
Finding Semantic Mappings from Relational Tables to
Conceptual Models/Ontologies

Yuan An Alex Borgida John Mylopoulos

Computer Science
University of Toronto

Canada
yuana@cs.toronto.edu

Computer Science
Rutgers University

USA
borgida@cs.rutgers.edu

Computer Science
University of Toronto

Canada
jm@cs.toronto.edu

Abstract

Data integration is one of many problems
requiring a semantic account of a database
schema. At its best, such an account consists
of a formal mapping between the schema and a
formal conceptual model or ontology (CM) of
the domain. This paper describes the underly-
ing principles, algorithms, and a prototype of
a tool which proposes such semantic mappings
when given as input a relational schema, a
CM, and simple correspondences between ta-
ble columns and attributes of concepts in the
CM. Although the algorithm presented is nec-
essarily heuristic, we offer formal results stat-
ing that the answers returned are “correct” for
relational schemas designed according to stan-
dard Entity-Relationship techniques. We also
report on experience in using the tool with
public domain schemas and ontologies.

1 Introduction and Motivation

A number of important database problems have been
shown to have improved solution when one has avail-
able a representation of the precise semantics of the
database schema. These include view integration, fed-
erated databases, data warehousing [2], and especially
information integration through mediated schemas
[11]. (See survey [22].) Since much information on the
web is generated from databases (the “deep web”), the
recent call for a Semantic Web, which requires a con-
nection between web content and ontologies, provides
additional motivation for the problem of associating
semantics with data (e.g., [7]). In almost all of these
cases semantics of the data is captured by a conceptual
model or ontology (CM) of the problem domain, and
some kind of semantic mapping between the database
schema and the CM. Although sometimes the map-
ping is just a simple association from terms to terms,
in other cases [11, 2, 1] what is required is a complex
formula, often expressed in logic or a query language.

So far, it has been assumed that humans provide
both the CM, and the semantic mapping between the
CM and database schema. Unfortunately, this involves
two steps, both of which are time-consuming and error
prone: (i) building the CM; (ii) expressing the connec-
tion of the database schema to the CM as a mapping
formula. For the first problem, we suggest reusing for-
mal CMs that have already been developed. This view
is particularly appropriate for the semantic web, where
large ontologies, such as Cyc [15], are developed in-
dependently of any particular application. The same
is true for information integration/data warehousing,
where new databases may want to “join” after a CM
has already been developed for the domain of dis-
course. For the second problem, we propose to build
tools that assist users in finding complex mapping for-
mulas — the subject of this paper.

Setting: To be explicit, we assume a situation where
we are given a relational schema consisting of a set of
relational tables, and a formal, independently devel-
oped CM, which can be potentially large (e.g., thou-
sands of concepts). Our tool has users who are familiar
with the database schema whose semantic mapping is
being sought (both its schema and contents), but who
are unfamiliar with the details of the CM, and are
uncomfortable with writing complex logical formulas
defining mappings. Note that the CM is not assumed
to be exactly about the same domain of discourse as
the database: it could be much richer, as would be the
case with large ontologies.

Approach: The scenario we imagine is interactive,
and involves tool support for several phases: (1) find-
ing and expressing simple correspondences between re-
lational table columns and CM components (mostly
string/integer-valued attributes), which supply data
to be stored in those columns; (2) providing a list of
candidate formulas (expressed as conjunctive queries)
that express the mappings between the table and the
CM; (3) if necessary, supporting the user in inspecting,
pruning and possibly editing these candidate mappings
to refine them.

-hasSsn
-hasName
-hasAddress
-hasAge

Employee

-hasDeptNumber
-hasName
-.
-.

Department

-hasNumber
-hasName
-.
-.

Worksite
works_for

manages

controls

4..* 1..1

0..1

0..*

1..*

1..1

1..1

supervision

works_on
0..1

0..1

0..*

Figure 1: Company CM.

Our approach is directly inspired by the Clio project
[14, 17], which developed a successful tool that in-
fers mappings from one set of relational tables and/or
XML documents to another, given just a set of corre-
spondences between their respective attributes. As in
[17], we focus here on step (2) of the process described
above, since there is considerable existing work con-
cerning the first step, in the area of schema match-
ing [19]. Additional evidence for the importance of
supporting steps other than just (1) is provided by
the results of a survey concerning the distribution of
time/effort in solving data integration problems [21].
The following example illustrates the input/output be-
havior of the tool we seek:

Example 1.1 Given the CM in Figure 1 (expressed
here in UML notation), relational table Emp(ssn,
name, dept, proj) with key ssn, and the (natural) cor-
respondences
T : Emp.ssn!O : Employee.hasSsn
T : Emp.name!O : Employee.hasName
T : Emp.dept!O : Department.hasDeptNumber
T : Emp.proj!O :Worksite.hasNumber
we may expect a mapping of the form

T :Emp(ssn, name, dept, proj):-

O:Employee(x1), O:hasSsn(x1,ssn),

O:hasName(x1,name), O:Department(x2),

O:works for(x1,x2), O:hasDeptNumber(x2,dept),

O:Worksite(x3), O:works on(x1,x3),

O:hasNumber(x3,proj).

where, for clarity, we used here prefixes T and O to
distinguish predicates in the relational schema and the
CM. ¤

Note that, as mentioned, the problem is inherently
under-specified: in the example above, the table could
just as well have represented themanages relationship,
instead of works for, so we currently propose to return
all such semantic mappings. Without going into fur-
ther details at this point, we summarize the contribu-
tions which we feel are being made here:

• The paper identifies a new version of the data
mapping problem: that of discovering formulas
expressing the semantic mapping between rela-
tional database schemas and formal CMs, en-
coded as graphs. (Exactly such mapping formulas
are used, for example, in the DWQ system [2].)

• It then proposes a (necessarily heuristic) solu-
tion to this problem, whose most basic heuristic
is a version of Occam’s razor: finding something

close to a minimal connection between the con-
cepts that have attributes corresponding to ta-
ble columns. Formally, these connections are so-
called Steiner trees.

• The algorithm is enhanced to take into account in-
formation about the schema (key and foreign key
structure), the ontology (cardinality restrictions),
and standard database schema design guidelines.

• To gain empirical confidence, the proposed algo-
rithms have been implemented, and evaluated in
a number of experiments.

• To gain theoretical confidence, we describe for-
mal results which state that if the schema was
designed from a CM using techniques well-known
in the Entity Relationship literature (which pro-
vide a natural semantic mapping for each table),
then the tool will report essentially all and only
the appropriate semantics. This shows that our
heuristics are not just shots in the dark: in the
case when the CM has no extraneous material,
and when a table’s schema has not been denor-
malized, the algorithm will produce reasonable re-
sults.

The rest of the paper is structured as follows. Sec-
tion 2 discusses related work, and Section 3 presents
the necessary background and notation. Section 4 de-
scribes an intuitive progression of ideas underlying our
approach, while Section 5 provides the mapping dis-
covery algorithm. In Section 6 we report on the pro-
totype implementation of these ideas and experience
with the prototype. Finally, Section 7 summarizes the
contributions of this work and discusses directions for
future research.

2 Related Work

The problem of discovering semantic connections dates
as far back as Ross Quillian’s PhD thesis [18], where
a program, given noun-noun pairs, finds semantic
paths between them within a semantic network. Such
paths were used to generate English descriptions of the
meaning for each pair.

The problem of data reverse engineering is to ex-
tract an ER diagram, for example, from a database
schema. Sophisticated algorithms and approaches to
this have appeared in the literature over the years (e.g.,
[12, 6]). The major difference between data reverse en-
gineering and our work is that we are given an existing
CM, and want to interpret a legacy relational schema
in terms of it, whereas data reverse engineering aims
to construct a new CM.
Schema matching (e.g., [19]) identifies semantic re-

lations between schema elements based on their names,
data types, constraints, and schema structures. Re-
cent work on iMAP [4], discovers not only 1-1 matches
between pairs of elements, but also complex matches

that specify how some combinations (e.g., concate-
nation) of elements correspond in the two schemas.
iMAP concentrates on finding sophisticated formulas
involving mostly single tables, though its multi-modal
algorithm examines such hints as stored queries and
extensional data to also discover join paths between
tables. The present work can be thought of as focus-
ing exclusively on finding such join paths, but based on
table structure and semantic information in the CM,
since neither queries nor instances are normally avail-
able for ontologies.
Relationship to Clio. As mentioned earlier, the

Clio tool [14, 17] discovers formal queries describ-
ing how target schemas can be populated with data
from source schemas. The present work could be
viewed as extending this to the case when the source
schema is a relational database, while the target is a
CM. If one viewed the conceptual model as a rela-
tional schema made of unary and binary tables (e.g.,
O:Employee(X), O:hasSsn(X,ssn)), one could in fact
try to apply directly the Clio algorithm to Example
1.1, pushing it beyond its intended application do-
main. The desired mapping formula from Example
1.1 would not be produced for several reasons: (i) Clio
[17] does not make a so-called logical table connect-
ing O:hasSsn and O:hasDeptNumber, since the chase
algorithm only follows foreign key references out of ta-
bles. (ii) The fact that ssn is a key by itself, leads
us to prefer (see Section 4) a many-to-one relation-
ship, such as works for, over some many-to-many re-
lationship O:previouslyWorkedFor, which could have
been part of the CM; Clio does not differentiate the
two. So the work to be presented here analyzes the
key structure of the tables and the semantics of rela-
tionships (cardinality, IsA) to eliminate unreasonable
options that arise in mapping to CMs.

3 Formal Preliminaries

We assume the reader is familiar with standard no-
tions of relational databases, as presented in [20] for
example. We will use the notation T [K,Y] to rep-
resent a relational table T with columns KY , and
key K. (When we view tables as predicates, we will
sort the arguments in alphabetical order.) If neces-
sary, we will refer to the individual columns in Y us-
ing Y [1], Y [2], . . ., and use XY as concatenation. Our
notational convention is that single column names are
either indexed or appear in lower-case. Given a table
such as T above, we use the notation key(T), nonkey(T)
and columns(T) to refer to K, Y and KY respectively.
(Note that we use the terms “table” and “column”
when talking about relational schemas, reserving “re-
lation(ship)” and “attribute” for aspects of the CM.)
A foreign key (fk) in T is a set of columns F that ref-
erences table T ′, and imposes a constraint that the
projection of T on F is a subset of the projection of
T ′ on key(T ′).

We use a generic conceptual modeling language
(CML), which contains common aspects of most se-
mantic data models, UML, ontology languages such
as OWL [16], and description logics. Specifically,
the language allows the representation of concepts
(unary predicates over individuals), object proper-
ties/relationships (binary predicates relating individ-
uals), and datatype properties/attributes (binary pred-
icates relating individuals with values such as integers
and strings); attributes are single valued in this paper.
Concepts are organized in the familiar is-a hierarchy.
Object properties, and their inverses (which are always
present), are subject to constraints such as specifica-
tion of domain and range, plus the familiar cardinality
constraints, which here allow 1 as lower bounds (called
total relationships), and 1 as upper bounds (called
functional relationships). We shall represent a given
CM using a directed ontology graph, which has con-
cept nodes labeled with concept names C, and edges
labeled with object properties p; for each such p, there
is an edge for the inverse relationship, referred to as
p−. For each attribute f of concept C, we create a sep-
arate attribute node Nf,C , whose label is f , and with
edge labeled f from C to Nf,C .

1 In figures, we follow
UML, drawing concepts as rectangles, with attributes
listed inside.

We propose to have edge p from C to B, written
in the text as C ---p--- B, to represent that p has
domain C and range B. (If the relationship p is func-
tional, we write C ---p->-- B.) For expressive CMLs
such as OWL, we may also connect C to B by p if
we find an existential restriction stating that each in-
stance of C is related to some instance of B by p. The
significant feature of the resulting graph is that if C
and B (or their super-classes) are not linked by edge
p, then a ’join’ formula A(x), p(x, y), B(y) will not be
satisfied for any x, y, and hence should not appear in
any semantic mapping.

In this paper, a correspondence T.c!E.f will re-
late column c of table T to attribute f of concept
E. Since our algorithms deal with ontology graphs,
formally a correspondence L will be a mathemati-
cal relation L(T, c, E, f,Nf,E), where the first two ar-
guments determine unique values for the last three.
Given L, T , and c, we will frequently want to find E;
for this, we use the derived function oncL(c, T), and
since the context will always identify L and T , we will
use the expression onc(c). We extend onc to sets of
columns in a point-wise manner. Therefore the set
M=onc(columns(T1)) is the set of entities in the CM
such that each has some attributes corresponding to
a column of T1 according to the correspondences im-
plicit in the context. Finally, a semantic mapping has
the form of a Horn-clause T (X) : −ψ(X,Y), where T
is a table with columns X (which become arguments

1Unless ambiguity arises, we will use “node C”, when we
mean “concept node labeled C”.

to its predicate), and ψ is a conjunctive formula over
predicates representing the CM, with Y existentially
quantified as usual.

Using the terminology of [11, 10], and following the
example of [11, 2], we are looking for a Local-as-View
(LAV) mapping connecting the schema with the CM,
partly because our tool is particularly well suited to
the incremental connection of databases to conceptual
models, which is associated with the LAV approach.
In the future, we plan to also explore the discovery of
GAV and GLAV mappings.

4 Principles of Mapping Discovery

As mentioned in Section 2, Quillian [18] was searching
for semantic connections between word senses/nodes
in a semantic network. His solution relied on find-
ing shortest paths between them. Similarly, we are
starting from the concepts/nodes in the set M =
{onc(c)|c ∈ columns(T)}, and are trying to discover
semantic connections between them, so it makes sense
to look for “shortest” connections between the nodes
in M . A spanning tree SM for M in the graph of the
CM captures this notion, in the sense that it uses the
minimal number of edges necessary to connectM , and
does not introduce any extraneous concepts.

Thus, for Example 1.1, we would get S1emp

as one spanning tree, where S1emp has edges
Employee ---works_for-->- Department,
Employee ---works_on-->- Worksite, plus edges
for the attributes in the correspondence, such
as Employee ---hasSsn-->- NhasSsn,E , where
NhasSsn,E is an attribute node labeled with hasSsn.

A spanning tree S for table T [Y], based on cor-
respondence L, gives rise to a conjunctive formula
according to the procedure encodeTree(S,L) below,
which basically assigns variables to nodes, and con-
nects them using edge labels as predicates:

Function encodeTree(S,L)
input: subtree S of ontology graph, correspondences L
from table columns to attributes of concept nodes in S.
output: variable name generated for root of S, and con-
junctive formula for the tree.
steps:

1. Suppose N is the root of S. Let Ψ = {}.
2. if N is an attribute node with label f ,

find d such that L(, d, , f,N) = true, return
(d, true). /*for leafs use corresp. column names*/

3. if N is a concept node with label C,
then introduce new variable x; add conjunct
C(x) to Ψ;
for each edge pi from N to Ni

let Si be the subtree rooted at Ni,
let (vi, φi(Zi))= encodeTree(Si, L),
add conjuncts pi(x, vi) ∧ φi(Zi) to Ψ;

return (x,Ψ).

Continuing with the example above, suppose
encodeTree(S1emp,L) assigns variables x1, x2, and
x3 to Employee, Department, and Worksite,

respectively; it will then generate the right-
hand side of the Horn-clause in Example 1.1,
where, for example, works for(x1, x2) rep-
resents the edge Employee ---works_for-->-

Department, while hasSsn(x1, ssn) represents the
edge Employee ---hasSsn-->- NhasSsn,E , because
of the correspondence Emp.ssn!Employee.hasSsn.
As noted before, there are alternate semantics, based
on different spanning trees, which often arise due to
multiple edges between concepts.

To reduce the complexity of the algorithms, and
the size of the answer set, we modify the graph by col-
lapsing multiple edges between nodes E and F , labeled
p1, p2, . . . say, into a single edge labeled ′p1; p2; . . .

′ The
idea is that it will be up to the user to choose between
the alternative labels in phase (3) of the scenario de-
scribed in the Section 1, though the system may offer
suggestions, based on additional information, such as
heuristics concerning the identifiers labeling tables and
columns, and their relationship to property names.

Consider however the case when T [c, b] is a table
with key c, corresponding to attribute c on C, and b
is a foreign key corresponding to b on B, where b and
c are unique identifier attributes within their classes.
Then for each value of c (and hence instance of C),
T associates at most one value of b (instance of B).
Hence the semantic mapping for T should be some
formula that acts as a function from its first to its sec-
ond argument. Trees for such formulas look like func-
tional edges, and hence should be preferred. For ex-
ample, given table Dep[dept, ssn, . . .], and correspon-
dences like in Example 1.1, the proper spanning tree
uses manages− rather than works for−.

Conversely, for table T ′[c, b], an edge that is func-
tional from C to B, or from B to C, is likely not
to reflect a proper semantics since it would mean
that the key chosen for T ′ is actually a super-key –
an unlikely error. (In our example, consider a table
T [ssn, dept], where both columns are foreign keys.).
To deal with such problems, our algorithm will work in
two stages: first connecting the concepts correspond-
ing to key columns into a skeleton tree, then connecting
the remaining columns to the skeleton by, preferably,
functional edges.

Finally, we must deal with our assumption that the
CM is developed independently, which implies that not
all parts of it are reflected in the database schema.
This complicates things, since in building the span-
ning tree we may need to go through additional nodes,
which end up not being present in the database. For
example, consider the table Project (name, supervi-
sor, ...), with name as key, and correspondences
T : Project.name ! O :Worksite.hasName, and

T : Project.supervisor ! O : Employee.hasSsn,

to the CM in Figure 1. Based on the argument above,
the edge works on−, connectingWorksite to Employee
is inappropriate because it is not functional. Instead,

we prefer the functional path controls
−
.manages

−,
passing through node Department, even if it is longer.

We therefore modify our algorithm to look for so-
called Steiner-trees 2 (s-trees for short), instead of
ordinary spanning trees. (This is, of course, mod-
ulo other considerations such as key and functional
paths.) Similar situations arise when the CM con-
tains detailed aggregation hierarchies (e.g., city part-
of township part-of county part-of state), which are
abstracted in the database (e.g., a table with columns
for city and state only).

We have chosen to flesh out the above principles
in a systematic manner by considering the behavior of
our proposed algorithm on relational schemas designed
from Entity Relationship diagrams — a topic widely
covered in even undergraduate database courses [20].
(We call this er2rel schema design.) One benefit of
this approach will be to allow us to prove that our al-
gorithm, though heuristic in general, is in some sense
“correct” for a certain class of schemas. Of course, in
practice such schemas may be “denormalized” in order
to improve efficiency, and, as we mentioned, only parts
of the CM are realized in the database. We emphasize
that our algorithm uses the general principles enun-
ciated above even in such cases, with relatively good
results in practice.

5 Mapping Discovery Algorithms

We will introduce the details of the algorithm in a
gradual manner, by repeatedly adding features of an
ER model that appear as part of the CM. We assume
that the reader is familiar with basics of ER modeling
and database design [20], though we summarize the
ideas.

5.1 An Initial Subset of ER notions

We start with a subset of ER that contains the notions
such as entity set (called just “entity” here), with at-
tributes, and binary relationship set. In order to facil-
itate the statement of correspondences and theorems,
we assume in this section that attributes in the CM
have globally unique names. (Our implemented tool
does not make this assumption.) An entity is repre-
sented as a concept in our CM. A binary relationship
set corresponds to two relationships in our CM, one
for each direction, though only one is mapped to a ta-
ble. Such a relationship will be called many-many if
neither it nor its inverse is functional. A strong en-
tity S has some attributes that act as identifier. We
shall refer to these using unique(S) when describing the
rules of schema design. A weak entity W has instead

2A Steiner-tree for set M of nodes in graph G is a minimum-
weight subgraph of G that contains all the nodes in M and is
a tree. In the case when M is large, computing an s-trees may
become too expensive since the problem is NP-hard. However,
we will only compute s-trees for the concepts corresponding to
columns in keys, and key cardinality is small in practice.

localUnique(W) attributes, plus a functional total bi-
nary relationship p (preferred to with idRel(W)) to an
identifying owner entity (preferred to with idOwn(W)).

Note that information about general identification
cannot be represented in even highly expressive lan-
guages such as OWL. So functions like unique are only
used while describing the er2rel mapping, and are not
assumed to be available during semantic recovery. The
er2rel design methodology (we follow mostly [12, 20])
is defined by two components: To begin with, Table 1
specifies a mapping τ(O) returning a relational table
schema for every CM component O, where O is either
a concept/entity or a binary relationship. In this sub-
section, we assume that no pair of concepts is related
by more than one relationship, and that there are no
so-called “recursive” relationships relating an entity to
itself. (We deal with these in Section 5.3.)

ER Model object O Relational Table τ(O)

Strong Entity S columns: X

primary key: K

Let X=attribs(S) fk’s: none

Let K=unique(S) anchor: S
semantics:

T (X):-S(y),hasAttribs(y,X).

identifier:

identifyS(y,K):-S(y),hasAttribs(y,K).

Weak Entity W columns: ZX

let primary key: UX

Z=attribs(W) fk’s: X

X = key(τ(idOwn(W))) anchor: W
U =localUnique(W) semantics:

E = idOwn(W) T (X,U, V):-

V = Z − U W(y), hasAttribs(y, Z),E(w),
idrel(W)(y, w),identifyE(w,X).

identifier:

identifyW(y,XU):-

W(y),E(w),idrel(W)(y, w),

hasAttribs(y, U),identifyE(w,X).

Functional Relationship F columns: X1X2

E1–F->-E2 primary key: X1

fk’s: Xi references τ(Ei),

let Xi = key(τ(Ei)) anchor: E1

for i = 1, 2 semantics:

T (X1, X2):-

E1(y1),identifyE1
(y1, X1), F(y1, y2),

E2(y2), identifyE2
(y2, X2).

Many-many columns: X1X2

Relationship M primary key: X1X2

E1–M–E2 fk’s: Xi references τ(Ei),

let Xi = key(τ(Ei))

for i = 1, 2 semantics:

T (X1, X2):-

E1(y1),identifyE1
(y1, X1), M(y1, y2),

E2(y2), identifyE2
(y2, X2).

Table 1: er2rel Design Mapping.

In addition to the schema (columns, key, fk’s), Table
1 also associates with a relational table T [V] a number
of additional notions:

• an anchor, which is the central object in the CM
from which T is derived, and which is useful in
explaining our algorithm (it will be the root of
the spanning tree);

• a formula for the semantic mapping for the
table, expressed as a Horn rule with head
T (V) (this is what our algorithm should be re-
covering); in the body of the Horn formula,
the function hasAttribs(x, Y) returns conjuncts
L0(Y [j])(x, Y [j]) for the individual columns Y[1],
Y[2],... in Y, where, for the purposes of exposi-
tion, L0 describes a trivial correspondence: the
identity mapping from attribute names to table
columns.

• the formula for a predicate identifyC(x, Y), show-
ing how object x in (strong or weak) entity class
C can be identified by values in Y 3.

Note that τ is defined recursively, and will only termi-
nate if there are no “cycles” in the CM (see [12] for
definition of cycles in ER).

The er2rel methodology also suggests that the
schema generated using τ can be modified by (repeat-
edly) merging into the table T0 of an entity E the
table T1 of some functional relationship involving the
same entity E (which has a foreign key reference to
T0). If the semantics of T0 is T0(K,V) : −φ(K,V),
and of T1 is T1(K,W) : −ψ(K,W), then the semantics
of table T=merge(T0,T1) is, to a first approximation,
T (K,V,W) : −φ(K,V), ψ(K,W). And the anchor of
T is the entity E.

Please note that one conceptual model may result
in several different relational schemas, since there are
choices in which direction a one-to-one relationship is
encoded (which entity acts as a key), and how tables
are merged. Note also that the resulting schema is in
Boyce-Codd Normal Form, if we assume that the only
functional dependencies are those that can be deduced
from the ER schema (as expressed in FOL, say).

Now we turn to the algorithm for finding the
semantic connections between nodes in the set
M={onc(c)|c ∈columns(T)}. As mentioned in the pre-
vious section, because the keys of a table function-
ally determine the rest of the columns, the algorithm
for finding the semantic connections works in several
steps:

1. Determine a skeleton tree connecting the concepts
corresponding to key columns; also determine, if
possible, a unique anchor for this tree.

2. Link the concepts corresponding to non-key
columns using shortest functional paths to the
skeleton anchor.

3This is needed in addition to hasAttribs, because weak enti-
ties have identifying values spread over several concepts.

3. Link any unaccounted-for attributes by arbitrary
shortest paths to the tree.

More specifically, the main function, getTree(T ,L), will
find the semantics of table T , given correspondence
L, by returning an s-tree S, whose translation using
encodeTree(S,L) yields the conjunctive formula defin-
ing the semantics of table T .

The function getTree(T, L) makes calls to function
getSkeleton on T and other tables referenced by fks in
T , in order to get a set of (skeleton tree, anchor)-pairs,
which have the property that in the case of er2rel de-
signs, if the anchor returned is concept C, then the
encoding of the s-tree is the formula for identifyC . Fi-
nally, getTree(T ,L) connects all nodes using meaning-
ful paths.

Function getSkeleton(T,L)
input: table T , correspondences L for key(T)
output: a set of (s-tree, anchor) pairs
steps:
Suppose key(T) contains fks F1,. . . ,Fn referencing tables
T1(K1),..,Tn(Kn);

1. If n ≤ 1 and onc(key(T)) is just a singleton set {C}, then

return (C, {C}).4/*Likely a strong entity: the base case.*/

2. Else, let Li={Ti.Ki!L(T, Fi)}/*translate corresp’s thru
fk reference*/; compute (Ssi, Anci) = getSkeleton(Ti, Li).

(a) If key(T) = F1, then return (Ss1, Anc1).

(b) If key(T)=F1A, where columns A are not in any for-
eign key of T then /*possibly a weak entity*/

i. if Anc1 = {N1} and onc(A) = {N} such that
there is a total functional path π from N to N1,

then return (combine(π, Ss1), {N}).
5

ii. else let Ns = Anc1 ∪ onc(A), and find
s-tree Ss′ connecting nodes in Ns; return
(combine(Ss′, Ss1), Ns).

(c) Else supposing key(T) has additional non-fk columns
A[1], . . . A[m], (m ≥ 0); let Ns={Anci} ∪
{onc(A[j]), j = 1, ..,m}, and find s-tree Ss′ connect-
ing the nodes in Ns, where any pair of nodes in Ns
is connected by a many-many path;
return (combine(Ss′, {Ssj}), Ns).

In order for getSkeleton to terminate, it is necessary
that there be no cycles in fk references in the schema.
Such cycles (which may have been added to represent
additional integrity constraints, such as the the fact
that an association is total) can be eliminated from
a schema by replacing the tables involved with their
outer join over the key. getSkeleton deals with strong
entities and their functional relationships in step (1),
with weak entities in step (2.b.i), and so far, with
functional relationships of weak entities in (2.a). In
addition to being a catch-all, step (2.c) deals with ta-
bles representing many-many relationships (which in
this section have key K = F1F2), by finding anchors
for the ends of the relationship, and then connecting

4Both here and elsewhere, when a concept C is added to a
tree, so are edges and nodes for C’s attributes that appear in L.

5Function combine merges edges of trees into a larger tree.

them with paths that are not functional, even when
every edge is reversed. The interesting property of
getSkeleton is that if T = τ(C) according to the er2rel
rules in Table 1, where C corresponds to a (strong or
weak) entity, then getSkeleton returns (S,Anc), where
Anc = C as anchor, and encodeTree(S) is logically
equivalent to identifyC . Similarly, if T = τ(p), where
p is a functional relationship originating from concept
C, in which case its key looks just like an entity key.

Turning to getTree, we have

Function getTree(T,L)
input: table T , correspondences L for columns(T)
output: set of s-trees 6

steps:

1. Let Lk be the subset of L induced by key(T); compute
(S′, Anc′)=getSkeleton(T , Lk).

2. If onc(nonkey(T)) − onc(key(T)) is empty, then return
(S′, Anc′). /*getSkeleton did all the work already*/

3. For each foreign key Fi in nonkey(T) referencing Ti(Ki):
let Li

k = {Ti.Ki!L(T, Fi)}, and compute (Ss′′i , Anc
′′
i) =

getSkeleton(Ti, L
i
k).

find πi=shortest functional path from Anc′ to Anc′′i ;

let S = combine(S′, πi, {Ss
′′
i }).

4. For each column c in nonkey(T) that is not part of an fk,
let N = onc(c); find π=shortest functional path from Anc′

to N ; update S := combine(S, π).

5. In all cases above asking for functional paths, use a shortest
path if a functional one does not exist.

6. Return S.

Having seen the general algorithm, we can now state
its desirable properties. Since the precise statement
of theorems (and algorithms) is quite lengthy and re-
quires a lot of minute details for which we do not have
room here, we express the results as “approximately
phrased” propositions. First, getTree finds the desired
semantic mapping, in the sense that

Proposition 5.1 Let table T be part of a relational
schema obtained by er2rel derivation from conceptual
model E. Then some tree S returned by getTree(T) has
the property that encodeTree(S,L0) is logically equiva-
lent to the semantics assigned to T by the er2rel design.

Note that this “completeness” result is non-trivial,
since, as explained earlier, it would not be satisfied
by the current Clio algorithm [17], if applied blindly
to E viewed as a relational schema with unary and
binary tables.

Since getTree may return multiple answers, the fol-
lowing converse “soundness” result is significant

Proposition 5.2 If S′ is any tree returned by
getTree(T), with T as above, then encodeTree(S ′, L0)

6To make the description simpler, at times we will not ex-
plicitly account for the possibility of multiple answers. Every
function is extended to set arguments by element-wise applica-
tion of the function to set members.

represents the semantics of some table T ′ derivable by
er2rel design from E, where T ′ is isomorphic7 to T .

Such a result would not hold of an algorithm which
returns only minimal spanning trees, for example.

We would like to point out that the above algo-
rithm performs reasonably on some non-standard
designs as well. For example, consider the table
T (personName, cityName, countryName), where
the column identifiers suggest natural correspon-
dences to attributes of concepts Person,City and
Country in a CM E . If E contains a path such that
Person -- bornIn ->- City -- locatedIn ->-

Country, then the above table, which is not
in 3NF and was not obtained using er2rel de-
sign (which would have required a table for
City), would still get the proper semantics:
T(personName,cityName,countryName):-

Person(x1), City(x2),Country(x3),

bornIn(x1,x2),locatedIn(x2,x3),

pname(x1,personName), cname(x2,cityName),

crname(x3,countryName).

If on the other hand, there was a shorter functional
path from Person to Country, say an edge labeled
citizenOf , then the mapping suggested would have
been:

T(personName, cityName, countryName):-

Person(x1), City(x2), Country (x3),

bornIn (x1,x2), citizenOf(x1,x3), ...

which corresponds to the er2rel design. Moreover,
had citizenOf not been functional, then once again
the semantics produced by the algorithm would corre-
spond to the non-3NF interpretation, which is reason-
able since the table, having only personName as key,
could not store multiple country names for a person.

5.2 Reified Relationships

It is highly desirable to have n-ary relationship sets
connecting entities, and to allow relationship sets to
have attributes (what are called “association classes”
in UML). Unfortunately, these features are not di-
rectly supported in most CMLs, such as OWL, which
only have binary relationships. Such notions must in-
stead be represented by “reified relationships” [3]: con-
cepts whose instances represent tuples, connected by
so-called “roles” to the tuple elements. So, if Buys re-
lates Person, Shop and Product, through roles buyer,
source and object, then these are explicitly represented
as (functional) binary associations, as in Figure 2. And
a relationship attribute, such as when the buying oc-
curred, becomes an attribute of the Buys concept, such
as whenBought.

Unfortunately, reified relationships cannot be dis-
tinguished reliably from ordinary entities in normal
CMLs on purely formal, syntactic grounds, yet they

7Informally, two tables are isomorphic if there is a bijec-
tion between their columns which preserves key and foreign key
structure.

Person

-whenBought

Buys* Shop

product

1..1 * * 1..1

*

buyer source

object
1..1

Figure 2: N-ary Relationship Reified.

need to be treated in special ways during recovery.
For this reason we assume that they can be distin-
guished on ontological grounds. For example, in Dolce
[5], they are subclasses of top-level concepts Quality
and Perdurant/Event. For a reified relationship R, we
use functions roles(R) and attribs(R) to retrieve the
appropriate (binary) properties.

The design τ of relational tables for reified relation-
ships is shown in Table 2.

ER model object O Relational Table τ(O)

Reified Relationship R columns: ZX1 . . . Xn

if r1, . . . , rn are roles of R primary key: X1 . . . Xn

let Z=attribs(R) fk’s: X1, . . . , Xn

Xi=key(τ(Ei)) anchor: R
where Ei fills role ri semantics:

T (ZX1 . . . Xn):-

R(y),ri(y, wi),hasAttribs(y, Z),

Ei(wi),identifyEi
(wi, Xi), . . .

identifier:

identifyR(y, . . . Ui . . .):-

R(y), . . . ri(y, wi),

Ei(wi),identifyEi
(wi, Ui),...

Table 2: er2rel Design for Reified Relationship.

To discover the correct anchor for reified relation-
ships and get the proper tree, we need to modify
getSkeleton, by adding the following case between steps
2(b) and 2(c):

• If key(T)=F1F2 . . . Fn and there exist reified relation-
ship R with n roles r1, . . . , rn pointing at the singleton
nodes in Anc1, . . . , Ancn respectively,
then let S = combine({rj}, {Ssj}), and return (S,R).

• If there is no R exists, go to 2(c).

The main change to getTree is to compensate for the
fact that if getSkeleton finds a reified version of a many-
many binary relationship, it will no longer look for an
unreified one. So after step 1. we add

• if key(T) is the concatenation of two foreign keys
F1F2, nonkey(T) is empty, and a R has been found
in step 1; compute (Ss1,Anc1) and (Ss2, Anc2) as in
step 2. of getSkeleton; then find ρ=shortest many-
many path connecting Anc1 to Anc2; return (S′) ∪

(combine(ρ, Ss1, Ss2))

The previous version of getTree was set up so that with
these modifications, attributes to reified relationships

will be found properly, and the previous propositions
continue to hold.

5.3 Replication

If we allow recursive relationships, or allow the merger
of tables for different functional relationships connect-
ing the same pair of concepts (e.g., works for andman-
ages), the mapping in Table 1 is incorrect because col-
umn names will be repeated in the multiple occur-
rences of the foreign keys. We will distinguish these
(again, for ease of presentation) by adding superscripts
as needed. For example, if Person is connected to itself
by the likes property, then the table for likes will have
schema T [ssn1, ssn2]. The correspondence L0 implicit
in τ is then extended the obvious way, to map ck to c.

During mapping discovery, such situations are sig-
naled by the presence of multiple columns c and d of
table T corresponding to the same attribute f of con-
cept E. In such situations, the algorithm will first
make a copy Ecopy of node E in the ontology graph,
as well as its attributes. Ecopy participates in all the
object relations E did, so edges must be added. After
replication, we can set onc(c) = E and onc(d) = Ecopy,
or onc(d) = E and onc(c) = Ecopy. This ambigu-
ity is actually required: given a CM with Person and
likes as above, a table T [ssn1, ssn2] could have alter-
nate semantics corresponding to likes, and its inverse,
likedBy. (A different example would involve a ta-
ble T [ssn, addr1, addr2], where Person is connected by
two relationships, home and office, to concept Build-
ing, which has an address attribute.

The main modification needed to the getSkeleton
and getTree algorithms is that no tree should contain
both a functional edge D --- p ->-- E and its repli-
cate D --- p ->-- Ecopy, (or several replicates), since
a function has a single value, and hence the different
columns of a tuple will end up having identical values:
a clearly poor schema.

5.4 Addressing Class Specialization

The ability to represent subclass hierarchies, such as
the one in Figure 3 is a hallmark of CMLs and modern
so-called Extended ER (EER) modeling.

Almost all textbooks (e.g., [20]) describe two tech-
niques for designing relational schemas in the presence
of class hierarchies

1. Map each concept into a separate table following
the standard er2rel rules. This approach requires
two adjustments: First, subclasses must inherit
identifier attributes from a single super-class, in
order to be able to generate keys for their tables.
Second, in the table created for an immediate sub-
class E′ of entity E, its key key(τ(E′)) should also
be set to reference as a foreign key τ(E), as a way
of maintaining inclusion constraints dictated by
the is-a relationship.

-ss#

Person

-college

Faculty

Lecturer

-crsId

Course
teach

coord

0..1

0..1

1..*

1..*

Professor Assist. Professor

Figure 3: Specialization Hierarchy.

2. Expand inheritance, so that all attributes and re-
lations involving a class E appear on all its sub-
classes E′. Then generate tables as usual for the
subclasses E′, though not for E itself. This ap-
proach is used only when the subclasses cover the
superclass.

Some researchers also suggest a third possibility:

3. “Collapse up” the information about subclasses
into the table for the superclass. This can be
viewed as the result of merge(TE , TE′), where
TE [K,A] and TE′ [K,B] are the tables generated
for E and its subclass E′ according to technique
(1.) above. In order for this design to be “cor-
rect”, [12] requires that TE′ not be the target of
any foreign key references (hence not have any re-
lationships mapped to tables), and that B be non-
null (so that instances of E ′ can be distinguished
from those of E).

The use of the key for the root class, together with
inheritance and the use of foreign keys to also check
inclusion constraints, make many tables highly am-
biguous. For example, according to the above, table
T (ss#, crsId), with ss# a foreign key referencing T ′,
could represent at least
(a) Faculty teach Course
(b) Lecturer teach Course
(c) Lecturer coord Course.
This is made combinatorially worse by the presence
of multiple and deep hierarchies (e.g., imagine a par-
allel Course hierarchy), and the fact that not all on-
tology concepts are realized in the database schema,
according to our scenario. For this reason, we have
chosen to try to deal with some of the ambiguity in
the first phase, during the establishment of correspon-
dences. Specifically, the user is asked to provide a
correspondence from column c to attribute f on the
lowest concept whose instances provide data appearing
in the column. Therefore, in the above example of ta-
ble T (ss#, crsId), ss# is made to correspond to ssn
on Faculty in case (a), while in cases (b) and (c) it
is made to correspond to ss# on Lecturer. This deci-
sion was also prompted by the CM manipulation tool
that we are using, which automatically expands inher-
itance, so that ss# appears on all subclasses.

Under these circumstances, in order to capture de-
signs (1.) and (2.) above, we do not need to mod-
ify our earlier algorithm in any way, if we first ex-
pand inheritance in the graph. So the graph would
show Lecturer -- teaches;coord ->-Course in the
above example, and Lecturer would have all the at-
tributes of Faculty.

To handle design (3.), we can add to the graph
an actual edge for the inverse of the is-a relation:
a functional edge labeled alsoA, with lower-bound
0: E --- alsoA ->-- E’, connecting superclass E to
each of its subclasses E’. It is then sufficient to allow
functional paths between concepts to consist only of
alsoA edges, in addition to the normal kind, in getTree.

5.5 Outer Joins

The observant reader has probably noticed that
the definition of the semantic mapping for T =
merge(TE , Tp) was not quite correct: T (K,V,W) :
−φ(K,V), ψ(K,W) describes a join on K, rather than
a left-outer join, which is what is required if p is a non-
total relationship. In order to specify the equivalent
of outer joins in a perspicuous manner, we will use
conjuncts of the form dµ(X,Y)eY , which will stand
for the formula µ(X,Y) ∨ (Y = null ∧ ¬∃Z.µ(X,Z)),
indicating that null should be used if there are no sat-
isfying values for the variables Y . With this nota-
tion, the proper semantics for merge is T (K,V,W) :
−φ(K,V), dψ(K,W)eW .

In order to obtain the correct formulas from trees,
encodeTree needs to be modified so that when travers-
ing a non-total edge pi that is not part of the skeleton,
in the second-to-last line of the algorithm we must al-
low for the possibility of vi not existing.

6 Implementation and Experience

We have implemented the maponto tool as a third-
party plugin of the well-known knowledge-base devel-
opment tool Protégé [9]. We conducted a series of ex-
periments on publicly available database schemas and
ontologies, which vary in size and complexity. Our
goal was to evaluate the effectiveness and efficiency of
the mapping algorithms on real world instances. We
briefly summarize the results of our empirical experi-
ence with maponto.
Schemas and Ontologies. Although obtaining ex-
isting real-world database schemas and CMs for our
mapping experiments was a challenge, we managed
to set up our experiments on relational schemas con-
verted from many publicly available semi-structured
data sources (in XML), and ontologies developed for
the Semantic Web. Table 3 describes four pairs of
database schemas and ontologies which we found. The
#links in an ontology indicates the number of edges in
the multi-graph. The university department schema
describes the employee and student information of

the Department of Computer Science in University
of Toronto; an academic department ontology is pub-
licly available in the DAML library [8]. The academic
conference database concerns VLDB, and an aca-
demic conference ontology was downloaded from the
SchemaWeb ontology repository. The DBLP schema
describes the well-known computer science bibliogra-
phy; a bibliography ontology is available in the li-
brary of the Stanford’s Ontolingua server. We also
used maponto to find semantic mappings from the 8
database tables related to library information which
are posted on the web site of the Observer [13] project
to the bibliography ontology above. We do not report
on these individually since they are closely related and
have overlaps. Finally, we selected a complex schema
about countries from one of the database reverse en-
gineering papers, and we used for it the CIA factbook
ontology.

Domains Schema Ontology

of # of # of # of

tables columns concepts links

University 8 32 62 1913

department

Academic 9 38 27 143

Conference

DBLP 5 27 75 1178

OBSERVER 8 115 75 1178

Country 6 18 52 125

Table 3: Schemas and ontologies for our experiments.

Experimental Setting and Summary of Results.

maponto was implemented in the Java language,
and all experiments were run on a Dell desktop with
1.8GHZ Intel Pentium 4 CPU and 1G memory. A sum-
mary of the results, for a total of 28 relational tables,
are listed in Tables 4 thru 7, which show the size of
each relational table, the number of candidate seman-
tic mappings generated, and the time for generating
the candidate mappings. Notice that the number of
candidates is the number of s-trees obtained by the
algorithm. Also, a single edge of an s-tree may repre-
sent the multiple edges between two nodes, collapsed
using our p; q abbreviation. If there are m edges in a
s-tree and each edge has ni i = 1, ..,m original edges
collapsed, then there are

∏m
i ni original s-trees. (We

show below a formula generated from such a collapsed
s-tree.)

Mapping Accuracy. After loading the schemas and
the ontologies, and executing the mapping algorithm,
we found that maponto generated single candidate se-
mantics for 26 tables, and multiple candidates for an
additional 2 tables. Among the 26 single responses,
according to independent observation, 22 are the in-
tended semantics. For the additional 8 relational ta-
bles from the OBSERVER project, (surprisingly many

Table Name # of # of Candidates Execution

Cols generated time(ms)

Student 6 1 113

AcademicStaff 5 1 153

AdminStaff 5 1 12

TechnicalStaff 4 1 12

AreaOfInterest 2 1 81

Roles 2 1 25

Course 6 10 145

TaAssignment 2 1 112

Table 4: Summary of Department Schema Results.

Table Name # of # of Candidates Execution

Cols generated time(ms)

Conference 4 1 8

Paper 6 1 8

PaperAuthor 2 1 18

Person 4 1 6

Registration 4 1 7

Workshop- 2 1 14

Registration

Event 7 1 9

Chair 4 1 97

Presentation 5 1 26

Table 5: Summary of Conference Schema Results.

Table Name # of # of Candidates Execution

Cols generated time(ms)

DblpDoc 19 4 90

DblpAuthor 2 1 16

DblpPublisher 2 1 7

DblpCites 2 1 88

DblpWrites 2 1 40

Table 6: Summary of DBLP Schema Results.

Table Name # of # of Candidates Execution

Cols generated time(ms)

Country 4 1 160

CurrencyValue 3 1 156

CityPopulation 3 1 29

Export 3 1 77

Company 3 1 4

European 2 1 61

Table 7: Summary of Country Schema Results.

of which had “collapsed is-a hierarchies” — designs of
type (3)), only one, mentioned below, was not assigned
correct semantics.

Please note that since we collapsed multiple paral-
lel edges into a single edge, some singleton candidates

returned are shorthand for several Horn formulas, rep-
resenting alternative semantics. Thus the following is
one of the formulas generated by maponto:

TaAssignment(courseName, studentName):-

Course(x1), GraduateStudent(x2),

[hasTAs;takenBy](x1,x2),

workTitle(x1,courseName),

personName(x2,studentName).

As suggested earlier, heuristics involving the names
of tables/columns might help the user select the ap-
propriate one in the final, post-processing phase.

It is instructive to consider various categories of
problematic schemas/mappings, and the kind of fu-
ture work they suggest.

(i) Absence of tables expected by er2rel. For ex-
ample, we expect the connection Person — research-
Interest — Research to be returned for the table
AreaOfInterest[name, area]. However, maponto

returned Person — headOf — ResearchGroup — re-
searchProject — Research, because there was no ta-
ble for the concept Research in the schema, and so
maponto treated it as a weak entity table. We are
currently studying how to deal with the elimination,
during schema design, of tables that represent finite
enumerations, or can be recovered by projection from
tables representing total many-many relationships

(ii) Differences in Representation. The table Pre-
sentation (event, presenter, paper, start, end) repre-
sents an n-ary relationship among three entities. How-
ever, in the ontology, the Presentation concept is a
subclass of Event concept and has Presenter and Pa-
per as role fillers.

(iii) Mapping formula requiring select. The table
European (country, gnp) means countries which are lo-
cated in Europe. From the database point of view, this
selects tuples representing European countries. Cur-
rently, maponto is incapable of generating formulas
involving the equivalent to relational selection. This
particular case is an instance of the need to express
“higher-order” correspondences, such as between ta-
ble/column names and ontology values. A similar ex-
ample appears in [14].

(iv) Non-standard design. One of the bibliography
tables had columns for author and otherAuthors for
each document. maponto found a formula that was
close to the desired one, with conjuncts hasAuthor(d,
author), hasAuthor(d, otherAuthors), but, unsurpris-
ingly, could not add the requirement that otherAuthors
is really the concatenation of all but the first author.

(v) Complex multiple paths The one remaining ex-
ample in which multiple candidates were generated
involved table DblpDoc, and resulted from multiple
paths found from Document to the Month-Name con-
cept. Since Time-Point has three subclasses each
of which has an object property pointing to Month-
Name, there are four different paths from the Docu-
ment to the Month-Name. (We were pleasantly sur-
prised by the small number of such occurrences, since

an original implementation of maponto, which only
used s-tree heuristics, was more prolix.)
Efficiency. Tables 4- 7 indicate that execution times
were not significant, since, as predicted, the search for
Steiner trees and paths took place in a relatively small
neighborhood.

7 Conclusion and Future Work

The problem of discovering semantic mappings
between relational database schemas and formal
CMs/ontologies is well-motivated by information in-
tegration applications [22, 2, 11]. We have pro-
posed a solution to this problem, relying on infor-
mation from the database schema (key and foreign
key structure) as well as the CM (cardinality restric-
tions, is-a hierarchies). To gain empirical confidence,
the proposed algorithms and heuristics have been im-
plemented into a tool, and evaluated in a number
of experiments. Moreover, to gain theoretical confi-
dence, we have provided theorems which state that
if a table’s schema follows ER design principles then
the tool will report essentially all and only the se-
mantics implied by the ER-to-relational design. We
emphasize however that maponto works correctly
on a much broader range of schemas, as shown by
our experiments (where the schemas and CMs were
developed independently) and as illustrated by the
Person[ssn, city, country] example in Section 5.1, and
the Project[pname, supervisor, . . .] example in Sec-
tion 4. (The latter illustrates the success of general-
izing functional edges to functional paths.) Moreover,
this assurance shows that human users of the tool will
be able to focus their effort on the minority of tables
whose schema has been “denormalized” from the orig-
inal ideal design.

Our work extends the pioneering work on the Clio
project in scope (handling conceptual schemas), map-
ping discovery techniques (based on features of concep-
tual schemas, and key structure, rather than extended
relational chase) and evaluation methodology (prov-
ing that maponto will generate only correct map-
pings over a well-defined and useful space of relational
schemas designed using er2rel).

Important areas for extensions include refinements
of our algorithms for complex cases involving is-a hier-
archies and missing tables, as well as richer value cor-
respondences. These include dealing with the schema
design technique of introducing artificial object iden-
tifiers, in cases where there is no natural external key
for an entity, or when this is too long.

We are also working on phases (3) of our proposed
process: disambiguation between multiple possible se-
mantics. Among others, we expect two additional
sources of information to be quite helpful for this task
(as well as phase (2)): first, a richer modeling lan-
guage, supporting at least disjointness/coverage in is-
a hierarchies, but also more complex axioms as in

OWL ontologies; second, the use of the data stored
in the relational tables whose semantics we are in-
vestigating. For example, queries may be used to
check whether complex integrity constraints implied
by the semantics of a concept/relationship fail to hold,
thereby eliminating some candidate semantics.

Extending this work to XML, and further empirical
evaluation on XML data are obvious additional topics
that remain on our agenda.
Acknowledgments: We are most grateful to Renée
Miller and Yannis Velegrakis for their clarifications
concerning Clio, comments on our results, and encour-
agement. Remaining errors are, of course, our own.

References

[1] J. Barrasa, O. Corcho, and A. Gómez-Pérez. R2O,
An Extensible and Semantically Based Database-
to-Ontology Mapping Language. In SWDB’04,
2004.

[2] D. Calvanese, G. D. Giacomo, M. Lenzerini,
D. Nardi, and R. Rosati. Data Integration in Data
Warehousing. J. of Coop. Info. Sys., 10(3):237–
271, 2001.

[3] M. Dahchour and A. Pirotte. The Semantics of
Reifying n-ary Relationships as Classes. In Proc.
ICEIS’02, pages 580–586, 2002.

[4] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. iMAP: Discovering Complex Se-
mantic Matches between Database Schemas. In
SIGMOD’04, pages 383–394, 2004.

[5] A. Gangemi, N. Guarino, C. Masolo, A. Oltra-
mari, and L. Schneider. Sweetening Ontologies
with DOLCE. In EKAW’02, pages 166–181, 2002.

[6] J.-L. Hainaut. Database Reverse Engineer-
ing. http:// citeseer.ist.psu.edu/ article/ hain-
aut98database.html, 1998.

[7] S. Handschuh, S. Staab, and R. Volz. On Deep
Annotation. In Proc. WWW’03, 2003.

[8] J. Heflin. The Academic Depart-
ment Ontology. http://www.daml.org,
http://www.daml.org/ontologies/, 2000.

[9] H. Knublauch, R. W. Fergerson, N. F. Noy, and
M. A. Musen. The Protege OWL Plugin: An
Open Development Environment for Semantic
Web Applications. In ISWC’04, pages 229–243,
Nov. 2004.

[10] M. Lenzerini. Data Integration: A Theoretical
Perspective. In PODS’02, pages 233–246, 2002.

[11] A. Y. Levy, D. Srivastava, and T. Kirk. Data
Model and Query Evaluation in Global Infor-
mation Systems. J. of Intelligent Info. Sys.,
5(2):121–143, Dec 1996.

[12] V. M. Markowitz and J. A. Makowsky. Identifying
Extended Entity-Relationship Object Structures
in Relational Schemas. IEEE TSE, 16(8):777–
790, August 1990.

[13] E. Mena, V. Kashyap, A. Sheth, and A. Illar-
ramendi. OBSERVER: An Approach for Query
Processing in Global Information Systems Based
on Interoperation Across Preexisting Ontologies.
In CoopIS’96, pages 14–25, 1996.

[14] R. Miller, L. M. Haas, and M. A. Hernan-
dez. Schema Mapping as Query Discovery. In
VLDB’00, pages 77–88, 2000.

[15] OpenCyc. http://www.opencyc.org. , 2003.

[16] P. F. Patel-Schneider, P. Hayes, and I. Hor-
rocks. OWL Web Ontology Language Seman-
tics and Abstract Syntax. W3C Recommendation,
http://www.w3c.org/TR/owl-semantics, 2004.

[17] L. Popa, Y. Velegrakis, R. J. Miller, M. Hernan-
des, and R. Fagin. Translating Web Data. In
VLDB’02, pages 598–609, 2002.

[18] M. R. Quillian. Semantic Memory. In Semantic
Information Processing, pages 227–270. The MIT
Press, 1968.

[19] E. Rahm and P. A. Bernstein. A Survey of Ap-
proaches to Automatic Schema Matching. VLDB
Journal, 10:334–350, 2001.

[20] R. Ramakrishnan and M. Gehrke. Database Man-
agement Systems (3rd ed.). McGraw Hill, 2002.

[21] L. Seligman, A. Rosenthal, P. Lehner, and
A. Smith. Data Integration: Where Does the
Time Go? IEEE Data Eng. Bull., (3):3–10, 2002.

[22] H. Wache, T. Vogele, U. Visser, H. Stucken-
schmidt, G. Schuster, H. Neumann, and S. Hub-
ner. Ontology-Based Integration of Information
- A Survey of Existing Approaches. In IJCAI’01
Wkshp. on Ontologies and Information Sharing,
2001.

