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ABSTRACT
Almost every kind of software development periodically needs to
merge models. Perhaps they come from different stakeholders dur-
ing the requirements analysis phase, or perhaps they are modifica-
tions of the same model done independently by several groups of
people. Sometimes these models are consistent and can be merged.
Sometimes they are not, and negotiation between the stakeholders
is needed in order to resolve inconsistencies. While various meth-
ods support merging, we need formal approaches that help stake-
holders negotiate.

In this paper, we present a formal framework for merging and
conflict resolution. It facilitates automatic merging of consistent
models, enables users to visualize and explore potential disagree-
ments and identify their priorities, and suggests ways to resolve the
priority items. We describe our implementation of the framework
and illustrate it on several examples.

Categories and Subject Descriptors: D.2.1 [Software Engineer-
ing]: Requirements/Specifications; D.2.4 Software/Program Verifi-
cation.

Keywords: Model Merging, Refinement, Model Checking, Incon-
sistency Detection, Negotiation, 3-Valued Logic.

1. INTRODUCTION
Almost every kind of software development periodically needs to

merge models. For example, during requirements analysis, differ-
ent stakeholders with different viewpoints [35] describe different,
yet overlapping aspects [7] of the same systems. How should these
partial models be put together? Alternatively, consider combining
behavioural models of component instances of the same type. Typ-
ically, several instances of the same component may appear in a
given scenario, e.g., several instances of a client component that
concurrently access a server [39]. Standard approaches to synthe-
sis produce a separate behavioural model for each client instance
(e.g., [40, 30]). It is reasonable to integrate all models of all client
instances into a single model for the client component type because
all clients should share the same characteristics.

The problem gets even more pressing when we are dealing with
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distributed software development [10], when teams in different lo-
cations independently modify a common model, and then attempt
to put their modifications together.

In this paper, we concentrate on merging behavioural models of
software. There are several ways to express such models; these
are typically divided into declarative specifications, such as Al-
loy [27], and operational specifications, expressed in some form
of state-machines. State-machines are widely used in requirements
modeling [20, 21, 22] either directly, or via translation from higher-
level modeling languages.

In the context of model elaboration, composition of two (partial)
descriptions of the same component to obtain a more elaborate ver-
sion of the original partial description has been called merge [39].
Effective merging supports collaboration and cooperation in the
process of specifying software and helps manage the complexities
of this process. Unfortunately, merging can combine models only
if there are no disagreements between the stakeholders. Otherwise,
this composition requires negotiation. In order to support state-
machine-based development, we need to be able to merge different
versions of state-machines as well as support possible conflict res-
olution.

Merging and negotiation go hand in hand, and we believe that
this process should be supported by a formal framework. Such a
framework should merge models, if they are consistent, and other-
wise support negotiation by helping users discover their disagree-
ments, allow them to trace through their decisions and understand
proposals with the goal of resolving conflicts. This paper presents
such a framework in the context of state-machine models. We as-
sume that each entity in our models is specified at the same level
of abstraction and is named consistently in each model, i.e., we
assume vocabulary consistency.

Formal support for model-merging has been addressed by sev-
eral researchers. For example, merging is just a conjunction of
the corresponding theories in declarative specifications [27]. Uchi-
tel and Chechik [39] define merging for consistent partial labelled
transition systems, and Huth and Pradhan [26] merge partial view-
based specifications where a dominance ordering is used to elimi-
nate the potential inconsistencies. Different aspects of negotiation
have been addressed in software engineering literature. For exam-
ple, [2] describes negotiation over non-functional and application-
independent goals, such as the trade-off between assurance and per-
formance or cost/schedule. Damian et. al. [10] consider social and
political aspects of negotiation, and [9, 12] take a dialectic reason-
ing approach to negotiation. Several researchers [13, 23] proposed
ways to do formal reasoning with inconsistency; however, we are
not aware of formal support for negotiation over inconsistent be-
havioural models.

Given two models, our framework automatically determines whe-
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Figure 1: Models of the photo-taking feature of a camera: (a) CM1; (b) CM2; (c) CM3.

ther the models can be merged, and if so, computes the merge. Oth-
erwise, it supports the negotiation process, helping users identify
their disagreements and prioritize them. Further, it provides auto-
mated support for computing proposals for models that bring users
closer to resolving their conflicts, allowing users to do “what if” ex-
ploration and choose the most suitable alternatives. We also keep
a history of decisions that have been made, allowing users to study
the results, and, if necessary, undo the decisions. Our methodology
also guarantees that the negotiation process will eventually termi-
nate, while inflicting only the minimal changes onto the original
models.

In this paper, we describe the framework, analyze its complex-
ity, and illustrate that it scales to non-trivial models. Like the work
in [39, 26], we use additional logic values to capture model in-
completeness. Multi-valued logic has also been recently used for
reasoning [23, 13, 4, 15] about inconsistent systems, with the goal
of determining which inconsistencies can be tolerated. In our ap-
proach, we never merge inconsistent systems, and use the explo-
ration phase to determine those inconsistencies that need to be re-
solved, and those that can be tolerated.

The rest of this paper is organized as follows. In Section 2, we in-
troduce a running example. In Section 3, we identify a class of con-
sistent models and show how to merge them. Section 4 presents the
main results of this paper: techniques to cope with inconsistency
through exploration and selection of suitable resolutions. We dis-
cuss the implementation of our framework and an additional case
study in Section 5, and look at alternatives for improving precision
of our analysis in Section 6. Section 7 compares our approach to
related work, whereas Section 8 summarizes the paper and outlines
venues for future work. Appendix A provides proofs of the theo-
rems that appear in the paper.

2. EXAMPLE
We illustrate our framework on several specification models of

the photo-taking feature of a camera1. To take a photo, a user needs
to press the shutter button half-way. When focus is achieved, the
shutter button can be pressed completely to take the picture. Under
low-light conditions, the built-in flash should fire automatically.

Three different specification models of a camera, CM1, CM2,
and CM3 are shown in Figure 1. The goal of CM1 is to specify
the focusing feature and the behaviour of the camera’s shutter. In
the first state of this model, the shutter is closed and the focus is not
yet achieved; in the second, the focus is achieved; and in the third,
the shutter becomes open so that the photo can be taken. Model
CM2 (see Figure 1(b)) additionally describes the built-in flash. It
is disabled in the first and second states; in the third, the camera

1The example is adapted from [37].

opens its shutter and, depending on the light intensity, the flash is
either fired or remains disabled.

Like CM1, model CM3, shown in Figure 1(c), only considers
focusing and the camera’s shutter. However, unlike CM1, CM3

assumes that there is a transition from state Ready to state Shoot-
ing, i.e., the camera can take a photo even without achieving focus.
Further, when focus is achieved, CM3 allows a user to avoid tak-
ing a photo. This is indicated by a transition from Auto-Focus to
Ready. Finally, CM3 (mistakenly) allows the shutter to be open
during focusing, i.e., in state Auto Focus.

In the camera example, we assume vocabulary consistency: all
stakeholders use a, c, and s to represent whether the flash is en-
abled, whether the focus is achieved, and whether the camera’s
shutter is open, respectively. We refer to the set of variables used
by a model as its context (e.g., {c, s} for CM1 and CM3), and
the union of all contexts as the unified set of variables. In gen-
eral, achieving and maintaining vocabulary consistency is a diffi-
cult problem, studied, e.g., by [17]. We consider this issue to be
orthogonal to the techniques presented in this paper.

State-machine models are typically constructed to ensure that the
resulting design satisfies (or violates) certain properties. For exam-
ple, some properties of the camera example are shown in Table 1.
These properties are either representations of individual executions
of the system, such as use cases or scenarios (e.g., P1, P2 and
P4), or statements about all system executions, such as invariants
(e.g., P3 and P5). P1 and P2 are positive scenarios whereas P4 is
a negative scenario: it prohibits behaviours where Shooting is im-
mediately followed by Ready. We can easily show that CM1 and
CM2 satisfy P1, P3 and P4, and violate P2, whereas CM3 sat-
isfies P1 and P2, and violates P3 and P4. If we think of P1–P4

as the desirable properties to be achieved by the combined camera
model, CM1 and CM2 disagree with CM3 on these. Thus, we
expect that CM3 cannot be merged with CM1 and CM2 without
some negotiation about P2, P3 and P4.

When present, global properties may give analysts an early warn-
ing about whether some negotiation would be required. Of course,
it is possible that all models agree on the specified global properties
and still cannot be merged without negotiation (i.e., due to require-
ments that have not been stated explicitly), or that global properties
are not present at all. Whatever is the case, our framework attempts
to merge models, and assists users in resolving possible inconsis-
tencies.

We denote the set {c, a, s}, the unified set of variables for the
camera model, by APu. We also omit state names since our mod-
elling formalism completely characterizes each state by values of
its variables.

3. MERGING CONSISTENT MODELS
In this section, we look at the problem of merging consistent



Property Description CTL formulation
P1 whenever focus is achieved, we can take a picture AG(c ⇒ EXs)
P2 we can achieve focus and yet not take a picture EF (c ⇒ EX¬s)
P3 when focus is being achieved, a picture cannot be taken AG(c ⇒ ¬s)
P4 we cannot take a picture without achieving focus ¬E[¬c U s]
P5 whenever flash is enabled, shutter is open AG(a ⇒ s)

Table 1: Properties of the camera models.
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Figure 2: 3-valued logic.

models. Section 3.1 gives some background information, and Sec-
tion 3.2 describes which models can be merged and how to do
it. Like Uchitel and Chechik [39], we define merge as refinement
of two models; however, they merge labelled transition systems,
whereas we consider state-based models.

3.1 Basic Notions
Requirements models are inherently incomplete. Each model

can only focus on a few features of a system and thus uses just
a fraction of the unified set of variables. For example, CM1 (see
Figure 1(a)) does not address the built-in flash feature and thus does
not use the variable a. We can also say that in any state of CM1,
the value of a is unspecified.

To be able to merge models, we need to unify contexts of these
models and address the resulting incompleteness. We do so using
3-valued logic. 3-valued logic [28], shown in Figure 2, has been
recently used by several researchers to model and reason with in-
completeness and uncertainty (e.g., [24, 26, 39, 3, 4]). It extends
classical logic with an additional truth value, denoted by maybe
(m). For example, when the context of CM1 is lifted to APu, we
simply set the missing variable a to m in all of the states of CM1.
The result is shown in Figure 3(a).

3-valued logic provides a suitable means to express the degree
of information via information ordering (denoted by an operator
�) over its truth values. It is shown in Figure 2: true (t) and false
(f) are more defined than m and incomparable with each other. For
example, variable a in state s1 of model A (see Figure 3(a)) is less
defined than a in state s1 of model B (see Figure 3(b)). We denote
the set {t,m, f} by 3. We also define the meet and the join opera-
tors with respect to �, denoting them by u and t, respectively. For
example, m u t = m. Note that t t f is not defined.

We define a truth ordering over 3-valued truth values, denoted
by ≤ and shown in Figure 2, where f ≤ m ≤ t. Like many other
researchers, e.g., [4, 25], we use the truth ordering to evaluate prop-
erties over models. For example, P3 (see Table 1) indicates that c
and s cannot be true at the same time. In state r1 of model F in
Figure 3(f), c = t and s = m; thus, P3 evaluates to m in r1 and
thus in F.

We may allow our models to include 3-valued transitions as well.
For example, Figure 3(b) shows a fragment of a camera model
where transitions from s0 to s1 and s′1 are m, which represents
the fact that this model is not sure about the status of the camera’s
flash (a) after the initial state s0. From the theoretical point of view,
adding m transitions to models with m variables does not add any
expressive power [16], but it is often convenient. In our examples,
we use the following convention for transitions: unlabelled transi-
tions have value t, transitions labelled with m have value m, and f

transitions are not shown.
We define our models to be tuples (Σ, s0, R, I, AP ), where Σ

is a set of states, s0 ∈ Σ is an initial state, R : (Σ × Σ) → 3 is
a transition function, AP ⊆ APu is a set of atomic propositions
(variables), and I : (Σ ×AP ) → 3 is an interpretation function
that determines the value of each variable at every state. With-
out loss of generality, we assume that state machines have only one
initial state.

To compare models with different variable sets, we assume that
the labelling function for every state machine is defined for every
variable in APu, and further, for every p ∈ APu \ AP and every
s ∈ Σ, I(s, p) , m.

We now extend the information ordering � to 3-valued state ma-
chines, resulting in refinement.

DEFINITION 1. (refinement) [25, 31] Let 3-valued state ma-
chinesM1 = (Σ1, s0, R1, I1, AP1) andM2 = (Σ2, t0, R2, I2, AP2)
be given. A relation � ⊆ Σ1 × Σ2 is a refinement where s � t iff

1. ∀p ∈ APu · I1(s, p) � I2(t, p)
2. ∀s′ ∈ Σ1 ·R1(s, s

′) � t ⇒ ∃t′ ∈ Σ2 ·R2(t, t
′) � t ∧ s′ � t′

3. ∀t′ ∈ Σ2 ·R2(t, t
′) � t ⇒ ∃s′ ∈ Σ1 ·R1(s, s

′) � t ∧ s′ � t′

We say M2 refines M1, written as M1 �M2, iff s0 � t0.

Intuitively, t refines s if the variables in s are less defined than
those in t (condition 1), every definite, i.e., t, transition from s is
matched by some definite, i.e., t, transition from t (condition 2),
and every possible, i.e., t or m, transition from t is matched by a
possible, i.e., t or m, transition from s (condition 3). M2 refinesM1

if the guaranteed behaviors of M1 are a subset of the guaranteed
behaviors of M2; and the possible behaviors of M2 are a subset of
the possible behaviors of M1. For example, model C = (Σc, ...),
shown in Figure 3(c), is a refinement of model A (see Figure 3(a)),
where the refinement relation is {(s, (s, x)) | (s, x) ∈ Σc}.

Note that our treatment of the labelling function allows us to
compare models with different variable sets.

Refinement preserves all definite behaviours of the original model.
Furthermore, it preserves truth and falsity of properties expressed
in the temporal logic Lµ (µ-calculus) [25]. Lµ[29] is a very pow-
erful logic, capable of capturing a wide variety of global proper-
ties: traces, scenarios, invariants (e.g., properties P1–P5 intro-
duced in Section 2) and many more. The 3-valued semantics of
Lµ is given in [18]. In this paper, we use computational tree logic
(CTL) [8], a subset of µ-calculus, to formalize our properties. CTL
is a branching-time temporal logic defined by the following gram-
mar:

ϕ = ` | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | EXϕ | AXϕ | EFϕ
| AFϕ | EGϕ | AGϕ | E[ϕ U ϕ] | A[ϕ U ϕ]

where p ∈ AP is an atomic proposition and ` ∈ 3. The meaning of
the temporal operators is: given a state and paths emanating from
it, ϕ holds in one (EX) or all (AX) next states; ϕ holds in some
future state along one (EF ) or all (AF ) paths; ϕ holds globally
along one (EG) or all (AG) paths, and ϕ holds until a point where
ψ holds along one (EU ) or all (AU ) paths.

We write ||ϕ||M (s) to indicate the value of ϕ in the state s of
M , and ||ϕ||(s) when M is clear from the context. The value of
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Figure 3: Example models: (a) CM1 with the context {s, c, a}; (b) a model with 3-valued transitions; (c) CM1 + CM2; (d)
CM2 ⊕ CM3; (e) a projection of (d) onto CM2; (f) a projection of (d) onto CM3; (g) a proposal for modifying CM2; (h) a
proposal for CM3; and (i) a merge of (g) and (h).

the formula ϕ in a 3-valued state machine M is its value in the
initial state, i.e., ||ϕ||M , ||ϕ||M (s0). Temporal operators EX ,
EG, and EU together with the propositional connectives form an
adequate set (i.e., all other operators can be defined from them).
For example, EFϕ , E[t U ϕ] and AGϕ , ¬EF¬ϕ.

A path emanating from a state s of a 3-valued state machineM is
a sequence of states s0, s1, . . ., such that s0 = s andR(si, si+1) 6= f

for every i ≥ 0. A set of all paths from s is denoted by Π(s), and
the ith state of a given path π ∈ Π(s) – by πi.

The formal 3-valued semantics of CTL is given below.

||`||(s) , `

||p||(s) , I(s, p)

||ϕ ∧ ψ||(s) , ||ϕ||(s) ∧ ||ψ||(s)

||¬ϕ||(s) , ¬||ϕ||(s)

||EXϕ||(s) ,
∨

s′∈Σ(R(s, s′) ∧ ||ϕ||(s′))

||EGϕ||(s) ,
∨

π∈Π(s)

∧

i≥0 (||ϕ||(πi) ∧R(πi, πi+1))

||E[ϕUψ]||(s) ,
∨

π∈Π(s)

∨

i≥0

(

||ψ||(πi)∧
∧

j<i (R(πj , πj+1) ∧ ||ϕ||(πj))
)

In the case of 2-valued state machines, the above semantics of
CTL is equivalent to its classical interpretation [4]. The CTL for-
malization of P1–P5 is given in Table 1. For example,
P1 = AG(c ⇒ EXs), i.e., in every state, if focus is achieved, a
picture can be taken in one of the next states. Note that refinement
preserves valuation of not only positive (e.g., P1, P2, P3, P5) but
also negative (e.g., P4), universal (e.g. P3, P4, P5,), existential
(e.g. P2), and mixed (e.g. P1) properties.

We now aim to characterize similarities between models which
are not necessarily refinements of each other.

DEFINITION 2. (common refinement) Let M1 and M2 be 3-
valued state machines. A 3-valued model M3 is a common refine-
ment of M1 and M2 iff M1 � M3 and M2 � M3. Furthermore,
M3 is the least common refinement iff for every common refine-
ment M4, M3 �M4.

Like refinement, common refinement preserves truth and falsity of
properties expressed in Lµ [25].

THEOREM 1. Let M3 be a common refinement of M1 and M2.

Then, ∀ϕ ∈ Lµ:

(||ϕ||M1 = t) ∨ (||ϕ||M2 = t) ⇒ ||ϕ||M3 = t

(||ϕ||M1 = f) ∨ (||ϕ||M2 = f) ⇒ ||ϕ||M3 = f

Moreover, if M3 is the least common refinement of M1 and M2,
then for every common refinement M4,

||ϕ||M4 = m ⇒ ||ϕ||M3 = m

If for some property ϕ ∈ Lµ, ||ϕ||M1 is t and ||ϕ||M2 is f, then
M1 and M2 do not have a common refinement; in this case they
are called inconsistent.

DEFINITION 3. (consistency) 3-valued modelsM1 andM2 are
consistent if their common refinement exists; otherwise, they are
inconsistent.

To reason about inconsistent models, we introduce a notion of
abstraction, which is the dual of refinement. M1 abstracts M2 iff
M2 refines M1. Common abstraction of models M1 and M2 can
be defined in a similar way:

DEFINITION 4. (common abstraction) Let M1 and M2 be 3-
valued models. A 3-valued model M3 is a common abstraction of
M1 and M2 iff M3 � M1 and M3 � M2. Furthermore, M3 is
the greatest common abstraction iff for every common abstraction
M4, M4 �M3.

THEOREM 2. LetM3 be a common abstraction ofM1 andM2.
Then, ∀ϕ ∈ Lµ,

||ϕ||M3 = t ⇒ (||ϕ||M1 = t) ∧ (||ϕ||M2 = t)
||ϕ||M3 = f ⇒ (||ϕ||M1 = f) ∧ (||ϕ||M2 = f)

Moreover, ifM3 is the greatest common abstraction ofM1 andM2,
then for every common abstraction M4,

||ϕ||M3 = m ⇒ ||ϕ||M4 = m

3.2 Computing Merge
The intuition we wish to capture by merge is that of combining

partial knowledge coming from individual models while preserving
all of their agreements. The notion of common refinement under-
lies this intuition as it captures the “more complete than” relation



between two incomplete models, and hence we use it in our defini-
tion:

DEFINITION 5. (merge) A merge of two 3-valued state-machines
is their common refinement.

Basing the notion of merge on a common refinement is stan-
dard [39, 26, 24]. By Theorem 1, the least common refinement
preserves most properties of the original models, and thus is the
most precise merge; however, it may not necessarily be expressible
in 3-valued logic. We discuss this issue further in Section 6.

Clearly, the above definition only applies to consistent models
(inconsistent ones simply do not have a common refinement). So,
our first goal is to determine whether two models are consistent.
We define consistency recursively, similarly to our definition of re-
finement.

DEFINITION 6. (consistency relation) Let M1 and M2 be 3-
valued state machines. We define a consistency relation
∼ ⊆ Σ1 × Σ2 where s ∼ t iff:

1. ∀p ∈ APu · I1(s, p) t I2(t, p) is defined
2. ∀s′ ∈ Σ1 ·R1(s, s

′) � t ⇒ ∃t′ ∈ Σ2 ·R2(t, t
′) � t ∧ s′ ∼ t′

3. ∀t′ ∈ Σ2 ·R2(t, t
′) � t ⇒ ∃s′ ∈ Σ1 ·R1(s, s

′) � t ∧ s′ ∼ t′

We say M1 and M2 are consistent, written as M1 ∼ M2, iff
s0 ∼ t0.

Intuitively, s ∼ t iff values of all propositions in these states are
consistent (condition 1), and s and t have consistent successors.
The latter means that for every definite, i.e., t, successor s′ of s,
there exists some possible, i.e., t or m, successor t′ of t where s′

and t′ are consistent (condition 2), and for every definite, i.e., t,
successor t′ of t, there is some possible, i.e., t or m, successor s′

of s, consistent with t′ (condition 3). To prove that M1 and M2 are
consistent, we simply need to match every t transition of one model
to some (non-f) transition of the other. m transitions do not need
to be matched – they can evolve either to t or to f without causing
inconsistency.

THEOREM 3. M1 and M2 have a common refinement iff
M1 ∼M2.

For example, CM1 and CM2 in Figures 1(a)-(b) are consistent
with the consistency relation {(s0, t0), (s1, t1), (s2, t2), (s2, t3)}.
On the other hand, CM2 and CM3 in Figures1(b)-(c) are incon-
sistent: t1, the successor of t0, disagrees with both successors of r0
(r1 and r2) on values of propositions s and c. Since successors of
t0 cannot be matched to successors of r0, t0 and r0 are inconsistent,
and thus so are CM2 and CM3.

The complexity of computing a relation ∼ is equivalent to com-
puting a refinement relation which is polynomial in the size of M1

and M2.
If there exists a consistency relation ∼ over the states of M1

and M2, the construction of a merged model is straightforward:
every pair of consistent states is merged to form a single state in
the combined model.

DEFINITION 7. (M1 +M2) Let M1 and M2 be 3-valued state
machines, and let M1 ∼ M2. We define a merge of M1 and M2,
denoted M1 +M2, as a tuple (Σ1 × Σ2, (s0, t0), R+, I+, AP1 ∪
AP2), where for every (s, t), (s′, t′) ∈ Σ1 × Σ2,

1.R+((s, t), (s′, t′)) =

{

R1(s, s
′) tR2(t, t

′) iff s ∼ t ∧ s′ ∼ t′

f otherwise

2.∀p ∈ APu · I+((s, t), p) = I1(s, p) t I2(t, p)

IV.
Computing
Merge I.

Computing
Agreements

II. Exploration

III. Resolution

II. Exploration

Figure 4: Negotiation framework.

M1 +M2 is a fragment of the cross-product of M1 and M2. Since
all transitions between inconsistent pairs of states are f, only con-
sistent pairs are reachable.

THEOREM 4. Let M1 and M2 be 3-valued consistent models.
Then, M1 +M2 is their common refinement.

For example, model CM1 +CM2 is shown in Figure 3(c), where
the consistency relation is {(s0, t0), (s1, t1), (s2, t2), (s2, t3)}. For
this example, CM1 + CM2 is the most precise merge, i.e., the
least common refinement, but this is not necessarily the case in
general.

4. COPING WITH INCONSISTENCY
When models are inconsistent, their merge does not exist. In

this case, we start the negotiation process, outlined in Figure 4.
First, we build a model that reflects agreements between the ini-
tial models (Computing Agreements, Section 4.1). Effectively, we
replace all points of potential contention with maybe. Afterwards,
we project the result back onto the original models, allowing users
to explore the result (Exploration, Section 4.2). Using global prop-
erties or their intuition, and supported by analysis tools such as
model-checkers, users pick a list of items that they care about most.
These become input to the Resolution phase (Section 4.3) which
attempts to handle these disagreements by building consistent pro-
posals, allowing users to pick their favourite. Once proposals have
been chosen, the resulting models, which are now consistent but
may still be somewhat incomplete, can be merged using techniques
described in Section 3.2 (Computing Merge). The incompletenesses
represent “don’t cares” on the part of stakeholders, indicating that
they will be satisfied with any consistent resolution of these points.

4.1 Computing Agreements
When models contain inconsistencies, we need to help users

identify, understand and resolve them. To this end, it is helpful
to construct a readable model that preserves the agreements and
highlights the disagreements between the models. We refer to it as
the agreement model and define it as a common abstraction (Def-
inition 4) between the two models. A common abstraction, M3,
of models M1 and M2 can distinguish those properties on which
M1 and M2 agree from those on which they do not: these evaluate
to m on M3. By Theorem 2, the greatest common abstraction, if
available, would be a better choice (see Section 6 for a discussion).
An even more important problem is that our abstractions cannot
distinguish between disagreements that are caused by the lack of
information from those caused by the actual disagreement between
the models. For example, P5 evaluates to m in CM3 because it
uses a proposition a, which is not in the context of CM3; thus, P5

will be m in every common abstraction involving CM3, e.g., with



CM2, even though there is no disagreement. Such problems need
not be reported to the user, since they can be resolved simply by
refinement. We use a number of heuristics aimed at removing the
unnecessary m transitions and variables, such as the one described
in our case-study [32]. Further, we project common abstractions
back to the context of the original models. Such projections can re-
trieve the information lost by computing the common abstraction.
For example, projecting our example common abstraction back to
CM2 ensures that P5 evaluates to t. We describe the construction
of agreement and projection models below.

DEFINITION 8. (M1 ⊕M2) Let M1 and M2 be 3-valued state
machines. The agreement of M1 and M2, denoted M1 ⊕M2, is
a tuple (Σ1 × Σ2, (s0, t0), R⊕, I⊕, AP1 ∪ AP2) where for every
(s, t), (s′, t′) ∈ Σ1 × Σ2,

1. R⊕((s, t), (s′, t′)) = R1(s, s
′) uR2(t, t

′)
2. ∀p ∈ APu · I⊕((s, t), p) = I1(s, p) u I2(t, p)

M1 ⊕M2 is the “dual” of M1 +M2: every join (t) in the latter is
replaced with a meet (u) in the former.

THEOREM 5. Given 3-valued models M1 and M2, M1 ⊕M2

is their common abstraction.

Theorem 5 gives us a procedure for computing agreements and dis-
agreements between M1 and M2. However, M1 ⊕ M2 includes
the entire cross-product of states of M1 and M2! M1 + M2 was
relatively small because its state-space was limited to consistent
pairs of states of M1 and M2, but the state-space of M1 ⊕M2 is
Σ1 ×Σ2. Even if it is computationally feasible (afterall, we expect
that the models are relatively small), models with such number of
states are difficult for analysts to understand, since they differ dras-
tically from their original models. Instead, we seek a definition
of maximum agreement that remains a common abstraction of M1

and M2 while being more readable.
Our goal is to reduce the state-space of the agreement model

from Σ1 × Σ2 to a set ρ ⊆ Σ1 × Σ2 representing maximal agree-
ments between M1 and M2. We need ρ to be left/right total:

(∀s ∈ Σ1 ·∃t ∈ Σ2 ·(s, t) ∈ ρ) ∧ (∀t ∈ Σ2 ·∃s ∈ Σ1 ·(s, t) ∈ ρ)

and further, (s0, t0) ∈ ρ. We restrict the state-space of M1 ⊕M2

to ρ by redefining R⊕ as follows:

R⊕((s, t), (s′, t′)) =

{

R1(s, s
′) uR2(t, t

′) iff (s, t), (s′, t′)∈ρ
f otherwise

Note that restricting the state-space ofM1 ⊕M2 to a ρ with above-
mentioned properties still yields a common abstraction of M1 and
M2.

THEOREM 6. Let ρ be a left/right total relation s.t.
(s0, t0) ∈ ρ. Then,M1⊕M2 built using ρ is a common abstraction
of M1 and M2.

Different ρs result in different agreement models. Naturally, we are
interested in those ρs that maximize agreements. By definition of
I⊕ and R⊕, a maybe variable or transition in M1 ⊕M2 may in-
dicate a disagreement between M1 and M2. Thus, we want to ob-
tain a relation ρ that induces a minimal number of such entities in
M1⊕M2. For example, the agreement model CM2 ⊕ CM3, cor-
responding to the camera models CM2 and CM3 in Figures 1(b)-
(c), is shown in Figure 3(d). It is built using the relation
{(t0, r0), (t1, r1), (t2, r2), (t3, r2)}, which represents maximum
agreement over the states of CM2 and CM3. After mapping the
initial states t0 and r0 to each other, we have the option of mapping

t1 to either (or both) of r1 or r2. However, r1 and t1 only disagree
on s, whereas t1 and r2 disagree on both s and c. Since t1 and r1
are “more similar”, they appear in CM2 ⊕ CM3. For the same
reason, we map t2 and t3 to r2 instead of r0.

Finding the best ρ is essentially an optimization problem, with
complexity exponential in the number of the states of M1 and M2.
While this may still be feasible for relatively small models, we can
use various heuristics instead. One of these is described in Sec-
tion 4.3. Further investigation into effective computations of the
best ρ is left for future work.

We now move to the subject of computing projections of com-
mon abstractions of state-machine models.

DEFINITION 9. ((M1 ⊕M2)/M1) A projection of M1 ⊕M2

onto M1, denoted by (M1 ⊕M2)/M1, is a tuple (Σ1, s0, R⊕/1,
I⊕/1, AP1), where for every s, s′ ∈ Σ1,

1.R⊕/1(s, s
′)=

d
(s,t),(s′,t′)∈ρ R⊕((s, t), (s′, t′))

2.I⊕/1(s, p) =

{ d
(s,t)∈ρ I⊕((s, t), p) if p ∈ AP1 ∩AP2

I1(s, p) otherwise

For conciseness, we use M̂1 to refer to (M1⊕M2)/M1. The states-
pace and the context of M̂1 are the same as those of M1. Transi-
tions and propositions in M̂1 are induced by those in M1 ⊕M2.
However, values of propositions which are not present in M2 (and
thus are m in M1 ⊕M2), are determined by M1. M̂2 is defined
similarly.

E and F, shown in Figures 3(e)-(f), are projections correspond-
ing to CM2 and CM3, respectively. Since variable a is not in the
context of CM3, its value in each state of E is set to that in the
corresponding state of CM2. Recall that P5 was inconclusive on
CM2 ⊕ CM3, but it holds in E, so no further negotiation w.r.t.
this property is required.

Projection models, while abstract the corresponding original mod-
els, are mutually consistent.

THEOREM 7. M̂1 and M̂2 are consistent. Further, M̂1 and
M2 as well as M1 and M̂2 are pair-wise consistent.

Note that ρ, used in computing M1 ⊕M2, is a consistency relation
between M̂1 and M̂2 as well as between M̂1 and M2, and between
M1 and M̂2.

4.2 Exploration
The Computing Agreements phase produces consistent but in-

complete projections M̂1 and M̂2. The missing information, rep-
resented by m in the two models, effectively comes from “back-
ing down” from all disagreements between the original models.
Clearly, M̂1 and M̂2 can be merged, but the result leaves a number
of properties, perhaps the ones which are vitally important to the
stakeholders, inconclusive. On the other extreme, we can attempt
to reach agreement over every m item (i.e., a variable or a transi-
tion). However, as we show in Section 4.3, the number of propos-
als for resolving inconsistencies can grow exponentially with the
number of items; thus, the smaller the list of negotiation items, the
easier it is for the stakeholders to reach agreement.

The goal of the (optional) Exploration phase is to choose the truly
important items, which must be negotiated, from the overall list.
We call this a priority list (PL). Leaving an item off the PL indi-
cates that the stakeholder is content with it becoming either t or f

at some point in the future. Note also that each stakeholder builds
her own PL independently, so if an item is really important to one
stakeholder and not important to the other, the resolution is to sim-
ply choose the second user’s value for this item.



In order to build the PLs, users can either informally inspect the
projections or use various analysis tools such as model-checkers,
simulators, debuggers etc. Specifically, if a set of global proper-
ties is available, users may want to see the impact of rolling back
the disagreements on these. In this paper, we assumed that global
properties are expressed in temporal logic, so any 3-valued model-
checker, e.g., χChek [5], can be used for this analysis. Stakeholders
may further prioritize those properties on which the analysis ended
up being inconclusive, and restrict their PL just to those items that
caused inconclusiveness of these most desirable properties. This
information is also readily obtainable from a model-checking run.
Specifically, χChek can return a counterexample explaining why
the property evaluates to m. It also has a feature which returns all
reasons why a property is m, in the form of an abstract counterex-
ample [6]. For our framework, we modified χChek to extract the
list of m variables and transitions from the returned counterexam-
ple and report its size to the user. This gives her an early indication
about the feasibility of achieving agreements during the resolution
step.

For example, suppose the owner of CM2 is most interested in
the property P2. A model-checker reports that P2 is m on the
projection E (see Figure 3(e)) because c is only true in state t1 and
¬s is only true in state t0, but t0 is an m-successor of t1. Thus,
the cause of inconclusiveness of P2 is the transition from t1 to t0,
which reduces the list of negotiation items for this user from four
(three m transitions, one m variable) to one. Similarly, the owner of
CM3 can identify that the m value of s in state r1 in his projection
shown in Figure 3(f) is the cause of inconclusiveness of his most
desirable property P3.

4.3 Resolution
The goal of the Resolution phase is to compute alternatives for

resolving the most important inconsistencies identified during the
Exploration phase, while making minimal possible modifications to
the original models. The algorithm receives as input the projection
models M̂1 and M̂2, a consistency relation ρ between M̂1 and M̂2

(see Theorem 7), and the priority lists of inconsistencies, obtained
by merging the individual PLs. It either computes a list of model
pairs (M̂1

′
, M̂2

′
), called proposals, which resolve these inconsis-

tencies, or reports a failure. The goal of the algorithm is to change
the value of every m proposition or transition in the combined pri-
ority list to either t or f, resulting in models M̂1

′
and M̂2

′
which

remain consistent with respect to ρ.
The steps of the resolution algorithm are shown in Figure 5. Fig-

ures 5(a)-(c) show the resolution of m propositions. Suppose we
want to resolve a value of a proposition p in state s of M̂1. Let
T = {t1, . . . , tn} ⊆ Σ2 be a set of states mapped by ρ to s,
i.e., ∀ti ∈ T · (s, ti) ∈ ρ. We distinguish three possibilities:

Case 1. All states in T are consistent with each other on the
value of p, and there are some states ti ∈ T where p is t (or f) (see
Figure 5(a)). In this case, the value of p in s is set to that of p in ti,
and one proposal (M̂1

′
, M̂2

′
) is generated. Note that M̂2

′
remains

equal to M̂2: we are able to resolve inconsistencies, and additional
changes to M̂2 are not needed.

Case 2. All states in T are consistent with each other on the
value of p, and no state ti ∈ T is conclusive for p (see Figure 5(b)).
In this case, the value of p in s is set once to t and once to f. The
resulting proposals (M̂1

′
, M̂2

′
) and (M̂1

′′
, M̂2

′′
) are shown in Fig-

ure 5(b). This corresponds to resolving a point inconsistency.
Case 3. States in T are inconsistent on p (see Figure 5(c)). In

this case, a conflict is reported because changing the value of p in s
to either t or f violates the consistency relation ρ. Tuples that cause

conflicts, e.g., (s, t) and (s, t′) in Figure 5(c), are reported back
to the Computing Agreements phase (see Figure 4), which attempts
to find a better ρ, and then the resolution process is repeated. In
principle, we can start with a ρ that maps all states of the original
models to each other, and iteratively refine it by finding (during
Resolution) and removing (during Computing Agreements) tuples
that cause disagreement.

The resolution of m transitions proceeds similarly, and the algo-
rithm is shown in Figures5(d)-(f). Here, a transition from s to s′ is
mapped to the one from t to t′ iff both tuples (s, t), (s′, t′) are in ρ.
We obtain all possible proposals by resolving every element in the
joint PL.

For example, suppose the resolution algorithm is given mod-
els E and F (see Figures 3(e)-(f)) and the following priority lists:
t1 → t0 and s in t1 in model E, and s in r1 and r0 → r2 in
model F. Recall that the consistency relation ρ for E and F was
{(t0, r0), (t1, r1), (t2, r2), (t3, r2)}. The algorithm yields eight
resolution proposals, one of which, (G,H), is shown in Figures 3(g)-
(h). In G, the value of t1 → t0 is set to t, and s in t1 is set to f. In
H, s in r1 is set to f, and thus there is no inconsistency between r1
and t1. Also, r0 → r2 is set to f.

The complexity of resolving each individual item depends on
the number of states or transitions affected by it, which is a (small)
fraction of ρ. However, the number of generated proposals is ex-
ponential in the size of the joint list because the resolution of each
item can potentially lead to two proposals. Fortunately, items in
the priority list often depend on each other, effectively reducing the
overall number of generated proposals. In our running example,
resolution yielded just eight proposals for four priority items: since
ρ maps t1 to r1, the value of s in t1 has to be the same as in r1,
reducing the number of non-redundant elements in the joint PL to
three. Still the number of proposals may be large. We envision that
in such situations, users will partition their PLs, so that the negoti-
ations can concentrate only on the chosen items. Additional itera-
tions of the framework would be required to resolve the remaining
items. Effectively, this enables compositional negotiation. We are
still working on a methodology to help users partition their PLs.

Proposals generated by the resolution algorithm are still consis-
tent with respect to ρ, just like the corresponding projections have
been, but they refine these projections, deeming more properties
conclusive. These two facts establish correctness of the algorithm,
and are summarized in the theorem below.

THEOREM 8. For every proposal (M̂1
′
, M̂2

′
) generated by the

algorithm in Figure 5, M̂1
′

and M̂2
′

are consistent with respect to
ρ, and further, M̂1 � M̂1

′
and M̂2 � M̂2

′
.

On the other hand, the relationship between proposals and the orig-
inal models M1 and M2 is orthogonal to refinement: we first ab-
stract from all inconsistencies, yielding maybes, and then refine the
result consistently. For example, if a property ϕ was t in M1 and
f in M2, it becomes m in M̂1 and M̂2, and, if present in the PL,
is set either to t or to f in both M̂1

′
and M̂2

′
. Thus, inconsistency

resolution is non-monotonic!
As proposals are being generated, users can explore them and,

if satisfied, accept one. The resulting models are guaranteed to
give conclusive values to items on the priority list and be consistent
with respect to ρ; thus, they can be easily merged. This is done
in the Computing Merge phase (see Figure 4) and computed using
the techniques described in Section 3.2. For example, assuming
that the users choose the proposal (G,H), the resulting merge, I,
is shown in Figure 3(i). Note that this example illustrates the dif-
ference between defining a merge as refinement versus as a union
of transition relations of the original models. For example, the m-
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Figure 5: The steps of the resolution algorithm: (a-c) the resolution of maybe propositions; (d-f) the resolution of maybe transitions.

transitions from t0 to t2 and t3 in G are not present in the merged
model I. Thus, the transitions of I are not the union of the transi-
tions of G and H.

Two other cases can occur: (a) no proposals can be generated;
and (b) users do not consider any of the proposals to be acceptable.
We discussed the former earlier, under Case 3 of the resolution al-
gorithm. In the latter case, the stakeholders can go back to the ex-
ploration phase and produce a different PL, or perhaps decide that
the problem is with the existing ρ and give hints on how to mod-
ify it. Currently this process is manual (the Computing Agreements
phase can optionally read in a suggested ρ), but we are looking for
ways of automating it.

5. TOOL SUPPORT AND PRELIMINARY
EVALUATION

We have prototyped a proof of concept implementation of the
merge and negotiation framework discussed in earlier sections. The
implementation can merge 3-valued state-machines if they are con-
sistent (Definitions 6 and 7). If models are inconsistent, it computes
an agreement model, and, using a multi-valued model-checker
χChek [5], allows stakeholders to explore its projections, building
a priority list from χChek’s abstract counterexamples. Once pro-
posals are built (using the algorithm in Figure 5), users can choose
their favourite, apply suggested resolutions to their original mod-
els, and attempt to merge them again. This allows incremental ne-
gotiation. Our implementation supports it by additionally storing
the history of made decisions, allowing users to go back and undo
them (and thus facilitating “what if” exploration).

To try our framework on a more realistic example, we attempted
to merge inconsistent descriptions of behaviour of an authentica-
tion system, adopted from [38]. The system is described from the

administrator’s and from the user’s points of view, and the mod-
els disagree on a property “Entering a password can be followed
by a successful authentication”. The models were translated from
MTSs [31] to 3-valued state machines and had 3 and 5 states, re-
spectively, with the combined vocabulary of 3 variables. The size
of ρ was 5, i.e., max(Σ1,Σ2). We computed the maximal agree-
ment model and automatically refined it using a heuristic discussed
in [32]. Using the above-mentioned property, we identified only
two priority items, which ended up being related. The resolution
algorithm yielded two proposals, forcing the property into becom-
ing t or f in both models, respectively. We note that one of the
resulting proposals is exactly the modification of the user model
done by hand in [38] in order to resolve inconsistencies, and that
ρ is the same as the consistency relation obtained in [38]. Further
details are available in [32].

6. IMPROVING PRECISION
In Sections 3.2 and 4.1, we defined the least common refinement

and the greatest common abstraction as the most precise merge
and the most precise agreement model, respectively. However, we
noted that we could not necessarily construct these. For exam-
ple, models J and K in Figures 6(a)-(b) are consistent, but their
3-valued merge, L, shown in Figure 6(c), is clearly not the most
precise: neither of the original systems specified whether there is a
successor to the initial state where both p and q hold, i.e., a CTL
property EX(p ∧ q) evaluates to m on both J and K. This means
that this property can possibly become t or f in future refinements
of both models. However, L disallows this possibility: EX(p ∧ q)
simply evaluates to t.

We can capture the most precise merge with 4-valued logic [1],
using the additional value, d (see Figure 7 for the information, �,
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and the truth, ≤, orderings for this logic). This logic has been orig-
inally proposed to handle inconsistency [1], but in our work, it can
be used to improve precision. For example, the 4-valued common
refinement, M, of models J and K, shown in Figure 6(d), is consis-
tent. d and m are used to identify transitions between states which
are related to one another. For example, state r3 is a refinement of
states r1 and r2; d transitions from r0 (the unified initial state) to
r1 and r2, combined with an m transition to r3, precisely express
the least common refinement and guarantee that EX(p ∧ q) is m.

In general, we extend our 3-valued state-machines in a natural
way to allow 4-valued transitions. We never need to capture 4-
valued propositions because these may result in inconsistent models–
a topic which is outside the scope of this paper. For more informa-
tion, the reader can refer to [19]. The definitions of refinement and
abstraction over 4-valued models are exactly those given in Def-
initions 1 and 4; moreover, existence and uniqueness of the least
common refinement and the greatest common abstraction are guar-
anteed in the world of 4-valued models [33]. Since our underly-
ing model-checker χChek can handle Belnap logic as well, we can
easily obtain a framework that facilitates creation of most precise
merges.

Consider the models L and M again. Even though the latter
is more precise, the former is more concise and readable, and the
difference between the 3- and the 4-valued merges becomes dras-
tic as the size of the original models increases. Our preliminary
experience showed that the resulting models are difficult for the
stakeholders to understand, undermining the high interactivity of
the proposed framework. Thus, so far we concentrated on read-
ability on lieu of precision, building 3-valued merges and common
agreement models, as described earlier in this paper. However, we
still believe that a compromise between readability and precision
may be achieved, leaving further exploration of this point for fu-
ture work.

7. RELATED WORK
In this paper, we addressed model merging and techniques for

exploration, resolution and negotiation of inconsistencies. Effec-
tively, resolution is a form of model evolution, which stems from
taking the other point of view into account.

Our definition of merge is similar to the work of Uchitel and
Chechik [39]. Like ours, their notion of merge is based on com-
mon refinement, relaxed in [39] to observational refinement. They
consider a version of modal transition systems (MTSs [25]) which
are closely related to our 3-valued state machines. However, while
able to detect inconsistencies, [39] does not consider the problem
of negotiation and conflict resolution.

A number of approaches to inconsistency management have been
studied in the context of viewpoint-based modeling [35]. Some of
this work, e.g., [14, 34], detects inconsistencies by using first-order
logic rules and does not consider merge as a means of model ex-
ploration and inconsistency detection. Other researchers [26, 13,
37] propose ways of merging viewpoint models. Huth and Prad-
han [26] define the merge as the common refinement of partial state
transition systems. They enforce consistency across inconsistent
viewpoints by using a dominance ordering on owners of the view-
points. [13, 37] allow the merge of inconsistent viewpoints using
multi-valued logic, like we do in this paper. The goal of this work
is to tolerate disagreement while still enabling reasoning. In [13],
states are merged, i.e., put into ρ, only if they have the same la-
bel. The merge in [37] is based on the structural mapping of graph
morphisms with the emphasis on preserving structure rather than
behavior. Non-classical logics have been used for reasoning with
inconsistency by others, e.g., in [23]. Unlike this work, our goal
is to merge only consistent models, and we allow users to explore
agreement models, which are consistent but incomplete, to deter-
mine those inconsistencies that need to be resolved.

In [11], requirements evolution is supported by an iterative pro-
cess that is similar to our exploration and resolution steps; however,
the implementation of the resolution phase is left open, conjectur-
ing that machine learning techniques may be suitable for it. The
work in [15] extends [11] by using multi-valued logic to address
incompleteness and partiality of requirements specifications. How-
ever, [15] does not give the problem a formal treatment, illustrating
the process by an example instead.

We are not aware of other formal logic-based approaches to ne-
gotiation. The existing work, e.g., [9, 12, 2], is based on dialectic
reasoning. In these approaches, requirements are treated as infor-
mal generic entities, and the focus is on formalizing the relation-
ships and interactions between them. Even though both functional
and non-functional requirements can be handled using these ap-
proaches, correctness and completeness become subjective. In con-
trast, we only consider behavioural requirements, but their formal-
ity allowed us to perform tool-supported inconsistency resolution
while tolerating the less critical inconsistencies.

8. CONCLUSION AND FUTURE WORK
In this paper, we have described a formal framework for merge

and conflict resolution. This framework facilitates automatic merg-
ing of consistent models, enables users to visualize and explore
potential disagreements and identify their priorities, and suggests
ways to resolve the priority items.

Several research problems need to be solved to ensure that this
framework is effective. The first and most important of these is
the efficient computation of a relation ρ that reduces the size of
the agreement models while capturing the maximal similarities be-
tween the inconsistent models. Computing an optimal ρ is similar
to the schema matching problem – a subject that has been exten-
sively studied in the database literature, e.g., [36]. We are currently
looking for ways to tailor the existing schema matching techniques
to our framework. We further need to evaluate the effectiveness of
the framework on more realistic case-studies as well as develop ad-
ditional heuristics to improve precision of the merge and a method-



ology for partitioning PLs in cases when the framework generates
too many proposals.

Another direction is changing the resolution algorithm to pro-
duce more proposals. Our algorithm produces proposals obtained
by keeping the relation ρ intact. More interesting proposals can be
produced if we allow the algorithm to extend ρ. In this paper, we
studied negotiation over flat state-machines. Adding hierarchy as
well as more complex language features would enable merging and
negotiation over more realistic models.
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APPENDIX

A. SELECTED THEOREMS
In this Appendix, we give proof sketches for some of the theo-

rems that appeared in the paper. Theorems 1 and 2 are from [25].
The proofs of Theorems 7 and 8 follow from the construction of
projections and the resolution algorithm, respectively.

Theorem 3. M1 and M2 have a common refinement iff
M1 ∼M2.

Proof:

⇒ Let M3 be a common refinement of M1 and M2. Then, there
are two refinement relations � and �′ s.t. M1 � M3 and
M2 �′ M3. We define a relation ρ ⊆ Σ1 × Σ2 as follows:

ρ = {(s, t) ∈ Σ1 × Σ2 | ∃r ∈ Σ3 · s � r ∧ t �′ r}

Informally, ρ contains tuples (s, t) where s and t have a com-
mon refinement r. It can be proven that ρ is a consistency
relation between M1 and M2, i.e., ρ satisfies the conditions in
Definition 6. Thus, M1 ∼ M2.

⇐ Let M1 ∼ M2. Then, by Theorem 4, M1 + M2 is a common
refinement of M1 and M2.

Theorem 4. Let M1 and M2 be 3-valued consistent models. Then,
M1 +M2 is their common refinement.

Before we give the proof, we provide an inductive definition,
equivalent to Definition 1, for the refinement relation �.

DEFINITION 10. We define a sequence of refinement relations
�0, �1, . . . on Σ1 × Σ2 as follows:
• s �0 t iff I1(s, p) � I2(t, p) for all p ∈ APu, and
• s �n+1 t iff
1. ∀p ∈ APu · I1(s, p) � I2(t, p)
2. ∀s′ ∈ Σ1 · R1(s, s′) � t ⇒ ∃t′ ∈ Σ2 · R2(t, t′) � t ∧ s′ �n t′

3. ∀t′ ∈ Σ2 · R2(t, t′) � t ⇒ ∃s′ ∈ Σ1 · R1(s, s′) � t ∧ s′ �n t′

We say s � t iff s �i t, for all i ≥ 0.

Note that since M1 and M2 are finite structures, the sequence �0,
�1, . . . is finite as well.

Proof:
We proceed in two steps:

I. We first show that for every s ∈ Σ1 if s ∼ t, then s � (s, t). It
suffices to show s ∼ t ⇒ s �i (s, t) for all i ≥ 0. We prove it by
induction on i:

Base case. s ∼ t ⇒ s �0 (s, t).

s �0 (s, t)
⇔ (by the definition of �0)

∀p ∈ APu · I1(s, p) � I+((s, t), p)
⇔ (since I+((s, t), p) = I1(s, p) t I2(t, p))

∀p ∈ APu · I1(s, p) � I1(s, p) t I2(t, p))
⇔ (by the properties of t)

true

Inductive case. Suppose s ∼ t ⇒ s �n (s, t). We prove that

s ∼ t ⇒ s �n+1 (s, t)

By Definition 10, we need to show:

1. I1(s, p) � I+((s, t), p)

2. ∀s′ ∈ Σ1 · R1(s, s′) � t ⇒ ∃(s′, t′) ∈ Σ1 × Σ2·
R+((s, t), (s′, t′)) � t ∧ s′ �n (s′, t′)

3. ∀(s′, t′) ∈ Σ1 × Σ2 · R+((s, t), (s′, t′)) � t ⇒
∃s′ ∈ Σ1 · R1(s, s′) � t ∧ s′ �n (s′, t′)

1. From I+((s, t), p) = I1(s, p) t I2(t, p), and I1(s, p) �
I1(s, p) t I2(t, p)

2.

∀s′ ∈ Σ1 · R1(s, s′) � t

⇒ (since s ∼ t and by Definition 6, condition 2)
R1(s, s′) � t ∧ ∃t′ ∈ Σ2 · R2(t, t′) � t ∧ s′ ∼ t′

⇒ (by the properties of t)
∃t′ ∈ Σ2 · R1(s, s′) t R2(t, t′) � t ∧ s′ ∼ t′

⇒ (sinceR+((s, t), (s′, t′)) = R1(s, s′) t R2(t, t′))
∃(s′, t′) ∈ Σ1 × Σ2 · R+((s, t), (s′, t′)) � t ∧ s′ ∼ t′

⇒ (by the inductive hypothesis)
∃(s′, t′) ∈ Σ1 × Σ2 · R+((s, t), (s′, t′)) � t ∧ s′ �n (s′, t′)

3.

∀(s′, t′) ∈ Σ1 × Σ2 · R+((s, t), (s′, t′)) � t

⇒ (by the definition of R+)
R1(s, s′) t R2(t, t′) � t ∧ s′ ∼ t′

⇒ (by t properties)
∃s′ ∈ Σ1 · R1(s, s′) � t ∧ s′ ∼ t′

⇒ (by the inductive hypothesis)
∃s′ ∈ Σ1 · R1(s, s′) � t ∧ s′ �n (s′, t′)

II. Similarly, we show that for every t ∈ Σ2, if s ∼ t, then t � (s, t).

Since M1 and M2 are consistent, we have s0 ∼ t0. By I. and
II., we obtain s0 � (s0, t0) and t0 � (s0, t0). This implies that
M1 � M1 + M2 and M2 � M1 + M2. Therefore, M1 + M2 is a
common refinement of M1 and M2.

Theorem 5. Given 3-valued modelsM1 andM2,M1⊕M2 is their
common abstraction.

Proof:
Proof follows from the proof of Theorem 6, where ρ = Σ1 × Σ2.

Theorem 6. Let ρ be a left/right total relation s.t.
(s0, t0) ∈ ρ. Then,M1⊕M2 built using ρ is a common abstraction
of M1 and M2.

Proof:
Similar to Theorem 4. Again, we proceed in two steps:

I. We first show that for every s ∈ Σ1 if (s, t) ∈ ρ, then (s, t) � s. It
suffices to show (s, t) ∈ ρ ⇒ (s, t) �i s, for all i ≥ 0. Proof is by
induction on i:

Base case. (s, t) ∈ ρ ⇒ (s, t) �0 s.

(s, t) �0 s

⇔ (by the definition of �0)
∀p ∈ APu · I⊕((s, t), p) � I1(s, p)

⇔ (since I⊕((s, t), p) = I1(s, p) u I2(t, p))
∀p ∈ APu · I1(s, p) u I2(t, p) � I1((s, t), p))

⇔ (by the properties of t)
true

Inductive case. Let (s, t) ∈ ρ ⇒ (s, t) �n s. We prove that

(s, t) ∈ ρ ⇒ (s, t) �n+1 s

By Definition 10, we need to show:

1. I⊕((s, t), p) � I1(s, p)

2. ∀(s′, t′) ∈ Σ1 × Σ2 · R⊕((s, t), (s′, t′)) � t ⇒
∃s′ ∈ Σ1 · R1(s, s′) � t ∧ (s′, t′) �n s′

3. ∀s′ ∈ Σ1 · R1(s, s′) � t ⇒ ∃(s′, t′) ∈ Σ1 × Σ2·
R⊕((s, t), (s′, t′)) � t ∧ (s′, t′) �n t′



1. From I⊕((s, t), p) = I1(s, p)uI2(t, p), and I1(s, p)uI2(t, p) �
I1(s, p)

2.

∀(s′, t′) ∈ Σ1 × Σ2 · R⊕((s, t), (s′, t′)) � t

⇒ (by the definition of R⊕)
R1(s, s′) u R2(t, t′) � t ∧ (s′, t′) ∈ ρ

⇒ (by the definition of u)
∃s′ ∈ Σ1 · R1(s, s′) � t ∧ (s′, t′) ∈ ρ

⇒ (by the inductive hypothesis)
∃s′ ∈ Σ1 · R1(s, s′) � t ∧ (s′, t′) �n s′

3.

∀s′ ∈ Σ1 · R1(s, s′) � t

⇒ (since ρ is left/right total)
R1(s, s′) � t ∧ ∃t′ ∈ Σ2 · (s′, t′) ∈ ρ ∧ R2(t, t′) � m

⇒ (by the properties of t)
∃(s′, t′) ∈ Σ1 × Σ2 · R1(s, s′) u R2(t, t′) � t ∧ (s′, t′) ∈ ρ

⇒ (by the definition of R⊕)
∃(s′, t′) ∈ Σ1 × Σ2 · R⊕((s, t), (s′, t′)) � t ∧ (s′, t′) ∈ ρ

⇒ (by the inductive hypothesis)
∃(s′, t′) ∈ Σ1 × Σ2 · R⊕((s, t), (s′, t′)) � t ∧ (s′, t′) �n s′

II. Similarly, we show that for every t ∈ Σ2 if (s, t) ∈ ρ, then (s, t) � t.

Since (s0, t0) ∈ ρ, by I. and II., we obtained that (s0, t0) � s0 and
(s0, t0) � t0. This implies that M1⊕M2 � M1 and M1⊕M2 � M2.
Therefore, M1 ⊕ M2 is a common abstraction of M1 and M2.


