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Figure 1: Left to right: a) Original dino mesh. b) Detected global symmetry plane. c) Remaining half dino mesh with a detected local
symmetry. The darker shade (green in the electronic version) indicates the region of symmetry and the lighter shade (yellow in the electronic
version) indicates faces still in the support region but not included in the symmetric region. d) Remaining leaf geometry (the two leaves
shaded a different color). e) Dino reconstructed from the leaf geometry and symmetry planes.

Abstract

Meshes representing real world objects, both artist-created and
scanned, contain a high level of redundancy due to planar reflec-
tion symmetries, either global or localized to different subregions.
An algorithm is presented for detecting such symmetries and seg-
menting the mesh into the symmetric and remaining regions. The
method, inspired by techniques in Computer Vision, has founda-
tions in robust statistics and is resilient to structured outliers which
are present in the form of the non symmetric regions of the data.
Also introduced is an application of the method: the folding tree
data structure. The structure encodes the non redundant regions of
the original mesh as well as the reflection planes and is created by
the recursive application of the detection method. This structure can
then be unfolded to recover the original shape with bounded error,
which is user specified in the folding process. Applications include
mesh compression, repair, skeletal extraction of objects of known
symmetry as well as mesh processing acceleration by limiting com-
putation to non redundant regions and propagation of results.
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1 Introduction

Symmetry plays a fundamental role in nature, manifested both in
the form and function of living organisms. Visually, symmetry is
important to humans, as it influences our perceptual understanding
of objects in the world. Symmetric patterns, not surprisingly, are
an important design principle in guiding the aesthetic and construc-
tion of synthetic objects [Arnheim 1954; Gombrich 1969]. Neuro-
science research goes so far as to indicate that aspects of symmetry
in humans may be hard-wired into our visual processing system
[Norcia et al. 2002]. Symmetries are ubiquitous in humans, our
environment and our creations of art and architecture.

The classification, understanding and intelligent representation of
shape is an active area of research in geometry processing. Recog-
nizing the common presence of symmetries in many real world ob-
jects can greatly assist in solutions to various shape representation
problems such as simplification, repair, noise removal and skeletal
extraction. Of the various types of symmetries found, planar sym-
metry is perhaps the most commonplace and is thus the focus of
this paper. While planar symmetries have been recognized to be an
important feature in shape understanding, there has been little work
in shape representations that are defined as a structured assembly
of symmetric parts. In this paper we present the concept of a fold-
ing tree (see figure 3), where an object is defined as a hierarchical
union of planar symmetric and asymmetric parts. Each (possibly
nested) detection of symmetric part reduces the complexity of rep-
resentation of said part in half, greatly reducing the representation
complexity of many objects.

For folding trees to be useful beyond an academic concept, we must
be able to automatically construct them from geometric data such
as meshes as well as regenerate the object from its folding tree.
Central to folding tree construction is the problem of automatically
finding a maximally symmetric part of the object. We observe that



most organic objects with planar symmetry are articulated figures
with coherent symmetric parts that are connected at the joints of an
underlying skeletal structure. Most synthetic objects show a con-
struction history involving symmetric primitives, symmetry creat-
ing operations such as reflections, planar symmetry preserving op-
erations like revolves and coherent combinations of various sym-
metric parts often with some asymmetric refinement. Motivated by
these observations we additionally constrain our problem to finding
a maximal symmetric part that is a single connected surface com-
ponent of the object. The constraint has several advantages, includ-
ing simplifying reconstruction. Multiple surface components with
the same planar symmetry are just as easily represented as multiple
symmetry nodes that have the same symmetry plane.

The approach to finding a maximally symmetric part is based on an
iteratively reweighted least squares algorithm where we simultane-
ously optimize candidate reflection planes and the region of surface
that is symmetric with respect to it. Upon convergence, the overall
set of faces is partitioned into the symmetric subset and the remain-
ing faces. Symmetric regions can be represented by the plane of
reflection, half the geometry and a segmentation boundary. The al-
gorithm is recursively applied to half the symmetric subset as well
as the remaining regions to construct a folding tree decomposition
of the object. Object geometry is thus only stored in tree leaves.
We then show how the mesh is reconstructed from its folding tree
from the bottom up by reflecting symmetric geometry and stitching
along segmentation boundaries.

This paper presents two principal contributions. Firstly, we intro-
duce a method capable of detecting global as well as local symme-
tries in subparts of 3D meshes. Our algorithm has solid founda-
tions on statistical methods for robust iteratively reweighted least
squares estimation [Hampel et al. 1986] which has also been used
in many recent computer vision applications [Sawhney et al. 1995;
Black and Anandan 1996; Stewart 1999]. Secondly, we exploit our
symmetry detection approach for mesh folding: the elimination of
planar symmetry redundancy from the mesh data. Our algorithm is
orthogonal to other existing methods for mesh compression [Hoppe
1996; Gueziec et al. 1999; Karni and Gotsman 2000; Isenburg and
Alliez 2002] which do not explicitly take advantage of repeating
symmetric areas in 3D meshes.

The rest of the paper is organized as follows: section 2 describes
the related work on symmetry detection and applications; section 3
describes our method for detecting global and local symmetries on
mesh data; section 4 introduces folding trees and describes their
construction; section 5 shows our results; and finally, section 6
presents our conclusions and future work.

2 Related Work

Although the computation of symmetries in shapes has been an in-
triguing area of research in computer vision and computational ge-
ometry literature for the last 30 years at least, to our knowledge,
there has been little research on symmetry detection in 3D meshes
mainly due to the increased complexity of the existing algorithms
when extended from the 2D to the 3D case. Our work differs from
the few existing approaches for 3D symmetry detection in meshes,
in that, we aim at the robust detection of global or local reflection
symmetries in parts of a 3D mesh and we exploit these symmetries
in order to achieve mesh compression by eliminating faces implied
by the discovered symmetry.

The detection of symmetries in 2D and 3D models has mainly
been applied in object classification, recognition and reconstruc-
tion. Early approaches dealt with symmetries of planar point sets

by applying pattern recognition algorithms that search matches in
circular strings representing the graphs of polyhedral objects [Atal-
lah 1985; Wolter et al. 1985; Highnam 1986; Jiang et al. 1996].

Despite the optimality of these algorithms that could also detect all
the possible symmetries in a shape, they were only able to recover
perfect symmetries in 2D and 3D shapes making them useless in
the presence of small perturbations, imprecision and noise which
is very common in meshes. The problem of approximate symme-
tries was addressed in [Alt et al. 1988] that considered the problem
of computing generic geometric transformations between two point
sets. The paper gives a detailed theoretical analysis of the devel-
oped algorithm for symmetry, however, it deals with global sym-
metry and it is unclear if the given algorithm could be extended to
three dimensions. Such is also the case of other methods for finding
symmetries of symmetric or almost symmetric 2D planar images
[Marola 1989; Gofman and Kiryati 1996; Shen et al. 1999].

An interesting extension of that early work which introduced the
notion of symmetry distance, meaning how much of a given sym-
metry an object possesses, was developed in [Zabrodsky et al.
1995]. The approach can evaluate symmetries in the presence of
noise and also find locally symmetric regions in 3D objects which
were represented as images. The reflection plane of the 3D object
is determined by minimizing the symmetry value over all possible
reflection planes using a gradient descent algorithm to efficiently
locate the plane of maximal symmetry. However, noise and digi-
tization errors create convergence problems that require a coarse-
to-fine estimation of symmetry from low to high resolution images.
Another recent approach having 3D range images as input was pre-
sented in [Thrun and Wegbreit 2005]. A probabilistic measurement
model is used to detect global and local symmetries in order to re-
construct partially occluded 3D shape models. Both of the above-
mentioned Computer Vision approaches require a 3D image-based
representation of the objects which requires uniform sampling of
surfaces. This is impractical in computer graphics applications that
use surfaces, like 3D meshes, that usually have non-uniform tessel-
lation.

Another original approach that detects the dominant hyperplane of
bilateral symmetry in images of 3D objects with a linear time algo-
rithm is presented in [Mara and Owens 1996]. The hyperplane is
uniquely defined by the centroid and eigenvectors of the covariance
matrix of the object. Although this method is related to ours, it is
limited to the detection of the plane of global symmetry and is not
robust to outliers or imprecision in the 3D object. Shape descrip-
tors representing a 3D model by a function defined on a canonical
domain were used in [Sun and Sherrah 1997] where the correlation
of the extended gaussian image of the object is exploited to solve
the symmetry detection problem. Although the presented method-
ology could be used in a wide class of shape descriptors, it suffered
from the same limitations. Shape descriptors are also introduced in
[Kazhdan et al. 2004a; Kazhdan et al. 2004b] where a collection of
spherical functions are used to describe the measure of rotational
and reflective symmetry present in a mesh with respect to every
axis passing through its center of mass. The descriptors had several
desirable properties such as robustness and stability. However, the
approach aimed at using symmetry information as a shape descrip-
tor and not at extracting local symmetries.

3 Symmetric region detection

Given a mesh, we wish to find a connected region S of faces that
exhibit planar symmetry within tolerance parameter ε . In the case
of global symmetry, this region should be the entire mesh. We ap-



proach the problem as a model fitting scenario, in which the model
consists of the sought plane, and the connected region of symmetry.

Given the presence of structured outliers in the form of the non
symmetric regions of the mesh, we interleave solving for the sym-
metric region S and the plane p based on an iteratively reweighted
least squares (IRLS) approach, using the Geman-McClure (GM)
robust M-estimator. [Hampel et al. 1986; Forsyth and Ponce 2002].
The GM estimator exhibits excellent behavior in rejected structured
outliers with the appropriate choice of the scale factor σ [Sawhney
et al. 1995].

Distance metric: given a plane p, we denote the distance from a
point ri, which is the reflection of vi with respect to p, to a mesh M
as di = dist(ri,M).

We compute the distance function dist from a reflected vertex to
the mesh by taking the minimum point-to-triangle distance from
the point to the closest compatible face on mesh M [Rusinkiewicz
and Levoy 2001]. We consider a face to be compatible with a given
query vertex if the angle between the interpolated normal at the
closest point on the face and the vertex’s normal is less than 45
degrees.

Solving for the plane: Given the current distances di, the GM cost
estimator ρi and associated weight wi for each vertex are given by

ρi =
d2

i
σ2 +d2

i

wi =
1
di

∂

∂di
ρi

In addition, in order to be robust in the presence of tessellations with
varying face sizes, we multiply the obtained weights by their asso-
ciated vertex areas, i.e. wi ← wi

1
3 ∑

k
j=1 area( f j), where f1, ..., fk

are the faces incident on vertex vi.

For a body which exhibits planar symmetry it is known that its plane
of symmetry is perpendicular to a principal axis and contains the
object’s center of mass [Minovic et al. 1992]. This lets us solve
for the current plane of maximum symmetry in a closed form man-
ner by considering the center of mass m and weighted covariance
matrix C relative to the weights wi.

m =
1
s

n

∑
i=1

wivi

C =
1
s

n

∑
i=1

wi(vi−m)(vi−m)T ,

where s = ∑i wi.

We compute the eigenvectors of C and consider the three planes
determined by these vectors and m. For each of these planes we
compute the distances di and associated costs ρi retaining the one
of minimum sum cost. This now lets us solve for the support region.

Support region: Given the current ρ values and a candidate face
f = (v1,v2,v3) we consider it to be a support face if it holds that
∀i∈{1,2,3}di ≤ 2σ [Hampel et al. 1986]. We then find the largest
connected region of support faces, taking this as our new estimate
of S and set the weights for all vertices outside this region to be 0.

The estimation and region finding steps are iterated until conver-
gence.

Initialization and details: Initially we simply define wi to be the
mesh area associated with vertex vi as defined above, and the initial
support region contains all faces.

Figure 2: Illustration of algorithm convergence. The plot shows the
∑i ρi for vertices vi ∈ S during the fine iterations. The placement
of the estimate of the symmetry plane along with support region
shaded lightly (yellow in electronic version) and symmetric region
shaded darkly (green in the electronic version) for the base seg-
mentation of the horse model. Left to right, iterations 1, 5 and 10
respectively.

Coarse-to-fine symmetry search In order to avoid local minima
and accelerate convergence we also use a discrete approximation
of the above distance function for a coarse-to-fine approach. For a
given vertex vi and face f j this distance function distcoarse(vi, f j) is
defined as the Euclidean distance from vi to the face plane of f j if
the angle between the normals of vi and f j is less than 90 degrees,
and infinite otherwise. The distance distcoarse(vi,M) is defined as
the distance to the f j whose centroid is closest to vi. Also, during
these coarse iterations we set σ = 1.4826 ·median(di), which is a
popular estimate of scale [Forsyth and Ponce 2002], not letting it
fall below 3ε to avoid instability.

During the fine iterations we set σ = 3ε . This setting allows for
near-symmetric vertices to be included in the support region albeit
with lower weight, and helps convergence.

The coarse distance function is first used until convergence to a
local minima, after which the more precise distance function is
used. Upon convergence, the symmetric region S is extracted as
the largest connected region of faces whose vertex distance values
are all below ε . We detect convergence by comparing the current
plane estimate with that of the previous iteration checking for a suf-
ficiently small difference.

Convergence: In our experiments both distance functions exhibit
very good convergence behavior (to their respective minima). Fig-
ure 2 illustrates an example of the convergence properties of our
approach.

4 Folding trees

4.1 Definitions

We consider a region R of a mesh M to be a connected subset of the
faces of M.

A segmentation {R1,R2, ...,Rn} of a mesh M is a set of mutually
exclusive regions whose union results in M.

A folding tree T representing a mesh M is inductively defined as
one of the following:



Figure 3: Folding tree construction structure.

• a leaf node, which contains mesh data for M.

• a folding node, with one subtree S, and a plane of symmetry
p.

• a segmentation node, with n subtrees T1,T2, ...,Tn, where Ti is
a folding tree for region Ri such that regions R1,R2, ...,Rn are
a segmentation of the mesh represented by T .

The unfold operation can now be defined on a folding tree T as
follows.

• The mesh data M if T is a leaf.

• unfold(S)∪ reflect(unfold(S), p), where S is the unique sub-
tree of T , p is the reflection plane,

• ∪n
i=1unfold(Ti) where T1,T2, ...,Tn are the subtrees of T .

Here, reflect indicates the mesh resulting from planar reflection of
the argument mesh’s vertices with respect to the argument plane.

4.2 Folding tree construction

Given a mesh M, a folding tree T that represents it can be con-
structed in preorder through repeated application of the segmen-
tation method of section 3. First, we apply the segmentation algo-
rithm to M to find a subregion of planar symmetry, S, also obtaining
the plane of symmetry p. We remove S from M and consider the
set of remaining connected components {R1,R2, ...,Rn}. Note that
in the case of a global symmetry, this set will be empty. We now
construct a folding tree T with n+1 children T0,T1, ...,Tn, each rep-
resenting S,R1,R2, ...,Rn respectively. We know S to be symmetric
with respect to plane p, so we can now fold S, retaining half of its
surface S′. In particular, T0 will be a folding node, labeled with
p, and its child T ′0 will represent S′. The resulting structure is il-
lustrated in figure 3. The subtrees T ′0,T1, ...,Tn can now be created
recursively with regions S′,R1, ...,Rn respectively as inputs.

When discarding half of the faces of a particular region, it must be
decided which half to keep, which to discard, and which to modify,
if any. Because of varying tessellation and the provided tolerance,
both sides need not be identical. In our implementation we count
the number of faces on each side of the plane and keep the side with
the most faces in order to preserve detail. Alternatively, we could
keep the half with less faces in order to minimize storage.

Faces with all vertices on the discarding side of the plane are re-
moved. In addition, the vertices that remain on the discarded side
due to straddling faces are projected onto the plane.

It should also be noted that the tolerance ε parameter for the subtree
associated with a folding node should be halved. This guarantees

Mesh # Orig. f’s #Nonred. f’s Comp. tree height Time

Dino 6638 3142 52.7% 3 152 sec
Horse 3306 2672 19.2% 3 24 sec
Chair 5736 2460 57.1% 4 58 sec
Table 5056 1332 73.7% 2 160 sec

Hammer 4360 677 84.5% 7 174 sec
Triceratops 5660 2447 56.8% 7 202 sec

Eagle 33072 15808 52.2% 6 936 sec
Queen 3360 600 82.1% 4 120 sec

Table 1: Results for seven characteristic meshes. Columns from left
to right: mesh name, number of faces in the original mesh, number
of non redundant faces stored in folding tree leaves, compression
achieved according to 1 - ratio of the previous two columns, height
of the folding tree, and running time.

that carryover errors during the unfolding process will not cause a
violation of the root tolerance.

The recursive construction of the tree may be stopped, triggering
the creation of a leaf node, by using one or more criteria: for exam-
ple, when the number of faces in the mesh is below a given thresh-
old, when the area of the mesh is below a certain percentage of
the original mesh, or when the number of recursive folds exceeds a
given maximum. Our implementation allows for any or all three.

4.3 Unfolding and mesh reconstruction

The procedure for unfolding a tree consists of a postorder traversal
according to the definition of subsection 4.1. Upon reconstruction,
because of the tolerance parameter of the region finding algorithm,
as well as differences in tessellation, the resulting mesh may have
gaps. In order to avoid a general mesh repairing problem, we im-
plement an approach which consists of labeling vertices as tear ver-
tices during the tree construction process at each level of recursion.
At a segmentation node a vertex is labeled as a tear vertex if it is
on a segmentation boundary. At a folding node, the vertex simply
inherits its tear attribute from the previous level. Thus, on the leaf
mesh data, a vertex has a stack, the size of the leaf’s depth in the
tree, indicating if is a tear vertex at each level. After processing a
segmentation node, tear paths are found along the mesh, and these
are stitched and smoothed using constrained Laplacian smoothing
[Funkhouser et al. 2004]. Alternatively, the mesh can be repaired
using standard techniques and software [Gueziec et al. 1998; Turk.
and Levoy 1994; Ju 2004].

5 Results

The implementation of the symmetry detection algorithm and the
folding tree representation of meshes, as described in sections 3 and
4, has been developed in Matlab 7. The user defines the tolerance
ε of the algorithm and the criteria for stopping the hierarchical seg-
mentation of the mesh. The default value of ε is 2% of the bounding
box diagonal of the mesh. The default criterium for terminating the
recursion is that the total area of the current region is less than 5%
of the total mesh area. We present characteristic results, concern-
ing mesh compression, the depth of the hierarchical segmentation,
initial and reconstructed meshes, as well as running times in table
1 and figures , 4 and 5. Our tests were run on an Intel Pentium M
2.13GHz processor with 1 GB of RAM.

In the chair model, we find the vertical plane of global symmetry
then each cushion, which was a separate connected component, was



Figure 4: Top left: original horse model. Bottom left: result-
ing tree leaves after folding. Note that the local symmetry of the
articulated head was detected. Top right and bottom right: the
reconstructed horse model.

folded through three perpendicular planes. In the case of the table,
there are two vertical and orthogonal nested folds. The hammer is
firstly folded in half through a vertical global plane of symmetry.
Then, the handle ends up being divided twice more. The circu-
lar portion of the head is also subdivided three more times recur-
sively. In the case of the triceratops and eagle models simplification
is more difficult, but even in these cases we find a global plane of
symmetry and then local symmetries in the legs, tail and body for
the triceratops model, and in the wings and upper legs of the eagle.
Finally in case of the queen chess piece, all planar symmetries are
recursively discovered resulting in one eighth of the original surface
being stored.

6 Conclusions and future work

In this paper, we have proposed a novel approach for finding and ex-
ploiting local and global planar symmetries in 3D meshes. We have
presented a new compact representation of meshes, called folding
trees, which represent the original mesh by only encoding the non
redundant regions as well as the planes of symmetry.

Given the fact that real objects, both organic and synthetic, often ex-
hibit this type of data redundancy and human perception is strongly
related to the notion of symmetry, a significant number of appli-
cations based on our methodology can further be developed. The
elimination of faces which are repeated in redundant areas of global
and local symmetries lead to new mesh compression schemes that
can be used for mesh storage, processing and transmission. Au-
tomatic reconstruction and repairing of the meshes, driven by the
extracted symmetries, is also another interesting field of applica-
tion of our method. The folding tree representation could also be
potentially applied to the extraction of skeletons of the represented
objects by finding articulations.

Our future research will be focused on both the development of such

Figure 5: Left: original mesh data. Right: resulting model from
unfolding of folding-tree representation. Please refer to table 1 for
details.



applications as well as the exploitation of other types of symmetries
(e.g. spherical and axial symmetries) in 3D meshes that can open up
new implementations and extensions of our proposed methodology.
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