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Abstract
The detection of duplicate tuples, corresponding to the

same real-world entity, is an important task in data integra-
tion and cleaning. While many techniques exist to identify
such tuples, the merging or elimination of duplicates can be
a difficult task that relies on ad-hoc and often manual solu-
tions. We propose a complementary approach that permits
declarative query answering over duplicated data, where
each duplicate is associated with a probability of being in
the clean database. We rewrite queries over a database con-
taining duplicates to return each answer with the probabil-
ity that the answer is in the clean database. Our rewritten
queries are sensitive to the semantics of duplication and help
a user understand which query answers are most likely to be
present in the clean database.
The semantics that we adopt is independent of the way

the probabilities are produced, but is able to effectively ex-
ploit them during query answering. In the absence of ex-
ternal knowledge that associates each database tuple with a
probability, we offer a technique, based on tuple summaries,
that automates this task. We experimentally study the per-
formance of our rewritten queries. Our studies show that
the rewriting does not introduce a significant overhead in
query execution time. This work is done in the context of
the ConQuer project at the University of Toronto, which fo-
cuses on the efficient management of inconsistent and dirty
databases.

1 Introduction
The detection of duplicate records that correspond to the

same real-world entity is an important task in data inte-
gration and data cleaning. Duplicates may occur due to
data entry errors or to the integration of data from dis-
parate sources. Many techniques exist for detecting dupli-
cate records [1, 6, 13, 15, 16, 18, 19, 20]. These tech-
niques may be based on clustering, classification, or other
link-analysis or statistical techniques. Duplicate detection is
sometimes called tuple matching and is supported by com-
mercial data integration tools such as IBMWebSphere Qual-
ityStage1 and FirstLogic Information Quality2.

Partially supported by NSERC.
1http://www.ascential.com/products/qualitystage.html
2http://www.firstlogic.com/dataquality/

Even in carefully integrated databases where structural
and semantic heterogeneity has been resolved, duplication
may occur due to true disagreement among the sources. That
is, two data sources may record different (inconsistent) in-
formation about the same entity. This is a common situation,
for example, in the domain of Customer Relationship Man-
agement (CRM). One of the goals of CRM is to produce an
integrated database from a variety of sources containing cus-
tomer data. It is often the case that the sources contain con-
flicting information about the same customer. Commercial
data integration tools typically use conflict resolution rules
to support the merging of tuples corresponding to the same
entity. Examples include rules that take the average between
multiple conflicting incomes of the same customer. Such
rules (sometimes called survivorship rules) may be hard to
design, particularly for categorical data where values cannot
always be combined. Furthermore, for some applications,
there may be no set of rules that correctly resolve all current
and future conflicts.
In the absence of complete conflict resolution rules, some

data integration tools keep conflicting tuples in the inte-
grated database. In this work, we consider the problem of
query answering over dirty databases. Typically, existing
data integration tools assume that queries can be executed
directly on the dirty database. However, this fails to ad-
dress the semantics of duplication. For example, suppose
that a customer called John has two (inconsistent) incomes
of $80K and $120K in the dirty database. Assume that we
want to answer the query “get customers who make more
than $100K a year”. Using standard query answering, John
would appear in the answer. However, our intuition is that
we do not know with high certainty whether John is in the
answer because according to one of the sources his income
may be $80K.
The first question that we address here is: what is a good

semantics for querying dirty databases? To this end, we note
that duplicate tuples are alternative representations for the
same real-world entity. In a clean database, only one rep-
resentation will be present for each entity. In the absence
of additional information (such as conflict resolution rules),
we will assume that the representation in the clean database
includes values from the duplicates. Hence, a dirty database



represents several possible databases that are candidates to
be in the clean database. If each real-world entity is assigned
a unique key, we can think of the dirty database as an incon-
sistent database that violates a set of key constraints [4].
We adopt a probabilistic semantics for querying dirty

databases. For this, it is necessary to associate probabilities
to each of the tuples of the inconsistent database. There are
different ways for assigning such probabilities. For exam-
ple, we could assign probabilities to the sources: the more
reliable the source, the higher its probability. Then, we could
use provenance information to assign probabilities to the tu-
ples in the integrated database taking their origin into ac-
count. In the absence of provenance information, we could
just assume uniform probabilities. Finally, the probabilities
may be the output of a tuple matching process performed by
a data integration tool.
In this paper, we present a new semantics for querying

duplicated data using a notion that we call clean answers.
The semantics of clean answers is independent of the way
the probabilities are produced, but is able to effectively ex-
ploit them during query answering. In particular, each an-
swer is given together with its probability of being in the
clean database.

loyaltyCard
cardId custFk prob
111 c1 0.4
111 c2 0.6

customer
custId name income prob
c1 John $120K 0.9
c1 John $80K 0.1
c2 Mary $140K 0.4
c2 Marion $40K 0.6

Figure 1. A dirty customer database.
We now illustrate the semantics of clean answers through

an example. In Figure 1, we show a dirty database with in-
formation regarding a customer loyalty program. There are
two tables: loyaltyCard, which associates card numbers
to customers; and customer which stores customers and
their income. The attributes cardId and custId repre-
sent identifiers, where tuples sharing the same identifier have
been determined to be duplicates. The attribute custFk of
the loyaltyCard relation is a foreign key to the cus-
tomer relation. Finally, each tuple has a probability (indi-
cated in attribute prob) representing the likelihood of the
tuple being in the clean database.
Suppose that we want to get the card numbers of cus-

tomers who have an income above $100K. Intuitively, card
111 should be in the answer because there is some evidence
that it belongs to John, who has an income above $100K
with a very high probability. One might ask if it suffices to
just clean the database off-line and then answer the query.
For example, we may want to remove all the tuples for each
duplicate except the one with the highest probability. In this
case, we would remove , and . But then, the result of
the query is empty because tuple (the only tuple for card
111) joins only with tuple , representing Marion whose

income is below $100K.
In the semantics of clean answers, we consider all possi-

ble databases that can be obtained from the dirty database
by choosing exactly one tuple for each duplicate. There
are eight possible databases in this example. Each pos-
sible database can be assigned a probability. For exam-
ple, if we choose tuple for card 111, and tuples and
for John and Mary, respectively, we obtain a possible

database . Since the tuples for each duplicate are cho-
sen independently from the other duplicates, the probabil-
ity of the possible database is obtained by multiplying the
probabilities of its tuples. For , we get a probability of

. The clean answer is obtained by sum-
ming the probabilities of all possible databases that satisfy
the query. In this case, card 111 is in the result of applying
the query to four out of the eight possible databases:

. Their probabilities are , and
0.024, respectively. Since the sum of these probabilities is
0.6, we will say that card 111 has 60% of probability of be-
ing associated with a customer earning over $100K.pp
The semantics of clean answers is based on proposals for

probabilistic databases [5, 9, 12, 17]. In probabilistic query
answering, a set of answers is computed together with their
probability of being correct. A distinctive feature of our ap-
proach is that it uses an SQL query rewriting, that is, given
a query, we rewrite it into another SQL query that produces
an answer together with the probability of the answer being
in the clean database. While the semantics of probabilistic
databases has been well explored, to the best of our knowl-
edge, Dalvi and Suciu [12] are the first to consider query
rewriting for probabilistic databases. They consider a se-
mantics in which tuple probabilities are independent. For
independent tuples, in any possible database, the probabil-
ity of one tuple being in the clean database is independent
of any other tuple. We cannot make this assumption for du-
plicated data. Recall that our possible worlds represent po-
tential clean databases which contain exactly one tuple for
each real-world entity. Hence, given a group of potential
duplicates containing tuples and , if is in a possible
database, then the probability of being in that database is
zero. Hence, and are not independent. We address this
by proposing a new semantics under which tuples represent-
ing the same entity are conditionally dependent, and tuples
representing different entities are independent.
This work is done in the context of the ConQuer project

at the University of Toronto.3 This project focuses on the
efficient management of inconsistent and dirty databases.
In this paper, we make the following contributions.

We propose a new semantics for querying duplicated data.
This semantics complements and extends previous proposals

3ConQuer stands for Consistent Querying
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in the areas of probabilistic databases and consistent query
answering.
We propose a query rewriting technique that, for a large

class of select-project-join queries, rewrites the query into an
SQL query that computes the answers to the query and their
probabilities according to the semantics that we define for
dirty databases. We show that although a rewriting cannot
be obtained in general, the rewriting that we propose here
works for many queries that arise in practice.
We propose a method that uses the output of a tuple match-
ing technique to assign probabilities to potential duplicates.
Our method can be used with tuple matching techniques that
only produce groupings of duplicates (with no additional
information), or with techniques that output groupings to-
gether with a similarity measure or the distance between du-
plicates [3, 6, 16, 18, 19, 20]. Our method has the advantage
that it performs well on categorical data values. It is beyond
the scope of this paper to compare the relative advantages of
different tuple matching techniques including ours. Dedu-
plication is a well studied area and different approaches are
known to work well for different applications and data char-
acteristics. One of the benefits of our approach is that it
is modular and can work with different techniques that find
matching tuples.
Using real data, we argue that the computed probabilities

have an intuitive semantics and can be computed efficiently.
We also show that our rewritten queries can be executed effi-
ciently on large databases. Our studies show that the rewrit-
ing does not introduce a significant overhead in the execu-
tion time over the original query.
The paper is organized as follows. In Section 2, we define

dirty databases and the semantics of clean answers. In Sec-
tion 3, we present a rewriting that given a query, computes
another query that retrieves the clean answers. In Section 4,
we present a technique for assigning probabilities to dupli-
cates in a dirty database. Section 5 presents the efficiency
evaluation of our approach and, finally, Section 6 concludes
the paper and discusses future challenges.

2 Dirty Databases and Clean Answers

We begin this section by discussing how we model dirty
databases. Then, we present our semantics for query an-
swering over such databases.

2.1 Dirty Databases

We assume that the dirty databases we use for query an-
swering have been pre-processed by some data integration
tool. The first pre-processing step is tuple matching. The
output of a matching technique is a grouping or clustering
of tuples. We will refer to a group of tuples that have been

determined to correspond to the same real-world entity as a
cluster.

Dfn 1 (clustering) Let be a relation. A clustering par-
titions into disjoint sets of tuples , called
clusters, such that .

Most tuple matching techniques apply to a single table;
others use information from multiple tables to detect poten-
tial duplicates [6]. However, this distinction is immaterial to
our discussion. We only require that the final output of the
technique be a clustering on each dirty relation.
Matching techniques output cluster identifiers, though the

way these identifiers are modeled may differ between tools.
For example, some tools, like WebSphere QualityStage, out-
put cross-reference tables that indicate which tuples are as-
sociated with which cluster. To use the clustering informa-
tion in query answering, we will assume that each table has
an identifier attribute containing the cluster identifer. This
identifier attribute (again depending on the matching tool)
may be added to the table as a new column. Alternatively,
some matchers will choose one of the key values from the
tuples in a cluster to be the identifier for the cluster. Each
tuple in the cluster is then assigned this same key value. In
this latter approach, the original key attribute of the table
will contain the cluster identifier. In either case, the iden-
tifier attribute will contain duplicate values (and hence will
not be a key of the relation).
Regardless of which approach is used by the tuple match-

ing tool, the foreign keys of all relations must be updated to
refer to the identifiers. This is a simple process, which we
will call identifier propagation, that is supported by many
matching tools.
Finally, we assume that each tuple is assigned a probabil-

ity, in such a way that there is a probability function for each
cluster. By definition of probability function, the sum of the
probabilities of all tuples within a cluster must be 1. Clearly,
a clean tuple (that is, a tuple with no other matching tuples)
will have a probability of 1.

Dfn 2 (dirty database) A dirty database is a database
where for each relation , we have a clustering and a
function that maps the tuples of to a probability
value. The probabilities within each cluster must sum to 1.

The following example illustrates how a database with
duplicates can be modeled as a dirty database that we can
use for query answering.

Example 1 Consider the database of Figure 2.
This database consists of two dirty tables, or-
der and customer with original schema or-
der[orderId,custFk,quantity] and cus-
tomer[custId,name,balance], respectively. We

3



order id orderId custFk cIdFk quantity prob
o1 11 m1 c1 3 1
o2 12 m2 c1 2 0.5
o2 13 m3 c2 5 0.5

customer id custId name balance prob
c1 m1 John $20K 0.7
c1 m2 John $30K 0.3
c2 m3 Mary $27K 0.2
c2 m4 Marion $5K 0.8

Figure 2. A dirty database with order and customer relations

have introduced two new attributes into the customer
relation, id and prob, for the identifier the tuple matcher
produces and for the tuple probabilities. In relation order,
we introduce these same two attributes, but in addition, we
introduce a new attribute cIdFk for the identifier of the
customer referenced by order.custFk. The values of
attribute cIdFk are updated using identifier propagation.

2.2 Clean Answers

It is well known how to answer queries over clean
databases. But, how can we answer queries over a dirty
database? And, what is the interpretation of the query re-
sults? One alternative is to return an answer together with
its probability of being obtained from the clean database.
In order to do this, one needs a clear indication of which
databases may be clean. In our framework, this indication
can be obtained from the semantics of duplication. In par-
ticular, since the clean database has no duplicates it is rea-
sonable to assume that it consists of exactly one tuple from
each cluster of the dirty database. The following is our defi-
nition of a candidate database.

Dfn 3 (candidate database) Let be a dirty database. We
say that is a candidate database for if (1) is a
subset of ; and (2) for every cluster of a relation in ,
there is exactly one tuple from such that is in .

Candidate databases are related to the notion of possible
worlds, which has been used to give semantics to probabilis-
tic databases [12]. Notice, however, that the definition of
candidate database imposes specific conditions on the tuple
probabilities. First, the tuples within a cluster must be exclu-
sive events (a very strong form of conditional dependence),
in the sense that exactly one tuple of each cluster appears in
the clean database. Second, the probabilities of tuples from
different clusters are independent. Cavallo and Pittarelli [9]
proposed a model in which all the tuples in a relation are as-
sumed to be exclusive events. In our terms, they assume that
each relation consists of exactly one cluster. At the other
extreme, most work on probabilistic databases assumes that
tuple probabilities are independent [14, 5, 12]. To the best
of our knowledge, the only work that considers conditional
probabilities in a way that satisfies our conditions is Prob-
View [17]. However, their work does not focus on produc-
ing a rewritten query (i.e., a query that computes the answer

according to their semantics), and therefore cannot be used
for our purposes.
Example 2 Consider the dirty customer and order re-
lations from Figure 2. There are eight candidate databases:

Clearly, not all candidate databases are equally likely to
be clean. We model this with a probability distribution,
which assigns to each candidate database a probability of
being clean. Since the number of candidate databases may
be huge (exponential in the worst case), we do not give the
distribution by extension. Instead, we use the probabilities
of each tuple (function ) to calculate the probability of
a candidate database being the clean database. Since tuples
are chosen independently from each cluster, the probability
of each candidate database can be obtained as the product of
the probability of each of its tuples.

Dfn 4 (probability distribution over candidates) Let
be a dirty database. The probability of a candidate database

is defined as:

Notice that, in contrast to the definitions given for cases
where tuple independence is assumed [12], we do not need
to consider tuples that are not in the candidate database. The
reason is that, since every candidate has exactly one tuple
from each cluster, the probability of such a tuple not being
in the candidate is 1.

Example 3 The following are the probabilities for each
of the candidate databases for the dirty database of Figure 2.

We are now ready to give the semantics of query answer-
ing in our framework. Recall that the clean database is un-
known. However, we can still reason about the answers ob-
tained by applying the query to the candidate databases. In-
tuitively, a result is more likely to be in the answer if it is
obtained from candidates with higher probability of being
clean. Therefore, for each tuple of the query result, we will
consider the candidates from which it can be obtained, and
sum their probabilities.

4



Dfn 5 (clean answer) Let be a dirty database. We say
that a tuple is a clean answer to a query if there exists a
candidate database such that . The proba-
bility of is:

Example 4 Consider a query that retrieves all the cus-
tomers whose balance is greater than $10K.

select id
from customer c ( )
where balance > $10K

Customer has a balance greater than $10K in every
candidate. Thus, it is a clean answer with probability 1.
Customer satisfies the query only in candidates and

, and . Therefore, is a clean answer with a
probability of .20.

The notion of clean answers is a generalization of the
consistent answers that were defined by Arenas et al. [4] in
the context of query answering over inconsistent databases.
In particular, if each tuple of the dirty database is assigned
a non-zero probability of being in the clean database, then
the consistent answers of a query correspond to the clean
answers that have a probability of 1 (that is, complete cer-
tainty).

3 Efficient Computation of Clean Answers

The clean answers to a query can be obtained directly
from the definition if we assume that all the candidate
databases of a given dirty database are available. But this
is an unrealistic assumption because, in the worst case, the
number of candidate databases may be exponential in the
size of the dirty database. Since our goal is the efficient com-
putation of clean answers, we present techniques that avoid
the materialization of the candidate databases altogether. In
particular, we use an approach based on query rewriting.
That is, given a query , we produce another query
that can be applied directly on any dirty database in order to
obtain the clean answers and their probabilities for .
There are some queries for which there is no SQL rewrit-

ing that computes the clean answers. This follows from ex-
isting results in the literature for the problem of obtaining
consistent answers which, as we explained in the previous
section, is a special case of clean answers. In particular,
it has been shown that there are some Select-Project-Join
(SPJ) queries for which the problem of obtaining consistent
answers is co-NP complete [8, 10]. This implies that, un-
less P=NP, there are some SPJ queries for which there is no
SQL rewriting that computes the clean answers. Thus, the
question is: are there large and practical classes of queries
for which the clean answers can be efficiently computed?
We will show in this section that the answer to this ques-
tion is positive. More importantly, we will show that, for the

0.07
0.28
0.03
0.12
0.07
0.28
0.03
0.12

Figure 3. Candidates for database of Figure 2

queries in this class, there is a simple query rewriting that
computes the clean answers directly from the dirty database.
We start with a number of motivating examples before

introducing the rewriting algorithm.

Example 5 Consider again the query that retrieves the
customers with a balance greater than $10K. We showed
in Example 4 of the previous section that the clean an-
swer for this query on the dirty database of Figure 2 is

.
Consider a naı̈ve rewriting that returns the probability

associated with each tuple.
select id, prob
from customer c
where balance > $10K
The result of applying this rewritten query to the dirty

database is , which is not the
clean answer. However, we can obtain the clean answer an-
swer by grouping the two tuples for and summing their
probabilities. Therefore, the following query returns the
clean answers for .

select id, sum(prob)
from customer c
where balance > $10K
group by id

The previous example focuses on a query with just one
relation but, as we show in the next example, the rewriting
strategy can be extended to queries involving foreign key
joins.

Example 6 Consider the dirty database of Figure 2. As an
aid to follow the next examples, in Figure 3 we repeat the
candidate databases given in Example 2. Instead of showing
the tuple numbers, in the figure we show the attributes that
are relevant to the queries (specifically, id and cIdFk of
the order relation, and id and balance of customer).
Consider a query that selects the orders and their cus-

tomers, for those customers whose balance is greater than
$10K.

select o.id, c.id
from order o, customer c ( )
where o.cIdFk=c.id

and c.balance > $10K

The order tuple , , appears in every candidate,
and the balance of both customer tuples is always greater
than $10K. Therefore, has probability 1 of being a
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clean answer. The query answer is an answer in
the candidates , , and and therefore has
a probability of .50 of being in the clean answer. Finally,

is in the answer obtained from and , since
has a balance greater than $10K in these databases, and

has a probability of .10 of being in the clean answer.
If we apply the query to the dirty database and compute

the probabilities as c.prob*o.probwe get the following.

o.id c.id prob join of
o1 c1 0.7 (o1,c1),(c1,$20K)
o1 c1 0.3 (o1,c1),(c1,$30K)
o2 c1 0.35 (o2,c1),(c1,$20K)
o2 c1 0.15 (o2,c1),(c1,$30K)
o2 c2 0.1 (o2,c2),(c2,$27K)

It is easy to see that the clean answers can be obtained
by grouping on both the order and customer identifiers, and
summing the probabilities of each group as follows.

select o.id, c.id, sum(o.prob * c.prob)
from order o, customer c
where o.cIdFk=c.id

and c.balance> $10K
group by o.id, c.id
The intuition underlying the rewriting is that we can sum

probabilities because, within each group, every pair of tu-
ples comes from disjoint sets of candidates. For example, the
first tuple in the group of is obtained from the join
of and . These tuples occur together in
candidates , , and . The second tuple of the
group is obtained from the join of and ,
which appear together in candidates , , and

. The fact that they come from disjoint sets of candidates
is crucial. Otherwise, the strategy of summing the probabili-
ties within the group would fail since some of the candidates
would be counted more than once.
The previous examples use a simple strategy of group-

ing and summing to produce the rewriting. However, as we
show in the next example, this strategy may fail for some
queries.
Example 7 Consider a query that retrieves all the cus-
tomers whose balance is greater than $25K and who have
placed orders for less than 5 items.

select c.id
from order o, customer c
where o.quantity < 5 and o.cIdFk= c.id

and c.balance > $25K

Notice that, unlike the queries of the previous examples,
the attribute id of order is not in the select clause of
the query. We are going to show in this example that for
the dirty database of Figure 2, the strategy of grouping and
summing fails to produce the clean answers for .
The candidate databases for the dirty database are given

in Figure 3. The customer appears in the result of apply-
ing to , , and . Therefore, the probability

of of being in the clean database is 0.3. The customer
appears in the relation order only in tuple , which cor-
responds to an order that violates the query (the value for
quantity is 5). Therefore, the probability of of being
in the clean database is zero.
Consider now the rewritten query that would be produced

by grouping and summing, as we did in the previous exam-
ples.

select c.id, sum(o.prob*c.prob)
from order o, customer c
where o.quantity < 5 and o.cIdFk= c.id

and c.balance > $25K
group by c.id
In this case, the rewritten query does not compute the

clean answers. In fact, the result of the rewritten query is
. The value is obtained as the

result of grouping and summing the following:

c.key prob join of
c1 0.3 (o1,c1,3),(c1,$30K)
c1 0.15 (o2,c1,2),(c1,$30K)

To understand why the rewritten query fails to compute
the clean answers, consider that the join between
and occurs in candidates , , and

. The join between and occurs in
candidates and . Therefore, the rewritten query is
incorrectly accounting for the probabilities of and
twice.
The previous example shows that there are some queries

for which our rewriting may fail. However, we are now
going to show that this simple rewriting does work for a
large and practical class of queries. We call it the class of
rewritable queries. Before introducing this class, we given
an algorithm RewriteClean( ) whose output is shown in
Figure 4. Let be an SPJ query (with only equality joins)
where are the relations in the from clause, and

are the attributes in the select clause. The
rewritten query produced by RewriteClean( ) groups the
result of by the attributes that appear in the select clause
of . For each group, it sums the product of the probabilities
of the tuples satisfying the conditions of the query.
As we alreadymentioned, it is known in the literature that

there are some queries for which there is no SQL rewriting.
We argue, however that the hard queries given in the litera-
ture do not commonly arise in practice. For example, they
have joins that do not involve an identifier attribute or key
(e.g., joins between two foreign keys), they are cyclic, or
contain self joins. Since such conditions are rare in practice,
we will not allow them in the class of rewritable queries.
Our query class relies on the notion of the join graph of a
query.

Dfn 6 (join graph) Let be an SPJ query. The join graph
of is a directed graph such that:

6



RewriteClean( )
Given an SPJ query of the form:
select
from
where

Output a query of the form:
select sum( .prob.* * .prob)
from
where
group by

Figure 4. Query rewriting

the vertices of are the relations used in ; and
there is an arc from to if a non-identifier attribute

of is equated with the identifier attribute of .

We now define the class of rewritable queries.
Dfn 7 (rewritable query) Let be an SPJ query, and be
the join graph of . We say that is rewritable if:
all the joins involve the identifier of at least one relation,
is a tree,

a relation appears in the from clause at most once,
the identifier of the relation at the root of appears in

the select clause.
The first condition rules out joins on two non-identifier

attributes. However, the definition does allow joins between
identifiers (which correspond to the keys of the dirty rela-
tions), or between a non-identifier and an identifier (for ex-
ample, a foreign key join). The second condition states that
the join graph of the query must be a tree. The third condi-
tion restricts each relation of the schema to appear at most
once in the from clause. This rules out self-joins, for exam-
ple, but places no restriction on the number of relations that
can appear in the query. The last condition is related to the
tree structure of the join graph. In particular, we impose that
the identifier of the relation at the root of the tree must ap-
pear in the from clause. Notice that the query of Example 7
violates this condition because it does not project on the id
attribute of order, the relation at the root the tree. For the
data cleaning tasks we wish to support using our rewriting,
including the identifier in the select clause is not an oner-
ous restriction. Our rewritings are designed not to support
general analysis queries, but rather to help a user in under-
standing the entities in the dirty database.
The next theorem is the main result in this section, and

states the correctness of for the class of
rewritable queries. We give the proof of the theorem in the
Appendix.

Theorem 1 Let be a rewritable query. Let be the
query obtained by applying the algorithm RewriteClean to
. Then, for every dirty database , retrieves the
clean answers for on .

Input : A set of tuples ,
- a clustering of ,
where is the identifier of cluster
- a distance measure .
Output : For every tuple in , a probability .
Main Procedure :
- (Step 1) For :
* compute cluster representative for
by merging all the tuples that belong to it.

* initialize sum of distances for , .
- (Step 2) For each tuple that belongs to :
* compute , the distance of
to the representative of its cluster.

* Add to .
- (Step 3) For each tuple that belongs to :
* compute similarity .
* if , or

otherwise.

Figure 5. Assigning Tuple Probabilities

4 Computing tuple probabilities
We have been assuming that the results from some tuple

matching method are given. Even if such methods produce
a clustering of the database, they usually do not produce a
probability (or some kind of quantitative characterization)
indicating how likely a potential duplicate is to be in the
clean database. In this section, we present an approach that
assigns such probabilities. Given a clustering, we compute a
representative of each cluster. Then, we assign each tuple a
probability which is based on the distance of this tuple from
its cluster representative.
We give a generic procedure to compute the probabilities

in Figure 5. In this procedure, we make use of a given clus-
tering and a distance measure . The distance measure is
used to assign a probability to each cluster. The actual mea-
sure we use in our work will be given in Section 4.1.3. The
first step of the algorithm computes the cluster representa-
tives and initializes the sum of distances in each cluster,
which will be used as a normalization factor to compute the
probabilities. Notice that this is a general procedure and any
clustering method as well as distance measure can be em-
ployed. For each tuple within a particular cluster with
identifier , Step 2 calculates the distance of this tuple to
the representative, , of its cluster and adds this distance
to . Finally, in order to compute the probability of a
tuple , Step 3 turns the distance computed in the previous
step for this tuple into a similarity. Intuitively, if this simi-
larity is small, then the tuple under consideration is almost
as good as the representative and will eventually acquire a
high probability.
At this point, we would like to emphasize the role of the

cluster representatives. In a semi-automatic process of as-
signing probabilities, a person’s intuition guides the ranking

7



of a tuple as more (or less) probable of being in the clean
database. In our fully automatic approach, the representa-
tives contain the most common features that appear in the
cluster. Thus, the quantification of similarity between the
tuples of a cluster and its representative gives us a hint of
which tuple is more likely to act as a representative by itself.
Overall, the higher the similarity, the higher the probability
of a tuple appearing in the clean database. Finally, the simi-
larity of each tuple computed by the algorithm in Figure 5 is
normalized to fall in the interval and the resulting
value is the probability of a tuple being in the clean database
(denoted as ). Of course, if a cluster consists of a
single tuple (i.e., ), the probability assigned to the
tuple in this cluster is equal to one, as we are certain about
its existence in the clean database.
It is important to find a representative and measure of

distance that reflect the semantics of clean answers. To il-
lustrate our approach, consider the customer relation of
Figure 6, where and are the cluster identifiers for
the three clusters that exist in this relation. To do query an-

name mktsegmt nation address
Mary building USA Jones Ave
Mary banking USA Jones Ave
Marion banking USA Jones ave
John building America Arrow
John S. building USA Arrow
John banking Canada Baldwin

Figure 6. A dirty customer relation.
swering over such a dirty database, we need a way of under-
standing how likely each tuple is to be in the clean database.
Intuitively, in cluster , seems to be the most likely tuple
since it shares all of its values with at least one other tuple
in the group. This intuition is based on our query answering
semantics. For cluster , ’Mary’ is the most likely name
value, ’banking’ the most likely mktsegment, ’USA’ is
the certain nation value, and so on. Our method formal-
izes this intuition.

4.1 Dealing with Categorical Data
When we compare tuples, it is often assumed that there

exists some well-defined notion of similarity, or distance,
between them. When the objects are defined by a set of
numerical attributes, there are natural definitions of distance
based on geometric analogies. These definitions rely on the
semantics of the data values. For example, values $10,000
and $9,500 are more similar than $10,000 and $1.
In many domains, data records are composed of a set of

descriptive attributes, many of which are neither numerical
nor inherently ordered in any way. For example, in the set-
ting of our customer relation, it is not immediately obvi-
ous what the distance, or similarity, is between the values
“banking” and “building”, or the tuples of “John S.” and
“Mary”. The values without an inherent distance measure
defined among them are called categorical. We will deal

here with the problem of calculating the distance among tu-
ples defined over categorical values. We will employ a dis-
tance measure that has been used in the clustering of large
data sets with categorical values [3], based on information
loss. This distance measure provides a natural way of quan-
tifying the duplication of values within tuples and it has been
used to detect redundancy in dirty legacy databases [2]. In
the following subsections, we explain the data representa-
tion and the actual computation of the distance.
Note that when a distance measure between tuples (e.g.,

string edit distance) is available, our method can incorporate
it. However, since such measures are well studied in the
deduplication and approximate matching literature, we do
not investigate them further here.

4.1.1 Data representation

We now introduce some conventions and notations that we
will use in the rest of the section. We will assume that we
have a set of tuples. The tuples are defined over at-
tributes . We assume that the domain
of each attribute is named in such a way that identical
values from different attributes are treated as distinct values.
For each attribute , a tuple takes exactly one value
from the set . Let denote the set of all
possible attribute values. Let denote the size of . We
represent the data as an matrix . In this matrix, the
value of is , if tuple contains attribute value

; and zero otherwise. Each tuple contains one value
for each attribute, so each tuple vector contains exactly
1’s.
Now, let and be random variables that range over

(the set of tuples) and (the set of attribute values), respec-
tively. We normalize matrix so that the entries of each
row sum up to 1. For a tuple , the corresponding row
of the normalized matrix holds the conditional probability
distribution . Since each tuple contains exactly at-
tribute values, for some , if appears
in tuple , and zero otherwise.

Example 8 Table 1 contains the normalized matrix for
the customer relation. In this matrix, given tuple , we
have a probability of 0.25 of choosing one of the four values
that appear in it.

4.1.2 Tuple and Cluster Summaries

Our task now is to build the cluster representatives, against
which each tuple of a cluster will be compared. We sum-
marize a cluster of tuples in a Distributional Cluster Fea-
ture ( ) [3]. We will use the information in the relevant

s to compute the distance between a cluster summary
(representative) and a tuple.
Let denote a set of tuples over a set of attributes,

and let and be the corresponding random variables, as
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Mary Marion John John S. banking building USA Canada America Jones Ave Jones ave Arrow Baldwin Cluster Id
0.25 0 0 0 0 0.25 0.25 0 0 0.25 0 0 0 c1
0.25 0 0 0 0.25 0 0.25 0 0 0.25 0 0 0 c1
0 0.25 0 0 0.25 0 0.25 0 0 0 0.25 0 0 c1
0 0 0.25 0 0 0.25 0 0 0.25 0 0 0.25 0 c2
0 0 0 0.25 0 0.25 0.25 0 0 0 0 0.25 0 c2
0 0 0.25 0 0.25 0 0 0.25 0 0 0 0 0.25 c3

Table 1. The normalized customer matrix

described earlier. Also let denote a clustering of the tu-
ples in and let be the corresponding random variable.
The Distributional Cluster Feature ( ) of a cluster with
identifier is defined by the pair

where is the cardinality of cluster , and is
the conditional probability distribution of the attribute values
given the cluster . Practically, the cluster representative of

of cluster will be its , .
If consists of a single tuple, then , and

is computed as described in the previous subsection. For
larger clusters, the is computed recursively as follows.
Let denote the cluster we obtain by merging two clusters
with identifiers and . The of the cluster is equal
to , where and
are computed using the following equations:

Intuitively, when computing a new cluster representative,
its cardinality becomes the sum of the cardinalities of the
merged sub-clusters, while the conditional probability of its
values is the weighted average of the conditional probabil-
ity distribution of the values from the merged sub-clusters.
Note that a cluster representative may not necessarily be-
long to the initial set of tuples. Table 2 depicts the cluster
representative for the customer relation as dictated by the
cluster identifiers given in the last column of Table 1. In this
table, we see that summarizes three tuples that contain
the value USA since the probability of this value in this clus-
ter remains the same as in the initial tuples. Similarly, both
tuples and contain the values building and Arrow,
which is reflected in their representative, . Finally,
contains the last tuple of the relation, .

4.1.3 Distance as Information Loss

Our notion of distance between tuples and summaries that
include categorical values, is based on an intuitive calcula-
tion of the loss of information when two distributions are
merged. Information here is defined in terms of Information
Theory [11]. More precisely, we use the mutual informa-
tion of two random variables and , to quantify
the information that variable contains about and vice
versa. To compute the value of , we need the proba-
bility distributions of and . In our case, we quantify the

information that the clusters in contain about the values
in and use the distributions that describe the tuples and
clusters stored in the corresponding s. The main ob-
jective of the quantification of the loss of information is to
realize which tuples share as many common values as possi-
ble with their cluster representative. Thus, given the s
of summaries and , the information loss (and hence the
distance) between and is given by the following ex-
pression:

where denotes the clustering after merging the sum-
maries and .
Example 9 Table 3 shows the distance between each tuple
of the customer relation (3rd column) and its correspond-
ing representative (2nd column). The same table contains
the calculation of the similarity (4th column) and the final
probability of each tuple being in the clean database (5th
column). Notice that the smaller the distance of a tuple
to each representative, the higher the similarity and, con-
sequently, the higher the probability that it belongs to the
clean database.

0.093 0.665 0.332
0.061 0.781 0.391
0.124 0.554 0.277
0.063 0.500 0.500
0.063 0.500 0.500
0.000 1.000 1.000

Table 3. Probability calculation in customer

There are several observations we can make from Table 3.
Concerning the tuples of cluster , tuple is the most prob-
able one to be in the clean database, which agrees with our
intuition. This tuple contains the values with the highest fre-
quency in this cluster, and thus it is the one that can replace
its cluster representative in the best way. On the other hand,
contains just two tuples, which are equally likely to be

in the clean database and, finally, we have no uncertainty in
having in the clean database since it constitutes a cluster
summary of its own.
In the next subsection, we present a brief discussion on

the effectiveness of using our method for computing tuple
probabilities
4.2 Qualitative Evaluation
Our technique for assigning tuple probabilities is per-

formed on each relation of a database separately. Hence,
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Mary Marion John John S. banking building USA Canada America Jones Ave Jones ave Arrow Baldwin
0.167 0.083 0 0 0.167 0.083 0.25 0 0 0.167 0.083 0 0 3
0 0 0.125 0.125 0 0.25 0.125 0 0.125 0 0 0.25 0 2
0 0 0.25 0 0.25 0 0 0.25 0 0 0 0 0.25 1

Table 2. The three cluster representatives for customer tuples
we use a single relation to evaluate the technique and in-
vestigate whether the assigned probabilities agree with hu-
man intuition. In our experiments, we used clusters from
the Cora data set [18]. This data set contains computer sci-
ence research papers integrated from several sources. It has
been used in other data cleaning projects [18, 7] and we take
advantage of previous labelings of the tuples into clusters.
As an example, we considered a cluster that corresponds

to a publication by Robert E. Shapire. It contains 56 tuples
and due to space considerations, the full cluster is given in
the Appendix. In Table 4, we give the most frequent val-
ues in all attributes of this cluster, as well as the two most
likely and the two least likely tuples as they are ranked by
the assignment of probabilities.
Table 4 re-confirms the intuitive ranking of the tuples

within a cluster. In particular, the most likely tuple shares
all its values with the set of most frequent values, while the
next most likely tuple shares all but one of these values (the
value of the volume attribute). On the other hand, the sec-
ond least likely tuple (the penultimate tuple in the table) cor-
responds to a different publication, and thus it should have
been placed in a different cluster. Finally, although the least
likely tuple (the last tuple in the table) corresponds to the
same publication of Shapire, its values are stored in a differ-
ent way than used in the rest of the tuples for this publica-
tion.

5 Experimental Evaluation

In this section, we evaluate the efficiency of our approach.
All the experiments were performed on a machine with 2.8
Ghz Intel Pentium 4 CPU and 1GB of RAM (80% of which
was allocated to the database manager). The queries were
run on DB2 UDB Version 8.1.8 under Windows XP Profes-
sional.

5.1 Data Set Generation
In order to assess the efficiency of our techniques on

very large data sets, we used a synthetic data generator,
the UIS Database Generator.4 This generator was writ-
ten by Mauricio Hernández and has been used for the eval-
uation of duplicate detection [16]. Given a parameter that
controls the number of tuples and a parameter that con-
trols the number of clusters, the generator creates clusters
of potential duplicates. We use this generator to produce
data that conforms to the schema of the TPC-H specification
(http://www.tpc.org/tpch).

4A copy of the generator can be found at:
http://www.cs.utexas.edu/users/ml/riddle/data.html

5.2 Parameter Setting
The parameters for the UIS generator that we set in our

experiments are presented below.
Scaling Factor ( ). The scaling factor is used to control
the size of the relations created for the TPC-H specification.
If , we create a data set of size 1GB (approximately
8 million tuples), if the size is 2GB (approximately
16 million tuples), etc.
Inconsistency Factor ( ). The UIS generator creates a
number of clusters, where each cluster contains on aver-
age the same number of tuples. The cluster cardinalities are
drawn from a uniform distribution, whose mean is the value
of . More precisely, if is the value of , the generator
creates cluster cardinalities between 1 and . As the
value of increases, the degree of inconsistency increases.
In our experiments, we create data tables for the TPC-H

specification that are of size 0.1GB, 0.5GB, 1GB and 2GB,
and clusters with 1, 2, 3, 4, 5 and 25 tuples per cluster.

5.3 Efficiency Evaluation
We first evaluate the time required to annotate the

database with probabilities. Then, we study the performance
of our method for producing clean query answers.
Probability Computation We used the technique of Sec-
tion 4 to produce the probabilities. For the propagation of
identifiers, we used the approach that replaces the values of
the original keys of the relations with the identifier selected
by the tuple matching tool. We experimented with data sets
of size 1GB ( ), and values 1, 5 and 25 for the pa-
rameter.5 The total execution time for the propagation and
probability calculation was, for all databases, less than 30
minutes. This is a reasonable time for an off-line technique.
The propagation technique is independent of the number

of tuples in each cluster and is only sensitive to the total size
of the relations. However, the time to compute probabilities
increases as the number of tuples in each cluster increases.
This happens since more tuples are used in the computation
of the cluster representatives. We experimentally validate
this fact with the results in Figure 7. This figure depicts the
time taken to propagate and compute the probabilities for
the largest relation of our database, the lineItem relation,
as well as the time required to perform one linear scan over
this relation. The running time for the computation of prob-
abilities grows as the number of tuples increases within each

5Notice that the value corresponds to a completely clean
database, and hence the computation of probabilities should include the
addition of a probability 1.0 to each tuple. However, since this is an off-line
procedure, we decided to keep an un-optimized version of our method for

, in order to get a baseline reference.
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Most frequent values
author title venue volume year pages
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227

Top-2 Tuples
author title venue volume year pages
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227
robert e. schapire the strength of weak learnability machine learning 5 1990 197-227

Bottom-2 Tuples
author title venue volume year pages
r. schapire on the strength of weak proc of the 30th NULL 1989 pp. 28-33

learnability i.e.e.e. symposium...
schapire, r.e., ’the strength of weak learnability’ machine learning 5 2 (1990) pp. 197-227

Table 4. Example from the Cora data set
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Figure 7. Offline times for lineItem

cluster. When the value of is small, the distance calcula-
tion of each tuple to its representative dominates the time,
while with larger values, it is the time of the creation of
representatives that prevails. Hence, when we move from

to , the difference in computation time for the
probabilities is mainly due to the merging of more tuples in
cluster representatives. This difference is more pronounced
as we move from to .
CleanQuery AnsweringWe performed our experiments on
thirteen queries from the TPC-H specification, which con-
tain from one to six joins. In particular, we focused on
queries 1, 2, 3, 4, 6, 9, 10, 11, 12, 14, 17, 18, and 20 from the
specification. The only change that we made to the queries
was removing the aggregate expressions. The queries in the
TPC-H specification are parameterized. For all queries, we
used the parameters suggested by the standard for query val-
idation. The thirteen queries used in the experiments appear
in the Appendix. For each instance, we created indices on
the identifier, and ran the DB2 RUNSTATS command on all
attributes.
In Figure 8, we show the running times of the thirteen

queries on a 1 GB database with an average cluster size of
3 tuples. Notice that the overhead of running the rewrit-
ten queries is not significant. All queries (except Query 9)
execute within 1.5 times the time of the original query. No-
tably, the rewritten versions of eight queries take less than
1.05 times the execution time of the original query. These
are Queries 2, 4, 6, 11, 14, 17, 18, and 20.
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Figure 11. Execution time over size for Query
9

Note that the running times for Query 9 and its rewriting
extend well beyond the scale of this graph (the times are in-
dicated in numbers at the top of the figure). This query has
six joins and a high selectivity (a large fraction of tuples sat-
isfying its conditions). With a large number of duplicates
satisfying the query, the grouping and aggregation of the
rewritten query becomes costly. As a result, this rewriting
has the highest overhead (1.8 times the time of the original
query).
In Figure 9, we show the effect of cluster size on the

running time. These running times correspond to Query 3,
which we show next. This query contains a three-way join,
three selection conditions, and an order by clause.
select l_orderkey,

l_extendedprice*(1-l_discount) as revenue,
o_orderdate, o_shippriority

from customer,orders,lineitem
where c_mktsegment = ’BUILDING’

and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < ’1995-03-15’
and l_shipdate > ’1995-03-15’

order by revenue desc, o_orderdate

We report results on 1GB instances with 1, 2, 3, 4
and 5. The solid lines correspond to the running times of
Query 3 and its rewriting. The running time of both queries
increases with the average size of the clusters. The reason
for this behavior is that the size of the result set for both
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queries increases with the number of tuples per cluster be-
cause a tuple may join with more tuples of another rela-
tion. Therefore, the order by of the original query and
the order by and group by of the rewritten query be-
come more costly.
In order to have a better insight into the performance of

the rewritten queries, we analyzed the running time of Query
3 and its rewritten version when the order by clause is
removed. We show the results in Figure 9 using dashed lines.
In this case, the running time of the original query without
order by is not affected by the size of the clusters, as
expected. On the other hand, the rewritten query is affected
by cluster size since it has to perform an additional grouping
of the tuples.
Finally, we illustrate the scalability of our approach by

running the queries on instances of different sizes. In Figure
10, we show the running times of the rewritten queries (with
the order by clause) on instances with an average cluster
size of 3 and database sizes of 100MB, 500MB, 1GB, and
2GB. Except for Query 3, the running times grow in a linear
fashion with the size of the database.

6 Conclusions
We have introduced a novel approach for querying dirty

databases in the presence of probabilistic information about
potential duplicates. We presented an algorithm that rewrites
queries posed over the dirty database into queries that re-
turn answers together with their probability of being in the
clean database. Our experiments showed that our methods
are both intuitive and scalable. This work, however, opens
several avenues for further research. First, we would like
to extend the class of queries that can be rewritten to con-
sider, for example, queries with grouping and aggregation.
We would also like to relax some of the assumptions of our
semantics. For example, we would like to extend our tech-
niques to use dependence information across the clusters.

A Proof of Theorem 1

We now prove Theorem 1, the main technical result of
Section 3.

Theorem 1. Let be a rewritable query. Let be the
query obtained by applying the algorithm RewriteClean to
. Then, for every dirty database , retrieves the
clean answers for on .

We first introduce the notion of support set. The support
set of a tuple for a query contains all the minimal subsets
of the dirty database such that is in the result of applying
to .

Dfn 8 (support set) Let be a dirty database. Let be a
tuple of values, and be a query. We say that is the
support set of for on if

and there is no subset of

such that

Recall that in the rewritable queries of Definition 7, each
relation symbol of the database schema appears in the from
clause at most once. Thus, it is easy to see that each element
of the support set contains exactly one tuple for each relation
symbol that appears in the from clause of the query.
Let be a query, and be the query obtained by ap-

plying the procedure of Figure 4 to . In
, we obtain the probability of each tuple as follows.

For every set of tuples in the support set , we obtain
the probability of as the product of the probabilities of all
the tuples in . Then, we sum the probabilities of all ele-
ments in the support set . Thus, in order to prove the
correctness of the algorithm, it suffices to prove that

We prove this in Lemma 3. The proof relies on Lemmas
1 and 2 below.
In the next lemma, we show how to use the support set in

order to compute the sum of the probabilities of all candidate
databases such that . In particular, we show
that it can be obtained from the probabilities of the candidate
databases that contain the elements in the support set .
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Lemma 1 Let be a dirty database, and be a rewritable
query. Let be a tuple such that . Let be the
support set of for on . Then,

Proof We must show that the probability of every candi-
date database that satisfies the query is summed exactly once
in the right-hand side of the formula.
We are summing the probability of every candidate

database that satisfies the query for the following reason. Let
be a candidate database of such that .

Since , there is a subset of such that
and consists of one tuple for each relation sym-

bol of . By definition of support set, .
Now, we show that each candidate database is summed

only once in the right-hand side of the formula. For this, it
suffices to prove the following claim.

Claim. Let be a dirty database, and be a rewritable
query. Let be a candidate database of such that

. Let and be sets from such that
and . Then, .

The proof is by induction on the number of relations in
the from clause of the query.
Base case. Assume that has exactly one relation in

its from clause. Then, and each contain a single tuple
of the relation , which we denote with and . Since
the join graph of has only one node, is at the root of
the join graph. Let be the cluster identifier of . Since
projects on the cluster identifier of the root relation (con-

dition 4 of the definition of rewritable query), we have that
. Since is a candidate

database, there is exactly one tuple in for each cluster
identifier value. Thus, .
Inductive step. Let be the join graph of . Since is

a rewritable query, is a tree. Let be a literal whose
node appears at a leaf of . Let and be tuples
of and , respectively. Since is a tree, there is exactly
one relation such that there is a join from attributes of
to the cluster identifier of . Let be the subgraph of
induced by all the nodes of except the one for . Let
be a query such that is the query graph of . Let and

be the sets from such that and .
By inductive hypothesis, . Thus, there is a tuple

that appears in both and . Since and join
with , and and join on the cluster identifier of (by
condition 1 of definition of rewritable query), we have that
and share the same cluster identifier values. Since

is a candidate database, each cluster identifier value appears
in exactly one tuple of . Thus . End of Claim.

From the above claim, it follows that each candidate
database is summed only once in the right-hand side of the
formula, and thus we are done.
In the next lemma, we show that the probability of an

element of the support set corresponds to the sum of the
probabilities of all candidate databases that contain .

Lemma 2 Let be a dirty database. Let be the set of
candidate databases of . Let be a subset of that con-
tains at most one tuple for each relation of . Then,

and

Proof The proof is by induction in the number of clusters
of .
Base case. Assume that has clusters. Then, is

the only candidate database of that contains ; and we are
done.
Inductive step. Assume that has clusters, for
. Let be a cluster of such that none of the tuples

of are in . Let be all tuples in . That is,
are on the same relation of , and share the same

cluster identifier value. Let . Let
be the set of candidate databases of . Then, we have that

and

and

Since has clusters, by inductive hypothesis,

and
Furthermore, by definition of dirty database,

. Thus,

and

We are now ready to prove Lemma 3. Theorem 1, the
main result of this section, follows directly from this lemma.

Lemma 3 Let be a dirty database, and be a rewritable
query. Let be a tuple such that . Let be the
support set of for in . Then,
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Proof By Lemma 1,

By Lemma 2,

Thus,

Since each tuple in is from a unique relation, we
have that all tuples of are chosen independently. Thus,

. We conclude that

B Queries used in the experiments

The following are the thirteen queries, adapted from the
TPC-H specification, that were used in the experiments.

Query 1:

select
l_returnflag,
l_linestatus,
l_quantity as sum_qty,
l_extendedprice as sum_base_price,
l_extendedprice * (1 - l_discount)

as sum_disc_price,
l_extendedprice * (1 - l_discount)

* (1 + l_tax) as sum_charge,
l_quantity as avg_qty,
l_extendedprice as avg_price,
l_discount as avg_disc

from
lineitem

where
DAYS(’1998-12-01’)-DAYS(l_shipdate) >90

order by
l_returnflag,
l_linestatus;

Query 2

select
s_acctbal,
s_name,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
s_comment

from
part,
supplier,
partsupp,
nation,
region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_size = 15
and p_type like ’%BRASS’
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’

order by
s_acctbal desc,
n_name,
s_name,
p_partkey

Query 3

select
l_orderkey,
l_extendedprice * (1 - l_discount)

as revenue,
o_orderdate,
o_shippriority

from
customer,
orders,
lineitem

where
c_mktsegment = ’BUILDING’
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < ’1995-03-15’
and l_shipdate > ’1995-03-15’

order by
revenue desc,
o_orderdate

Query 4

select
o_orderpriority

from
orders, lineitem

where
o_orderdate >= ’1993-07-01’
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and days(o_orderdate) <
days(’1993-07-01’) + 90

and l_orderkey = o_orderkey
and l_commitdate < l_receiptdate

order by
o_orderpriority

Query 6

select
l_extendedprice * l_discount as revenue

from
lineitem

where
l_shipdate >= ’1994-01-01’
and days(l_shipdate) <

days(’1994-01-01’) + 365
and l_discount >= 0.06 - 0.01

and l_discount <= 0.06 + 0.01
and l_quantity < 24

Query 9

select
n_name as nation,
YEAR(o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) -

ps_supplycost * l_quantity as amount
from

part,
supplier,
lineitem,
partsupp,
orders,
nation

where
s_suppkey = l_suppkey
and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and p_partkey = l_partkey
and o_orderkey = l_orderkey
and s_nationkey = n_nationkey
and p_name like ’gr%’

order by
nation,
o_year desc

Query 10

select
c_custkey,
c_name,
l_extendedprice * (1 - l_discount)

as revenue,
c_acctbal,
n_name,
c_address,
c_phone,
c_comment

from
customer,
orders,
lineitem,
nation

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate >= ’1993-10-01’
and days(o_orderdate) <

days(’1993-10-01’) + 90
and l_returnflag = ’R’
and c_nationkey = n_nationkey

order by
revenue desc

Query 11

select
ps_partkey,
ps_supplycost * ps_availqty as value

from
partsupp,
supplier,
nation

where
ps_suppkey = s_suppkey
and s_nationkey = n_nationkey
and n_name = ’GERMANY’

order by value desc

Query 12

select
l_shipmode,
case

when o_orderpriority = ’1-URGENT’
or o_orderpriority = ’2-HIGH’
then 1

else 0
end as high_line_count,
case

when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1

else 0
end

from
orders,
lineitem

where
o_orderkey = l_orderkey
and l_shipmode in (’MAIL’, ’SHIP’)
and l_commitdate < l_receiptdate
and l_shipdate < l_commitdate
and l_receiptdate >= ’1994-01-01’
and DAYS(l_receiptdate) <

DAYS(’1994-01-01’) + 365
order by

l_shipmode
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Query 14

select
case

when p_type like ’PROMO%’
then l_extendedprice*(1-l_discount)

else 0
end as promo_revenue

from
lineitem,
part

where
l_partkey = p_partkey
and l_shipdate >= ’1995-09-01’
and DAYS(l_shipdate)<DAYS(’1995-09-01’)+30

Query 17

select
l_extendedprice / 7.0 as avg_yearly

from
lineitem,
part

where
p_partkey = l_partkey
and p_brand = ’Brand#23’
and p_container = ’MED BOX’

Query 18

select
c_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice,
l_quantity

from
customer,
orders,
lineitem

where
o_orderkey = l_orderkey

and l_quantity > 300
and c_custkey = o_custkey
and o_orderkey = l_orderkey

order by
o_totalprice desc,
o_orderdate

Query 20

select
s_name,
s_address

from
supplier,
nation,

partsupp,

part
where

s_suppkey=ps_suppkey
and ps_partkey=p_partkey
and p_name like ’forest%’
and s_nationkey = n_nationkey
and n_name = ’CANADA’

order by
s_name
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Author Title Venue Volume Year Pages Rank
r. schapire on the strength of weak proc of the 30th NULL 1989 pp. 28-33 38

learnability i.e.e.e. symposium
on the foundations
of cs

r. schapire on the strength of weak 42 proc of the 30th NULL 1989 pp. 28-33 38
learnability i.e.e.e. symposium

on the foundations
of cs

robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 1
r. schapire the strength of weak learnability machine learning 5 1990 197-226 13
robert e. schapire combining regression estimates 29 machine learning 5(2) 1990 197-227 31
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 1
schapire, r. ‘the strength of weak learnability’ machine learning 5(2) (1990) 197-227 27
schapire, r. the strength of weak learnability machine learning 5 (1990) 197-227 9
schapire, r. the strength of weak learnability machine learning 5 (1990) 197-226 20
schapire, r. the strength of weak learnability machine learning 5 (1990.) 197-227 26
schapire, r. e. ’the strength of weak learnability’ machine learning 5(2) (1990) 197-227 17
schapire, r. e. ’the strength of weak learnability’ machine learning 5(2) (1990) pp. 197-227 28
schapire, r. e. ’the strength of weak learnability’ machine learning 5(2) (1990) 197-227 17
schapire, r. e. the strength of weak learn-ability mach. learn. NULL (1990) 197-227 36
schapire, r. e. the strength of weak learnability machine learning 5 (1990) 197-227 8
schapire, r. e. the strength of weak learnability machine learning 5 (2) (1990) 197-227 21
schapire, r. e. the strength of weak learnability machine learning 5(2) (1990) 197-227 5
schapire, r. e. the strength of weak learnability machine learning 5(2) (1990) 197-227 5
schapire, r. e. the strength of weak learnability machine learning 5 (1990) 197-227 8
schapire, r.e. the strength of weak learnability machine learning 5 (1990) pp. 197-227 24
schapire, r.e. the strength of weak learn-ability machine learning 5 1990 197-227 25
schapire, r.e. the strength of weak learnability machine learning 5: 1990 197-227 18
schapire, r.e., ’the strength of weak learnability’ machine learning 5 2 (1990) pp. 197-227 37
schapire, r.e. the strength of weak learnability machine learning 5 (1990) 197-227 11
schapire, robert e. the strength of weak learn-ability machine learning 5(2) 1990 197-226 30
shapire, r. the strength of weak learnability machine learning 5 (1990) 197-227 19
r. e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 4
r. schapire the strength of weak learnability machine learning 5 1990 197-227 15
schapire, r. the strength of weak learnability machine learning 5 NULL 197-227 22
r. e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 37
robert e. schapire the strength of weak learnability machine learning 5 1990 197-227 2
robert e. schapire the strength of weak learnability machine learning 5 1990 197-227 2
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 1
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 1
r. e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 4
r. schapire the strength of weak learnability machine learning 5 1990 197-226 14
robert schapire the strength of weak learnability machine learning 5(2) 1990 197-226 16
r. e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 23
r. schapire the strength of weak learnability machine learning 5 1990 197-226 14
r. schapire the strength of weak learnability machine learning 5(2) 1990 197-226 10
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 1
robert schapire the strength of weak learnability machine learning 5(2) 1990 197-226 16
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 1
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 1
r.e. schapire the strength of weak learnability machine learning 5 (2) 1990 NULL 34
robert e. schapire the strength of weak learnability machine learning NULL 1990 197-227 7
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 1
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 1
robert e. schapire the strength of weak learnability machine learning NULL 1989 pages 28-33 33
r. e. schapire ’the strength of weak learnability’ machine learning vol. 5 num. 2 1990 pp. 197-227 35
r. schapire the strength of weak learnability machine learning 5(2) 1990 pp. 197-227 12
schapire, r. the strength of weak learnability machine learning 5(2) 1990 197-227 3
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-227 1
robert e. schapire the strength of weak learnability machine learning 5(2) 1990 197-226 6
schapire, r.e. the strength of weak learnability machine learning 5: NULL 197-227 29
shapire, r. e. the strength of weak learnability machine learning vol. 5 1990 pp. 197-227 32

Table 5. Example from the Cora data set
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