
Planning with programs that sense

Jorge Baier and Sheila McIlraith
Department of Computer Science

University of Toronto
{jabaier,sheila}@cs.toronto.edu

Abstract

In this paper we address the problem of planning
by composing programs, rather than or in addition
to primitive actions. The programs that form the
building blocks of such plans can, themselves, con-
tain both sensing and world-altering actions. Our
work is primarily motivated by the problem of au-
tomated Web service composition, since Web ser-
vices are programs that can sense and act. Our
further motivation is to understand how to exploit
macro-actions in existing operator-based planners
that plan with sensing. We study this problem in
the language of the situation calculus, appealing to
Golog to represent our programs. To this end, we
propose an offline execution semantics for Golog
programs with sensing. We then propose a com-
pilation method that transforms our action theory
with programs into a new theory where programs
are replaced by primitive actions. This enables us to
use traditional operator-based planning techniques
to plan with programs that sense for a restricted but
compelling class of problems. We conclude by dis-
cussing the applicability of these results to existing
operator-based planners that allow sensing.

1 Introduction
Classical planning takes an initial state, a goal state and an ac-
tion theory as input and generates a sequence of actions that,
when performed starting in the initial state, will terminate in
a goal state. Typically, actions are primitive and are described
in terms of their precondition, and (conditional) effects. Clas-
sical planning has been extended to planning with sensing ac-
tions. In most instances the planners are propositional and the
generated plans are conditional. Our interest here is in using
programs, rather than or in addition to primitive actions, as
the building blocks for plans. The programs that we wish to
consider may both sense and act in the world. We study this
problem in the language of the situation calculus, appealing
to Golog to represent our programs.

Our primary motivation for investigating this topic is to
address the problem of automated Web service composi-
tion (e.g., [12]). Web services are self-contained Web-
accessible computer programs, such as the airline ticket

service at www.aircanada.com, or the weather service at
www.weather.com. These services are indeed programs that
sense and/or act in the world – e.g., determining flight costs
or credit card approval, arranging for the delivery of goods
and the debiting of accounts, etc. As such, the task of auto-
mated Web service composition (WSC) can be conceived as
the task of planning with programs, or as a specialized version
of a program synthesis task. While space precludes detailed
discussion of the WSC task, this paper addresses some key
remaining challenges to achieving it.

A secondary motivation for this work is to improve the effi-
ciency of planning with sensing by representing useful (con-
ditional) plan segments as programs. Though we do not study
its effectiveness in this paper, planning with some form of
macro-actions (e.g., [18; 8; 6; 13; 5]) can dramatically im-
prove the efficiency of plan generation by reducing the search
space size and the length of a plan. This is of particular im-
portance in planning problems that involve sensing actions.

Levesque argued in [10] that when planning with sensing,
the outcome of the planning process should be a plan which
the executing agent knows at the outset will lead to a final sit-
uation in which the goal is satisfied. Even in cases where we
assume no uncertainty in the outcome of actions, and no ex-
ogenous actions, this remains challenging because of incom-
plete information about the initial state. To plan effectively
with programs, we must consider whether we have the knowl-
edge to actually execute the program prior to using it in a plan.
To that end, in Section 3 we propose an offline execution se-
mantics for Golog programs with sensing that enables us to
determine that we know how to execute a program. We prove
the equivalence of our semantics to the original Golog seman-
tics, under certain conditions. Then, in Section 4 we propose
a compilation method that transforms our action theory with
programs into a new theory where programs are replaced by
primitive actions. This enables us to use traditional operator-
based planning techniques to plan with programs that sense
in a restricted but compelling set of cases. We conclude by
briefly discussing the applicability of these results to existing
operator-based planners that allows sensing.

2 Preliminaries
In the two subsections that follow we briefly review the situ-
ation calculus [17], including a treatment of sensing actions
and knowledge [20]. We also review the transition seman-

tics for Golog, a high-level agent programming language that
we employ to represent the programs we are composing. For
those familiar with the situation calculus and Golog, we draw
your attention to the decomposition of successor state axioms
for the K fluent leading to Proposition 2.1 and the perhaps
less familiar distinction of deterministic tree programs found
in Section 2.2.

2.1 The situation calculus
The situation calculus [11; 17] is a second-order language
for specifying and reasoning about dynamical systems. In
the situation calculus, the world changes as the result of ac-
tions. A situation is a term denoting the history of actions
performed from an initial distinguished situation, S0. The
function do(a,s) denotes the situation that results from per-
forming action a in situation s1. Relational fluents (resp.
functional fluents) are situation-dependent predicates (resp.
functions) that capture the changing state of the world. The
distinguished predicate Poss(a,s) is used to express that it is
possible to execute action a in situation s. Following Scherl
and Levesque [20], we use the distinguished fluent K to cap-
ture the knowledge of an agent in the situation calculus. The
K fluent reflects a first-order adaptation of Moore’s possible-
world semantics for knowledge and action [14]. K(s′,s) holds
iff when the agent is in situation s, she considers it possi-
ble to be in s′. Thus, we say that a first-order formula φ is
known in a situation s if φ holds in every situation that is
K-accessible from s. For notational convenience, we adopt

the abbreviations2 Knows(φ,s)
def
= (∀s′).K(s′,s) ⊃ φ[s′], and

KWhether(φ,s)
def
= Knows(φ,s)∨Knows(¬φ,s). To define

properties of the knowledge of agents we can define restric-
tions over the K fluent. One common restriction is reflexivity
(i.e., (∀s)K(s,s)) which implies that everything that is known
in s is also true in s.

A situation calculus theory of action, D logically describes
the dynamics of a domain. Following the axiomatization of
[17], the theories of action we consider comprise at least the
following:

• Σ, a set of foundational axioms.
• Dss, a set of successor state axioms (SSAs). The set of

SSAs can be compiled from a set of effect axioms, Deff
[16]. An effect axiom describes the effect of an action
on the truth value of certain fluents, e.g., a = startCar ⊃
engineStarted(do(a,s)).

• Dap, a set of action precondition axioms, one for
each action. They are usually compiled from a set
Dnec of necessary conditions on the fluent Poss, e.g.
Poss(startCar,s) ⊃ batteryOK(s).

• Duna, the set of unique names axioms for actions.
• DS0 , a set that describes the initial state of the world.
• Kinit, a set that defines the properties of the K fluent in

the initial situations and preserved in all situations.
• Dgolog a set of axioms for Golog’s semantics.

1do([a1, . . . ,an],s) abbreviates do(an,do(. . . ,do(a1,s) . . .)).
2We assume φ is a situation-suppressed formula (i.e. a situation

calculus formula whose situation terms are suppressed). φ[s] denotes
the formula that restores situation arguments in φ by s.

Agents can gather information from the world using sens-
ing actions. A sensing action results in the agent knowing
whether a particular property of the world is true, or knowing
the value of a particular term. In [20] sensing actions do not
alter the state of the world. They only alter the agent’s state
of knowledge. [20] introduces a standard SSA for the K flu-
ent. Given sensing actions a1, . . . ,an such that ai (1 ≤ i ≤ n)
senses whether or not formula ψi is true, the SSA for K is:

K(s′,do(a,s)) ≡ (∃s′′).s′′ = do(a,s′)∧K(s′′,s)∧
n̂

i=1

{a = ai ⊃ (ψi(s) ≡ ψi(s
′′))}. (1)

Intuitively, when performing a non-sensing action a in s, if
s′′ was K-accessible from s then so is do(a,s′′) from do(a,s).
However, if sensing action ai is performed in s and s′′ was
K-accessible from s then do(ai,s′′) is K-accessible from
do(ai,s) only if s and s′′ agree upon the truth value of ψi.
Since ai is not world-altering this means that in all situations
reachable from do(ai,s) either ψi or ¬ψi holds, i.e. the agent
knows whether ψi holds.

In contrast to [20], we assume that the SSA for K is com-
piled from a set of sufficient condition axioms, Ks, rather than
simply given. We do this to be able to cleanly modify the SSA
for K without appealing to syntactic manipulations. To model
an agent with sensing actions a1, . . . ,an such that each action
ai formula ψi, the axiomatizer must generate the following
sufficient condition axioms for each ai,

K(s′′,s)∧a = ai∧

(ψi(s) ≡ ψi(s
′′)) ⊃ K(do(a,s′′),do(a,s)), (2)

which intuitively express the same dynamics of the K-
reachability for situations as (1) but with one axiom for each
action. Furthermore, in order to model the dynamics of the
K-reachability for the remaining non-sensing actions, the fol-
lowing axiom must be added:

s′ = do(a,s′′)∧K(s′′,s)∧
n̂

i=1

a 6= ai ⊃ K(s′,do(a,s)), (3)

(2) and (3) can be shown to be equivalent to the SSA of K
when one assumes that all necessary conditions are also suf-
ficient.

Proposition 2.1 Predicate completion on axioms of the form
(2) and (3) is equivalent to the SSA for K defined in (1).

2.2 Golog’s syntax and semantics
Golog is a high-level agent programming language whose se-
mantics is based on the situation calculus [17]. A Golog pro-
gram is a complex action3 potentially composed from:
nil – the empty program a – primitive action
φ? – test action πx.δ – nondet. choice of argument
δ1;δ2 – sequences δ1|δ2 – nondet. choice of action
while φ do δ endW – loop if φ then δ1 else δ2 endif – conditional

3Henceforth, we use the symbol δ to denote complex actions. φ
is a situation-suppressed formula.

In Section 4.1 we will propose a compilation algorithm
for Golog programs that are deterministic tree programs.
A Golog tree program is one that does not contain loops.
A Golog program is deterministic if it does not contain
non-deterministic constructs. The restriction to tree pro-
grams may seem strong. Nevertheless, in practical ap-
plications most loops in terminating programs can be re-
placed by a bounded loop (i.e. a loop that is guaran-
teed to end after a certain number of iterations). Thus,
following [13], we extend the Golog language with the
bounded loop construct, whilek φ do δ endW defined equal to
if φ then {δ;whilek−1 φ do δ endW} else nil endif, for k > 0
and equal to nil if k = 0. We include this as an admissible
construct for a tree program.

Golog has both an evaluation semantics [17] and a tran-
sition semantics [7]. The transition semantics is defined in
terms of single steps of computation, using two predicates
Trans and Final. Trans(δ,s,δ′,s′) is true iff when a single
step of program δ is executed in s, it ends in the situation s′,
with program δ′ remaining to be executed, and Final(δ,s) is
true if program δ terminates in s. Using the transitive closure
of Trans, Trans∗, the predicate Do(δ,s,s′) such that it is true
iff program δ terminates in situation s′ if executed in situation
s. Some axioms for Trans and Final are shown below.

Trans(a,s,δ′,s′) ≡ Poss(a,s)∧δ′ = nil ∧ s′ = do(a,s)

Trans(if φ then δ1 else δ2 endif,δ,s,δ′,s′) ≡
φ[s]∧Trans(δ1,s,δ′,s′)∨¬φ[s]∧Trans(δ2,s,δ′,s′)

3 A semantics for executable Golog programs
As Levesque [10] argued, when planning with sensing, the
outcome of the planning process should be a plan which the
executing agent knows at the outset will lead to a final sit-
uation in which the goal is satisfied. Even in cases where
we assume no uncertainty in the outcome of actions, and no
exogenous actions, this remains challenging because of in-
complete information about the initial state. When planning
with programs, as we are proposing here, the problem only
gets worse. In particular, Golog’s existing semantics does not
consider sensing actions and furthermore does not consider
whether the agent has the ability to execute a given program.
As a first step towards planning with programs that sense, we
define a semantics for Golog that ensures that any Golog pro-
gram with a terminating situation will also be executable by
an agent. This semantics provides the foundation for results
in subsequent sections.

For example, consider an action theory D such that D 6|=

φ[S0] and D 6|= ¬φ[S0], and let δ def
= if φ then a else b endif.

Assume furthermore that D |= Poss(a,S0) and D |=
Poss(b,S0). Then, it holds that D |= (∃s)Do(δ,S0,s), i.e. δ is
executable in S0 (in fact, D |= Do(δ,S0,s) ≡ s = do(a,S0)∨
s = do(b,S0)). This fact is certainly counter-intuitive since in
S0, the agent does not have enough information to determine
whether φ holds.

Intuitively, we need to ensure that at each step of program
execution, an agent has all the knowledge necessary to exe-
cute that step. In particular, we need to ensure that the pro-
gram is epistemically feasible. Once we define the conditions

underwhich a program is epistemically feasible, we can either
use them as constraints on the planner, or we can ensure that
our planner only builds plans using programs that are known
to be epistemically feasible at the outset.

To our knowledge, no such semantics exists. Nevertheless,
there is related work. In [4], the semantics of programs with
sensing is defined in an online manner, i.e. it is determined
during the execution of the program. An execution is for-
mally defined as a mathematical object, and the semantics of
the program depends on such an object. The semantics is thus
defined in the metalanguage, and therefore it is not possible
to refer to the situations that would result from the execution
of a program within the language. Several papers have ad-
dressed the problem of knowing how to execute a plan [3]
or more specifically, a Golog program. In [9], a predicate
CanExec is defined to establish when a program can be ex-
ecuted by an agent. In [19], epistemically feasible programs
are defined using the online semantics of [4]. Finally, a sim-
ple definition is given in [12], which defines a self-sufficient
property, such that ssf (δ,s) is true iff an agent knows how to
execute program δ in situation s. Its definition is given below.

ssf (nil)
def
= True,

ssf (a,s)
def
= KWhether(Poss(a),s),

ssf (πx.δ,s)
def
= (∃x)ssf (δ,s),

ss f (δ1|δ2,s)
def
= ssf (δ1,s)∧ ssf (δ2,s),

ssf (φ?,s)
def
= KWhether(φ,s),

ssf (δ1;δ2,s)
def
= ssf (δ1,s)∧ (∀s′).Trans∗(δ1,s,nil,s′) ⊃ ssf (δ2,s

′),

ssf (if φ then δ1 else δ2 endif,s) def
=

KWhether(φ,s)∧ (φ[s] ⊃ ssf (δ1,s))∧ (φ[s] ⊃ ssf (δ2,s)),

ssf (while φ do δ endW,s)
def
= KWhether(φ,s)∧ (φ[s]∧

Trans∗(δ,s,nil,s′) ⊃ ssf (while φ do δ endW,s)).

To define a semantics for executable programs with sens-
ing, we modify the existing Golog transition semantics so that
it refers to the knowledge of the agent, defining two new pred-
icates TransK and FinalK . We conjecture that our proposed
semantics is equivalent to that of [4] in an online setting. (We
plan to prove this in future work.) The definitions of TransK
and FinalK follow.

FinalK(δ,s) ≡ Final(δ,s)

TransK(nil,s,δ′,s′) ≡ False

TransK(φ?,s,δ′,s′) ≡ Knows(φ,s)∧δ′ = nil ∧ s′ = s

TransK(a,s,δ′,s′) ≡ Knows(Poss(a),s)∧δ′ = nil ∧ s′ = do(a,s)

TransK(δ1|δ2,s,δ′,s′) ≡ TransK(δ1,s,δ′,s′)∨TransK(δ2,s,δ′,s′),
TransK(δ1;δ2,s,δ′,s′) ≡ (∃σ)(δ′ = σ;δ2 ∧TransK(δ1,s,σ,s′)) ∨

FinalK(δ1,s)∧TransK(δ2,s,δ′,s′),
TransK(πv.δ,s,δ′,s′) ≡ (∃x)TransK(δx,s,δ′,s′),
TransK(if φ then δ1 else δ2 endif,δ,s,δ′,s′) ≡ Knows(φ,s)∧

TransK(δ1,s,δ′,s′) ∨Knows(¬φ,s)∧TransK(δ2,s,δ′,s′),
TransK(while φ do δ endW,δ,s,δ′,s′) ≡ Knows(¬φ,s)∧ s = s′∧

δ′ = nil ∨Knows(φ,s)∧TransK(δ;while φ do δ endW,s,δ′,s′).

Analogous to the definition of Do, we define DoK(δ,s,s′)
def
=

(∃δ′)Trans∗K(δ,s,δ′,s′)∧FinalK(δ′,s′). Observe that in con-
trast to Trans, TransK of if-then-else explicitly requires the
agent to know the value of the condition. Consequently, if
D 6|= KWhether(φ,S0), then D |=¬(∃s)DoK(∆,S0,s). How-
ever, if senseφ senses φ, then D |= (∃s)DoK(senseφ;∆,S0,s).

A natural question is when this semantics equivalent to the
original semantics. We can prove that both semantics are
equivalent for self-sufficient programs (in the sense of [12]).

Lemma 3.1 Let D = Σ∪Dss ∪Dap ∪Duna ∪Kinit ∪Dgolog ∪
Dssf , where Dssf is the set of axioms defining the ssf fluent.
Then if Kinit contains the reflexivity axiom for K,

D |= (∀δ,s).ssf (δ,s) ⊃

{(∀s′).Do(δ,s,s′) ≡ DoK(δ,s,s′)}

The preceding lemma is fundamental for the rest of the work.
In the following sections we show how theory compilation
relies strongly on the use of regression of the DoK predicate.
Given our equivalence we can now regress Do instead of DoK
which produces significantly simpler formulae.

An important point is that the equivalence of the seman-
tics is achieved for self-sufficient programs. Proving that a
program is self-sufficient may be as hard as doing the re-
gression of DoK . Fortunately, there are syntactic accounts
of self-sufficiency [12; 19], such as tree programs in which
each if-then-else that conditions on φ is preceded by a senseφ.

4 Planning with programs that sense
Motivated by the problem of Web service composition, and
by the desire to use macro-actions in conventional planning
settings, our main concern in this paper is with planning with
programs that sense. As such, we extend the notion of plan-
ning with primitive actions to planning with programs that
sense as the fundamental building blocks of a plan. One of
our interests is to enable the use of pre-existing programs as
macro-actions in a classical planning setting. As pointed out
by [10], a plan in the presence of sensing is a program that
may contain conditional and loop constructs. In our frame-
work we define a plan in the presence of sensing as a Golog
program.

Definition 1 (A plan) Given a theory of action D , and a
goal G we say that Golog program δ is a plan for G in situa-
tion s relative to theory D iff D |= (∀s′).DoK(δ,s,s′)⊃ G(s′).

In classical planning, a planning algorithm constructs plan
δ by choosing actions from a set A of primitive actions.
Rather, in planning with programs that sense, the planner has
an additional set C of programs, which may contain sensing
actions, that it can use to construct plans.

Example Consider an agent working on an assembly line
constructing several types of widgets. The agent is able to
achieve high-level goals including building complex objects
using the widgets of the assembly line. In order to achieve
her goals the agent must do planning. The agent can perform
a variety of primitive actions and also some built-in, high-
level programs. For example, the following program picks up

blocks from the assembly chain, possibly repairs them, and
then delivers them to a production zone.

δ = pick(b);checkDamaged(b);

if damaged(b) then repair(b);register(b) else nil endif;deliver(b)

The action pick(b) picks a block b from the assembly
line, action checkDamaged(b) is a sense action that senses
whether or not b is damaged, action deliver(b) delivers b to
a production zone, and action register(b) logs b in the “dam-
aged” database.

In the interest of space, we do not show all the axioms in
the theory; rather, we show some axioms that compose Dnec
and Deff .

Poss(pick(b),s) ⊃ inChain(b),

Poss(repair(b),s) ⊃ damaged(b),

a = repair(b) ⊃ ¬damaged(b,do(a,s)),

a = register(b) ⊃ logged(b,do(a,s)).

The successor state axioms for the fluents logged, damaged
(generated from Deff), and for K (generated from Ks) are as
follows.

logged(b,do(a,s)) ≡ a = register(b)∨ logged(b,s),

damaged(b,do(a,s)) ≡paintFresh(b,s)∧a = pick(b)∨

damaged(b,s)∧a 6= repair(b)

K(s′,do(a,s)) ≡ (∃s′′).s′′ = do(a,s′)∧K(s′′,s)∧

{a = checkDamaged(b) ⊃ (damaged(s′′) ≡ damaged(s))}

Suppose we want an operator-based planner (e.g., STRIPS,
Graphplan, SATplan, etc.) to use the complex action δ. In-
stead of a program, we would need to have an operator-based
action representation (i.e. we need to represent δ as a primi-
tive action). This representation would not only describe the
physical effects of the action (e.g., after we perform δ(B),
block B is in the production zone and not damaged), but also
at a knowledge level (if we know that B is not damaged, after
we perform B we know whether or not B’s paint is fresh!).

The rest of this section presents a method that, under cer-
tain conditions, transforms a theory of action D and a set of
programs with sensing C into a new theory, Comp[D,C], that
describes the same domain as D but that is such that programs
in Comp[D,C] appear modeled by new primitive actions. In
so doing, we are able to use traditional operator-based plan-
ners to plan with macro-actions, and to perform WSC with
so-called composite services.

4.1 Theory compilation
A program with sensing may produce both effects in the
world and in the knowledge of the agent. Therefore, if we
want to replace a program by one primitive action, this action
should have both knowledge and physical effects. In the stan-
dard situation calculus, though, it is normally assumed that
actions either affect the world or the knowledge of the agent
but not both. Therefore, we will compile each program into
one sensing action and one physical action.

We now describe how we can generate a new theory of
action that contains a new sensing action Obsδ and a new

physical action Physδ for each program δ. Then we prove
that those actions, when executed one immediately after the
other, capture all physical and knowledge-level effects of the
original program δ.

We start with a theory of action D = Σ∪Dss∪Dap∪Duna∪
DS0 ∪Kinit ∪Dgolog∪Dss f , about a set A of primitive actions,
and we generate a new theory Comp[D,C] that contains a new
set for SSA, precondition and unique name axioms.

We assume that the set of successor state axioms, Dss, has
been compiled from sets Deff and Ks, and that the set of pre-
condition axioms, Dap, has been compiled from a set of nec-
essary precondition conditions, Dnec. Furthermore, assume
we have a set of Golog tree programs C which may con-
tain sensing actions such that for every δ ∈ C it holds that
D |= (∀s).ssf (δ,s). Finally, assume that the fluent symbol
Enabled is not part of the language of D . We generate the
new theory in the following way.

1. Make D ′
eff := Deff , D ′

nec := Dnec, and K ′
s := Ks, and

Duna := D ′
una.

2. We need that actions Obsδ and Physδ are used either in
sequence by the planner or not used at all. We use the
predicate Enabled to enforce this. The following axioms
are added to D ′

eff for each δ ∈C:

a = Obsδ(~y) ⊃ Enabled(Physδ(~y),do(a,s)),

a = Physδ(~y) ⊃ ¬Enabled(Physδ(~y),do(a,s)),

i.e., Physδ becomes Enabled immediately after Obsδ, is
executed.

3. For each δ ∈C, we add the following necessary precon-
dition axioms to D ′

ap,

Poss(Obsδ(~y),s) ⊃ R s[(∃s′)Do(δ,s,s′)],

Poss(Physδ(~y),s) ⊃ Enabled(Physδ(~y),s),

therefore, Obsδ(~y) can be executed iff program δ could
be executed in s, and Physδ(~y) iff it is Enabled. The
operator R s is Reiter’s regression operator over ϕ but
relativized to situation s, i.e. R s[ϕ] is a formula uniform
in s 4 and equivalent to ϕ.

4. For each α ∈ A , and every δ ∈ C, we add the following
necessary precondition axioms to D ′

ap:

Poss(α(~x),s) ⊃ ¬Enabled(Physδ(~y),s).

We add this because we do not want to allow an arbi-
trary primitive action after the execution of Obsδ. Fur-
thermore, for each δ,δ′ ∈C such that δ 6= δ′,

Poss(Obsδ(~z),s) ⊃ ¬Enabled(Physδ′(~y),s),

Poss(Physδ(~z),s) ⊃ ¬Enabled(Physδ′(~y),s).

5. For each fluent F(~x,s) in the language of D that is not
the K fluent, and each complex action δ ∈C we add the

4A formula is uniform in s iff all terms of sort situation it men-
tions are s.

following effect axioms to D ′
eff :

a = Physδ(~y)∧R s[(∃s′)(Do(δ,s,s′)

∧F(~x,s′))] ⊃ F(~x,do(a,s)), (4)

a = Physδ(~y)∧R s[(∃s′)(Do(δ,s,s′)

∧¬F(~x,s′))] ⊃ ¬F(~x,do(a,s)).

(5)

i.e. F is true (resp. false) after executing Physδ in s if
after executing δ in s it is true (resp. false).

6. For each functional fluent f (~x,s) in the language of D ,
and each complex action δ ∈ C we add the following
effect axiom to D ′

eff :

a = Physδ(~y)∧R s[(∃s′)(Do(δ,s,s′)∧

z = f (~x,s′))] ⊃ z = f (~x,do(a,s)),

7. For each δ∈C, we add the following sufficient condition
axiom to K ′

s :

a =Obsδ(~y)∧ s′′ = do(a,s′)∧R s[(∃s1,s2)(Do(δ,s,s1)∧

Do(δ,s′,s2)∧K(s2,s1))] ⊃ K(s′′,do(a,s)).

8. For each δ,δ′ ∈ C such that δ 6= δ′ and α ∈ A , add the
following to D ′

una.

α(~x) 6= Obsδ(~y),α(~x) 6= Physδ(~y),Obsδ(~y) 6= Physδ(~y
′).

9. Compile a new set of SSAs D ′
ss from D ′

eff , and a new set
of precondition axioms D ′

ap from D ′
nec. The new theory,

is defined as follows.

Comp[D,C] =

Σ∪D ′
ss ∪D ′

ap ∪D ′
una ∪DS0 ∪Kinit ∪Dgolog ∪Dss f .

Theorem 4.1 If D is consistent and C contains only deter-
ministic tree programs then Comp[D,C] is consistent.

Indeed, if C contains one non-deterministic action, we cannot
guarantee that Comp[D,C] is consistent. Furthermore, we
can prove that Physδ emulates δ.

Lemma 4.1 Let D be a theory of action where K is reflexive,
and let C be a set of deterministic Golog tree programs. Then,
for all fluents F in the language of D that are not K, and
for every δ ∈ C such that D |= ssf (δ,s), theory Comp[D,C]
entails

(∀s,s′,~x).DoK(δ,s,s′) ⊃ (F(~x,s′) ≡ F(~x,do(Physδ,s))), and

(∀s,s′,~x,z).DoK(δ,s,s′) ⊃ (z = f (~x,s′) ≡ z = f (~x,do(Physδ,s)))

Now we establish a complete correspondence at the phys-
ical level between our original programs and the compiled
primitive actions after performing [Obsδ,Physδ].

Theorem 4.2 Under the same assumptions as Lemma 4.1, let
φ(~x) be an arbitrary situation-suppressed, objective formula
that does not mention the K fluent. Then,

Comp[D,C] |= (∀s,s′,~x).DoK(δ,s,s′) ⊃

(φ(~x)[s′] ≡ φ(~x)[do([Obsδ,Physδ],s)])

Also, there is a complete correspondence at a knowledge
level between our original complex actions and the compiled
primitive actions after performing [Obsδ,Physδ].
Theorem 4.3 Let D be a the theory of action where K is re-
flexive, and C be a set of deterministic Golog tree programs,
and φ(~x) be a situation-suppressed, objective formula. If
δ ∈C and D |= (∀s).ssf (δ,s), then if D contains the reflexiv-
ity axiom for K,

Comp[D,C] |= (∀~x,s,s1).DoK(δ,s,s1) ⊃

{Knows(φ(x),s1) ≡ Knows(φ(x),do([Obsδ,Physδ],s))}.
Now that we have established the correspondence between D
and Comp[D,C] we return to planning. In order to achieve
a goal G in a situation s, we now obtain a plan using theory
Comp[D,C]. In order to be useful, this plan should have a
counterpart in D , since the executor cannot execute any of
the “new” actions in Comp[D,C]. The following result estab-
lishes a way to obtain such a counterpart.
Theorem 4.4 Let D be a theory of action, C be a set of
deterministic Golog tree programs, and G(s) be a formula
of the situation calculus. Then, if ∆ is a plan for G(s)∧
V

δ∈C ¬(∃~y)Enabled(Physδ(~y),s) in theory Comp[D,C] and
situation s, then there exists a plan ∆′ for G in theory D and
situation s. Moreover, ∆′ can be constructed from ∆.
Proof sketch: We construct ∆′ by replacing every occur-
rence of [Obsδ;Physδ] in ∆ by δ. Then we prove that ∆′ also
achieves the goal, from theorems 4.2 and 4.3. ¤

It is worth noting that the preceding proof would not have
worked if plans (Definition 1) had been defined as Golog pro-
grams with a concurrent construct (such as that of Congolog).
Such a construct, say δ1||δ2, would specify that complex ac-
tions δ1 and δ2 can be executed concurrently, i.e. any inter-
leaved execution of δ1 and δ2 would reach the goal. Han-
dling this case is important since some actual planners (even
in the classical setting) are able to generate plans that are non-
linear, i.e., that contain partially ordered sequences of actions
(which in practice means concurrent execution).

Imagine that the planner has returned plan
{Obsδ;Physδ}||A for goal G. Given the preconditions
in the theory, this means that executing either A;Obsδ;Physδ
or Obsδ;Physδ;A would achieve the goal in Comp[D,C].
Unfortunately, this does not necessarily mean that δ||A will
achieve the goal in D , since δ is a complex action. Allowing
the execution of A during the execution of δ may invalid
some precondition of an action in δ or change the truth
value of a fluent in a way that is not predicted by the theory
compilation. A simple—though not totally satisfactory—fix
for this is that whenever the planner returns a plan of the
form {Obsδ;Physδ}||∆ in theory Comp[D,C], then a plan in
D is either δ;∆ or ∆;δ. We think that less restrictive solutions
would imply tweaking the preconditions of the actions in δ.
This issue is part of our current and future research.

Example (cont.) We now show the result of applying the-
ory compilation to the action theory of our example. For the
fluent damaged, axioms of the form:
a = Physδ(b)∧R s[(∃s′)(Do(δ,s,s′)∧

(¬)damaged(~x,s′))] ⊃ (¬)damaged(~x,do(a,s)),

simplify into

a = Physδ(b)∧ inChain(b,s) ⊃ ¬damaged(b,do(a,s)).

Following the same procedure, the SSA generated for logged
is the following:

logged(b,do(a,s)) ≡ a = register(b)∨a = Physδ(b)∧

(paintFresh(b,s)∨damaged(b,s))∨ logged(b,s)

and the following is the SSA for K,

K(s′,do(a,s)) ≡ (∃s′′).s′ = do(a,s′′)∧K(s′,s)∧

(a = checkDamaged(b) ⊃ damaged(s′′) ≡ damaged(s))∧

(a = Obsδ(b) ⊃ {(damaged(s′′)∨ paintFresh(b,s′′)) ≡

(damaged(s)∨ paintFresh(b,s))}).

A last thing worth pointing out is that our theory com-
pilation can only be used for complex actions that can be
proved self-sufficient for all situations. We could have done
this differently. As said before, we could use the con-
ditions that need to hold true for a program to be self-
sufficient as a precondition for the newly generated primitive
actions. Indeed, formula ssf (δ,s) encodes all that is required
to hold in s to be able to know how to execute δ, and there-
fore we could have added something like Poss(Obsδ(~y),s) ⊃
R s[(∃s′)Do(δ,s,s′)∧ ssf (δ,s)] in step 3 of theory compila-
tion. This modification keeps the validity of our theorems
but the resulting expression in the precondition may usually
contain complex formulae referring to the knowledge of the
agent we view as a problematic in practical applications.

5 From theory to practice
We have shown that under certain circumstances, planning
with programs can theoretically be reduced to planning with
primitive actions. In this section we identify properties nec-
essary for operator-based planners to exploit these results,
with particular attention to some of the more popular exist-
ing planners. There are several planning systems that have
been proposed in the literature that are able to consider the
knowledge of an agent and (in some cases) sensing actions.
These include Sensory Graphplan (SGP) [22], the MDP-based
planner GPT [2], the model-checking-based planner MBP5

[1], the logic-programming-based planner π(P) [21], and the
knowledge-level planner PKS [15].

All of these planners but PKS keep an implicit or explicit
representation of all the states in which the agent could be
during the execution of the plan (sometimes called belief
states), they are propositional, and cannot represent func-
tions. In our view, the limited expressiveness of these plan-
ners is extremely restrictive, especially because they are un-
able to represent functions, which is of a great importance in
many practical applications including WSC. To our knowl-
edge, PKS [15] is the only planner in the literature that does
not represent belief states explicitly. Moreover, it can repre-
sent domains using first-order logic and functions. Neverthe-
less, it does not allow the representation of knowledge abou

5MBP does not consider sensing actions explicitly, however they
can be ‘simulated’ by representing within the state the last action
executed.

arbitrary formulae. In particular it cannot represent disjunc-
tive knowledge.

All of these planners are able to represent conditional ef-
fects of physical actions, therefore, the representation of ac-
tion Physδ is straightforward. Unfortunately, the representa-
tion of the effects of Obsδ is not trivial in some cases. Ex-
amining the general structure of the SSA for K after theory
compilation we observe that to represent the effects of Obsδ
we need two characteristics from a planner.

• The planner must be able to represent conditional sens-
ing actions. Among the planners investigated, SGP is the
only one that cannot be adapted to this requirement. The
reason is that sensing actions in SGP cannot have pre-
conditions or conditional effects. Others (π(P), MBP)
can be adapted to simulate conditional sensing actions
by splitting Obsδ into several actions with different pre-
conditions.

• The planner must be able to represent that Obsδ reports
the truth value of, in general, arbitrary formulae. Some
planners (SGP, MBP) can represent arbitrary (propo-
sitional) observation formulae but others, e.g., (GPT,
π(P), PKS) cannot. This is a somewhat serious limita-
tion for planners that cannot represent such knowledge
effects. In our example, this would prevent those plan-
ners from realizing that if it is known that the block b is
not damaged, then after executing [Obsδ(b);Physδ(b)],
it knows whether paintFresh(b).
To overcome the limitations of such planners, we
have designed an algorithm (which we omit for
lack of space) that takes the final SSA for K and
is able to generate some useful knowledge effect
axioms. In our example, the algorithm would gen-
erate the effect axiom Knows(¬damaged(b),s) ⇒
KWhether(paintFresh(b),do(Obsδ,s)). Unfortu-
nately, the algorithm is incomplete in the sense that the
rules generated cannot capture all knowledge effects
stemming from sensing arbitrary formulae.

6 Summary and discussion
In this paper we examined the problem of planning by com-
posing programs, rather than or in addition to primitive
actions. The programs that form the building blocks of
such plans can, themselves, contain both sensing and world-
altering actions. We studied this problem in the language of
the situation calculus, appealing to Golog to represent our
programs. To this end, we proposed an offline execution se-
mantics for Golog programs with sensing, proving its equiva-
lence to previous online execution semantics, under certain
conditions. We then proposed a compilation method that
transforms our action theory with programs into a new theory
where programs are replaced by primitive actions. This en-
abled us, in theory, to use traditional operator-based planning
techniques to plan with programs that sense for a restricted
but compelling class of problems. We concluded by dis-
cussing the applicability of these results to existing operator-
based planners that allow sensing. This work makes an im-
portant contribution to the general problem of Web service

composition by enabling the composition of so-called com-
posite services using traditional operator-based planners that
include sensing. The work also provides a mechanism for in-
cluding macro-actions in operator-based planners that include
sensing. We continue to explore these topics in future work.

References
[1] Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri,

and Paolo Traverso. Planning in nondeterministic do-
mains under partial observability via symbolic model
checking. In Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-01, pages 473–478, Seattle, WA, USA, 2001.

[2] Blai Bonet and Hector Geffner. Planning with incom-
plete information as heuristic search in belief space. In
Proceedings of the Fifth International Conference on
Artificial Intelligence Planning Systems (AIPS), pages
52–61, 2000.

[3] E. Davis. Knowledge preconditions for plans. Journal
of Logic and Computation, 4(5):721–766, 1994.

[4] Giuseppe de Giacomo and Hector Levesque. An in-
cremental interpreter for high-level programs with sens-
ing. In Hector Levesque and Fiora Pirri, editors, Logical
foundation for cognitive agents: contributions in honor
of Ray Reiter, pages 86–102. Springer Verlag, Berlin,
1999.

[5] K. Erol, J. Hendler, and D. Nau. HTN planning: Com-
plexity and expressivity. In Proc. of the Twelfth Na-
tional Conference on Artificial Intelligence (AAAI-94),
volume 2, pages 1123–1128, 1994.

[6] R.E. Fikes, P.E Hart, and N.J Nilsson. Learning and ex-
ecuting generalized robot plans. Artificial Intelligence,
3:251–288, 1972.

[7] Giuseppe De Giacomo, Yves Lespérance, and Hector
Levesque. ConGolog, a concurrent programming lan-
guage based on the situation calculus. Artificial Intelli-
gence, 121(1–2):109–169, 2000.

[8] R. E. Korf. Planning as search: A quantitative approach.
Artificial Intelligence, 33(1):65–88, 1987.

[9] Yves Lespérance, Hector Levesque, Fangzhen Lin, and
Richard Scherl. Ability and knowing how in the situ-
ation calculus. Studia Logica, 66(1):165–186, October
2000.

[10] Hector Levesque. What is planning in the presence of
sensing? In The Proceedings of the Thirteenth National
Conference on Artificial Intelligence, AAAI-96, pages
1139–1146, Portland, Oregon, 1996. American Asso-
ciation for Artificial Intelligence.

[11] John McCarthy and Patrick J. Hayes. Some philosoph-
ical problems from the standpoint of artificial intelli-
gence. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463–502. Edinburgh University
Press, 1969.

[12] Sheila McIlraith and Tran Cao Son. Adapting Golog for
composition of semantic web services. In Proceedings

of the Eighth International Conference on Knowledge
Representation and Reasoning (KR2002), pages 482–
493, Toulouse, France, April 2002.

[13] Sheila A. McIlraith and Ronald Fadel. Planning
with complex actions. In 9th International Workshop
on Non-Monotonic Reasoning (NMR), pages 356–364,
Toulouse, France, 2002.

[14] Robert C Moore. A formal Theory of Knowledge and
Action. In Jerry B. Hobbs and Robert C. Moore, edi-
tors, Formal Theories of the Commonsense World, chap-
ter 9, pages 319–358. Ablex Publishing Corp., Nor-
wood, New Jersey, 1985.

[15] Ronald P. A. Petrick and Fahiem Bacchus. A
knowledge-based approach to planning with incomplete
information and sensing. In Proceedings of the Sixth In-
ternational Conference on Artificial Intelligence Plan-
ning Systems (AIPS), pages 212–222, Toulouse, France,
2002.

[16] Raymond Reiter. The Frame Problem in the Situation
Calculus: A Simple Solution (sometimes) and a com-
pleteness result for goal regression, pages 359–380. Ar-
tificial Intelligence and Mathematical Theory of Com-
putation: Papers in Honor of John McCarthy. Academic
Press, San Diego, CA, 1991.

[17] Raymond Reiter. Knowledge in Action. Logical Founda-
tions for Specifying and Implementing Dynamical Sys-
tems. MIT Press, 2001.

[18] Earl Sacerdoti. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5:115–135, 1974.

[19] Sebastian Sardina, Giuseppe De Giacomo, Yves
Lespérance, and Hector Levesque. On the semantics of
deliberation in IndiGolog – from theory to implementa-
tion. Annals of Mathematics and Artificial Intelligence,
41(2–4):259–299, August 2004. Previous version ap-
peared in Proc. of KR-2002.

[20] R. Scherl and H. J. Levesque. Knowledge, action, and
the frame problem. Artificial Intelligence, 144(1–2):1–
39, 2003.

[21] Tran Cao Son, Phan Huy Tu, and Chitta Baral. Planning
with sensing actions and incomplete information using
logic programming. In Seventh International Confer-
ence on Logic Programming and Nonmonotonic Rea-
soning (LPNMR), pages 261–274, Fort Lauderdale, FL,
USA, 2004.

[22] Daniel S. Weld, Corin R. Anderson, and David E.
Smith. Extending graphplan to handle uncertainty &
sensing actions. In Proceedings of AAAI-98, pages 897–
904, 1998.

A Proofs for section 3
A.1 Proof of Lemma 3.1
The proof is by induction on the structure of δ. Alternatively, we prove that

D |= (∀δ,s).ssf (δ,s) ⊃ {(∀s′,δ′).Trans(δ,s,δ′,s′) ≡ TransK(δ,s,δ′,s′)}

Suppose M |= D . Base cases:

1. δ = nil. Trivial.

2. δ = φ?.
(⇒) Assume M |= ssf (δ,s)∧Trans(δ,s,δ′,s′). Then, by definition of ssf and Trans,

M |= KWhether(φ,s)∧φ[s]∧δ′ = nil ∧ s = s′

But M |= KWhether(φ,s)∧φ[s], and the reflexivity of K implies M |= Knows(φ,s), then

M |= Knows(φ,s)∧δ′ = nil ∧ s = s′.

which proves this direction.
(⇐) Trivial from the fact that K is reflexive (M |= Knows(φ,s) ⊃ φ[s]).

3. δ = a.
(⇒) Assume M |= ssf (δ,s)∧Trans(δ,s,δ′,s′). Then, by definition of ssf and Trans,

M |= KWhether(Poss(a),s)∧Poss(a,s)∧δ′ = nil ∧ s′ = do(a,s).

As in the previous case, M |= Knows(Poss(a),s), and therefore,

M |= Knows(Poss(a),s)∧δ′ = nil ∧ s′ = do(a,s),

which proves this case.
(⇐) Trivial from the fact that K is reflexive.

Induction:

1. δ = δ1|δ2. Trivial from the inductive hypothesis.

2. δ = δ1;δ2.
(⇒) Assume M |= ssf (δ,s)∧Trans(δ,s,δ′,s′). Then, by definition of ssf ,

M |= ssf (δ1,s)∧{(∀s′).(∃δ′)(Trans∗(δ1,s,δ′,s′)∧Final(δ′,s′)) ⊃ ssf (δ2,s
′)}

Assuming the antecedent of the implication is true,

M |= ssf (δ1,s)∧ ssf (δ2,s
′),

for all s′ such that M |= (∃δ′)(Trans∗(δ1,s,δ′,s′)∧Final(δ′,s′)) and using the induction hypothesis, the result follows
immediately.
In case the antecedent of the implication is false, then M |= ¬Trans(δ1;δ2,s,δ′,s′) for all δ′, s′. Furthermore, since
M |= ssf (δ1,s) we know by induction hypothesis that

M |= ¬(∃δ′)(Trans∗K(δ1,s,δ′,s′)∧Final(δ′,s′))

which also implies that
M |= ¬Trans(δ1;δ2,s,δ′,s′),

for all δ′, s′.
(⇐) Analogous to (⇒).

3. δ = πv.δ. Trivial by inductive hypothesis.

4. δ = if φ then δ1 else δ2 endif
(⇒) Assume M |= ssf (δ,s)∧Trans(δ,s,δ′,s′). Then, for all situations s in M ,

M |= KWhether(φ,s)∧ (φ[s] ⊃ ssf (δ1,s))∧ (¬φ[s] ⊃ ssf (δ2,s)).

Since M |= KWhether(φ,s) we have two cases. First suppose M |= Knows(φ,s). By reflexivity of K, M |= ssf (δ1,s),
and the result follows by inductive hypothesis. On the other hand, if M |= Knows(¬φ,s), the proof is analogous.
(⇒) Straightforward from the reflexivity of K.

5. δ = while φ do σ endW. Analogous to the previous case.

¤

B Proofs for section 4
B.1 Proof of Theorem 4.1
We only need to prove that Comp[D,C] satisfies the consistency property for all SSAs. We say that a SSA F(~x,do(a,s)) ≡
γ+

F (a,~x,s)∨F(~x,s)∧¬γ−F (a,~x,s), satisfies the consistency property (CP) in theory T if T |= (∀s,~x,a)¬(γ+
F (a,~x,s)∧γ−F (a,~x,s)).

In fact if D is consistent then all its SSAs already satisfy the CP. Suppose Comp[D,C] does not satisfy the CP for a fluent F .
Then, necessarily the following must be true:

D |= (∃s)∃s′(Do(δ,s,s′)∧F(~x,s′))∧∃s′′(Do(δ,s,s′′)∧¬F(~x,s′′))

since δ is deterministic, the assertion above is equivalent to

D |= (∃s)∃s′(Do(δ,s,s′)∧F(~x,s′)∧¬F(~x,s′)),

which cannot be true if D is consistent. We have a contradiction and therefore the SSA for F must satisfy the consistency
property.

The proof is analogous if we suppose that a functional fluent f does not satisfy the CP.

B.2 Proof of Lemma 4.1
To prove the equivalence at the fluent level, let D ′ = Comp[D,C]. It suffices to prove that

1. D ′ |= (∀s,s′,~x).DoK(δ,s,s′)∧F(~x,s′) ⊃ F(~x,do(Physδ,s))), and

2. D ′ |= (∀s,s′,~x).DoK(δ,s,s′)∧¬F(~x,s′) ⊃ ¬F(~x,do(Physδ,s))).

To prove 1, using lemma 3.1 we only need to prove that

D ′ |= (∀s,~x).∃s′(Do(δ,s,s′)∧F(~x,s′)) ⊃ F(~x,do(Physδ,s)))

Suppose M is a model of D ′ such that M |= (∃s′)(Do(δ,s,s′)∧F(~x,s′)). By the successor state axiom generated from (4), and
the correctness of regression it follows immediately that M |= F(~x,do(Physδ,s))). This proves 1.

The proof of 2 is analogous.
Now, for the equivalence at the functional level, it suffices to prove that

1. D ′ |= (∀s,s′,~x,z).DoK(δ,s,s′)∧ z = f (~x,s′) ⊃ f (~x,do(Physδ,s))), and

2. D ′ |= (∀s,s′,~x).DoK(δ,s,s′)∧ z 6= f (~x,s′) ⊃ z 6= f (~x,do(Physδ,s))).

The proof of 1 follows directly from 3.1, the correctness of regression and the successor state axiom for f generated from (6).
To prove 2, assume that M is a model of D ′ such that for arbitrary s, s′,~x, and z, M |= DoK(δ,s,s′)∧ z 6= f (~x,s′). From the

successor state axiom of f we have that

z 6= f (~x,do(Physδ,s)) ≡ ¬γ(z)∧ (z 6= f (~x,s)∨∃yγ(y))

where γ(y) ≡ (∃s′).Do(δ,s,s′) ∧ z = f (~x,s′) by the correctness of regression and lemma 3.1. Therefore M |= z 6=
f (~x,do(Physδ,s)) iff (a) M |= ¬γ(z) and (b) M |= (z 6= f (~x,s)∨ (∃y)γ(y)).

For (a), we know that M |=¬γ(z) iff M |= (∀s′).(Do(δ,s,s′)⊃ z 6= f (~x,s′)). Since δ is deterministic this is true by our initial
assumption.

For (b), we prove M |= (∃y)γ(y), which is trivially true by our initial assumption.

B.3 Proof of Theorem 4.3
We first prove the following intermediate results.

Lemma B.1 Let theory of action D = Σ∪Kinit ∪Dss ∪Dgolog. Then,

D |= K(s′,s)∧K(σ′,σ) ⊃ {(∀δ).DoK(δ,s,σ) ⊃ Do(δ,s′,σ′)}

Proof: Without loss of generality, consider that D |= K(s′,s)∧K(σ′,σ)∧s′ v σ′∧sv σ′′, then it is simple to prove by induction
that there exists a sequence of actions ~a = [a1, . . . ,an] such that

D |= σ′ = do(~a,s′)∧σ = do(~a,s)∧
n̂

i=0

K(do([a1, . . . ,ai],s
′),do([a1, . . . ,ai],s))

From that fact, and considering that DoK(δ,s,σ) is equivalent to

(∃δ1,σ1) · · ·(∃δ1,σn)TransK(δ,s,δ1,σ1)∧·· ·∧TransK(δn−1,σn−1,δn,σn)∧

Final(δn,σn)∧σn = σ,

it suffices to prove the following.

1. D |= K(s′,s) ⊃ {(∃s1)TransK(δ,s,δ′,s1) ⊃ (∃s2)Trans(δ,s′,δ′,s2)}.

2. D |= K(s′,s) ⊃ {FinalK(δ,s) ⊃ Final(δ,s′)}.

Since 2 is trivial by definition, we prove 1 by induction on δ.
Base cases:

1. δ = nil. Trivial.

2. δ = φ?. Assume M |= D and M |= K(s′,s)∧TransK(δ,s,δ′,S1), for some S1 in M . Then M |= Knows(φ,s)∧ δ′ = nil.
By definition, M |= φ[s′]∧δ′ = nil, hence, M |= Trans(δ,s′,nil,s′), which ends the proof for this case.

3. δ = a. Assume M |= D and M |= K(s′,s)∧TransK(δ,s,δ′,S1). Then M |= Knows(Poss(a),s)∧δ′ = nil. By definition,
M |= Poss(a,s′)∧δ′ = nil. Therefore, M |= Trans(δ,s′,nil,s′), which ends the proof for this case.

Induction:

1. δ = δ1;δ2, δ = δ1;δ2, and δ = πv.δ are trivial from the inductive hypothesis.

2. For the rest of the cases, the proof follows directly from the definition of Knows (use the same argument in the base cases)
and the inductive hypothesis.

¤

Lemma B.2 Let D be a the theory of action and C be a set of deterministic Golog tree programs. If δ ∈ C and D |=
(∀s).ssf (δ,s), then,

Comp[D,C] |= (∀~x,s,s1).DoK(δ,s,s1) ⊃ {(∃s′′)(K(s′′,s1)∧φ(~x)[s′′]) ≡

(∃s′′)(K(s′′,do([As
δ,Physδ],s))∧φ(~x)[s′′])}.

Proof: Suppose D ′ = Comp[D,C].
(⇒) We prove that

D ′ |= (∀~x,s,s1).DoK(δ,s,s1) ⊃ {(∃s′′)(K(s′′,s1)∧F(~x)[s′′]) ⊃

(∃s′′)(K(s′′,do([As
δ,Physδ],s))∧F(~x)[s′′])},

for a situation-suppressed fluent symbol F different from K.
Suppose M |= D ′ and that

M |= DoK(δ,s,s1)∧K(S′′,s1)∧F(~x)[S′′],

Notice that M |= s v s1, and since M |= K(S′′,s1), there exists an S′′′ (S′′′ v S′′) such that

M |= DoK(δ,s,s1)∧K(S′′′,s)∧K(S′′,s1)∧F(~x)[S′′].

From lemma B.1,

M |= DoK(δ,s,s1)∧K(S′′′,s)∧K(S′′,s1)∧

Do(δ,S′′′,S′′)∧F(~x)[S′′].

Given that M satisfies (7) and (4),

M |= K(do(Obsδ,S
′′′),do(Obsδ,s))∧F(~x)[do(Physδ,S

′′′)].

Since F is objective,

M |= K(do(Obsδ,S
′′′),do(Obsδ,s))∧F(~x)[do([Obsδ,Physδ],S

′′′)].

Finally, since Physδ is a physical action, it holds that

M |= K(do([Obsδ,Physδ],S
′′′),do([Obsδ,Physδ],s))∧F(~x)[do([Obsδ,Physδ],S

′′′))],

which finishes the proof for ⇒.
(⇐) Suppose

M |= DoK(δ,s,s1)∧K(S′′,do([Obsδ,Physδ],s))∧F(~x)[S′′]

From the successor state axiom of K,

M |= DoK(δ,s,s1)∧K(do([Obsδ,Physδ],S
′′′),do([Obsδ,Physδ],s))∧

K(S′′′,s)∧F(~x)[do([Obsδ,Physδ],S
′′′)].

From the SSA of K, M |= K(do(Obsδ,S
′′′),do(Obsδ,s)), and since M satisfies (7),

M |= DoK(δ,s,s1)∧K(S2,S1)∧Do(δ,S′′′,S2)∧Do(δ,s,S1)∧

K(S′′′,s)∧F(~x)[do([Obsδ,Physδ],S
′′′)].

From lemma 3.1 and the fact that δ is deterministic, M |= s1 = S1, and therefore,

M |= K(S2,s1)∧Do(δ,S′′′,S2)∧K(S′′′,s)∧F(~x)[do([Obsδ,Physδ],S
′′′)].

Since F is objective and Obsδ is a pure sensing action,

M |= K(S2,s1)∧Do(δ,S′′′,S2)∧K(S′′′,s)∧F(~x)[do(Physδ,S
′′′)].

Now, given that M satisfies the SSA generated from (7) and (4).

M |= K(S2,s1)∧Do(δ,S′′′,S2)∧Do(δ,S′′′,S3)∧F(~x)[S3].

Once again, since δ is deterministic, M |= S2 = S3 and therefore,

M |= K(S2,s1)∧F(~x)[S2],

which proves ⇐. ¤

Proof of the Theorem: Instead, we prove that

Comp[D,C] |= (∀~x,s,s1).DoK(δ,s,s1) ⊃

{¬Knows(φ(x),s1) ≡ ¬Knows(φ(x),do([Obsδ,Physδ],s))}.

which follows directly from Lemma B.2. ¤

