
Spider: A robust curvature estimator for noisy, irregular meshes
Technical report CSRG-531, Dynamic Graphics Project, Department of Computer Science, University of Toronto, c©September 2005

Patricio Simari∗

Dynamic Graphics Project
University of Toronto

Karan Singh†

Dynamic Graphics Project
University of Toronto

Hans Pedersen‡

Metris, Inc.

Figure 1: Example of polylines of intersection found at a given
point and normal for an angular step size ofπ

4 . Bottom right: the
regularly resampled polylines.

Abstract

Surface curvature properties are often as important as surface po-
sition in understanding shape. Curvature properties are typically
computed at mesh vertices by operating on an associated ring neigh-
bourhood of faces. Such approaches are not well suited to noisy,
non-uniformly sampled meshes with irregular tessellations. In this
paper, we present a principled approach to curvature estimation that
can be computed at any point on the unprocessed mesh surface and
is robust to noisy and irregular surface sampling and tessellation.
The approach achieves user controlled smoothing of the curvature
field thus also making it robust to noisy sampling. The nature of the
smoothing, in contrast to current approaches, is determined by in-
tuitive user-specified parameters and becomes naturally anisotropic
in the vicinity of feature edges. We show this approach to provide
better visual results than ring neighbourhood approaches on noisy,
non-uniformly sampled meshes with irregular tessellations.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling— [G.2.3]: Discrete Mathematics—
Applications

1 Introduction

Polygon based meshes are among the oldest geometric representa-
tion in Computer Graphics and currently the most prevalent. Dense
meshes are more than often faceted approximations of a smooth
surface [Levoy et al. 2000]. Higher order surface derivatives such
as normal and curvature on such meshes are as important as surface
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position in the way we perceive and express shape [DeCarlo et al.
2003]. Aggregates of these and other such geometric attributes are
often called surface-features, which provide a higher level descrip-
tion of shape. The definition, extraction, filtering and editing of
surface-features on these meshes is an active area of research. The
robust estimation of geometric attributes such as normals and curva-
ture for a given mesh representation of the surface is thus critical for
most surface-feature related applications such as feature extraction
[Ohtake et al. 2004], surface fitting [Moreton and Sequin 1992],
mesh simplification [Heckbert and Garland 1999], surface fairing
[Desbrun et al. 1999], multiresolution mesh editing [Zorin et al.
1997] and suggestive contours for object illustration [DeCarlo et al.
2003].

Despite its importance and pervasiveness, there is no consensus as
pointed out by Meyer et. al [Meyer et al. 2003] on the best esti-
mation for even the simplest of attributes, the surface normal, on
a dense mesh approximation of a smooth surface. One reason for
this is that the smooth surface represented by a discrete mesh is
not unique. In fact a number of the practical surfaces represented
by dense meshes are only piecewise smooth themselves. Another
reason is that practical meshes often contain signal noise that gets
magnified on normal and curvature calculations but many surface
denoising algorithms [Desbrun et al. 1999] depend upon robust nor-
mal and curvature estimation. Rather than attempt to achieve a per-
fectly accurate attribute computation for a given class of meshes ap-
proximating some continuous surface, our philosophy is to develop
an algorithm for general meshes that satisfies the attribute proper-
ties required by various surface-feature related applications. These
desirable properties for any algorithm computing the geometric at-
tributes are as follows:

• Consistent accuracy: The attribute computed at any given
point on the mesh should be a consistently accurate approxi-
mation of the corresponding attribute on the continuous sur-
face.

• Continuity: The computed attribute should faithfully repro-
duce discontinuities and extrema of the attribute on the origi-
nal surface and be continuous everywhere else. This is partic-
ularly important since continuity errors in attributes such as a
surface normal are magnified in higher order derivatives like
curvature.

• Frequency: The computation should be capable of producing
attribute values within given frequency bands. This is essen-
tial for the continuity property as described above on noisy
meshes.

• Robustness: The computation should be relatively insensitive
to changes in mesh connectivity. The computation should also
be independent of mesh scale for scale invariant attributes.

• Efficiency and scalability: Given the ever-increasing size of
data samples used to represent geometry, the attribute compu-
tation should be localized and efficient.



1.1 Previous Work

Rendering a faceted mesh as a smooth surface requires the defini-
tion of a continuous normal vector across the mesh. This is usu-
ally accomplished using interpolated vertex normals [Phong 1975]
within a face. While interpolating vertex normals obtained by av-
eraging the face normals incident to a vertex has worked well his-
torically, current modeling techniques, shape acquisition and manu-
facturing technology typically generate dense mesh approximations
of surfaces, where the vertex connectivity of the mesh is an arbi-
trary artifact of the creation process [Levoy et al. 2000]. Surface
derivative estimation algorithms for such meshes that are sensitive
to vertex connectivity are at a conceptual disadvantage. We classify
existing surface derivative estimation algorithms here into vertex
connectivity based and vertex connectivity independent.

Almost all work on surface derivative estimation on meshes has
been vertex connectivity based. In these approaches an n-ring
neighborhood of vertices, faces and edges adjacent to a vertex are
used to compute the surface derivatives at a vertex. The attribute at
an arbitrary point on the mesh is then computed by interpolating the
vertex attributes of the mesh face to which the point belongs. The
surface attribute at a vertex is often computed as weighted average
of the attributes of neighbouring faces, edges or vertices. For exam-
ple, vertex normals are often defined as a weighted average of the
normals of adjacent faces of a mesh, by the incident angle [Thurmer
and Wuthrich 1998] or surface area [Taubin 1995] of each face at
the vertex, or derived so the mesh locally approximates a sphere
[Max 1999].

As described by Rusinkiewicz [Rusinkiewicz 2004], approaches to
computing the curvature tensor can be broadly classified as based
on patch fitting, normal curvature or tensor averaging. Patch fitting
methods such as [Hamann 1993], [Cazals and Pouget 2003], [Gold-
feather and Interrante 2004] fit an analytic surface to a local region
of mesh points and then compute the curvature analytically from
the surface. The approach shows good results for uniformly sam-
pled meshes but can fall prey to degenerate vertex configurations
that are well approximated by many simple analytic surfaces. Nor-
mal curvature approaches such as [Taubin 1995] and more recently
[Meyer et al. 2003] estimate the normal curvature along edges inci-
dent to a vertex and then extract the curvature tensor using an eigen
decomposition. Meyeret. al [Meyer et al. 2003], provide insight
and examples of where prior normal curvature approaches produce
unsatisfactory results. Their approach computes the normal at a
vertex by solving the Laplace-Beltrami operator for the mean cur-
vature normal vector for a one-ring neighbourhood. Tensor aver-
aging approaches [Cohen-Steiner and Morvan 2003] compute the
average of the curvature tensor over a small area, like the Voronoi
region around a vertex. Such approaches are less sensitive to degen-
erate and sliver faces but still work best for regular uniformly sam-
pled meshes. The approach of Rusinkiewicz [Rusinkiewicz 2004]
is based on computing a curvature tensor for every face and then av-
eraging the tensor appropriately to compute the curvature at mesh
vertices.

In general, ring neighbourhood approaches as a discrete differential
element around a vertex are problematic for highly non-uniform
meshes. None of the approaches described deal directly with noisy
meshes leaving any noise to be handled separately by surface fair-
ing techniques as a preprocessing step or as a postprocessing step
where the field of normal and curvature values can be filtered as
shown by Taubin [Taubin 2001]. By definition, morphological op-
erations such as diagonal flipping will change the vertex normal
computed by these approaches, to a varying degree.

1.2 Motivation

Comparatively there has been little work on the computation of sur-
face derivatives that is not based on a ring neighborhood around a
vertex. This is in no small measure due to efficiency considerations
since most approaches that are global [Zhang and Fiume 2003] or
based on continuous surface fitting are likely to be computationally
expensive. We note, however, that the connectivity of a mesh, in
addition to defining a surface manifold over a set of vertices, pro-
vides an efficient data structure to track the growth of geometric
elements on that surface. In particular, we are able to locally grow
a fixed length polyline of intersection between the mesh and an an-
alytic primitive such as a sphere or plane very efficiently. We also
note that the surface normal at a point on a continuous surface can
be approximated the normal to the asymptotic plane of the intersec-
tion curve between the surface and a ball of shrinking radius, cen-
tered at the point. Finally we observe that given a surface normal,
the normal curvature in any direction can be calculated by fitting
an analytic curve to the polyline of intersection between the normal
plane and the mesh.

We thus propose a hybrid of a normal curvature and patch fit ap-
proach, where we estimate surface normal and curvature at any ar-
bitrary point on the mesh by computing a number of intersection
curves of the mesh with analytic primitives which are resampled
regularly, so as to be largely insensitive to mesh resolution or spe-
cific vertex connectivity that ring neighbourhood approaches suf-
fer from. These intersection curves are then fit to analytic curves
and used to search for the two principle curvature directions. The
curve fitting has fewer constraints and ambiguities that can plague
analytic surface fitting approaches. The length of the intersection
curves can also be completely independent of the tessellation reso-
lution scale of the mesh and provides users with an intuitive handle
over the feature sizes on the mesh they wish to capture. While our
approach is clearly more computationally expensive than most ring
neighbourhood approaches, it is usable at interactive rates for dense
meshes.

2 Approach

2.1 Estimating normal at a surface point

Given a point on the mesh surface and a geodesic radius, we can
estimate the surface normal at said point by finding the intersection
of the mesh with a sphere of said radius centered at the point. The
normal estimate can then be obtained by finding the best fit plane
to the resulting intersection. Figure 2 illustrates this idea.

Figure 2: Estimating surface normal at a mesh point by finding best
fit plane to intersection of mesh with sphere centered at the point.



2.2 Estimating normal curvature in a specified di-
rection

Given a mesh point and a direction we wish to estimate the associ-
ated curvature value. Let us consider the plane determined by said
point, direction, and the point’s current surface normal estimate. We
may find the intersection of this plane with the given mesh by find-
ing its edge intersections. We construct a polyline away from the
point in either direction that is contained in the plane, until its total
length surpasses a user-specified geodesic radius. The last segment
of the polyline is then shortened as needed so the total length of the
polyline matches the geodesic radius exactly. This can be done eas-
ily and efficiently (in time linear to the radius) by using edge-face
information. This polyline can now be seen as an approximation of
the one dimensional curve that is the local surface/plane intersec-
tion. Note that the polyline’s segments can be of varying length as
a result of the varying sizes of the intersected faces. To address this,
we resample it at regular domain intervals.

We now wish to estimate the mesh’s curvature along this planar in-
tersection. Working in a local coordinate system where the point in
question is the origin, the point’s estimated normal is the up vector,
and the polyline’s points all lie in thex= 0 plane, we fit ann-degree
polynomial to the resulting(y,z) pairs. We remove the constant
term so as to ensure that the polynomial passes through the origen
(and thus the point in question) and add a linear constraint so that
the tangent at the origin is as close to zero as possible, to reflect the
fact that the localzaxis should be normal to the curve at the origin.
This results in a linear system which can be efficiently solved in
closed form.

Thus, the surface’s curvature in the direction is estimated as the
polynomial’s curvature at the origin and the normal is derived from
the polynomial’s tangent, both through simple calculation.

Figure 1 shows the polylines of intersection found for eight regu-
larly spaced directions. The curves’ appearance motivates the oper-
ator’s name: ’spider’.

2.3 Estimating principal curvature values and cur-
vature normal

In order to estimate the principal curvature directions we use the
above method to estimate the surface’s curvature at regular angular
intervals and return the pair of orthogonal curvatures whose differ-
ence is largest in magnitude. The estimated normal is the average
of the principal direction normals.

2.4 Iterating the process

The obtained surface normal estimate can be used to repeat the
above process until the difference with the previous estimate is suf-
ficiently small or a maximum number of iterations are computed.

Figure 3 shows the result of applying this iterative scheme to a
tessellated unit cube. Here we use a purposefully relatively large
geodesic radius of .5 to show how the normal field is smoothed. We
also illustrate the robustness of the approach to varying face sizes
by comparing the results for three increasingly finer tessellations.

2.5 Anisotropy

The operator will naturally become anisotropic in the vicinity of
mesh holes. If no more faces are found along which to continue

Figure 3: Illustration of normal smoothing: result of applying iter-
ative scheme to a tessellated unit cube using geodesic radius of .5.
The final average difference between corresponding surface nor-
mals across tessellations is approximately .0076 radians.

searching for intersection, the radius in that direction will necessar-
ily be shorter.

Another reason to retard the growth of a spider limb in a given di-
rection is in the presence of feature edges, since they imply discon-
tinuities in curvature. If feature edges can be detected robustly or
indicated by the user, our algorithm can easily use this information
to provide a better estimate of curvature values. In such a case, we
simply stop extending the polyline upon intersection with a feature
edge that is sufficiently removed from being parallel (easily mea-
sured by angle of intersection) to the plane. Figure 4 illustrates this
concept. We can imagine generalizing this idea to other attributes
defined continuously on the mesh’s surface that penalize the growth
of spider limbs.

Figure 4: Top: isotropic spider ignores feature edges. Bottom:
anisotropic spider aborts growth upon intersection with a feature
edge.

2.6 Parameters

The proposed procedure requires a number of user specified pa-
rameters, including the geodesic radius, the number of directions
sampled, the degree of the polynomial, the resampling increment
size used on the obtained polylines and the maximum number of
iterations if normals have not converged.



The size of the geodesic radius will have an impact on how smooth
the results are. On noisier meshes a greater radius is recommended.

With respect to the number of directions sampled, there is a trade
off between speed and accuracy. The more directions sampled the
more accurate the estimate at the cost of speed. In our case we use
32 pairs of regularly spaced orthogonal directions for a total of 64.

In our implementation we use quadratic polynomials, given that
they provide smooth results on noisy meshes as well as the fact
that quadrics are the lowest degree polynomials that can locally
approximate all combinations of positive/negative principal curva-
tures (hills, bowls and saddles.)

We resample the polylines at increments of1
10r, wherer is the spec-

ified geodesic radius, but also making sure to include the origen as
well as the polyline end points.

Regarding iterations, in cases where the surface normal is reliable
(non noisy meshes) we perform only one iteration. In the noisy
mesh examples we use ten iterations as maximum.

3 Results

In figure 5 we show the robustness of our approach to mesh noise.
We generate a hyperbolic paraboloid and evaluate mean curvature
using our operator. The dotted line shows the relative error obtained
using the approach of Meyeret al. [Meyer et al. 2003] on the noisy
mesh. The solid curve shows how the error of our approach de-
creases asymptotically as the geodesic radius increases (from 1 to 3
times the average edge length of the mesh.)

Figure 5: Left: saddle mesh with artificially added uniform noise in
vertex normal direction with magnitude in[−a/2,a/2] wherea is
the average edge length. Right: mean relative error of the curvature
estimate on the indicated vertices decreases asymptotically as the
geodesic radius of the operator increases. Dotted line represents
the mean relative error of the mean curvature estimated using the
one ring neighbourhood approach of Meyeret al.

In figure 6, we demonstrate our approach’s robustness to less than
ideal tessellations. To the left, we show the given surface witch
contains irregular tessellations and face sizes as well as sliver faces.
Next, is the mean curvature resulting from applying the approach of
Meyeret al. [Meyer et al. 2003], followed by the results obtained
from a Laplacian smoothing of the obtained curvature field. Finally,
on the far right, we see the direct result of our approach. Notice that
there are some irregularities in the coloration due to the fact that for
rendering purposes we specify a color per vertex and face colors are
interpolated.

Next, in figure 7 we compare the results of estimating mean cur-
vature and surface normals using isotropic and anisotropic (feature
sensitive) approaches. We tested both approaches on a noisy unit

Figure 6: From left to right: 1) Mesh tessellation is non uniform,
containing faces with broad range of sizes, often adjacent to each
other, as well as sliver faces. 2) Mean curvature results using ring
neighbourhood of Meyeret. al3) Smoothed results using Laplacian
smoothing of mean curvature values. (10 iterations, blending of .2)
4) Direct mean curvature results of our approach using a geodesic
radius equal to the average edge length of the mesh.

cube mesh. As can be seen in the result, the anisotropic version
performs a better job at estimating curvature and normals near fea-
ture edges, as well as along them and their intersections.

Figure 7: Unit cube mesh with artificially added uniform noise in
vertex normal direction with magnitude in[−a/4,a/4] wherea is
the average edge length. Top: estimated surface normals. Bot-
tom: estimated mean curvature. Left: isotropic estimation using
geodesic radius of .5. Right: anisotropic estimation using same
geodesic radius.

Figures 8, 9, and 10 further illustrate our approach on dense meshes.
In particular, figure 8 shows a dense mesh resulting from a noisy
range scan and the resulting smooth mean curvature values esti-
mated by the spider operator. Figure 9 compares the Gaussian
curvature optained from an implementation of [Taubin 1995] and
compares it to the results produced by applying our operator with
increasing radius. Finally, figure 10 shows how the results of ap-
plying the spider operator can be used to extract features from mesh
data.



Figure 8: Spider on a noisy 3D scan. a) wireframe mesh b) Mean
curvature plot using a 4x average edge length spider.

3.1 Mesh smoothing

Finally, we apply our surface sampling approach to mesh smooth-
ing as an alternative to naive Laplacian smoothing in the presence
of irregular tessellations. The idea is much the same, except in-
stead of using a ring of adjacent vertices at each step we sample the
neighboring surface within a specified geodesic radius, analogously
to how we previously grew spider.

Here we implement a simple approach using a geodesic ring. To
obtain the ring, we find the polylines of intersection just as before
and simply retain their end points. We then move each vertex by a
small amount in the direction of the ring’s centroid and iterate the
process.

This approach is illustrated in figure 11. We start with a mesh con-
taining non regular tessellation and artificially add noise. We then
compare the results of applying naive Laplacian smoothing with our
approach. As can be seen, our approach preserves features present
in the mesh such as in the ears and hooves, as well as the anisotropic
nature of the tessellation. In the case of Laplacian smoothing the
features are quickly lost.

4 Conclusions and future work

We have presented a new local shape parameterization operator,
called a spider, aimed at the geometric processing of problematic,
irregular and non-uniformly sampled meshes. In particular we show
the spider to be useful in estimating the surface normal and curva-
ture at any point on the mesh. We also show the spider to be useful
in other mesh operations such as smoothing and feature curve ex-
traction. A particular problem in geometric processing of meshes
is one of scale and providing a robust and smooth normal and cur-
vature map without blurring out features. For many applications
such as contour rendering [DeCarlo et al. 2003] or feature extrac-
tion [Ohtake et al. 2004] the precise values of the surface derivatives
are less important than the salience of the values, in that they are
free of algorithmic degeneracies, are continuous while preserving
discontinuous features such as sharp edges and in general allow for
the accurate inference of high level descriptions of shape. The iter-
ative anisotropic spider shows promise in this direction. Specifying
the size and allowed variation in the length of spider limbs allows a
user intuitive control over local sampling that is independent of the
resolution or scale of the mesh.

In this paper we often tie the spider length to a function of aver-
age edge length over a neighborhood or the whole mesh. A spider
that is able to adaptively increase its length in directions of low
curvature and shrink its limbs in high curvature shows promise at

Figure 9: Gaussian curvature (blue positive, orange negative) on a
noisy 3D scan. a) Taubin curvature tensor, b),c), and d) 1x, 4x, 8x
average edge length spider.

automatically adjusting its length appropriately to different regions
of a mesh and is subject of future work.

We show our approach to visually perform better in the case of
poorly sampled mesh than ring neighbourhood approaches, while
being efficient enough for interactive applications. While the ideas
in this paper are presented in the context of dense meshes, mesh
connectivity is only used as a data structure to facilitate the efficient
computation of intersection curves. With the appropriate spatial
hashing, the spider can be applied directly to dense point clouds or
other discrete surface representations.

Figure 10: Feature curve extraction on base of Buddha statue us-
ing the spider. a) feature map computed by thresholding principle
curvature values (green is highly convex, yellow is highly concave,
blue is overall low curvature). b) Iso-curvature curves extracted
from feature map.



Figure 11: Top left: original mesh containing non regular tessella-
tion. Top right: mesh with artificially added uniform noise in vertex
normal direction with magnitude in[−a/2,a/2] wherea is the av-
erage edge length. Bottom left: Mesh smoothed using Laplacian
smoothing. 10 iterations, blending coefficient of .2 Bottom right:
Mesh smoothed using average of sampled geodesic ring of radius
a/2 wherea is the noisy mesh’s average edge length. Iterations and
blending coefficient are the same.
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