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Abstract

Temporally extended goals (TEGs) refer to properties that must hold over

intermediate and/or final states of a plan. The main strategy for planning with

TEGs is to prune the search space during planning via goal progression. Cur-

rently, planners for TEGs prune the search space using heuristic search. In

this paper we propose a method for planning with propositional TEGs using

heuristic search. To this end, we translate an instance of a planning problem

with TEGs into an equivalent classical planning problem. With this transla-

tion in hand, we exploit heuristic search to determine a plan. Our translation

is based on the construction of a nondeterministic finite automaton for the

TEG. We propose two alternative translations: the first uses only ADL oper-

ators, and the second (more efficient) uses derived predicates. We prove the

correctness of our algorithm and analyze the complexity of the resulting rep-

resentation. The translator is fully implemented and available. Our approach

consistently outperforms existing approaches to planning with TEGs, often

by orders of magnitude.

1 Introduction

In this paper we address the problem of generating finite plans for temporally ex-

tended goals (TEGs) using heuristic search. TEGs refer to properties that must hold

over intermediate and/or final states of a plan. From a practical perspective, TEGs

are compelling because they encode many realistic but complex goals that involve

properties other than those concerning the final state. Examples include achiev-

ing several goals in sequence (e.g., book flight after confirming hotel availability),
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safety goals such as maintenance of a property, (e.g., �open(door), i.e. the door

must always be open), and achieving a goal within some number of steps (e.g., at

most 3 states after lifting a heavy object, the robot must recharge its batteries).

Planning with TEGs is fundamentally different from using temporally extended

domain control knowledge to guide search (e.g., TLPLAN (Bacchus & Kabanza,

1998), and TALPLAN (Kvarnström & Doherty, 2000)). TEGs express properties of

the plan we want to generate, whereas domain control knowledge expresses general

properties of the search for a class of plans (Kabanza & Thiébaux, 2005). As a

consequence, domain control knowledge is generally associated with an additional

final-state goal.

A strategy for planning with TEGs, as exemplified by TLPLAN, is to use some

sort of blind search on a search space that is constantly pruned by the progres-

sion of the temporal goal formula. This works well for safety-oriented goals (e.g.,

�open(door)) because it prunes those actions that falisfy the goal. Nevertheless,

it is less effective with respect to liveness properties such as ♦at(Robot,Home).
Our objective is to exploit heuristic search to efficiently generate plans with

TEGs. We envisioned two ways to achieve this. The first was to convert a TEG

planning problem to a classical planning problem where the goal was expressed in

terms of the final state, and to use existing heuristic search techniques. The second

possible approach was to develop our own heuristic for TEG planning. We pursued

the former approach, though achieving the latter requires much of the machinery

created for the former approach.

In contrast to previous approaches, we propose to represent TEGs in f-LTL, a

version of propositional linear temporal logic (LTL) (Pnueli, 1977) which can only

be interpreted by finite computations, and is more natural for expressing properties

of finite plans. To convert a TEG to a classical planning problem we provide a

translation of f-LTL formulae to nondeterministic finite automata (NFA). Once the

TEG is represented as an NFA, we provide two alternative constructions of the

classical planning problem, one that uses ADL operators and a second construction

that uses defined predicates. We prove the correctness of our algorithm, analyze

the space complexity of our translations and suggest techniques to reduce space.

Our translators are fully implemented and will be made available on the Web.

They output PDDL problem descriptions, which makes our approach amenable to

use with a variety of classical planners. We have experimented with two heuristic

search planners, FF (Hoffmann & Nebel, 2001) and FF’s extension for derived

predicates, FFX (Thiébaux, Hoffmann, & Nebel, 2005). Our experimental results

illustrate the significant power heuristic search brings to planning with TEGs. In

almost all of our experiments, we consistently outperform existing (non-heuristic)

techniques for planning with TEGs. We also show that for complex goals, the

translation that uses derived predicates is better than the one that uses only ADL
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operators.

There are several pieces of related research that are notable. We group this re-

search into two overlapping categories: 1) work that compiles TEGs into classical

planning problems such as that of Rintanen (2000), and Cresswell and Coddington

(2004), and 2) work that exploits automata representations of TEGs in order to plan

with TEGs, such as Kabanza and Thiébaux’s (2005) work on TLPLAN and work

by Pistore and colleagues (Pistore, Bettin, & Traverso, 2001; dal Lago, Pistore, &

Traverso, 2002). We discuss related work in more depth in Section 6.

2 Preliminaries

In this section we introduce f-LTL, a finite variant of LTL which we use to desribe

our TEGs. Then we define general concepts and terminology that are necessary to

our work.

2.1 f-LTL: LTL over finite computations

We introduce f-LTL logic, a variant of LTL (Pnueli, 1977) which we define over

finite rather than infinite sequences of states. We use f-LTL formulae to describe

TEGs for finite plans. f-LTL formulae augment LTL formulae with the proposi-

tional constant final, which is only true in final states of computation.

Definition 1 (f-LTL formula) An f-LTL formula over a set P of propositions is

one of the following.

1. final, true or false,

2. p, for any p ∈ P ,

3. ¬ψ , ψ ∧χ , ©ψ , or ψ Uχ , if ψ and χ are f-LTL formulae.

The semantics of an f-LTL formula is defined over finite sequences of states.

A (finite) sequence of states σ = s0s1 · · ·sn over a set of propositions P is such that

si ⊆ P , for each i ∈ {0, . . . ,n}. For notational convenience, we denote the suffix

sisi+1 · · ·sn of σ by σi.

Let ϕ be an f-LTL formula. We say that σ |= ϕ iff σ0 |= ϕ . Furthermore,

1. σi |= final iff i = n.

2. σi |= true and σi 6|= false.

3. σi |= p iff p ∈ si
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4. σi |= ¬ϕ iff σi 6|= ϕ .

5. σi |= ψ ∧χ iff σi |= ψ and σi |= χ .

6. σi |= ©ϕ iff i < n and σi+1 |= ϕ .

7. σi |= ψ Uχ iff there exists a j ∈ {i, . . . ,n} such that σ j |= χ and for every

k ∈ {i, . . . , j−1}, σk |= ψ .

Standard temporal operators such as always (�), eventually (♦), and release

(R), and additional binary connectives are defined in terms of the basic elements of

the language.

ψ ∨χ
def
= ¬(¬ψ ∧¬χ), ψ ⊃ χ

def
= ¬ψ ∨χ,

ψ ≡ χ
def
= (ψ ⊃ χ)∧ (χ ⊃ ψ), ψ Rχ

def
= ¬(¬ψ U¬χ),

�ϕ
def
= falseRϕ , ♦ϕ

def
= trueUϕ .

As in LTL, we can rewrite formulae containing U and R in terms of what has

to hold true in the “current” state and what has to hold true in the “next” state. This

is accomplished by identities 1 and 2 in the following proposition.

Proposition 1 The following are identities of f-LTL.

1. ψ Uχ ≡ χ ∨ (ψ ∧©(ψ Uχ)).

2. ψ Rχ ≡ χ ∧ (final∨ψ ∨©(ψ Rχ)).

3. ¬©ϕ ≡ final∨©¬ϕ .

Limiting f-LTL to finite computations results in several obvious discrepancies

in the interpretation of LTL and f-LTL formulae. In particular, discrepancies can

arise with LTL formulae that force their models to be infinite. For example, in

f-LTL the formula φ
def
= �(p⊃©q)∧�(q⊃©p) is equivalent to �¬(p∨q). This

is because if σ |= φ then “p or q” cannot be true of any state of σ , since otherwise

σ could not be a finite computation. A second example is the LTL formula �p

which in f-LTL is not equivalent to p∧©�p. If it were, �p could never be true in

computations with a single state. The interpretation of the © operator, represented

by identity 3 of Proposition 1, is also a source of discrepancies. The reader familiar

with LTL, will note that identity 3 replaces LTL’s equivalence ¬©ϕ ≡©¬ϕ . This

formula does not hold in f-LTL because in f-LTL, ©ϕ is true in a state iff there

exists a next state that satisfies ϕ . Since our logic is finite, the last state of each

model has no successor, and therefore in such states ¬©ϕ holds for every ϕ .

4



Although there are differences between LTL and f-LTL, their expressive power

is similar when it comes to describing temporally extended goals for finite plan-

ning. Indeed, f-LTL has the advantage that it is tailored to refer to finite plans.

As a consequence, we can express goals that cannot be expressed with LTL. Some

examples follow.

Example 1 The following are temporal f-LTL goals together with their intuitive

meaning.

• �(final⊃ at(Robot,R1)): In the final state, at(Robot,R1) must hold. This is

one way of encoding final-state goals in f-LTL.

• �((closed(D1)∧©¬closed(D1)) ⊃ ©©©closed(D1)): If D1 was closed at

time step i, and then becomes opened at time step i+1, then it must be closed

by time step i+3, for every i.

• ¬delivered(R1)Udelivered(R2)∧♦delivered(R1): Both R1 and R2 must

be delivered, but R2 must be delivered before R1.

• ♦(p∧©©final): p must hold true two states before the plan ends. This is an

example of a goal that cannot be expressed in LTL, since it does not have the

final constant.

When writing f-LTL goals, one has to be careful not to use formulae that re-

quire infinite plans, since they may be reduced to a contradictory formula. Indeed,

the algorithm we present in the next section will automatically generate a non-

accepting automaton for these types of formulae.

2.2 Planning Problems

A planning problem is a tuple 〈I,D,G,T 〉, where I is the initial state, represented

as a set of first-order (ground) positive facts; D is the domain description; G is a

temporal formula describing the goal, and T is a (possibly empty) set of derived

predicate definitions.

A domain description is a tuple D = 〈C,R〉, where C is a set of causal rules1,

and R a set of action precondition rules. Causal rules correspond to positive

and negative effect axioms in the situation calculus (Pednault, 1989; McCarthy &

Hayes, 1969). Intuitively, a positive (resp. negative) causal rule defines when a flu-

ent becomes true (resp. false) after performing an action. We represent positive and

1Done for notational convenience and clarity. Note that ADL operators can be constructed from

causal rules and vice versa (Pednault, 1989).

5



R1

O1

O3

O4
O2

D1

D12 D23 D34

R2 R3 R4

D2

Robot

C1 C2

Figure 1: The robot domain.

negative causal rules by the triple 〈a(~x),c(~x), f (~x)〉 and 〈a(~x),c(~x),¬ f (~x)〉 respec-

tively, where a(~x) is an action term, f (~x) is a fluent term, and c(~x) is a first-order

formula, each of them with free variables among those in~x. 〈a(~x),Φ+
a, f (~x), f (~x)〉 ∈

C (resp. 〈a(~x),Φ−
a, f (~x),¬ f (~x)〉 ∈ C) expresses that fluent f (~x) becomes true (resp.

false) after performing action a(~x) in the current state if condition Φ+
a, f (~x) (resp.

Φ−
a, f (~x)) holds. As with ADL operators, the condition c(~x), can contain quantified

first-order subformulae. Finally, we assume that for each action term and fluent

term, there exists at most one positive and one negative causal rule in C.

The setR of action precondition rules consists of tuples 〈a(~x),π(~x)〉, such that

a(~x) is an action term, and π(~x) is a first-order condition. Intuitively 〈a,π〉 ∈ R
means that it is possible to execute a in a state that satisfies condition π .

All free variables in rules of C orR are regarded as universally quantified.

Example 2 Consider the robot domain defined by Bacchus and Kabanza (1998).

In this domain, depicted in Figure 1, there is a robot, some objects and six locations.

Four of the locations correspond to rooms (R1, . . . ,R4), and two of them represent

the corridor (C1 and C2). Rooms are connected by doors, which can be opened or

closed. The robot can move between connected rooms, close or open doors, and

grasp or drop objects. It can hold one object at a time. The causal rules for this

domain are the following.

Positive Negative

〈open(d), true,opened(d)〉 〈close(d), true,¬opened(d)〉
〈grasp(o), true,holding(o)〉 〈grasp(o), true,¬handempty〉
〈release(o), true,handempty〉 〈release(o), true,¬holding(o)〉

〈move(x,y),
o = robot∨
holding(o)

,at(o,y)〉 〈move(x,y),
o = robot∨
holding(o)

,¬at(o,x)〉
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2.3 Regression

The causal rules of a domain describe the dynamics of individual fluents. How-

ever, to model an NFA in a planning domain, we must also know the dynamics

of arbitrary complex formulae, such as for example, the causal rule for at(o,R1)∧
holding(o). This is normally accomplished by goal regression (Waldinger, 1977;

Pednault, 1989; Reiter, 2001).

To characterize these additional causal rules without articulating them explic-

itly, we introduce the relation causes that holds over the set of valid causal rules.

As such, 〈a,c,(¬) f 〉 ∈ causes if 〈a,c,(¬) f 〉 ∈ C. Furthermore, for arbitrary fluent

F and action A, if there is no c such that 〈A,c,(¬)F〉 ∈ C, then (A, false,(¬)F) ∈
causes.

To define causal laws for boolean formulae of fluents it suffices to define nega-

tion and conjunction since disjunction follows from these. The following defini-

tions were obtained using Reiter’s regression operator (Reiter, 2001, pg. 64). Here,

we assume that α(~x) is a boolean formula of fluents with free variables among the

vector of variables~x. Furthermore,~t is a vector of variables or constants.

Instantiation & Negation: If (a(~x),Φ(~x),α(~x)) ∈ causes, then,

1. 〈a(~x),~x =~t ∧Φ(~x),α(~t)〉 ∈ causes, and

2. 〈a(~x),~x =~t ∧Φ(~x),¬¬α(~t)〉 ∈ causes.

Conjunction Suppose the following tuples are in causes.

〈a(~x),Φ+
a,α(~x),α(~t1)〉, 〈a(~x),Φ−

a,α(~x),¬α(~t1)〉,

〈a(~x),Φ+
a,β (~x),β (~t2)〉, 〈a(~x),Φ−

a,β (~x),¬β (~t2)〉

Then

1. 〈a(~x),Φ+
a,α∧β ,α(~t1)∧β (~t2)〉 ∈ causes, where:

Φ+
a,α∧β = [Φ+

a,α(~x)∧Φ+
a,β (~x)]∨ [α(~x)∧¬Φ−

a,α(~x)∧Φ+
a,β (~x)]∨

[β (~x)∧¬Φ−
a,β (~x)∧Φ+

a,α(~x)]

2. 〈a(~x),Φ−
a,α∧β ,¬(α(~t1)∧β (~t2))〉 ∈ causes, where

Φ−
a,α∧β = Φ−

a,α(~x)∨Φ−
a,β (~x).
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The downside of regression is its space complexity; the size of the conditions

in the causal laws can grow exponentially. This is justified by the following propo-

sition.

Proposition 2 Let ϕ = f0 ∧ f1 ∧ . . .∧ fn. Then, assuming no simplifications are

made, |Φ+
a,ϕ |= Ω(3n(m++m−)), where m+ = mini |Φ

+
a, fi
|, i.e. m+ is the size of the

smallest condition on a positive effect for action a among all fluents fi’s. Similarly,

m− = mini |Φ
−
a, fi
|.

To reduce the size of the resulting formulae, one could try to do boolean sim-

plifications. Unfortunately, simplifying a boolean formula is also exponential in

the size of the formula. Despite this bad news, it’s important to observe that alter-

native techniques for planning with TEGs commonly use progression and that pro-

gressed formulae also grow exponentially. Systems such as TLPLAN commonly

use boolean simplification with great success to reduce the size of progressed for-

mulae.

3 Translating f-LTL to NFA

In this section we present an algorithm to translate f-LTL formulae into state-

labeled non-deterministic finite automata and then show how to simplifiy them

into non-deterministic finite automata. We prove the correctness of our algorithm.

Once we have this translation defined, we can use it to compile our planning prob-

lems with TEGS into classical planning problems.

For every LTL formula ϕ over a set of variables P , there exists a Büchi au-

tomaton Aϕ = (Q,Σ,δ ,Q0,F), where Σ = 2P such that given an infinite state se-

quence σ , Aϕ accepts σ if and only if σ |= ϕ (Vardi & Wolper, 1994; Vardi, 1995).

Although the construction in by Vardi and Wolper (1994) is very impractical, al-

gorithms have been proposed for the generation of pragmatic automata (e.g. Gerth,

Peled, Vardi, & Wolper, 1995).

To our knowledge there exists no pragmatic algorithm for translating a finite

version of LTL such as the one we use here. In this section, we propose such an

algorithm and prove its correctness. Our algorithm is a modification of the one

proposed by Gerth et al. (1995), and in the first stage generates a state-labeled

NFA.

Definition 2 (State-labeled NFAs (SLNFA))

A state-labeled NFA (SLNFA) is a tuple A = 〈Q,Σ,δ ,L,Q0,F〉, where Q is a finite

set of states, Q0 ⊆ Q is a set of initial states, Σ is the alphabet, δ ⊆ Q×Q is
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a transition relation, F ⊆ Q is the set of final states, and L : Q→ 2Σ is a state-

labeling function.

A run is a finite sequence ρ = q0 q1 . . .qn, such that q0 ∈ Q0 and (qi,qi+1) ∈ δ ,

for all i ∈ {0, . . . , i− 1}. ρ is an accepting run iff qn ∈ F . We say that an SLNFA

accepts a word w = x0x1 · · ·xn in Σ∗ iff there exists an accepting execution ρ =
q0q1 . . .qn such that for each i ∈ {0, . . . ,n}, xi ∈ L(qi).

Example Consider the SLNFA A = 〈{q0,q1},Σ,δ ,L,{q0},{q1}〉, where Σ =
2{p,q,r}, δ = {(q0,q1),(q1,q1)}, and L(q0) = Σ and L(q1) = {s ⊆ Σ |q ∈ s}. Ob-

serve that this automaton accepts sequences of states over the set of propositions

{p,q,r}; in fact, it accepts every σ such that σ |= ©�q.

3.1 The algorithm

The translation algorithm (Figure 2) is a modification of the one proposed by Gerth

et al. (1995). Our algorithm incorporates the new propositional constant final and

modifies the acceptance condition of the generated automaton.

To represent a node of the automaton, the algorithm uses Gerth et al.’s data

structure Node, which is a tuple 〈Name, Incoming,New,Old,Next,Father〉. The

field Name : contains the name of the node; Incoming is the list of node names

with an outgoing edge leading to Node; New contains formulas that must hold at

the current state but that have not been processed by the algorithm; Old contains

the formulas that must hold in the node that have been processed by the algorithm;

Next contains temporal formulae that have to be true in the immediate successors

of Node. During the construction of the graph, a node can be split into two new

nodes, these two new nodes contain the name of their father in the field Father.

The algorithm takes as input an f-LTL formula in negated normal form, i.e., a

formula where all ¬’s have been pushed in such that they only occur in front of

propositions or constants. Furthermore, the formula can only contain the binary

operators ∧ and ∨. It is easy to see that using the equivalences in Section 2.1 it is

always possible to translate any f-LTL formula to this form.

The procedure gen graph(ϕ) constructs the graph of Aϕ . Initial states are

those that contain Init in its field Incoming.

During the construction of the graph, all the nodes are kept in the set NodeSet.

Given a formula ϕ , the algorithm starts processing one node that contains formula

ϕ in its New field. Furthermore, set NodeSet is empty (line 50).

When processing node N, the algorithm checks whether there are any pending

formulae in the New field. If there are not, then the node is ready to be added to

the NodeSet. Two cases can hold:
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1. If there is already a node in NodeSet with the same fields Old and Next, then

its Incoming list is updated by adding those nodes in N’s incoming list (line

6).

2. If there is no such a node, then N is added to NodeSet. Then, a new node is

created for processing if final 6∈ Old. This node contains N in its incoming

list, and the field New set to N’s Next field. The fields New and Old of the

new node are empty (lines 8–18).

Otherwise, if New is not empty, formula η is removed from New and added to

Old. Depending on the syntax of η , one of the actions below is taken and then the

node continues to be processed.

1. In case η is a literal, then if ¬η is in Old, the node is discarded (a contradic-

tion has occurred). Otherwise, η is added to Old and the node continues to

be processed.

2. Otherwise, depending on the syntactic form of η , the following actions are

taken.

(a) If η = ϕ ∧ψ , both ϕ , and ψ are added to New.

(b) If η = ©ψ , then ψ is added to Next.

(c) If η is one of ϕ∧ψ , ϕ Uψ , or ϕ Rψ , then N is split into two nodes. The

set New1(η) and New2(η) are added, respectively, to the New field of

the first and second nodes. These functions are defined as follows:

η New1(η) New2(η)

ϕ ∨ψ {ϕ} {ψ}
ϕ Uψ {ϕ ,©(ϕ Uψ)} {ψ}
ϕ Rψ {ψ ,final∨©(ϕ Rψ)} {ϕ ,ψ}

The intuition of the split lies in standard f-LTL equivalences. For exam-

ple, ϕ Uψ is equivalent to ψ ∨ (ϕ ∧©(ϕ Uψ)), thus one node verifies

the condition ψ , whereas the other verifies ϕ ∧©(ϕ Uψ).

The following definition is required in the proof of the correctness of the algo-

rithm and to define final states of the automaton.

Definition 3 (∆−(q)) Let ∆(q) be the value of the Old field for node q, when node

q has been processed. We define ∆−(q) as the set containing all the literals in ∆(q).
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function expand(Node,NodeSet)1

begin2

if New(Node) = ∅ then3

if ∃N ∈ NodeSet and Old(N) = Old(Node) and Next(N) = Next(Node)4

then

Incoming(ND)←5

Incoming(ND)∪ Incoming(Node)6

return NodeSet7

else8

if final 6∈ Old(Node) then9

return expand([Name← Father← new name(),10

Incoming← Name(Node),11

New← Next(Node),Old←∅12

Next←∅],{Node}∪NodeSet)13

else14

if Next(Node) = ∅ then15

return {Node}∪NodeSet16

else17

return NodeSet /* discarded */18

else19

choose η ∈ New(Node)20

New(Node)← New(Node)\{η}21

if η 6= True and η 6= False then Old(Node)← Old(Node)∪{η}22

switch η do23

case η is a literal, True or False24

if η = False or η ∈ Old(Node) then25

return NodeSet /* discarded */26

else27

return expand(Node,NodeSet)28

case η = ©ϕ29

Next(Node)← Next(Node)∪{ϕ}30

return expand(Node,NodeSet)31

case η = ϕ ∧ψ32

New(Node)← New(Node)∪ ({ϕ,ψ}\Old(Node))33

return expand(Node,NodeSet)34

case η = ϕ ∨ψ or ϕ Rψ or ϕ Uψ35

Node1← [Name← new name(),36

Father← Name(Node),37

Incoming← Incoming(Node),38

New← New(Node)∪New1(η),39

Old← Old(Node),40

Next← Next(Node)]41

Node2← [Name← new name(),42

Father← Name(Node),43

Incoming← Incoming(Node),44

New← New(Node)∪New2(η),45

Old← Old(Node),46

Next← Next(Node)]47

return expand(Node2,expand(Node1,NodeSet))48

end49

function gen graph(ϕ) begin50

expand([Name← Father← new name(), Incoming←{Init},New←51
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The set of final states, F is as follows:

F = {q ∈ Q |Next(q) = ∅ and ¬final 6∈ ∆−(q)}.

I.e. final states are those states that do not have to satisfy any obligations in

the future and that are not forced to be non-final by the actual requirement of

the state. The labeling function is the following: L(q) = {s ⊆ 2P |s |= ∆−(q) \
{final,¬final}}.

The following theorem states the correctness of the algorithm.

Theorem 1 Let Aϕ be the automaton constructed by the algorithm from formula

ϕ over the set P of propositions. Then Aϕ accepts exactly the set of computations

in (2P)∗ that satisfy ϕ .

Proof: See the appendix.

3.2 Simplifying SLNFAs into NFAs

The algorithm presented above often produces automata that are much bigger than

the optimal. To simplify the automata, we have used a modification of the algo-

rithm by Etessami and Holzmann (2000). This algorithm uses a simulation tech-

nique to simplify the automaton. In experiments Fritz (2003), it was shown to be

slightly better than LTL2AUT (Daniele, Giunchiglia, & Vardi, 1999) at simplifying

Büchi automata.

To apply the algorithm we generate a nondeterministic finite automaton that ac-

cepts finite computations (strings over (2P)∗) equivalent to the SLNFA. A nonde-

terministic finite state automaton is a tuple A = 〈Q,Σ,δ ,Q0,F〉, where Q is a finite

set of states, δ ⊆Q×Σ×Q, and Σ= 2P . A run of A over string w= x0x1 · · ·xn ∈ Σ∗

is a sequence of states ρ = q0q1 · · ·qn, where q0 ∈Q0, and (qi,a,qi+1)∈ δ for some

a⊆ xi, for all i ∈ {0, . . . ,n−1}. Run ρ is accepting if qn ∈ F .

It is straightforward to convert a SLNFA to an equivalent NFA by adding one

initial state and copying labels of states to any incoming transition. Figure 3 shows

examples of NFAs generated by our implementation for some f-LTL formulae.

Henceforth, unless stated otherwise, we assume Aϕ is the NFA that results from

simplifying the SLNFA generated by our algorithm.

3.3 Size complexity of the NFA

Although simplifications normally reduce the number of states of the NFA signifi-

cantly, the resulting automaton can be exponential in the size of the formula in the

worst case.
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{¬p,¬q}

{¬p,¬q}

q0 q1

q0 q2

q1

{}

{closed(D1),
¬at(Robot,R1),

at(O1 ,R4)}

{¬at(Robot,R1),

at(O1 ,R4)}

{}

{closed(D1),
¬at(Robot,R1)}

{¬at(Robot,R1)}

(a) (b)

Figure 3: Simplified NFA for (a) �(p⊃©q)∧�(q⊃©p), and (b) �(at(Robot,R1)⊃
©♦closed(D1))∧♦�at(O1,R4).

Proposition 3 Let ϕ be in negated normal form, then the number of states of Aϕ

is 2O(|ϕ|).

There are simple cases where the translation blows up; e.g., for the formula

♦p1∧♦p2∧ . . .∧♦pn, the resulting NFA has 2n states. Intuitively each state keeps

track of a particular combination of propositions that has been true in the past.

4 Compiling NFAs into a Planning Domain

Now that we are able to represent TEGs as NFAs, we show how the NFA can be

encoded into a planning problem. We present two translations, one that represents

the domain as a set of causal rules, and the other that represents the domain using

both causal rules and derived predicates.

In the planning domain, each state of the automaton is represented by a fluent.

More formally, for each state q of the automaton we add to the domain a new fluent

Eq. The translation is such that if a sequence of actions a1a2 · · ·an is performed in

state s0, generating the succession of states σ = s0s1 . . .sn, then fluent Eq is true in

sn if and only if there is a run of Aϕ on σ that ends in state q.

Once the NFA is modeled inside the domain, the temporal goal in the newly

generated domain in reduced to a property of the final state alone. Intuitively, this

property corresponds to the accepting condition of the automaton.

To represent the dynamics of the states of the automaton, there are two alter-

natives. The first is to modify the domain’s causal rules to give an account of their

change. The second, is to define them as derived predicates or axioms.

In the rest of the section, we present both translations, we analyze related com-

plexity issues, and show how our approach can subsume state space pruning by

progression. Henceforth we assume the following:
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• We start with a planning problem L = 〈I,D,G,T 〉, where G is a temporal

formula in f-LTL.

• Temporal goal G is translated to the NFA AG = (Q,Σ,δ ,Q0,F).

• To simplify notation, we denote by Pred(q) the set of predecessors of q.

E.g., in Fig. 3(b), Pred(q0) = {q0,q1}.

• Finally, we denote by λp,q the formula
∨

(q,L,p)∈δ

∧

L. E.g., in Fig. 3(b),

λq1,q0
= closed(D1)∧¬at(Robot,R1).

4.1 Translating NFA to Causal Rules

Recall that we have translated our TEG into an NFA and to encode this NFA in

the planning domain, we have introduced fluents Eq, one for each state q of the

automaton. In this first translation, we encode the dynamics of the fluent Eq as

causal rules. For each fluent Eq we generate a new set of causal rules. The resulting

new rules are added to the set C′, which is initialized to ∅.

4.1.1 New causal rules

To understand the intuition behind the translation, consider the NFA shown in Fig-

ure 3(b). Suppose Eq2
is false in a state si. After performing action ai, fluent

Eq2
must become true in the resulting state, si+1, iff either Eq0

was true in si and

¬at(Robot,R1)∧at(O1,R4) is true in si+1 or Eq1
was true in si and¬at(Robot,R1)∧

closed(D1)∧at(O1,R4) is true in si+1. Notice that ¬at(Robot,R1)∧ closed(D1)∧
at(O1,R4) can be true in si+1 because a made the property true, or because it was

true in si and a did not make it false.

To write the positive causal rule for Eq2
on action a, we must only refer to the

state prior to the execution of a. To do so, we appeal once again to regression. For

each action a, the positive action rule 〈a,Φ+
a,Eq

,Eq〉 is added to C′, where:

Φ+
a,Eq

=
∨

p∈Pred(q)\{q}

Ep∧ (Φ
+
a,λp,q
∨ (λp,q∧¬Φ−

a,λp,q
)). (1)

Note that Φa,λp,q
is a condition obtained by regression.

For the negative case, consider state q0 of the automaton. If Eq0
is true in some

state si, then when getting to state si+1 after performing a, it will become false if

¬at(Robot,R1) holds in si+1 and it does not happen that in Eq1
is true in si and

¬at(Robot,R1)∧ closed(D1) is true in si+1.

Again, we need to appeal to regression. For each action a, the positive action

rule 〈a,Φ−
a,Eq

,¬Eq〉 is added to C′, where:
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Φ−
a,Eq

= ¬Φ+
a,Eq
∧¬(Φ+

q,λq,q
∨λq,q∧¬Φ−

a,λq,q
). (2)

Note that λq,q is false if there is no self transition in q.

Example 2 (cont.) In the robots domain, for the NFA of Figure 3(b) we would

add the following positive causal rule for fluent Eq2
and action close(x).

〈close(x),Eq1
∧ [at(O1,R4)∧¬at(Robot,R1)∧ closed(D1)∨

at(O1,R4)∧¬at(Robot,R1)∧ x = D1)]∨

Eq0
∧at(O1,R4)∧¬at(Robot,R1),Eq2

〉

4.1.2 New initial state

The original initial state must also be modified, since it now must include which

fluents Eq are initially true. The new set of facts I ′ is the following:

I ′ = {Eq |(p,L,q) ∈ δ , p ∈ Q0,L⊆ I}.

I.e., are the facts Eq such that q is reachable for some initial state p through a

transition whose label is a fact that is true in I.

4.1.3 New goal & planning problem

Intuitively, the automaton AG accepts iff the temporally extended goal G is satisfied.

Therefore, the new goal, G′ =
∨

p∈F Ep, is defined according to the acceptance

condition of the NFA, i.e. the goal is achieved if AG is in some final state. Note

that G′ is a non-temporal goal.

The final planning problem L′ is 〈I ∪I ′,C ∪C′,R,G′,T 〉.

4.2 Translation by derived predicates

We now examine our second (more efficient) translation that exploits derived pre-

dictes. In this translation, as before, we use a fluent Eq to represent each state q of

the automaton. However, this time we do not write a causal rule for Eq; rather, we

define it as a derived predicate. Nevertheless, we will still need to add a few causal

rules. The new causal rules, and defined predicates will be stored respectively in

sets C′ and T ′, which are initially set to ∅.
To achieve the translation, we require that the truth value of Eq in a state si+1 be

defined in terms of properties that hold true in si+1. However, as we saw previously,
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the truth value of Eq in si+1 depends on whether some fluents Ep hold true in the

previous state, where p is a state of the automaton. Therefore, we need a way to

represent in state si+1 what fluents Ep were true in the previous state.

Thus, for each state q of the automaton we use an auxiliary fluent Prevq which

is true in a state s iff Eq was true in the previous state. The dynamics of fluent Prevq

is described by the following causal rules, which are added to C′:

〈a,Eq,Prevq〉, 〈a,¬Eq,¬Prevq〉, (3)

for each a. The following definitions are added to T ′:

Eq
def
=

∨

p∈Pred(q)

Prevp∧λp,q,

4.2.1 New initial state

The new initial state must specify which fluents of the form Prevq are true. These

are precisely those facts that correspond to the initial state of the automaton.

I ′ = {Prevq |q ∈ Q0}.

4.2.2 New goal & planning problem

As before, the new goal is defined by G′ =
∨

p∈F Ep, and the new planning problem

is L′ = 〈I ∪I ′,C ∪C′,R,G′,T ∪T ′〉.

4.3 Search Space Pruning by Progression

As previously noted, planners for TEGs such as TLPLAN are able to prune the

search space by progressing temporal formulae representing the goal. It follows

that, a state s is pruned by progression, if the progressed temporal goal in s is

equivalent to false. Intuitively, this means that there is no possible sequence of

actions that when executed in s would lead to the satisfaction of the goal.

In this section we discuss how to achieve search space pruning, analogous to

that of TLPLAN, within our NFA approach. Since our NFAs have no non-final

states that do not lead to a final state, if at some state during the plan all fluents Eq

are false for every q ∈ Q, then this means that the goal will never be satisfied. In

the planning domain this can be achieved in two ways. One way is to add
∨

q∈Q Eq

as a state constraint (or safety constraint). The other way is to automatically gen-

erate preconditions for actions thereby achieving automated precondition control

(Bacchus & Ady, 1999; Rintanen, 2000). The first alternative is the simplest one,

but the heuristic planners we know of cannot currently handle it.
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To do precondition control the precondition 〈a,c〉 ∈ R can be replaced by

〈a,c∧¬πa〉, where πa is such that (a,πa,¬
∨

q∈Q Eq) ∈ causes. The size of πa

is unfortunately exponential in the number of states since we need to appeal to

regression. The following subsection analyzes other complexity issues.

This technique has the potential to be very useful, but we didn’t use it in prac-

tice for two reasons: 1) our heuristic search planners didn’t support such state

constraints, and 2) it would not add to the performance of our system.

4.4 Size Complexity

Planning with the new translated theory is theoretically as hard as planning with

the original theory. However, it is important to analyze the size of the translated

planning problem. Since there are more fluents in the resulting domain, the planner

will take time updating these fluents. This time will be, in general, linear in the size

of the conditions that have to be evaluated when performing each action.

We can obtain quite different results depending on the type of translation being

used. For the case of the translation into causal rules, the size complexity is linear

in the number of states and transitions, but is exponential in the size of the labels of

the automaton. Indeed, observe that expressions (1) and (2) are linear in the number

of preceding states of q. However, the size of Φ+
a,λp,q

, Φ−
a,λp,q

, Φ+
a,λp,p

, and Φ−
a,λp,p

is exponential in the number of binary connectives in each of these formulae (this

is a consequence to Proposition 2). Moreover, since the number of causal rules

in C′ is proportional to the number of states and the number of actions, the total

size as a function of the number of transitions is therefore, O(n|Q|2ℓ), where ℓ is

the maximum size of a transition in AG , and n is the number of action terms in the

domain.

For the case of the translation into derived predicates, we obtain a much better

result. Observe that each of the definitions of (3) is linear in the size of λp,q and the

number of preceding states. Therefore, we obtain that the size of T ′ is O(n|Q|ℓ).
Furthermore, the size of C′ is only O(n|Q|).

4.5 Reducing |Q| and Handling Quantification

In the previous section we saw that the size of the resulting translation depends

on the number of states of the automaton, |Q|. Previously, we also saw that |Q| is
generally exponential in the size of the temporal formula. This means that we could

be generating quite big translations even if we choose to use derived predicates.

Fortunately, there is a way to reduce the size complexity by splitting a formula

into different goals. Consider for example the formula ϕ = ♦p1∧ . . .∧♦pn, which

we know has an exponential NFA. We know that ϕ will be satisfied if each of the
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conjuncts ♦pi is satisfied. If instead of generating a unique NFA for ϕ we generated

a different NFA for each ♦pi, then we could just plan for a goal equivalent to

the conjunction of the acceptance conditions of each of those automata. For this

particular ϕ this means that the number of states in the new planning problem is

linear in n instead of exponential.

The same idea can be generalized to any combination of boolean formulae. In

our implementation, we benefit from this property by exploting it even more. We

preprocess the TEG formula using the follwing f-LTL equivalences:

(φ ∧ψ)Uχ ≡ (φ Uχ)∧ (ψ Uχ),

φ U(ψ ∨χ)≡ (φ Uψ)∨ (ψ Uχ),

and other similar equivalences that hold for the temporal connectives R and ©, ef-

fectively “pulling” binary connectives up in the formulae. With this technique, we

generate more automata but avoid the risk of exponential explosion. This technique

is also useful when handling f-LTL formulae that come from quantified formula.

We elaborate upon this point in future work.

5 Implementation and Experiments

We implemented a compiler for the two proposed translations. The compiler takes

a domain, described by causal rules, and a temporal goal, described in f-LTL, and

generates a new planning problem as described in Section 4. Furthermore, a mod-

ule of the program can convert the new problem into a PDDL domain/problem

(McDermott, 1998), thereby enabling its use with a wide variety of available plan-

ners.

We conducted several experiments in the robots domain to test the effective-

ness of our approach. In each experiment, we compiled the planning problem to

PDDL. To evaluate the translation to causal rules (CR), we used FF as our heuris-

tic planning engine (CR+FF). For the translation to derived predicates (DP), we

used FFX (DP+FFX ), an extension of FF proposed by Thiébaux et al. (2005) that

supports derived predicates.

Table 1 presents results obtained for various temporal goals by our translation

and the C version of TLPLAN (TLPLAN-C). The second and third columns show

statistics about the translation. The second column shows the time taken in each

translation, and the third shows the number of states of the automata representing

the goal. The rest of the columns show the time (t) and length (ℓ) of the plans for

each approach. In the case of the TLPLAN-C, two times are presented. In the first

(t) no additional search control was added to the planner, i.e. the planner was using

only the goal to prune the search space. In the second (t-ctrl) we added (by hand)
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Prb. Comp. No. CR+FF DP+FFX TLPLAN-C

CR/DP Sts. t ℓ t ℓ t t -ctrl ℓ

1 .02/.02 2 .02 6 .02 6 .07 .01 6

2 .02/.01 2 .02 8 .01 8 .04 .03 8

3 .09/.06 15 .04 10 .04 10 .20 .02 10

4 .06/.07 5 .03 6 .02 6 .38 .10 6

5 .07/.03 6 .04 15 .03 15 .5 .19 13

6 .49/.39 37 .19 16 .16 16 .51 .17 18

7 .05/.03 6 .05 9 .11 10 .96 .31 10

8 .07/.06 15 .05 10 .04 12 1.40 .04 10

9 .01/.02 4 .03 18 .03 18 13.90 .15 14

10 .04/.05 6 .07 32 .05 15 17.52 .40 14

11 .08/.04 5 .06 22 .03 20 m m –

12 .09/.02 5 .50 25 .03 24 m m –

13 .09/.05 6 m – .04 28 m m –

14 .32/.05 5 m – .10 33 m m –

15 .07/.03 5 .11 31 .09 34 m m –

16 .09/.04 10 m – .07 46 m m –

Table 1: Our approach compared to TLPLAN-C

additional control information to “help” TLPLAN do a better search. The character

‘m’ stands for ran out of memory.

TLPLAN-C is significantly outperformed by our approach, unless the goals

are very simple (e.g. problem 1 is ♦�(at(Robot,C1)∧ at(O1,R2)), starting in the

initial state depicted in of Figure 1). Only TLPLAN-C with extra control infor-

mation can be somewhat competitive with our approach for more complex goals.

This is the case for goal 3, which is defined as ©5at(O1,R4)∨©6at(O1,R4)∧
♦�(at(Robot,C1)∧at(O1,R2))

2. In this case, TLPLAN-C is able to perform bet-

ter because its control information (added by hand) advises it not to grab any object

different from O1. Such information was not added to our compiler.

Another interesting case is the simplest problem for which TLPLAN-C runs

out of memory. This is goal 11, which corresponds to ♦[(at ′(R4)∨ at ′(R3))∧
©AllClosed)]∧♦�at(O1,C1), where AllClosed stands for a formula where all

doors are closed, and at ′(r) stands for “both O3 and O4 are in r.” On the other

hand, goal 14 is like goal 11, but when at ′ stands “all objects are in r.” In this

case, FF runs out of memory in the preprocessing phase. This is due to the huge

conditions that are part of the conditional effects of some actions, which in turn is

due to the underlying regression used by the translation.

2©5 p abbreviates ©©©©©p.
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Table 2 compares our approach’s performance to that of the planner presented

in (Kabanza & Thiébaux, 2005) (henceforth, TPBA), which uses Büchi automata to

control search. Again, our planner clearly outperforms TPBA. This planner offers

four templates to write automata. We have used one of them, which is of the form

♦(p1∧©(♦p2∧ . . .∧©♦pn) . . .)
3.

Again, TPBA is significantly outperformed by our approach, even in the pres-

ence of extra control information added by hand (this is indicated by the ‘+c’ in

the table). In dfs mode, TPBA is able to solve every problem but more slowly and

with less quality. In the bfs mode with no control information, TPBA fails for goal

4, which is “O1 must eventually be at R2, then at R4, then at C1, then at R3, and

finally at C2”. On the other hand, TPBA fails in bfs mode with control information

for goal 10, which is defined as “eventually O1 at R2, then eventually all objects

in R4, and finally all objects in C1.” The control information added by hand in this

case is “do not close any doors.”

The results presented above, though very good, were expected. None of the

planners we have compared to uses heuristic search, which means they may not

have enough information to determine which action to choose during search. The

TLPLAN family of planners is particularly efficient when control information is

added to the planner. Usually this information is added by an expert in the planning

domain. However, control information, while natural for classical goals, might be

harder to write for temporally extended goals. The advantage of our approach

is that we do not need to write this information and still be efficient. Moreover,

control information can be added in the context of our approach by integrating it

into the goal formula.

6 Related Work

There are several notable pieces of related work. The relationship between au-

tomata theory and temporal logic has been known for decades (Vardi, 1995), and it

has been applied successfully in the software verification area. In relation to plan-

ning, de Giacomo and Vardi (1999) have considered the planning problem with

TEGs represented as LTL formulae from a theoretical perspective. They reduce

the problem of planning with TEGs to decision problems in automata theory, ob-

taining several complexity results about the decidability of planning under various

settings.

The temporal extension of TLPLAN to search control used in our experiments

(and referred to as TPBA) (Kabanza & Thiébaux, 2005), considers a Büchi au-

3Three more are available. One is for classical goals, another is for cyclic (infinite) goals, and the

third is very similar to the one we are using.
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Prb. DP+FFX TPBA/dfs+c TPBA/dfs TPBA/bfs+c TPBA/bfs

t ℓ t ℓ t ℓ t ℓ t ℓ

1 .00 2 .06 2 0.3 2 0.24 2 0.44 2

2 .01 5 .51 15 30 563 0.96 5 44.42 5

3 .01 6 .58 17 29.56 563 1.3 5 47.91 5

4 .02 7 1.20 25 m – 3.29 7 m –

5 .01 13 1.53 34 m – 11.66 10 m –

6 .01 16 1.68 38 m – 28.87 12 m –

7 .02 17 2.00 45 m – 82.57 15 m –

8 .02 17 2.13 49 m – 35.69 17 m –

9 .03 21 2.50 52 m – 13.37 20 m –

10 .07 41 7.18 91 m – 126.25 35 m –

11 .09 46 8.66 101 m – m – m –

12 .10 49 10.06 113 m – m – m –

13 .28 67 19.89 131 m – m – m –

14 2.45 74 28.28 236 m – m – m –

15 4.54 115 43.07 300 m – m – m –

Table 2: Our approach compared to search control with Büchi automata

tomaton that is constructed for the goal. Then, it uses the automaton to guide the

planning by following a path in its graph from an initial state to a final state. If

there is more than one path, the search has to choose between one of the paths and

possibly backtrack to another path. In combination with this, it uses search control

information to make planning more efficient. However, since no heuristics are em-

ployed, though it follows a path to accepting states in the automaton, it can easily

“get lost” in the absence of good control information. Furthermore, the fact that

it needs a single automaton for the TEG makes it more vulnerable to exponential

blowup. Finally, in contrast to our approach, TPBA is able to handle infinite plans,

including cyclic plans.

Approaches for planning as symbolic model checking have also used automata

to encode the goals (e.g Pistore et al., 2001; dal Lago et al., 2002). These ap-

proaches use different languages for extended goals, and are not heuristic. Rather,

they associate a set of domain states to each of the states of the automaton. They

start by associating the whole set of domain states to each state of the automaton

and then iteratively refine them until a fixed point is reached. Then they are able to

extract the plan from the automaton.

Cresswell and Coddington (2004) propose a translation of LTL formulae into

PDDL. They translate LTL formulae to a deterministic finite state machine (FSM),

and then they translate the FSM into an ADL-only domain. The FSM is generated

by successive applications of the progress operator of Bacchus and Kabanza (1998)
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to the TEG. Since they use pure LTL, their finite state machine does not have ac-

cepting states. The accepting condition, then, must be determined by simulating an

infinite repetition of the last state. The use of deterministic automata makes it very

prone to exponential blowup with very simple goals; e.g., ♦(p∧©nq) produces an

FSM that is exponential in n. The authors’ code was unavailable for comparison

with our work. Nevertheless, they report that their technique is no more efficient

than TLPLAN.

Finally, Rintanen (2000) proposes a translation of a subset of LTL into a set of

ADL operators. Their translation does not use automata. As a consequence, their

approach is restricted to TEGs of the form κ ∨ pUq, κ ∨ pRq, and κ ∨©p, where

p and q are propositional literals and κ is a disjunction of literals.

7 Discussion

In this paper we proposed a method to generate plans with TEGs using heuris-

tic search. To this end, we proposed two translation methods that take as input

a planning problem with a TEG and produce a classical planning problem. The

first translation produces domains described only by ADL operators, the second

uses derived predicates. We have implemented both translation methods. Our im-

plementation outputs PDDL problem descriptions, which enables us to use a wide

variety of planners and planning systems. Experimental results with the FF and

FFX planners show excellent performance compared to existing (non-heuristic)

planners for TEGs.

To represent TEGs we used f-LTL, a finite version of LTL. This logic is par-

ticularly well-suited to represent properties of finite plans. Previous approaches

have used LTL, which can only be interpreted for infinite sequences of states. To

interpret a formula over a finite plan, these approaches must interpret a sequence

of states s0s1 · · ·sn−1sn as s0s1 · · ·sn−1snsn · · · . However, for certain LTL formulae,

this interpretation may produce unnatural plans.
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Appendix

Definition 4 (Old−(q)) We define Old−(q) as the set containing all the literals in

Old(q).

Proof for Theorem 1 It follows directly from Lemmas 6 and 7 below.

In the following proofs, if X is a set of temporal formulae, we denote by
∧

X

the conjuction the elements in X .
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Lemma 1 (Analogous to Lemma 4.1 in (Gerth et al., 1995)) If nodes q1 and q2

are split from a node q (in lines 35-48), then the following property holds.

(
∧

Old−(q)∧
∧

New(q)∧β (q)
)

≡
(
∧

Old−(q1)∧
∧

New(q1)∧β (q1)
)

∨
(
∧

Old−(q2)∧
∧

New(q2)∧β (q2)
)

(4)

where β (q) = ©
∧

Next(q) if Next(q) 6= ∅ and True otherwise. Similarly, when

node q is updated to become a new node q′ (in lines 23-34), the following holds

(
∧

Old−(q)∧
∧

New(q)∧β (q)
)

≡
(
∧

Old−(q′)∧
∧

New(q′)∧β (q′)
)

(5)

Proof: Straightforward from properties of f-LTL. �

Following the proof by Gerth et al. (1995), we define an ancestor relation be-

tween nodes R, such that (p,q) ∈ R iff Father(q) = Name(p). We deonete by

R∗ the transitive closure of R. Furthermore, we say a node is rooted if it has no

ancestors; i.e., Father(q) = Name(q).

Lemma 2 (Analogous to Lemma 4.2 by Gerth et al. (1995)) Let p be a rooted

node, and q1, . . . ,qn be such that (p,qi) ∈ R∗. Then, the following holds:
∧

New(p)≡
∨

1≤i≤n

(
∧

∆−(qi)∧β (qi)
)

.

Proof: By induction in the construction using Lemma 1. �

Lemma 3 Let graph Gϕ be generated by the algorithm for formula ϕ . Let R =
{r1, . . . ,rn} be the successors of node p. Moreover let ψ =

∧

Next(p). Then the

graph that results by invoking the algorithm with ψ , Gψ , is isomorphic with the

graph that results from removing every state from Gϕ that is unreachable any node

in R. Furthermore, the isomorphism is such that if it maps q to q′, then ∆(q) =
∆(q′).

Proof: Since nodes in R are direct successors of p, we know that there exists

a common ancestor r′ in G of all nodes in R such that, at the beginning of its

construction, New(r′) is equal to Next(p).
Likewise, when invoking the algorithm with ψ , the starting node, say r′′, will

contain its New field equal to ψ . Without loss of generality, lets choose an execu-

tion of the algorithm in which the conjunction ψ =
∧

Next(p) is broken such that

eventually New = Next(p).
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We start mapping node r′ to r′′. Each time we split a node into two nodes,

we look at Gϕ and map the two successors accordingly. We repeat this process

recursively.

The resulting mapping is effectively an isomorphism, since graph Gψ is con-

structed using the same procedure as the subgraph of Gϕ rooted in r′. �

Lemma 4 If there is an accepting run ρ = q0q1 · · ·qn for σ in Aϕ , and Next(q0) =
ψ , then there is an accepting run for σ1 in Aψ .

Proof: Since q1 is successor of q0, the proof results directly from Lemma 3. �

Lemma 5 If ρ = q0q1 · · ·qn is an accepting run for σ = s0s1 · · ·sn, then σ0 |=
∆−(q0).

Proof: Since ρ is a run, s0 |=
∧

∆−(q0)\{final,¬final}. Since s0 does not contain

temporal formulae, σ0 |=
∧

∆−(q0)\{final,¬final}. Now we have two cases.

• n = 0. Since q0 is final, we know ¬final 6∈ ∆−(q0) (by definition of final

state). Now, whether or not final ∈ ∆−(q0), σ0 |=
∧

∆−(q0).

• n > 0. Since q0 has a successor, then final 6∈ ∆−(q0) (see condition in line 9

in the algorithm). Now, whether or not ¬final ∈ ∆−(q0), σ0 |=
∧

∆−(q0). �

Lemma 6 If there is an accepting run for σ in Aϕ , then σ |= ϕ .

Proof: By induction in the length of σ .

• Base case (σ = s0). Then, there is an initial state q in Aϕ which is also final.

By Lemma 5, σ |=
∧

∆−(q). Since q is final, we have that Next(q) = ∅.
From Lemma 2, we conclude immediately that σ |= ϕ .

• Induction. Suppose ρ = q0q1 . . .qk is an accepting run for σ in Aϕ . Then,

by Lemma 5, σ0 |= ∆−(q0). Moreover, from Lemma 4, there is an accepting

run for σ1 in Aψ , where ψ = Next(q0).

By inductive hypothesis, σ1 |= Next(q0). Therefore, by f-LTL equivalence,

we have that σ |= ∆−(q0)∧©Next(q0). Then, by Lemma 2, we conclude

immediately that σ |= ϕ . �

Lemma 7 If σ |= ϕ , then there is an accepting run for σ in Aϕ .

Proof: By induction in the length of σ .

26



• Base case (|σ |= 1). By Lemma 2, we have that

σ |=
∧

∆−(q)∧β (q), (6)

for some initial state q.

We can conclude the following.

1. Next(q) = ∅, i.e, β (q)≡ true. Otherwise, we would have that σ |=©ξ ,

for some ξ , which is not possible if |σ |= 1.

2. σ |=
∧

∆−(q), which is implied by the condition above and (6).

3. ¬final 6∈ ∆−(q), because |σ |= 1.

From 1. and 3. we conclude that q is a final state. From 2., we conclude that

s0 |=
∧

∆−(q)\{final,¬final}. Hence σ has an accepting run in Aϕ .

• Induction. By Lemma 2, we conclude that σ |=
∧

∆−(q)∧ β (q) for some

initial state q. We have two cases.

– Next(q) = ∅. This implies that σ0 |=
∧

∆−(q). As before, this means

that s0 |=
∧

∆−(q), because
∧

∆−(q) is atemporal. Therefore q can be

the initial state of a run.

Furthermore, since |σ | > 0, σ 6|= final, and therefore final 6∈ ∆−(q).
This implies s0 |= ∆−(q)\{final,¬final}.

Moreover, the algorithm will construct a successor to state q. Let’s

denote this successor by q′. The following holds true:

* ∆−(q′) = ∅, because Next(q) = ∅.

* State q′ is final (by definition of final state).

* State q′ has a transition to itself. The algorithm constructs this

transition in line 6.

All this means that σ has an accepting run in Aϕ , in fact such run is

q(q′)n.

– Next(q) 6= ∅. Again, we have s0 |= ∆−(q)−{final,¬final}. Since, as

before, σ 6|= final, we have a transition from q to a state, say q′. State

q′ was initially invoked with New(q′) = Next(q), so, by Lemma 3 and

the induction hypothesis, we have that any run for σ1 from q′ has an

accepting run in Aψ , with ψ =
∧

Next(q′). Since any path in Aψ has an

isomorphic path in Aϕ , then σ has a run in Aϕ . �
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