent(); setProvides(c0, i);

addSubcomponent(c, c0); setRequires(c0, i);

for each subgoal gi {
ci = CreateComponentView(gi);

addSubcomponent(c, ci);

pi = getProvides(ci); bindInterface(i, pi);

}
}

}

Appendix. The annotated Java input for
constructing the EMF models for the model-
driven code generation

For the semantics of annotations, please refer to the doc-
umentation of the Eclipse Modeling Framework [25].

7.1 The enriched goal model

// goal.java
package edu.toronto.cs.goalmodel;
import java.util.List;
/** @model */
public interface goal {

/** @model */
String getName();
/** @model */
DecompositionType getType();
/** @model */
goal getParent();
/** @model type="goal"

containment="true"
opposite="parent" */

List getGoal();
/** @model */
LabelType getLabel();
/** @model type="contribution"



containment="true" */
List getRule();
/* Simple enrichments: */
/** @model type="topic"

containment="true" */
List getTopic();
/** @model default="true" */
Boolean getSystem();
/** @model default="false" */
Boolean getBoundary();
/** @model type="topic"

containment="true" */
List getInput();
/** @model type="topic"

containment="true" */
List getOutput();
/** @model default="true" */
Boolean getExclusive();
/** @model default="true" */
Boolean getSequential();
/** @model default="false" */
Boolean getParallel();
/* More enrichments: */
/** @model type="property"

containment="true" */
List getProperty();

}
// contribution.java
package edu.toronto.cs.goalmodel;
/** @model */
public interface contribution {

/** @model type="ContributionType" */
int getType();
/** @model */
goal getTarget();

}
// DecompositionType.java
package edu.toronto.cs.goalmodel;
/** @model */
public final class DecompositionType {

/** @model name="OR" */
public static final int OR = 0;
/** @model name="AND" */
public static final int AND = 1;
/** @model name="LEAF" */
public static final int LEAF = 2;

}
// ContributionType.java
package edu.toronto.cs.goalmodel;
/** @model */
public final class ContributionType {

/** @model name="HELP" */
public static final int HELP = 1;
/** @model name="HURT" */
public static final int HURT = -1;
/** @model name="MAKE" */
public static final int MAKE = 2;
/** @model name="BREAK" */
public static final int BREAK = -2;

}
// LabelType.java
package edu.toronto.cs.goalmodel;

/** @model */
public final class LabelType {

/** @model name="Satisfied" */
public static final int SATISFIED = 2;

/** @model name="Denied" */
public static final int DENIED = -2;
/** @model name="PartiallySatisfied" */
public static final int PARTIALLY_SATISFIED = 1;
/** @model name="PartiallyDenied" */
public static final int PARTIALLY_DENIED = -1;
/** @model name="Unknown" */
public static final int UNKNOWN = 0;
/** @model name="Conflict" */
public static final int CONFLICT = 4;

}
// Property.java
package edu.toronto.cs.goalmodel;
/** @model */
public interface property {

/** @model */
String getName();
/** @model */
String getValue();

}

7.2 The feature model

/* feature.java */
package edu.toronto.cs.featuremodel;
/** @model */
public interface feature {

/** @model */
String getName();
/** @model */
DecompositionType getType();
/** @model */
feature getParent();
/** @model type="feature"

containment="true"
opposite="parent" */

List getFeature();
/** @model default="false" */
Boolean getOptional();
/** @model type="constraint"

containment="true" */
List getConstaint();

}

/* DecompositionType.java */
package edu.toronto.cs.featuremodel;
/** @model */
public final class DecompositionType {

/** @model name="AND" */
public static final int AND = 0;
/** @model name="Alternative" */
public static final int ALTERNATIVE = 1;
/** @model name="OR" */
public static final int OR = 2;
/** @model name="LEAF" */
public static final int LEAF = 3;

}

/* constraint.java */
package edu.toronto.cs.featuremodel;
/** @model */
public interface constraint {

/** @model */
ConstraintType getType();
/** @model */
feature getTarget();



}
/* ConstraintType.java */
package edu.toronto.cs.featuremodel;
/** @model */
public final class ConstraintType {

/** @model name="DEPEND" */
public static final int DEPEND = 1;
/** @model name="CONFLICT" */
public static final int CONFLICT = -1;

}

7.3 The statechart model

/* state.java */
package edu.toronto.cs.statechart;
import java.util.List;
/** @model */
public interface state {

/** @model */
String getName();
/** @model */
DecompositionType getType();
/** @model */
state getSuper();
/** @model type="state"

containment="true"
opposite="super" */

List getState();
/** @model */
state getInit();
/** @model */
state getExit();
/** @model type="transition"

containment="true" */
List getTransition();

}
/* DecompositionType.java */
package edu.toronto.cs.statechart;
/** @model */
public final class DecompositionType {

/** @model name="AND" */
public static final int AND = 0;
/** @model name="XOR" */
public static final int XOR = 1;
/** @model name="LEAF" */
public static final int LEAF = 2;

}
/* transition.java */
package edu.toronto.cs.statechart;
/** @model */
public interface transition {

/** @model */
String getName();
/** @model */
state getFrom();
/** @model */
state getTo();
/** @model */
String getEvent();
/** @model */
String getTrigger();

}

7.4 The components model

/* component.java */
package edu.toronto.cs.components;

import java.util.List;

/** @model */
public interface component {

/** @model */
String getName();
/** @model */
component getContainer();
/** @model type="component"

containment="true"
opposite="container" */

List getComponent();
/** @model type="Interface"

containment="true" */
List getProvide();
/** @model type="Interface"

containment="true" */
List getRequire();
/** @model default="true" */
Boolean getCompound();
/** @model default="false" */
Boolean getSwitch();
/** @model default="false" */
Boolean getUIComponent();

}

// connector.java
package edu.toronto.cs.components;

/** @model */
public interface connector {

/** @model */
String getName();
/** @model */
Interface getType();
/** @model */
component getFrom();
/** @model */
component getTo();

}

/* Interface.java */
package edu.toronto.cs.components;
import java.util.List;

/** @model */
public interface Interface {

/** @model */
String getName();
/** @model type="variable"

containment="true" */
List getInput();
/** @model type="variable"

containment="true" */
List getOutput();

}

/* variable.java */
package edu.toronto.cs.components;
/** @model */
public interface Variable {



/** @model */
String getName();

}
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