
Algorithm and Complexity of the Unification
Problem of a Polymorphic Attribute-based Type

System

Ken Q. Pu

University of Toronto, Toronto ON, Canada
kenpu@cs.toronto.edu

Abstract. We introduce a polymorphic attribute-based type system ca-
pable of expressing type information of various query constructs. It ex-
tends the existing record-type systems by introducing attribute variables
to model polymorphic attribute names. Such extension permits modeling
query constructs of various languages as typed functional symbols.
Type-checking and type-inference of database queries are reduced to uni-
fication of type-expressions in our type system. We first establish that
the unification is NP-complete. A complete unification algorithm in EX-
PTIME is presented. Finally, we characterize a useful tractable sub-class
of unification for which the complete unification algorithm terminates in
PTIME.

1 Introduction

Types are an essential ingredient of any modern programming language because
of the universal fact that they reduce programming errors and make programs
safer. In query language design, type-theoretic ideas have been proven to be
quite useful [3, 7, 14]. By assigning types to query expressions, one can perform
static analysis including type-checking and type-inference on database queries
as one can do to programs. The problem of type-checking is to ensure that all
applications of operators are valid with respect to the type system, while the
more generalized problem of type-inference is to infer some unspecified type
information of an expression so that it is validly typed.

In this paper, we introduce a polymorphic attribute-based type system that
can be used to express type information of a wide range of query constructs from
functional query languages [2, 3] and nested relational algebra with aggregation
[1]. In addition to the classical row-variables in record-types [13, 15], we enrich
the type system with attribute-variables to model unknown attribute-names in
polymorphic types. This is necessary to model certain database query constructs
as higher-order functions. Consider the simple rename-operator ρ of relational
algebra which renames an attribute of its input relation. In order to represent it
as a polymorphic function, we use attribute variables as follows1:

ρ : set({u1 :x1, x2}) → set({u2 :x1, x2}),
1 We formally define the type-expression in later sections.

where ui are the attribute-variables, and xi the row-variables. It renames the
attribute u1 to attribute u2. Note that the classical row-variables [13, 15, 3] can-
not express the rename-operator. Another example is the nest-operator of nested
relational algebra:

nest : set({x1, x2}) → set({x1, u1 :set({x2})}).
The nest-operator creates a new attribute u1 whose type is another relation
set(x2). We can also apply the type system to functional query languages [2, 3].
Consider the map-operator that operates on records:

map : ({x1, x2} → {x3}) → ({u1 :list({x1}), x2} → {u2 :list({x3})}).
It is a second-order function. With an input function f : {x1, x2} → {x3},
mapf iterates on a list list(x1) identified by some attribute u1, and the output
consists of an attribute of the type list(x3).

Type-checking and type-inference of query languages reduce to unification
of type-expressions in our type system. Given two partially specified types, the
unification problem is to solve for the unspecified variables in the two type ex-
pressions such that they can be equated.

We prove that the unification problem of our type system is NP-complete in
general. A complete unification algorithm is presented that runs in EXPTIME.
Finally we identify a useful tractable sub-class for which the unification algorithm
terminates in PTIME.

2 Related Work

Several works [3, 7, 14] study the issue of assigning type information to relational
query languages, and their related type-checking and type-inference problems.
Buneman and Ohori [3] studies the problem of type-checking and inference for a
proposed query language based on functional programming, while Bussche et. al
[7] and Vansummeren [14] study a type system for the classical relational algebra,
and the associated type-inference problem. The type-inference algorithms for the
functional query language and relational algebra are specific to the respective
query languages of interest.

Our motivation is to introduce a polymorphic attribute-based type system
flexible enough such that the query constructs found in these languages can be
modeled as second-order functional symbols with types specified using our type
system. This means that we are able to perform type-checking and type-inference
in a query language-independent way using unification of type-expressions. We
omit the details of how unification is used to perform type-checking and inference
as it is the canonical approach for functional programming [10, 6, 11].

It is particularly convenient and natural to use record-based types in rela-
tional databases since often a relation is seen as a collection of records with
named fields. Record-types in the context of functional programming languages
have been studied [15, 13, 4]. The proposed record-type systems allow the use of
row-variables to model extensible records. We extend their work by also intro-
ducing attribute-variables. As seen above, the attribute-variables enable repre-
sentation of query operators of various query languages.

Record-types have also been used in in computational linguistics, where they
are referred to as feature structures. Unification of feature structures has been
well-studied [9, 5]. However, for feature structures, the usage of row-variables are
limited, so efficient unification algorithms exist. In contrast, we show that our
generalization of allowing attribute-variables and flexible use of row-variables
makes the unification problem intractable.

3 The type system

The type system describes attribute-based records.

Definition 1 (Type expressions). Let T0 be a set of atomic types, A a set
of constants representing attribute names, and Vattr = {u1, u2, . . . } and Vrow =
{x1, x2, . . . } are sets of attribute- and row-variable names.

Let T denote the set of type-expressions, defined recursively as follows.
A type-expression t ∈ T is a set of field-expressions f1, f2, · · · and row-

variables x1, x2, · · · , written t = {f1, f2, · · · , x1, x2, · · · }. It is required that the
fields do not have duplicate attribute-names.

A field-expression f is an attribute-type pair of the form a : t where a ∈
A ∪ Vattr, and t a type-expression or a collection-expression. A collection-
expression is of the form: set(t), bag(t) or list(t) where t ∈ T.

Therefore, a type-expression t ∈ T is a record-type, characterized by a set of
attributes and their types.

Example 1. Consider the following type-expression:

t = {Name : {First : String, Last : String, Other : x1}, Tel : x1, u1 : x2,x3}

We can write the attributes vertically as show in Figure 1(a), or see it as a DAG
as Figure 1(b).

t =

2
666664

Name :

2
4

First : String
Last : String
Other : x1

Tel : x1

u1 : x2

x
3

(a) A type-expression

(b) A DAG representation

Fig. 1. Representations of a type-expression

Definition 2 (Substitutions and instances). A substitution θ is a mapping
on the variables Vattr ∪Vrow such that:

– for all u ∈ Vattr, θ(u) ∈ A ∪Vattr, and
– for all x ∈ Vrow, θ(x) ∈ T.

A substitution θ extends to type-expression in T. Given a type t, θ(t) is the
type-expression obtained by replacing all attribute-variables u in t by θ(u), and
x in t by fields (and possibly other row-variables) in θ(x).

Given some θ, we refer to θ(t) as an instance of t, provided that θ(t) is a
valid type-expression in T.

Given two substitutions, θ1 and θ2, we say that θ1 ≤ θ2 if there exists another
substitution λ such that θ2 = λ ◦ θ1.

Example 2. Recall the type-expression t in Example 1. Let

θ1 = {x2 7→
�

City : String
Street : String

, x3 7→ ∅, u1 7→ Address}

Then

θ1(t) =

2
666664

Name :

2
4 First : String

Last : String
Other : x1

Tel : x1

Address :

�
City : String
Street : String

Consider θ2 = {u1 7→ Name}. The substitution θ2(t) is undefined since instan-
tiating the attribute-variable u1 to Name produces duplicate attribute names
among sibling fields.

4 Unification and its complexity

Definition 3. A type-equation is simply a pair (t, t′) of type expressions, written
as t ∼ t′. Let S be a set of type-equations {ti ∼ t′i : i ≤ n}. A unifier of S is a
substitution θ such that for all equations ti ∼ t′i in S, θ(ti) = θ(t′i). The set S is
unifiable if there exists such a unifier.

The set of unifiers of S is denoted by U(S), and the minimal unifiers, i.e.,
the most general unifiers of S by minU(S).

Our unification problem is distinct in several aspects:

– The order of fields do not matter. This means that the syntactic unification
algorithms [12] do not apply.

– There can be multiple occurrence of a row-variable in an equation, and equa-
tions can share row-variables, making our problem different from unification
of feature structures [5].

– Finally, we make use of attribute-variables, which has not been considered
by literature dealing with record-types [15, 13, 4].

First we show that the flexibility of our type system makes the unification
problem intractable. In fact, the intractability results from the unrestricted usage
of either row- or attribute-variables alone.

Theorem 1. The unification problem is NP-hard. It remains NP-hard even if
the type-expressions only make use of row-variables or only make use of attribute-
variables.

Proof (Sketch). First we reduce the 3-SAT problem to unification of type-equations
that only make use of attribute-variables. Consider an instance of 3-SAT prob-
lem: {Ci} where each Ci is a clause of three literals and each literal is a boolean
variable or its negation. For each boolean variable x, introduce a type-equation
{ux : A, ux̄ : A} ∼ {T : A, F : A}, where A is some atomic type. For each clause
Ci = {ti1, ti2, ti3}, introduce a type-equation

[
c1 : {ui1 : A, ui2 : A}
c2 : {ui3 : A, F : A} ∼

[
v1 : {T : A, v3 : A}
v2 : {v4 : A, v5 : A},

where vi are fresh attribute variables, and uij are defined as ux if tij = x, and
ux̄ if tij = x̄.

It follows that the equations are unifiable if and only if
∧{Ci} are satisfiable.

Next we show that monotone one-in-three 3SAT problem [8] is reducible
to unification of equations that only use row-variables. For each boolean vari-
able x, have {yx, yx̄} = {c : A}. For each clause Ci = {xi1, xi2, xi3}, have
{yi1, yi2, yi3} = {c : A}. It follows that the equations are unifiable if and only if
that the instance of monotone one-in-three 3SAT problem has a solution. ut

5 A complete unification algorithm

In this section, we present a complete unification algorithm for our type system.
The algorithm is based on the equivalence refinement algorithm for syntactic
unification. The algorithm operates on the directed acyclic graph (DAG) rep-
resentation of type-expressions, and it incrementally builds an equivalence of
nodes of the DAG. In the case of syntactic unification, the algorithm can be
substantially optimized to run in linear time [12]. However, in our case it runs
in EXPTIME, which is expected due to the intractability result of Theorem 1.

Aside from serving as a complete unification algorithm for our type-system,
its analysis leads to two important results.

– The unification problem is in NP, thus is NP-complete.
– We can identify a tractable class of unification problems for which the al-

gorithms run in PTIME. Furthermore, w show that this class is maximal in
that any relaxation of this class leads to intractability.

5.1 Unification of DAG’s and the unification relation

As shown in Example 1, a type-expression can be naturally represented as a
DAG. We denote the nodes of a DAG D by N(D), nodes that are labeled
by constants (attribute names or primitive types) by Ncon(D), the nodes la-
beled by attribute-variables by NVattr(D) and nodes labeled by row-variables
by NVrow(D). We drop the argument D if the DAG of interest is clear from the
context. The labeling function is written as `D : n 7→ `D(n).

One can instantiate a DAG D by a substitution θ: if D represents the type
expression t, then θD is a DAG that represents θ(t). In terms of the graph
representation, instantiating a DAG involves:

– Each node labeled by attribute-variable u in NVattr is relabeled by θ(u).
– Each node labeled by row-variable x in NVrow is either expanded to possibly

multiple sub-graphs, θ(x), or deleted if θ(x) = ∅.
– Any common subgraphs are merged.

Without loss of generality, we can assume only one equation to be unified.
In terms of DAG representation of s and t, the unification problem can be cast
as the following.

Definition 4. The unification problem of nodes ns, nt in a DAG D is defined
as follows: Given two nodes ns, nt ∈ N(D), find a substitution θ such that
θ(D(ns)) = θ(D(ns)).

For the presentation of the algorithm, we introduce the node-variables Vnode,
and nodes that are labeled by them, NVnode(D). We write node-variables as
ẋ, ẏ, · · · . Nodes in NVnode must only occur uniquely at the leaf level of D. It is
required that an instantiation can only replace a node-variable ẋ by a type with
at most one attribute, or a primitive type. Equivalently, a node in NVnode(D)
can only be replaced by a subgraph with a distinguished root node as oppose
to the general row-variables which can be replaced by multiple sub-graphs (or
none at all).

Definition 5. Let D be an DAG, with nodes N. A unification relation is an
equivalence relation E defined on the nodes N satisfying the following conditions:

– Distinct-siblings: No two siblings are equivalent.
– Homogeneity: A subset M ⊆ N of nodes is called homogeneous if (∀n, n′ ∈

M ∩Ncon) `D(n) = `D(n′). We require

(∀n ∈ N) [n]E is homogeneous, and

(∀u ∈ Vattr)
(⋃{

[n]E : n ∈ `−1
D (u)

})
is homogeneous.

– Congruence: For all n1, n2 ∈ N(D) such that n1, n2 6∈ NVnode(D) ∪
NVrow(D), n1 ≡E n2 =⇒ ↓ D(n1)/E =↓ D(n2)/E where ↓ D(n) are the
children nodes of n in D, and ↓D(ni) the equivalence classes of E containing
↓D(ni).

– Acylicity: If n1 is an ancestor of n2, then n1 6≡E n2.

A unification relation E on a DAG D is complete if for all equivalent pairs of
nodes n1 ≡E n2 such that n1 and n2 are not node- nor row-variables, (∀m1 ∈↓
(n1))(∃m2 ∈↓(n2))m1 ≡E m2. Otherwise, E is partial.

Proposition 1. Let D be a DAG without row variables. Then n1, n2 ∈ N are
unifiable if and only if there exists a complete unification relation E such that
n1 ≡E n2.

The general approach of our algorithm is to successively expand the row-
variable in NVrow(D) to a set of fresh node-variables and compute unification
relations. Therefore, the solution to the problem of unifying nodes ns, nt in a
DAG D is pair (E , θ) where θ is a substitution that only expands row-variables
to fresh node-variables, and E a unification relation on the DAG θD such that
n1 ≡E n2. We say that (E , θ) is a complete solution if E is complete in θD,
otherwise (E , θ) is a partial solution. There is always a partial solution to the
unification of nodes ns and nt in D: (E0, D) where E0 = {{ns, nt}}. The algorithm
tries to extend this initial partial solution by means of local-extensions defined
below until a complete solution is found or no further extensions can be made.

Definition 6. Let (E , D) be such that E is a partial unification relation on the
DAG D, An extension of (E , D) is a pair (E ′, θD) where θ is a substitution
that only expands row-variable in NVrow(D) with fresh node-variable, and E ′ a
unification relation on θD such that (∀n, n′ ∈ N(D)) n ≡E n′ =⇒ n ≡E′ n′.

We say that (E ′, θD) is an (n1, n2)-extension of (E , D) for some n1, n2 ∈
Ncon(D) ∪ NVattr(D) if n1 ≡E n2, and ≡E′= (≡E ∪R)∗ for some relation
R ⊆↓θD(n1)× ↓θD(n2). 2 The extension (E ′, θD) is a complete (n1, n2)-extension
if E ′ is complete at n1 and n2. A (complete) local extension of (E , D) is simply
a (complete) (n1, n2)-extension for some n1, n2 ∈ U(E).

Let (E1, θ1D) and (E2, θ2D) both be (n1, n2)-extensions of (E , D), we say
(E1, θ1D) ≤ (E2, θ2D) if (E2, θ2D) is an (n1, n2)-extension of (E1, θ1D). Therefore,
one may speak of minimal and complete (n1, n2)-extensions.

5.2 The unification algorithm

The algorithm is shown in Figure 2. The function local extensions(E , D, n1, n2)
computes all the local-extensions of a partial solution (E , D) at nodes (n1, n2),
and the function unification(ns, nt, D) computes all minimal solutions of unifying
nodes ns and nt in the DAG D.

5.3 Analysis of the algorithm

Proposition 2. Let (E , θ) be a minimal solution to the unification problem of
ns, nt in D. Then, for all row-variables x in D, |θ(x)| ≤ |N(D)|. Therefore, the
unification problem is in NP.

Proof (Sketch). First we show by induction on the height of the DAG, that any
complete solution (E , θ) to the unification of two nodes (ns, nt) in D can be
obtained by a finite sequence of minimal local-extensions from the initial partial
solution of (E0, D) where E0 = {{ns, nt}}.

Next, we show that the node-variables created at each minimal local-extension
is equivalent to some nodes in NVattr(D)∪Ncon(D). By the Distinct-sibling

2 We think of ≡E as a binary relation on N(D). Therefore, ≡E ∪R is another binary
relation, and (≡E ∪R)∗ is the transitive, reflexive and symmetric closure of (≡E ∪R).

Function local extensions(E , D, n1, n2)
1 Let A1 =↓D(n1), A2 =↓D(n2), E = ∅.
2 For Each R ⊆ A1 × A2, do
3 | For Each x ∈ A1 ∪A2, do
4 | | Let k = number of edges of R connected to x.
5 | | If A1 ∩NVrow(D) 6= ∅ and A2 ∩NVrow(D) 6= ∅, then
6 | | θ(x) = {x, ẋ1, . . . , ẋk} where all ẋi

7 | | Else
8 | | θ(x) = {ẋ1, . . . , ẋk} where all ẋi are fresh.
9 | | End if.
10 | |Let D′ = θD and E ′ = (E ∪R)∗.
11 | |If E ′ is a unification relation of D′ then
12 | | let E = E ∪ {(E ′, D′)}.
13 | |End If
14 | End For
15 End For
16 Return E.

Function unification(ns, nt, D0)
1 Let E0 = {{ns, nt}}
2 If E0 is complete, then return {E0} and exit.

3 Let E
extend = {(E0, D0)}, E

final = ∅.
4 Loop while E

extend 6= ∅
5 | Pick (E ,D) ∈ E

extend, and n1, n2 ∈ Ncon(D) ∪NVattr(D)
6 | such that n1 ≡E n2, E incomplete at n1 or n2.
7 | Let E = local extensions(E ,D, n1, n2).
8 | If E = ∅ then delete (E ,D) from E

extend,

9 | Else replace (E ,D) with elements of E in E
extend.

10 | E
final = E

final ∪ {(E ,D) ∈ E
extend : E is complete.}

11 | E
extend = {(E ,D) ∈ E

extend : E is incomplete.}
12 End loop

13 Return E
final.

Fig. 2. The unification algorithm

property of unification relations, for all row-variables x, no two node vari-
ables ẋ, ẏ ∈ θ(x) can be equivalent to the same node. Therefore, |θ(x)| ≤
|NVattr(D) ∪Ncon(D)| ≤ |N(D)|.

This proves that the size of the solution is polynomially bounded by the size
of the graph D. Thus, the unification problem is in NP. ut

Together with Theorem 1, we conclude the following.

Theorem 2. Unification of type-expression in our type-system is NP-complete.

Proposition 3. The number of successive local-extensions, namely the number
of iterations of unification(ns, nt, D), is bounded by |N(D)|2.
Proof (Sketch). Using Proposition 2, we can bound the number node-variables
required in a complete solution of a unification problem: |NVrow(D)| · |N(D)| ≤
|N(D)|2. Since each successive local-extension either produces at least one node-
variable or eliminate a row-variable, one only needs to compute at most |N(D)|2
successive local-extensions. ut
Proposition 4. The worst-time complexity of the unification algorithm is EX-
PTIME.

Proof (Sketch). Let N = N(D). There are at most O
(
2N2

)
local-extensions,

and since the length of chain of successive local-extensions is bounded by N2,
the complexity of unification is O

(
2N4

)
∈ EXPTIME. ut

6 A tractable case

In this section, we identify a tractable case of the unification problem.

Definition 7. The ambiguity of a node is the number of children that are either
attribute-variable or row-variable nodes:

am(n) =
∣∣ ↓(n) ∩ (NVattr(D) ∪NVrow(D))

∣∣.
The ambiguity of a DAG is its maximum node ambiguity:

am(D) = max{am(n) : n ∈ N(D)}.
A node n (DAG D) is ambiguous if am(n) > 1 (am(D) > 1), otherwise, we say
that it is unambiguous.

Theorem 3. A unification problem with an unambiguous DAG

– has a unique minimal solution, and
– can be solved in PTIME.

Proof (Sketch). We first show that, given a unification problem of ns and nt in an
unambiguous DAG D, every partial solution (Ei, Di) in the sequence of successive
local-extensions has a unique minimal and complete (n1, n2)-extension.

Therefore, in the unification algorithm, the bound on the size of the output
of local extensions collapses from O(2N2

) to 1. As a result, the solution tree
explored by unification collapses to a chain of successive local-extensions with
length of at most N2, and the function unification terminates in PTIME with at
most one solution. ut

The tractable case stated above includes known tractable unifications of syn-
tactic unification, unification of extensible records and unification of feature
structures. The difference is that we still consider the occurrence of attribute-
variables. Unambiguous unification is the most relaxed tractable class of uni-
fication of type-expressions as we show in the following proposition that any
relaxation leads to NP-hardness.

Proposition 5. The unification problem of two nodes in a DAG D is still NP-
hard if am(D) = 2. Furthermore, it remains NP-hard in the following cases:
am(D) = 2, and for each ambiguous node n,

– the two variable nodes in ↓n are both attribute-variable nodes.
– the two variable nodes in ↓n are both row-variables,
– the two variable nodes in ↓n consists of one attribute-variable node and one

row-variable.

Proof (Sketch). Observe that in the proof of Theorem 1, the type-expressions
used are with ambiguity of at most 2. Therefore, we already showed the NP-
hardness of the first two cases.

One can reduce the SAT problem to unification of type-expressions whose
ambiguous nodes consists of an attribute-variable and a row-variable. Thus it is
also NP-hard. ut

7 Conclusion and Future Work

We have presented an attribute-based type system that is suitable for expressing
type information of query constructs found in several query languages including
relational algebra and its extensions and functional query languages. Unification
of type-expressions in this type system is an important issue since it allows one
to perform type-checking and type-inference in a language independent way.

The general unification problem of type-expressions is shown to be intractable.
A complete unification algorithm with a worst-time complexity in EXPTIME is
presented. We also characterize a tractable sub-class of the unification for which
the algorithm terminates in PTIME.

We are interested in applications of our results, particularly our tractable sub-
class, to type-checking. By asking a user to partially instantiate a polymorphic
function, we believe we can provide tractable type-checking. Also, we would like
to extend the expressiveness of the type system to include union and recursive
types, so one can express query languages for semi-structured data.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addision-Wesley Publishing
Co., 1995.

2. P. Buneman and R. E. Frankel. FQL – a functional query language. In SIGMOD, pages 52–58,
1979.

3. P. Buneman and A. Ohori. Polymorphism and type inference in database programming. ACM
Transactions on Database Systems, 21(1):30–76, March 1996.

4. L. Cardelli and J. C. Mitchell. Operations on records. Mathematical Structures in Computer
Science, 1:3–48, 1991.

5. B. Carpenter. The Logic of Typed Feature Structures. Cambridge University Press, 1992.
6. L. Damas and R. Milner. Principal type schemes for functional programming. In 9th Symposium

on Principles of Programming Languages, 1982.
7. J. V. den Bussche and E. Waller. Polymorphic type inference for relational algebra. In PODS,

pages 80–90, 1999.
8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-completeness. Freeman, 1979.
9. R. Kasper and W. C. Rounds. A logical semantics for feature structures. In Proceedings of

the 24th Annual Meeting of the Association for Computational Linguistics, pages 257–266.
Association for Computational Linguistics, 1986.

10. R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17, 1978.

11. A. Mycroft. Polymorphic type schemes and recursive definitions. In 6th International Confer-
ence on Programming, 1984.

12. M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer and System
Sciences, 16, 1978.

13. D. Rémy. Type inference for records in a natural extension of ML. In TACS, volume 789 of
Lecture Notes in Computer Science. Springer, 1994.

14. S. Vansummeren. On the complexity of deciding typability in the relational algebra. Acta Inf.,
41(6):367–381, 2005.

15. M. Wand. Complete type inference for simple objects. In LICS, pages 37–44, 1987.

