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Abstract

We introduce a goal-based framework for representing amgaaing with preference and optional
requirements. Temporally extended goal models are use@poesenting large numbers of alternative
plans by which stakeholder goals can be fulfilled. Stakedrgdceferences are then specified as weighted
rankings over optional high-level characteristics of syghns. Well-studied algorithms and tools for
preference-based planning are appropriately adapted as&tiio search the space of alternative plans
and identify those that best fit the specified preferencess. Wawy, priorities over the high-level desires
of stakeholders can be used to explore solution configuratibat are most suitable for them in given
situations and contexts. We also explore ways by whichnerefe formulae can be written using high-
level structured English and discuss our experiences fromapplication at the health-care domain.

1. Introduction

Requirements are traditionally understood as statemiggitgéscribe conditions over states and events
in the world ([17]). These conditions are assumed to be @édiy the stakeholders. Thus, posing a
requirement statement is a way to imply that the stakehqgidefers states of the world in which the
requirement is satisfied over states in which it is not satisfi

Therefore, requirements can always be seepreferences For instance, assume we are analyzing
the requirements for a meeting scheduler and, regardingrtdeess of, for example, deciding the exact
meeting time and place, we come up with the requirerBgstem to Choose Time and Plag&is means
that a state of the world in which the system has decided the &nd place of the meeting is preferred
from a state of the world in which the system hasn’'t done that state in which the system does not
even exist. From a point of view, this approach to requireiemodeling assumes that stakeholders
envision in an “all-or-nothing” manner in which there is hioig between something being appropriately
fulfilled and the same thing being unfulfilled. Thus, in ouaele, either the system will choose the
time and place or there is no other solution that will satibfy stakeholder.

It is obvious, however, that stakeholder preferences aedyrao absolute. Stakeholders often prefer
states of the world in which something is true over statee@ftorld in whichsomething elses true, the
latter being also desired but to a lesser degree. In thequrewdxample, the requirement f8ystem to
Choose Time and Plags, as we saw, preferred from its negation, but it may alsorbéepred from the
requiremenBecretary to Choose Time and Pladéere may even be more options suclradicipants
Collectively Pick a Time and Place over E-mail Busiest Participant Decides Time and Pladeach
stakeholder may find each of these options attractive tderdiit degree, implying a preference of each
one over each of the others.

Such preferences can also be posed over higher level deditakeholders. The goaknsure
Scheduling Reliabilitpr Keep Secretary Unburdenede examples of such high-level desires. In differ-
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ent situations, different stakeholders may assume thasanere important than the other. Furthermore,
the way by which stakeholders pose their preferences oeérlsgh-level desires influences the choice
of the design that will satisfy these desires. Having theetaty choose the time and place of the meet-
ing is more reliable than having the system to do so, but canasost of burdening the secretary. Thus,
alternative assertions about the relative importance loéduwling reliably over keeping an unburdened
secretary imply alternative designs of the time and platersen process.

While prioritization and decision making in requirementgmeering has been well studied, both
the problem ofmodelingstakeholder priorities and preferences and the use of sudelsitoreason
about alternative designs has not been the focus so far.idrp#iper, we introduce a framework for
both specifying requirements preferences and for using tioe selecting behavioral designs that best
fit the priorities of stakeholders. We begin by building om previous work on goal-oriented variability
modeling and propose a temporally extended goal-modedinguage which allows representation of
a great number of alternative system behaviors that canl fillé same stakeholder goal. We then
present a formal language for specifying preferences. dinguage is based on the construction of desire
formulae in Linear Temporal Logic (LTL) and their subsequese in weighted orderings depending on
their relative importance. Then, we present a tool for selgdehavioral designs that best satisfy the
specified preferences.

We organize our presentation as follows. In Section 2 weudiscelated work. Section 3 provides
a motivating example. Sections 4, 5 and 6 describe our naglédrmalism and its semantics. Then,
in Section 7, we describe the preferences language andnitangies and in Section 8 we show how
reasoning about preferences is possible. In Section 9 wedera modeling and reasoning alternative to
behavioral analysis that is independent of time. We disbossthe tools for performing both types of
analysis (Section 10) are implemented and how they perfémrdection 11 we show how preferences
can be generated through higher level preference elmitaéichniques. We provide our early feasibility
evidence in Section 12 and conclude in Section 13.

2. Related Work and Background

The need for a view of requirements that explicitly takeguades, preferences and optionality into
account has recently been illustrated by Jureta et al. intfk®ugh reference to the nature of the lin-
guistic matter that serves the communication between lstddters and analysts. The traditional notion
of requirements prioritization originates exactly frone thbservation that not all requirements have the
same importance for all stakeholders. An elementary reqents prioritization approach, for example,
is to divide requirements into “must-haves” and “nice-to4bs”, whereby the former are understood as
more important, urgent or otherwise of higher priority (43]). In addition to this common qualitative
approach, more elaborate quantitative prioritizatiomiegues, such as the Analytic Hierarchy Process
([20, 2]) or multi-criteria preference analysis methodk5{) have also been proposed and successfully
used in practice. The use of multi-attribute decision te8oapproaches has also been explored, e.g. in
[21].

The modeling and reasoning side of prioritization, howghas not received as much attention in
requirements engineering. Instead, researchers havéyrbesin focusing on modeling requirements
variability (e.g. [14, 8, 10, 32]), without including in tliescope the problem of selecting requirements
variants according to given stakeholder priorities. Thatid number of efforts that do attempt reason-
ing about variability subject to given criteria focus, in shoases, on identifying combinations of coarse



grained features of the system-to-be rather than beh&details that derive from the stakeholder goals.
In [36], for instance, the use of Bayesian belief networkscipturing the impact of low level feature-
model based configuration decisions is proposed. This apprdoes not take into account behavioral
properties of potential solutions nor does it introduce #hoeé for searching for solutions given desired
values in the Bayesian network. In [5], on the other hanaaimanipulation of feature models is pro-
posed through staged variability binding. Closer to ouppsgal, a method for scenario generation from
generic use-cases, proposed in [31], introduces a conistasiguage for selecting scenario instances.
However, that language is a constraint language ratheralpaaference specification one and it is gen-
erally geared towards solution-oriented use-cases rétherstakeholder goals and partial satisfaction
thereof.

The idea of specifying criteria for selecting among a largace of designs has also been studied
in the product configuratiorcommunity. In product configuration technologies ([28] éosurvey) the
typical solution is to construct a (generic) product modéhva great number of degrees of freedom
([27]), accompany it by an infrastructure for describingiuiddual requirements and constraints, and
introduce an inference engine to search for configuratibas gatisfy both the generic and individual
model (e.g. [9]). Preferences over predefined low-leveisiea points ([18]) and evaluation based on
impact of decisions to high level qualities of the result @¥]) have been proposed. Along the same
lines, Zhang et al. propose the use of Bayesian belief n&sdor understanding the impact of low level
feature-model based configuration decisions ([36]). Ndn@ese proposals supports the definition of
constraints over temporal characteristics of admissiklealior; something that we introduce in this
paper at a stakeholder goal level.

Goal models ([6, 34]) have been found to be effective in cgglgicapturing large numbers of alterna-
tive sets of low-level tasks, operations, and configuratibiat can fulfill stakeholder goals. The capture
of a large space of such alternatives has been shown to b fegefxploring alternative designs during
the analysis process ([25]), for customizing designs tafitidual user characteristics ([15]), or even
for coping with the vast space of configurations that commesktbp applications offer to users ([22]).
An interesting feature of goal variability analysis is theli#y to assess the impact of each concrete goal
alternative to the satisfaction of more abstract goalsdtakieholders pose. Thus, in [13], Giorgini et al.
propose a formal approach that allows bottom-up assesshsatisfaction of high-level goals based on
evidence about the fulfillment of low-level operational sné/e will discuss this proposal in more detail
below. In addition to this bottom-up framework, top-dowmpagation of satisfaction values has also
been introduced in [29]. In that work, an algorithm for déeglsatisfaction configurations of low level
goals given desired satisfaction values for high-levelg@agiven. Although our motivation is similar,
our approach introduces some important possibilitieduding that, again, we consider a language for
specifying preferences versus hard constraints and thébeus on behaviors, i.e. sequences of goals
and tasks, rather than plain sets thereof.

3. Motivating Example

To see how the need to model goal variability and user pneée®over alternatives emerges during
early requirements elicitation processes, we considexample from the health-care domain, where
we tried the ideas discussed in this paper. The context adpécation is a geriatric assessment unit,
where elderly with a variety of health issues are hosp#alior a period of time. The primary objective
of the application is to increase the efficiency of the nigsntivities by appropriately assisting nurses
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with their assigned tasks. In our example, we analyze thewasre a patient needs to be attended to by
a nurse due to an event. For instance, the patient may bg tyiget up even though she is not allowed
to due to her health condition, or she may have called theerhasself to ask a question, or to request
additional medicine. The nurse needs to be notified sometitver through a broadcasted notification
using the speakers of the unit, or through earphones he wdesson duty. Then, the nurse’s reaction
needs to be determined. Normally, he has to visit the p&iestm, but if the patient only wants to ask
a question or request permission for something, the visit beareplaced by establishing a voice link
between patient and nurse. For example, the nurse may h@ncpar mobile set with microphone and
earphones, or there may be a device at the nursing statiach verconveniently located in the unit. The
nurses think that this would increase unnecessary distagoiaom some patients, but they acknowledge
it would also increase their productivity, and save thenmfiextra walking effort.

All these are alternative behavioral designs that need teviaduated subject to criteria posed by
individual stakeholder and context instances. Differartajric assessment units, different stakeholders
in the same unit or even the same stakeholders in differemstiand situations, may have different
priorities over high-level characteristics of the desisadution. For example, in a particular unit the
nurses may state thgthey] don't like the idea of talking to the patient remogelbut if they had to,
they would choose to do so at the nursing stationThe managers of the unit, on the other hand,
will use a more high-level languagéwe should definitely avoid anything that would make the atti
unhappy, but it would also be nice to increase nurses’ pradilg somehow.” How can we translate
these statements into a selection of behavioral desigh®dsa satisfy them? In this paper we attempt
an approach to this problem. In the following section, wet$tg looking at the goal modeling language
that can help us represent the various alternatives.

4. Goal Models

4.1. Overview

The goal modeling language we will use adopts the basicsisfieg goal modeling notations (par-
ticularly i* - [34]) and is extended in order to accommodate quantitanadysis of goal satisfaction
(adopting [13]), temporal constraints (similar to [12] dB8]) as well as variables describing the envi-
ronment. More specifically, our goal model consists of:

1. a set ohard-goalsH,

2. a set okoft-goalsL,

3. a set otasksT’,

4. a set odomain concept§.

5. a set odomain predicate$:, which represent relations over domain concepts.

Goals are states of affairs or conditions that one or morersadf interest would like to achieve
([35]). Hard-goals are goals for which there is a clear-citedon to decide whether they are satisfied
or not. For soft-goals, instead, such a criterion does nist;esoft-goals are satisfied to a “good enough”
degree, depending on subjective judgment and based oantlevidence. Thusjave Nurse Notifiets
an example of a hard-goal, whiléappy Patients a typical soft-goal. Tasks, on the other hand, describe
particular activity that the actors perform in order to flifineir goals, e.g.Send Audio Notificatian
We use thesatisfaction predicates issgl(andisperformed(t)to denote that a hard-goalor a task
t has been satisfied or performed, respectively. For examprformedSend Audio Notification’)



means that the taskend Audio Notificatiohas been performed. Domain facts express ways by which
domain concepts, such asirse nursingStationenglish printer, relate to each other at a particular
time instance and while actors are performing tasks to ffttidir goals. Examples of domain facts are
isAt(nurse, nursingStationsAvailable(nursingStation, printegndspeaks(patient, englishThe truth
value of domain facts may or may not change due to the perfucenaf tasks.

Using the domain facts together with 0-ary predicates tkatdbe tasks and goals we can construct
simple first-order formulae, which we will catbndition formulae
Definition 4.1 (Condition Formula - CF) A condition formulag is drawn from a sef for which:
1. RCK
2. if g € H thenissat(gE K
3. if t € T thenisperformed(tF K
4.if ¢, p1, ¢ € K then so do=¢, o1 A ¢o, ¢1 V ¢ps.

A CF is understood in the context of a course of activities #as at fulfilling a root goal. Predicates
that represent tasks (respectively goals/domain factsyae if and only if the respective task (goal/fact)
has been performed (is satisfied/is true) at a given timamast, while the actor is active in order to fulfill
the root goal. For examplessa('Nurse Notified’) A isAt(nurse, nursingStatiomg true at a given point
in time if the goalNurse Notifiechas been satisfied and the nurse is at the nursing statioatatdimt.

Figure 1 shows how the above are represented diagramnhati€ath oval-shaped element represents
a goal and each cloud-shaped element represents a softgo@gonal elements represent tasks. There
are also two types of rectangle-shaped elements: the comélements (CE) and the effect elements
(EE), each containing a CF and a list of effects, respegtiveurther, to be concise in the rest of the
paper, we have annotated each task in Figure 1 with a litéthkedform¢;. In the rest of the paper, we
will refer to each task using the corresponding literal. J gl refers to the taslurse Skips Visiand
ty to Turn Request Off Also, to ease our presentation, reference to goals in Qi 4l other types
of formulas we will introduce) is done through quoting theeixinformal title of the goal as seen in
the model, instead of introducing special types of idensfieor example, we usisperformedSystem
Notifies through Speakers’) instead of eigperformed(systemNotifiesThroughSpeakéisglly, in the
Figure, annotations have been added to distinguish betdi&erent types of elements, although these
are easily distinguished by the type of links by which theprgect to the rest of the graph, as it will

become apparent below. To further ease our presentationillvalse usep.(o) to denote the list of
domain factg,. (o) contained in EEe.

Hard-goals and tasks form a decomposition tree and togetitierall EEs and some CEs form the
hard-goal subgraph Soft-goals, on the other hand, as well as the rest of the €&we goals and
some tasks, form their own directed aaclclic subgraph, theoft-goal subgraphThe two subgraphs
are connected through contribution links that originaterftasks and goals of the hard-goal graph and
target soft-goals of the soft-goal graph. These tasks aats goe also considered to be parts of the
soft-goal graph. The two sub-graphs have distinct funstionour framework. The hard-goal graph
allows us to represent alternative ways by which a root lgaal-can be satisfied (e.g. different ways
to have theNurse Notifiedl whereas the soft-goal graph allows us to assess how dachadive affects
high-level quality goals of the stakeholders (e.g. howeddht ways to have thidurse Notifiedaffect
the soft-goaPatient’s Privacy.
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4.2. The hard-goal subgraph

We now present the hard-goal graph in more detail. Its baokli®an AND/OR decomposition tree
which consists exclusively of hard-goals and tasks. Leadlleodes are only tasks, and tasks can only
be leaf level nodes of the hard-goal graph. The decompaogie represents alternative ways by which
its root g, can be satisfied. When a goais AND-decomposed into goals or tasks . . ., g, theng
is satisfied iffg; are satisfied (performed in the case of tasks) foi.alf g is OR-decomposed, then
is satisfied iff there exists ansuch thaty; is satisfied (performed if it is a task). Thus, any AND/OR
decomposition tree rooted at implies a set of subsets @f that are capable of satisfying the root goal
g,. We call thesalternativedor g,..

Two additional types of links are associated with the havdlggraph. The first one is tipgecedence
constraint linkthat is applied in three ways:

At the leaf level, ¢ 25 ¢, whereg a CF and: a task, means thatcan be preformed only if is true



at the time when performance ois attempted.
Between AND-subgoalsg; 2= ¢,, means that no task that is partgfs subtree can be performed
unless a set of tasks that constitutes an alternative foas already been performed.

The second type of links, theffect linkst e and, respectively ned, e, are applied from a task
t to an EEe and imply that completion of performance of the former infliacauses all factg. (o)
contained in the latter to become true (respectively, Jalse

4.3. The Soft-goal subgraph

Soft-goals, as well as some CFs, some hard-goals and soksddas their own sub-graph, theoft-
goal subgraph Each such elemeitthat participates in the soft-goal graph is assigned twaakbes:
valS(l) which represents the degree by which we believe the elersesutisfied andalD(l) which
represents the degree by which we believe the element isdleAs we will see, the domain of values
of each such variable depends on the type of element: CFd;duals and tasks can not be partially
satisfied and are therefore treated differently from sotilg.

The elements of the soft-goal graph are exclusively cormaettirough weighted contribution links.
The contribution links are drawn between soft-goals, omfrieard-goals, tasks or CFs to soft-goals.
Thus, CFs, hard-goals and tasks can only be sources in thgaafgraph. The links show how the
satisfaction and denial evidence of their source can infleeur knowledge of satisfaction or denial of
its destination. In general, the domain of satisfaction éewlal variables as well as the type of contri-
bution links depend on the representation granularity wehwo achieve. In this thesis, we follow the
Giorgini et al. modeling and evaluation framework ([13])ialinoffers two representation alternatives: a
qualitativeand aquantitativeone. Below, we detail the specific modeling rules for each elt ag their
intuitive semantics.

4.3.1 Qualitative Modeling Framework

In qualitative modeling of soft-goal satisfaction proptga, the variablealS(-) (respectivelyalD(+))
take values in the domaifZ, P, N}, which meanFull satisfaction (resp. denialRartial satisfaction
(resp. denial) oNo evidence of satisfaction (resp. denial) at all, respebtivit is assumed that these
three values are totally ordered? > P > N. For, CFs, hard-goals and tasks, for which partial
satisfaction/performance is not defined, the domain igictst to the valueg” and N. Thus, ifvalS
(‘Avoid Nurse Disturbance’) equal®, this means that the go&lvoid Nurse Disturbances partially
satisfied. IfvalD(‘Happy Patient’) equalé’, this means that the respective soft-goal is known to bg full
denied. However there cannot be such thinga$ rm (‘Nurse Notified'equalsP, as the goaNurse
Notifiedis either known to be fully satisfied or not; it cannot be “abticatisfied or satisfied “to some
extend”.

Furthermore, there are eight types of contribution linksveen two elements and/, of the soft-goal
graph, seen in Table 1. In the Table, the subscipénd D, represent whether it is the satisfaction or
the denial ofl; that is influencing,, respectively. The sign of the propagation shows whethetirti
implies contribution to the satisfaction or the denialgfdepending on whether it is positive/ + +
or negative—/ — — respectively. The number of signs, one/(-) versus two { + / — —), show weak
and strong influence, respectively. A qualitative versibthe goal model of Figure 1 is givenin 2. In

the figure,Talked with Patients;Patient Feels Cared Formeans that satisfaction of the goal to have



Weak Contributions Strong Contributions
[FERERYS Apacy
L —> 1y L — 1y
I =2 1, L T2,
L =1y L —31

Table 1. Qualitative Propagation Links

the nurse talk somehow with the patient partially helps tsgathe goal to have patients feel cared

for. Avoid Nurse Disturbance®Happy Nursemeans that denial of the goal to avoid the nurses being
disturbed strongly hurts the goal to keep them happy. Alesehthe subscript or D implies that both

possibilities are in effect. Thug, — I, implies bothl; —=5 I, andl; =2 I,.
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Figure 2. A goal model with qualitative labels
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The satisfaction and denial value of a soft-goal depends@satisfaction and denial values of all soft-
goal graph elements that contribute to that goal throughlka IMore specifically, given a contribution
link from element; to soft-goal,, valS(l,) andval D(ly) are determined by the correspondingdS(l;)
andvalD(l;) values as well as the type of the contribution link, as shawfable 2. We will later discuss
the case of multiple contribution links targeting the sawié-goal.



Contribution valS(ly) valD(ly)

I =5 1, min{valS(l,), P} N

I S, valS(ly) N

I =5 1y N min{valS(ly), P}
I, —3 1, N valS(ly)

I =2 1, N min{valD(l,), P}
I 2, N valD(l)

I —2 1y min{valD(ly), P} N
i valD(ly) N

Table 2. Qualitative Contribution Links

4.3.2 Quantitative Modeling Framework

The quantitative framework allows more fine-grained analg$ satisfaction/denial propagation by us-
ing real numbers instead of labéls P andF'. Thus, the domain of the variablesl/S(-) andvalD(-) is

the set of real numbers in the intery@J 1]. Again, however, specifically for CFs, hard-goals and tasks
the domain is restricted to the valuesand1. Thus if valD(‘Happy Patient’) equals 0.4, the number
implies the degree by which the respective soft-goal is kmtawbe denied. Again, there cannot be such
thing as e.gvalS(‘Nurse Notified)=0.7, as the go&lurse Notifieds either known to be fully satisfied
or not; thereforevalS("Nurse Notified’) can be either 1 or O.

Contributions of Satisfaction Contributions of Denia
Contributions to Satisfaction I =50, I 250,
Contributions to Denia Iy & ly Iy Py Iy

Table 3. Quantitative Propagation Links

The contribution links we use when modeling for quanti@tanalysis can be seen in Table 3. In-
tuitively, 5, (respectively/, = l5), denotes that the satisfaction (respectively, denial) @

understood to be equal tgs satisfaction factored by. Similarly, [ 2y I (respectively/; it l2),
denotes that the denial (respectively, satisfaction) isf calculated as a proportion bfs denial. Again,
the value ofvalS(ly) andval D(ly), depending on the respective value$,aind the type of contribution
link from [, to /5, are decided based on rules which are shown in Table 4. Nattesthile [13] discusses
several possibilities for interpreting quantitative prgption, Table 4 reflects the probabilistic approach.
More details on other interpretations can be found in [13]aify, as in the qualitative case, we omit the
subscriptS or D to denote coexistence of links of both satisfaction andalefihus,l; RNy implies
bothl,; e I, andl; kit l5.

While the quantitative framework is more expressive analalfine-grained expression of how goals
influence each other’s satisfaction, it appears to be legslpothan the qualitative one, in that it poses
the difficulty of assessing the contribution weights. Intgetll however we will see that we may use
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Contribution|  valS(ls) valD(ly)
I i Iy w x valS(ly)
L5, w x valS(ly)
L2, w x valD(1,)
L5, | wxvalD(l)

Table 4. Quantitative Contribution Links

the flexibility of the quantitative approach without compriging usability, through the construction of
mappings from qualitative characterizations of satiséecand contribution to numerical values. Thus,
in our study, emphasis has been given to the quantitatiyeagtion framework as it is more powerful
and technically challenging.

5. Label Propagation

The purpose of introducing the propagation rules of Tables®4, apart from providing an intuition
of what satisfaction/denial contribution means, is thatliws us to reason about satisfaction or denial
of certain soft-goals in our soft-goal subgraph based odezde that we have about the satisfaction or
denial of the others. In [13], Giorgini et al. introduce swrhalgorithm, called th&abel propagation
(LP) algorithm. Starting from initial satisfaction and denialwes for goals that are sources to the graph,
the LP algorithm iterates over the propagation rules untiMergence for the satisfaction/denial degrees
of all goals is reached. At each iteration, when a soft-geal iarget of many contribution links, from
all potential satisfaction and denial values (including éxisting ones), the maximum one (by absolute
value) is selected to be the new value. We sketch this algorih Figure 4, which has been adapted
from [13].

We introduce an adapted version of the label propagatiaridihgn presented in [13], which assumes
that the soft-goals graphs do not contain directed cycles.id&ntify our algorithm as ALP (LP for
Acyclic goal models). The additional acyclicity assumptiallows us to change the original Label
Propagation algorithm in a way that guarantees convergeitb@ one iteration. To achieve this, for
each goal node we calculate depth that is the maximum path length for reaching the node froyn an
of the sources of the graphs (which are all hard-goals, @s&€&s in our case). In Figure 3 the soft-goal
subgraph of the goal graph of Figure 1 is shown, where eacé isahnotated with a number indicating
its depth. Thug; has a value of 3, which is the length of the path franor ¢,.

Hence the ALP algorithm includes three changes, comparéuetaP. Firstly the label updates are
(partially) ordered by maximum path length ascending. Tlhushe Figure 3/, and/, are evaluated
first (in any order)/; next, and last, andl;, again the last two in any order. Secondly, the update does
not (need to) take into account the current label of each .n®terefore, thirdly, only one iteration is
needed.

In Figure 5, the pseudocode describing the algorithm isrginext to the original one presented in
[13]. In the Figurewithdepth(G, d) returns a set of nodes whose depth eqdals NU LL if no nodes
of such depth exist. Alsd,abel denotes a pair of satisfaction and denial valuebgbelSet C'is a set
of such Labels(';, denotes the Label i’ that is associated with goal andccmdS; and candDg, are
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Figure 3. Maximum Path Lenght

arrays of candidate satisfaction and denial values, réispg for goalg.

6. Goal Semantics in Situation Calculus

While we provided some rules for understanding and calimgairopagation of satisfaction of soft-
goals, we still need to provide semantics for the combined gee, which includes both the hard-goal
subgraph where a family of sequences of possible leaf lagkbtis modeled and the hard-goal subgraph
which models how the performance of tasks influences thefaation of soft-goals. Thus, we appeal
to the situation calculus to define the semantics of our goajuage, which enables us to easily exploit
existing algorithms and tools for preference-based plajnmor the purpose of evaluating goal-level
preferences.

6.1. Situation Calculus

The situation calculus is a logical language for specifyamgl reasoning about dynamical systems
[26]. In the situation calculus, th&tateof the world is expressed in terms of functions and relations
(fluents) relativized to a particulaituations, e.g., f(#, s). A situations is ahistory of the primitive
actionsg € A, performed from a distinguished initial situatiSp The functiondo(a, s) maps a situation
and an action into a new situation thus inducing a tree oésitns rooted ir5y. The predicat®oss(,s)
is true if actiona is possible in situation.

A basic action theory, comprises the domain-independamidational axioms of the situation cal-
culus, successor state axioms, precondition axioms, axaescribing the intial state of the system,
unique names axioms for actions and domain closure axiomactions. D may also include some
state constraints, such as ramification axioms or defiratiamioms for fluents. Given a goal formula
(G, aplanin the situation calculus is a sequence of acti@ns o, as . . ., a,, such that for the situation
s = do(ay, .. .,do(a1,Sy)), G holds ins and the precondition axioms are satisfied througlaout
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LabelSet LabelGraph(GoalGrapl, LabelSet/nitial)

Current = Initial;
do

Old := Current,;

foreachg in G

Current, := UpdateLabel(g, Old);

until (Current == Old);
returnCurrent;

Label UpdateLabel(SoftGoal LabelSetld)
for each node; that contributes tg
candS; = Apply_Rules_Sat(g, g;, Old);
candD,, = Apply_Rulgs_Den(g, 9i, Old);
return(maz{maz;(candSy), Oldg.val S},
maz{max;(candDy,), Old,.valD})

Figure 4. Label Propagation

LabelSet LabePropagation(GoalGrapH)

LabelSet C = NULL;
LabelSet Res = NULL;

int depth :=1;
C := withdepth(G, depth);
repeat

for eachg in C
Cy = UpdateLabel(g);
Res := ResU
depth = depth+1;
C := withdepth(G, depth);
until (C' == NULL)
returnRes;

Label UpdateLabel(SoftGoa)

for each nodg; that contributes tg
candS; = Apply_Rules_Sat(g, g;);
candD; = Applly_Rules_Den(g,‘gi);

return(mazx;(candS;), max;(candD},))

Figure 5. Adapted Label Propagation

The details ofD are described in [26]. In the section that follows, we show hotranslate our goal

model into a basic action theor#.

6.2. Translating the Goal Model

We now present the semantics of our visual goal language gt ®f translation rules. Similar
translation proposals are introduced in [12] and [33], budifferent purposes; a distinguishing feature
of our approach is the consideration of soft-goals as pattefranslation. We first establish a mapping
from the primitives of the goal based graphical languagédse of the situation calculus:

6.2.1 Primitives

e For every task that appears in the goal model introduce an actiprand a relational fluent
performed(t,s)n the situation calculus domain theory.

e For every goal introduce an AND/OR formulg,(s) of predicates of the typperformed(t,s)
The formula is constructed as follows. Starting frgimeach goal is recursively replaced by the
conjunction or disjunction of its children, depending onettterg is AND or OR decomposed. If
these subgoals are tasks, then the predipat®rmed(t,s)s used and the recursion terminates.

e For every domain predicateg(o) introduce a relational fluent,(z, s), wherez are individuals

representing domain concejts

e Use individuals (constants), r,,r; andr,, to identify a task, a goalg, a soft-goal and a CE
e that are part of the soft-goals graph. Also, &t Py, P;, and Py respectively be the set of all



such individuals and’ their union. Then define fluentg(r, s, w) andwv,(r, s, w), wherer is an
individual in P, i.e. represents a node in the soft-goal graph. Thus, theset§l represent respec-
tively the satisfaction and denial degreeof soft-goal graph node in situations. Obviously, the
domain ofw depends on the framework of use. Thus:

Quantitative: | [0,1]
Qualitative: | {N,P,R}

Notice that CEs, tasks and hard-goals also have a sat@faalue, albeit with a restriction, as we
will see later.

e Introduce the fluentink(ry, rs, y, w), wherer; isin P, ry isin P, andy € {“S+",“S-",“"D+","D-" }.
The fluent represents the weightof the contribution link originating from, targetingr,, while
y denotes the type of the link. Again the domainoflepends on the framework we are using:

Quantitative: | (0,1]
Qualitative: | {some, full

For example the contribution link 03ny I, producesink(ry, , r,, D+,0.3). On the other hand the

contribution linkl; =2 1, producesink(ry,, ry,, D+, full) andl; —> I, giveslink(ry, , ry,, S- some).

e For every CRp appearing in a CE, produce its translatiprnto the situation calculus ontology
by translating each task predicateyoal g and domain predicatg o) mentioned in the CF to the
corresponding fluergerformed(t,s)formulay,(s), and fluentf, (z, s).

6.2.2 Successor State Axioms

We can now construct the successor state, preconditiomérald situation axioms based on the follow-
ing rules. Note thab denotes the implication connective.

e Recall that effect links connect tasks with effect eleméRess), the latter being lists of effects,

I.e. sole domain predicates. For every such effectdiik’s ¢ from a task to an EEe and every
effectp.(0) contained in that introduce a successor state axiom of the type:

Poss(a,s) A (a = oy) D [, (Z,do(a, s)) (1)

Dually, for every negative effect link 2 ¢ and every effecp.(0) contained in that introduce
a successor state axiom of the type:

Poss(a, s) A (a = o) D =fp (Z,do(a, s)) (2)

In both axiomsf,. (Z, s) is the situation calculus formula that results from thestation ofp. ().

Intuitively, the axioms ensure that relationships appeam effect elements will be enabled (or
disabled accordingly) when any of the tasks that points ésdlelements is performed, provided
that the appropriate conditions are satisfied at that time.
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For each of the fluenggerformed(t,s)ntroduced above, construct a successor state axiom as fol-
lows:

Poss(a, s) A (a = oy) D performed(t,s) (3)

Thus, the fluenperformed(t,s)will become true once the action associated with the taisk
performed.

6.2.3 Ramification Axioms

Ramification axioms describe consequences of direct sffdotour context, the existence of indirect

effects in situation calculus reflects the effect of the pemiance of low level tasks to the satisfaction and
denial of soft-goals, which may, in turn, influence the $atison or denial of other soft-goals. Thus,

the axioms are written in accordance to the structure ofdfftegoals graph, in a way that performance
of our adapted label propagation algorithm is ensured. Thus

For every individual, € Pr, r, € P; andr. € Pg introduce a pair of axioms that associates
the value ofvs(r, s, w), vs(re, s, w), anduvg(r,, s, w) with formulae grounded on fluents of type
performedy(, s). Depending on whether we are working with the quantitativgualitative frame-
work we respectively have:

Quantitative Qualitative
performed(t,sp vs(r,s,1) | performed(t,sp vs(r, s, F)  (4)
—performed(t,sp vs(rs, s,0) | —performed(t,sp vs(ry, s, N) (5)

©g(s) D vs(ry, s, 1) ©y(s) D vs(ry, s, F) (6)
—0,(8) D vs(ry, 5,0) —0g(5) D vs(rg, s, N) (7)
©e(8) D vg(re, s, 1) 0e(8) D vg(re, s, F) (8)
“0e(8) D vg(Te, 8,0) “0e(8) D vg(Te, 5, N) (9)

Wherey. is the situation calculus translation of the CF contained gondition element. The
above formulas set the satisfaction degree of soft-gog@lgn@des which are tasks, goals or CFs.
Observe that we prevent partial satisfaction to such nodes.

For every soft-goal in the goal model, lefzs, and Rp_ be the sets of soft-goal graph nodes

k; € Rs, andm; € Rp_ for which k; g andm; ==y respectively, where is the respective
weight.

Let zs, be an abbreviation fozf;i, zgi ... for ki, ks, ... ki,... € Rg,. Similarly, zp_is an
abbreviation forz}}", 2>, ... for my,ms, ..., m;,... € Rp_. Then construct the successor state
axiom:

{/\kieRs+ link(rkiv Tl “S+” ’ wki) ANCA (Tkw S, yki) A rule(zg’;, W, ykz)}
A {/\ijRD, link(rmwrlv “D-" 7wmj) A Ud(,rmj? S, ymj) A Tule(zgi ) wmj’ymj>}

A max(Zmaz, 28, ,2ZD_) O Us(T1, S, Zmaz) (10)
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Dually, for every soft-goal in the goal model, lefzs_ and R, be the sets of soft-goal graph
nodesk; andm,; for which k; iy andm; ikia [, respectively, where is the respective weight.

Let zs_ be an abbreviation fotf' , 25, ... for ky,ky... k;, ... € Rg . Similarly zp,, is an
abbreviation forz,’:’}i, zgﬁ, ...formy,my,...,m;,... € Rp,. Then construct the successor state
axiom:

{/\kieRs, link(ry,,r, “S-", wg,) A vs(Tr,, S, Yk, ) N rule(zéﬂ,wki, Yk,) }
A {/\mjeBD+ Link(rp,, 11, “D+” Wi, ) A Va5 8, Ymy) A rule(2] W,y Y, ) }
A max(Zmaz,2s_, 2D, ) O Va(T1, S, Zmaz) (10)

Also, maz(y, x1,xe, ..., x,) holds iff y equals the maximum of,, z,,...,z,. Furthermore,
rule(z,w,y) is defined as follows depending on which framework we areidenisg:

Quantitative: rule(z,w,y) = (z = w - y)
Qualitative: The definition ofrule(z, w, y) is based on the following table:

w | z
some (+/-) | min(y,P)
full (++/--) |y

These axioms ensure that the satisfaction labels of thesswf the soft-goals graph are propa-
gated according to the propagation rules we introducedeeaNote, however, that the syntactic
features of ramification axioms can cause an issue callechthéication problemwhereby un-
intended models of the ramification axioms are satisfied. \Wedigcuss this problem below
and show that the structure of our action theory is such, tieltes it amenable to a syntactic
manipulation that can lift the ramification problem.

6.2.4 Action Precondition Axioms

e For every task in the goal model construct a precondition axiom as follows&st construct
formula ..., as follows. Consider the path frotrto the root goal. LetGpr be the set of all
nodesygo in the path which are OR-decomposed, including the root @nmhrent. For each such
gor consider its children that do not belong to the path friotm the root goal. Let7,,,,, be the
set of all such children of ajor € Gor. Finally letT, be the set of all leaf level tasks that are
successors of a goal The formulap,,,, is constructed as follows:

veomp= [\ (\/ performed(t,s)

VgEGcomp VtETy

Observe that does not occur in any alternative together with any of thest@s7,, Vg € Geomp-
Excluding consideration aof together with any of these tasks ensures that the plans aienali
with respect the goal tree, or, in other words, no subsetefdkks included in the plan satisfies
the root goal. Thusp.,, will be true if some of the competing tasks has already be€iomeed
makingt redundant.

Then consider the sét,,. of all hard-goals; such thay; LiAN gj, whereg; is any ancestor afin
the hard-goals subgraph. The precondition axion ferthe following:
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Poss(ar,s) = (- N\ @ul) A\ @(9) A (~Peomp)  (12)

Vgi€EGpre p(s)eP

whered is the set of CF, for whichp 25 ¢.

6.2.5 Initial Situation

For the initial situationDg,, every predicate of typperformed(, Sy) is set to false and every fluent of
type f,(Z, Sp) is set according to information given in the domain alyga). Moreover, every fluent of
typewvs(r, s,y) andvy(r, s, y) is initialized depending on the framework of consideration

Quantitative: | vs(r, S, 0), va(r, So,0)
Qualitative: | vs(r, So, N), v4(r, So, N)

6.2.6 Plans

If D is the action theory derived from the goal model andhe formula representing the root gaal
then we will use the termequirements plaor simplyplanto refer to a plan foD that achieves,.

6.3. On the Ramification Problem

The ramification problem arises from the syntactic charesttes of ramification axioms when com-
pared to their intended meaning. Consider the simple exawipFigure 6. The ramification axioms
associated with the satisfaction values of gealre:

link(ry,,r,, “S+",0.6) A vg(ry,, S, Y, ) A rule(z,, 0.6, v, )
A max(zmaxa Zt2) D Vs (Thv S, Zmax)

For goall, the corresponding axiom is the following:

link(ry, 11, “S+",0.5) A vg(rey, S, yp, ) A rule(zy,, 0.5, y4,)
A link(ry,, iy, “S+7,0.9) A vg(ry,, s,y1,) A rule(z,,0.9,y;,)
A max(zmaxv Zt1s le) D Vs (lea S, Zmaa:)

/ 0.9 S+

Figure 6. Simple Ramification Example
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Assume now that(r,, s, 1) andug(ry,, s, 1), due to the performance of tasksand¢,. The obvious
indirect effect to soft-goal satisfaction would bgr,,, s, 0.5) andvg(r,, s, 0.54). But the way our rami-
fication axioms are expressed may as well imply thQéat;, , s, 0.6), —vs(ry,, s,0.7) and—wg(ry,, s, 0.56).
Arguably the latter is not very useful for understanding $hésfaction value of,. Hence, we need to
find a way to prevent our system of axioms from being satisfieshbdels (truth assignments) which do
not completely calculate the satisfaction and denial \&abfeall goals. For this to be true, the implica-
tion connective D) of the ramification axioms needs to be treated@itional[24], in a sense that the
right-hand side of the implication connective is underdtae defined in terms and only in terms of the
left-hand side.

It has been shown in [24] that if the action theory in situatbalculus is asolitary stratified theory
then it can be re-written in a form that does not imply such ami&d models. A solitary stratified theory
has the following characteristics:

Definition 6.1 SupposeD is a theory in the language of the situation calculus with dionfluents,L.
ThenD is a solitary stratified theory with stratificatiob(, Ds, ..., D,) and partition’,, Lo, ..., L, if

e fori =1,...,n, L;isthe setof fluent$; that are defined in stratum, andZ,UL,U, .. .UL, = L

e Disthe unionD, U DU, ...UD,, of sets of axiomd); where for each stratun); is solitary with
respect taZ;, that is eacly; can be written as the unioM; < —£; U &; < L;), where:

1. £, is the set of fluent$;, such thaf—| F; is defined inD;.

2. M; < =L, is a set of formulae of the form\(; > —F}), at most one for each flueat € £;,
where each/; is a formula containing no fluents drawn frofy, ... U £,,.

3. & < L, is a set of formulae of the formE; D F;), at most one for each fluet, € L,,
where eaclt; is a formula containing no fluents drawn frofy, ... U £,,.

We will now show that our translation rules always provideoétary stratified theory in situation
calculus. Recall that in our goal grapglepthof a node is the length of the longest path from a source to
that node. From the set of soft-godlslet L; C L be the subset with depth Thus, L, is the set of the
sources (tasks, hard goals, CEs). For 1, L; are soft-goals. Then the strata are shown in Table 5 and
the corresponding partitions in Table 6.

D, | Successor state axioms of type (1) and (2)

D, | Successor state axioms of type (3)

D5 | Ramification axioms of types (4)-(9)

D, | Ramification axioms of types (10) and (11) for soft-goalg.in
D5 | Ramification axioms of types (10) and (11) for soft-goal€.én

D; | Ramification axioms of types (10) and (11) for soft-goalg.jn;

Table 5. The stratified theory.

Theorem 6.1 The theoryD = D;UD,U. . .UD,, of Table 5 is stratified with stratificatiofD;, D, ..., D,,):
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‘Cl fp(fv S)

Lo | performed(, s)

L3 | vs(r, -, s), wherer is a task or hard-goal

Ly | vs(r, -, s), va(r, -, s) wherer is a soft-goal of depth 1
Ls | vs(r, -, s), va(r, -, s) wherer is a soft-goal of depth 2

L; | vs(r, -, s), vq(r, -, s) wherer is a soft-goal of depth — 3

Table 6. The partition.

Proof. To prove this we will show how the stratification of Table 5 quias with the definition.
e Each set of fluentg; is defined in stratun®;, respectively, as seen on Table 6.
e Fori = 1,2,3 stratumbD; is trivially solitary with respect taC;, i = 1, 2, 3, respectively.

e Fori > 4, the axioms inD; are in the formE; D F;. To prove thatD; is solitary with respect to
L; we need to show that for eveyy> i, E; does not contain fluents frod);.

Indeed, fori > 4, F; is a fluent of the formvs(ry,, -, -) or vy(ry,, -, -) Wherer,, is a soft-goal with
depthdepth(r;,) = i — 3 in the soft-goals graph. On the other hand, the partitign; > 1,

contains (exclusively) fluents of the form(ry,,-,-) or va(ry,, -, -) wherer, is a soft-goal with
depthdepth(ry,) = j — 3 > depth(r;,). Since the depth af;, is less than that of;;, we infer that
there is no path from;, tor;,. Hence, nor is there a contribution limk — r;,. Since there is no
such a contribution link, fluents of the from(r,, -, -) orvy(r, -, -) do not appear irk;. But such

J J

fluents is all whatC; contains. Therefore, none of the fluents containefi;iare in£;. O

7. The Preference Specification Language

Preference specification allows selection of behaviors $htisfy specific fitness criteria posed by
stakeholders. Thus, instead of asking stakeholders toarddselect from a vast set of alternatives,
the stakeholders themselves describe what propertieg girfierred behaviors are important for them.
Alternatives that best satisfy those properties are thiectsel through automated search.

Our language for specifying stakeholder preferences ishas expressing priorities over temporal
properties of behaviors implied by the goal model. Temppraperties are expressed through temporal
logic based formulae, which we describe below.

7.1. Optional Condition Formule

We form Optional Condition Formulae (OCFgp describe temporal characteristics of the behavior
that emerges while goals are being fulfilled in a particuldieo and under certain circumstances. Linear
Temporal Logic (LTL) is used to form OCFs. Thus:

Definition 7.1 (Optional Condition Formula - OCF) An Optional Condition Formula (OCF) is an
LTL formula formed with atoms frontf U L U T'U R. It is drawn from the smallest séf for which:

1. RCK
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2. if g € H thenissat(gke K

3. if t € T thenisperformed(tf K

4.1f1, 1,1y € L, thenvalS(1){op)c, val D(1){op)c, valS(ly){op)valS(ls) andval D(l;){op)val D(l3) are
in K, where(op) is one of<, > andc is a real constant in [0..1].

5.If ¢, ¢1, 9o are inK, then so do-¢, o1 A ¢a, ¢1 V P, 00, O, O, ¢y Uy and final ().

The symbolsd,&, o and U, represent the temporal operat@isvays, eventually, nexnd until,
respectively. OCFs are similar to OCFs with two differendége use ofvalS() andvalD() predicates
and the use of temporal operators. Thus, as opposed to Ckes @tpress a condition for a given time
point, OCFs describe properties of a whole sequence of .t&sksexample, given a course of tasks, the
statemen@(isAt(nurse,patientsRoom¥)true if the nurse is at the patient’s room at all times dyithmat
course.

Given an OCF and a plan for the root goal (therefore: a plaméncorresponding action theory),
whether the plan satisfies the OCF can be evaluated by apgé¢alihe situation calculus-based seman-
tics of LTL given by Gabaldon ([11]). More specifically let use the notatiorp[s, s'| to denote that
v holds in all situations frony to s = do(d, s). Also, s C s’ means that eithet = s’ or there is a
sequence of actions = «y, as, ... such that’ = do(d, s). The semantics of OCFs in situation calculus
terms are as follows.

p(0) € Rthenp(d)[s, s'| = fom|s]
g € H thenissat(g])s, s'| = ¢,][s]
t € T thenisperformed(t)s, s'] = per formed(t)][s]
[ € LthenvalS(l){op)c = vs(r, y) A (y{op)c)[s]
l1,1l € LthenvalS(ly){op)valS(l3)[s, s'] = vs(r1,, y1) A vs(r1y, y2) A (y1{op)y2)[s]
l € LthenvalD(l)(op)c = va(r,y) A (y{op)c)[s]
li,ls € L thenvalD(l1)<0p>valD(l2)[ LS = va(ry, y1) Ava(ry, y2) A (y1{op)ys)]s]
Opls, s’ = (Fs1: s C s T ' )lsq]
Ogls,s'] = (Vs1: 5 £ 51 & 5')g[s1]
o¢[s, '] = (Ja.do(a, s) C §')pldo(a, s), 5
final(f)s, s'T = f[s]

P1Ups[s,s'] = (Fs1: 5 £ 51 & 8" )pals1, 8] A (Vsg 05 & 53 T 51)pa[s2, 5]

Returning to our example of Section 3 and Figure 1, considerstatementwe should definitely
avoid anything that would make the patient unhapmXpressed by the managers of the unit. In other
words, while a sequence of tasks to attend to a patient’seisutgd, the patient should not be unhappy
at any point. In our goal language this means that at any tirmeglways 0), the denial value of the
soft-goalHappy Patien{i.e. valD(‘Happy Patient’)) must remain below a very small value (831 —
we discuss how we come up with such numbers in later sectidrig)s, we would write the OCF as
follows:

O(val D(‘Happy Patient) < 0.01) (D)

Moreover, we can define more interesting time intervals iictvia desire to satisfy (or deny) a high-
level goal is relevant. Consider for example, the desire should not avoid disturbing the nurse as
long as the patient’s condition is severeThis desire implies that the importance of the soft-goadid
Nurse Disturbances relevant only when a certain condition is true and for aglas it is true. The OCF
formula to express this is:
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O(valD(‘Avoid Nurse Disturbancg’ < 0.1 — —patientsCondition(severe))  (2)

Similarly, an operational detail may depend on the leveladisgaction or denial of a soft-goal. For
example/if the patient is unhappy for any reason, then the nurse $thowt skip the visit"would be
again formalized as:

O(val D(‘*Happy Patient) > 0 — <(isAt(nurse, patientsRoom)))  (3)

Observe how the use of soft-goals suchHegppy Patientallows us to indirectly refer to desired
operational level decisions without having to explicithesify or even exactly know them at the time
we construct the OCF.

The expressive power of LTL can be used to pose purely terhporestraints to preferred plans.
These temporal constraints can be seen as optional coarteqs the mandatory constraints that are
implemented in the goal graph through precedence linksekamplethe nurse should turn the request
off only after she has responded to the patient’s calth be formulated as follows:

- isperforme@Turn Request Off'Yissa('Nurse Responded Call’) 3)

Given an OCF and a plan for the root goal, the plan will eittegiséy or not satisfy the OCF. Thus,
going back to Figure 1, OCF (1) above is satisfied by ptarnts, ¢, to] but not by plant,, ts, ts, to,
due to the (indirect) negative contribution#fto the soft-goaHappy Patient Formally, whether a plan
satisfies an OCF can be evaluated by appealing to the situaioulus-based semantics of LTL given
by Gabaldon ([11]) and the corresponding semantics of gaakpmore details are again in [23].

7.2. Preferences over Conditions

Two types of preference formulas are uspreference formulaandweighted preference formulae
Definition 7.2 (Preference Formula (PF)), is a formula of the formpg[wy] = ¢1[ws] =, ..., =
¢nlw,], wheren > 0, eachy; is an OCFw, > 0, w,, < 1 andw; < w; fori < j. When n=0, preference

formulae correspond to single OCFs.

The satisfaction of a PF is assessed as follows. Defing be the satisfaction degree of a OGF
for a given plan. If the plan satisfies we setd(¢) = 0 otherwised(¢) = 1. Given a whole preference
formula® = ¢glwg] = ¢1[wi] =, ..., =, ¢n[w,] thend(P) = w; wherei is the minimum for which ¢;
is satisfied by the plan af(®) = 0 if no suchi exists.

Returning to our example of Figure 1, the following is a PFsisting of two OCFs:

< isperforme@Nurse doesn't talk with patient’)0.2] = < isperforme@Nurse Skips Visit’)[0.5]

It means that the first OCP isperforme@Nurse doesn't talk with patient’}s preferred from the second
one< isperforme@Nurse Skips Visit') Given a plan, the PF is satisfied by a particular score, dipgn
on which of its constituent desires is satisfied by the planusT if the first OCF is satisfied, then the
PF is assigned a score 0.2 (as indicated inside the first plaiaokets), otherwise, if the second OCF is
satisfied, then the PF is assigned a (worse) score of 0.5]@siad inside the second pair of brackets. If
neither of the constituent OCFs is satisfied, the PF is aeditjre worst possible score: 1.0. Thus, plans
[t1,t6, ts, to], [t1, 13, ts, to] @AN[t1, t3, t7, to] Satisfy the above PF with score 0.2, 0.5 and 1.0 respectively

Using PFs analysts can define priorities over desires pogé#uebsame or different stakeholders. In
our example, the nurse’s statement tlititey] don't like the idea of talking to the patient remoyebut
if they had to, they would at least choose to do so at the ngstistion” can be formulated through this
PF:

O(— issa('Talked With Patient’)[0.0] > < issa(‘Talked from the Nursing Station’.5]

We use the PF when the satisfaction of an OCF at a higher fyrionplies that we are indifferent
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about the satisfaction of OCFs of a lower priority, whichhie tase in this example. Otherwise, we may
useweighted preference formul&/PFs), which are constructed from PFs as follows:

Definition 7.3 (Weighted Preference Formula - WPF), is a formula of the forn¥;(w; x {¢;}),
where0 < w, <1, ¥;(w;) = 1, andg; a PF.

The weight of individual formulae; in WPFs is also calculated as above. Note that PFs may consist
of a single OCF. Returning to our nursing example, assumétibananagement provides a combination
of desires*we should definitely avoid anything that would make the gratunhappy, but it would also
be nice to increase nurses’ productivity somehowhe statement implies a priority of the patient’s
happiness over the productivity of the nurses. The WPF tesgmt this can be:

{O(val D(‘Happy Patient’)< 0.1)[0.0]} x 0.8+ { final(valS(‘Increase Nurse Productivity’} 0.1)[0.0]} x 0.2

The above WPF has a score of 0.0 if the OCFs of both of its doesiti single-OCF PFs are satisfied,
0.2 if only the OCF of the first PF is satisfied, 0.8 if only the I©Gf the second PF is satisfied and 1.0
if the OCF of neither PF is satisfied.

The ideal application of WPFs is them being the high-levelutleof combining PFs and WPFs of
individual stakeholders, where the weights associated@ath formula express the analyst’s perception
over the relative importance of each stakeholder and heabhekesires. Thus, by giving the preferences
of the management a weight of 0.9 and to the nurses 0.1, theufarof Figure 7 is the WPF resulting
from combining the two individual formulas.

{O(val D(‘Happy Patient’)< 0.1)[0.0]} x 0.72+
{final(valS(‘Increase Nurse Productivity0.1)[0.0]}x0.18+
{O(- issa(‘Talked With Patient))[0.0] >
< issa'Talked from the Nursing Station)0.5]} x 0.1

Figure 7. Preference Formula
The preferences language we propose is a simplification daptation of the one presented in [4]
for the purposes of preference-based planning. In contoaiktat proposal, we exclusively focus on
guantitative aggregation of preferences and we also int®@dVPFs which turned out to be very useful
in practice. However, users of our goal-oriented framewbakt desire to adjust the expressive power of
the preference specification language, can still use the segrammatic and evaluation infrastructure
introduced in this paper, but formulate preferences falhgw4].

8. Behavioral Analysis

As we saw, the models constructed through the goal languagpresented in Section 4 imply a
great number of alternative plans for fulfilling the root ggaGiven such a model and a preference
specification, certain behaviors implied by the former Imeeanteresting in that they satisfy the latter
with optimal score.

We extended a preference-based planner, called PPLant4{low automatic search for plans and
satisfy preference formulae of the type we discussed abla/perform this reasoning task, the planner
takes as input a goal model, a preference formula and inaiales for the domain facts, and returns a
list of plans for the goal model prioritized by the degree Wyiah they satisfy the preference formula.

In our example of Figure 1, assuming that we are given initedles for the domain predicates
{isT'ime(afternoon), patientsCondition(moderate)} and the preference formula of Figure 7, the
resulting ranking can be seen in Figure 8.
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Rank Plan Score
1. [tl,tg,t7,t9] A
2. [tz,tg,t7,t9] A
3.-6. P 2 7 A
7. [tl,t4,t5,t7,t9] 23
8.-14. 23
15. [t1, 14, t5, ts, to] g7
16.-22. g7
23. [tl, t3, tg, tg] .82
24.-28. .82
29. [t1,ts, 7, to] .9
30.-34. 9

Figure 8. Preferred Plans

Thus, plans that include the nurse talking through a motsiecd and eventually visiting the patient
too end up having better score (0.1) due to the significanorapce of patient satisfaction in the pref-
erence formula. None of the alternatives at the top halfefigt seems to completely satisfy the nurses’
desire not to establish any voice connection with the patidowever, if the nurses had been given the
same weight as the management in constructing the WPFstba each, the top plans would involve
at least partial satisfaction of the preferences of nursasely absence of carrying and talking through
a mobile device, which is something that we know they dislike

Thanks to the presence of CFs in the goal model, the resuliimgng is also sensitive to the original
values of the domain predicates, which represent the stéte context. Consider the WPF:

{O(val D(‘Avoid Patient’s Disturbancg’< 0.1)[0.0]} x 0.7+
{O(valD(‘Nurse Comfort) < 0.1)[0.0]} x 0.3

In circumstances in whicksTime(night) doesnothold, the score of the preference is minimized to
0.0 for any behavior of the forrt, . ..]. The same behaviors, however, take a score 0.7 if the circum-
stances includésTime(night). In the latter case, behaviors suchj@s . .| are more preferred as they
satisfy the WPF with 0.3.

The actual ranking of alternatives should be interpretedragndication of groups of alternatives
that have significant differences in their preference scbréhe ranking above, for example, there is a
clear distance between the first 14 alternatives and theimamgan the list. However, one should resist
the temptation of comparing alternatives with similar &sprsuch as, for instance, the 6th and the 7th
alternative in the ranking.

9. Static Analysis
9.1. Time-independent Goal and Preference Models

The use of the temporal extension of the goal modeling lapgaad the LTL operators in the pref-
erence specification language are not mandatory for penfgrimseful preference analysis. We can
perform static (i.e. time-independent) analysis when veenat interested in the sequence of execution
of tasks or satisfaction of goals. This implies the use oktimdependent goal and preference models.
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A time-independent version of the goal model of Figure 1,cllvie have been discussing so far, can be

seen in Figure 9.
Happy
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Avoid Nurse
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Figure 9. A goal model for static analysis

The new time-independent model is different in several wasis, effect links and EEs are not used.

Instead,”$* and "% links, borrowed fromi* ([34]), are used to represent satisfaction constraints
between hard-goals, tasks, CFs. Such links are drawn frodadaals, tasks and CFs to goals and tasks.

Thus, the linkNurse Skips Visit”s Talked With Patientshows that if the task tdlurse Skips Visiis
included in a solution, this necessarily implies tHatked with Patienimust necessarily be satisfied

in the same solution. Conversely, the linkirse does't talk to patleﬁ”fﬂisNurse Skips Visjtshows
that if not talking to the patient is part of the solution, gking the visit cannot be part of the same
solution. Further, thé”> link acquires a different interpretation: it representsadition rather than
a precedence. Thusears(nurse,mief—Nurse Talks through Mobile Deviceneans that for the task
Nurse Talks through Mobile Devide be included in a solutionyears(nurse,micnust hold true in the
same solution.

Given these simplifications, the hard-goals sub-graph canbe formalized in propositional logic.
We can associate each goal with a propositional literal apcesent the satisfaction of the root goal in
terms of a propositional formuld = S, AC,,. S, represents the AND/OR structure in terms of leaf level
literals. Each non-leaf hard-goal nogles recursively replaced by the conjunction or XOR-disjumtbf
its children depending on whether the decomposition is ANDR, respectively. We call the resulting
formulatask-grounded formulaf the hard-goaf. In Figure 9, for example,’s task grounded formula
ist3 @ (t4 A t5). Notice the XOR treatment of OR-decomposition in constngcthe task-grounded
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formula, for the interest of focusing on minimal solutiomdyo C, represents the additional “makes”,
“breaks” and “pre” links. Each constraint link in the modesults in a conjunct in the formuld, as
follows:

Link Type | Conjunct

makes

g1 — g2 | 91 = G2
g1 — g2 | 91 = G2
0o =

In all casesg; can be a condition formula, goal or task, whjlecan be a goal or task. Whenevgr
or g, represent goals, they are replaced with the correspondsiggrounded formula. This way, the
entire formulaG is grounded on literals representing leaf level tasks oralompredicates.

In the Figure G is the conjunction of:

Sg = (tl D tg) AN (((tg ©® (t4 AN t5)) ©® t6> A (t7 ©® tg)) N tg

C, = (t; = wears(nurse,earphongs)(t; = wears(nurse,migh(ts = —patientsCondition(severg)
(t6 = _\tg) A (tg = (tg V (t4 A t5)))

An alternative in the static hard-goal subgraph are definelway similar to the alternatives in the
temporally extended version: an alternative for a goal islat®n to the AND/OR tree rooted to that
goal. Further, in static graphs, admissible alternativén the hard-goal subgraph is a solution of the
AND/OR tree that also satisfies the “breaks”, “makes” an&*monstraints, given a truth assignment
for the domain predicates. In propositional terms, an @adtéve is the part of a model d@F (i.e. a
truth assignment of its literals that satisfies it) that naerg only the leaf level tasks (i.e. without the
domain predicates). In Figure &, t3, t7, to } is an alternative given initial conditions e gnvears(nurse,
earphones); wears(nurse, earphones)patientsCondition(severg)Should the domain predicates pe
— wears(nurse, earphones)wears(nurse, earphones)patientsCondition(severg)then{t,, ts, t7, to }
would not be an alternative as it would violate the constr@in=- wears(nurse,earphones)

Given an alternative of the hard-goal subgraph and a trutkevlar the domain predicates, the sat-
isfaction and denial values of the soft-goal subgraph isfoas follows. Let)M be a propositional
interpretation of the literals that comprigé(i.e. a truth assignment) such thét = G. Then, each
element of the soft-goals subgrapts assigned two functions:l.Sy,(l) andval D,y (1). The functions
represent the result of the application of the label propagalgorithm (Figure 5) with initial values
valSY, (1) andval DY, (1) set as follows:

e If [ is a literal of formula representing a task therS%,(l) = 1iff M = [ andvalSY, (1) = 0
otherwise. Ifl represents a goal or a CF then febe the corresponding a formula based on literals
representing tasks or domain predicates. Thenyde&t), (1) = 1iff M & f; andvalS, (1) = 0
otherwise. We maintainal DY, (1) = 0 for all such literals.

e If [ is a literal representing a soft-goal them 5%, (1) = val DY, (1) = 0.

Formulation of preferences, on the other hand, is exacttieasribed in Section 7, with one obvious
adjustment: temporal operators are not used. Thus, we déinStatic Optional Condition Formula
(SOCF) as follows:

Definition 9.1 (Static Optional Condition Formula - SOCF) A Static Optional Condition Formula
(SOCF) is an propositional formula formed with atoms fréiw LUT U R. Itis drawn from the smallest
setK for which:
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l1L.RCK

2. if g € H thenissat(gke K

3. if t € T thenisperformed(tf K

4.1f1,1y,1y € L, thenvalS(1)(op)c, val D(1){op)c, valS(ly){op)valS(ls) andval D(ly){(op)val D(l,) are
in K, where(op) is one of<, > andc is a real constant in [0..1].

5. If ¢, 91, ¢o are inK, then so do-¢, ¢, A ¢o, ¢1 V ¢s.

The semantics of SOCF are again based on propositionalgsliciterpretation of the goal model. In
particular let)/ be a satisfying interpretation 6f and f, be the task-grounded formula of a hard-goal

g.

p(0) € R thenp(o) holds iff M = p(0)
g € H thenissat(g)holds iff M = f,
t € T thenisperformed(tholds iff M ¢
[ € LthenvalS(l)(op)c holds iff val Sy (1){op)c
l1,1y € LthenvalS(ly)(op)valS(ly) holds iff val Sy (11) (op)valSa(l2)
[ € L thenvalD(I){op)c holds iff val Dy (1) (op)c
l1,lo € L thenvalD(l1)<op>valD(l2) holds iff UG,ZDM(ll)(Op)’UCLZDM(lg)

9.2. Time-independent Analysis

Given the definition of SOCF, Static PFs (SPFs) and Static $MBWPFs) are defined exactly as
in the behavioral, with the difference that the constitieninulae of SPFs are not OCFs but SOCFs.
Returning to our example, assume we are interested in sokiteflecting the fact that on one hand the
nurses‘prefer having to walk to the nursing station quite more thiaaving to talk though a mobile
device” and on the other hand the management believes'tlazing the patient satisfied somehow is
strongly more important than having the nurse satisfietfie SWPF is then written as follows:

{ isperforme@Nurse Talks Through Mobile Device’) [0.0]
~ isperforme@Nurse Walks To Nursing Station’) [0.3] x 0.5 +
{ val§'Happy Patienty 0.1 [0.0] = valS‘Happy Nurse)> 0.1 [0.7]} x 0.5

In order to reason about such time-independent preferemoeifae a separate reasoning component
has been implemented. As opposed to behavioral analysisitiies use of a preference-based planner,
the procedure we use to perform static analysis is significaimpler and faster. The procedure reads as
input the time-independent goal model, the preference dtarand the value of the domain predicates
and outputs a set of admissible alternatives (versus plan&ed by the score by which they satisfy
the preference. For the above SWPF and context (truth vélderain predicates)wears(nurse,mic),
wears(nurse,earPhones), patientsCondition(modera@me(nigh} the output is the ranking of Figure
10:

The above alternatives are not sequences but rather setskst tNotice how the positive impact of
talking to the patient somehow implies that alternativex thcludets have a very poor score.
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Rank Alternative Score
1. {t1,t4,t5,t3,t9} | 0.0
2. {ta, t4,t5,t3,t9} | 0.0
3. {tl,t4,t5,t7,t9} 0.0
4. {tg,t4,t5,t7,t9} 0.0
5. {tl,tg,tg,tg} 0.15
6. {ty,t3,t8,t9} | 0.15
7. {tl,t37t7,t9} 015
8. {tg,tg,t7,t9} 0.15
9. {tl,t6,t7,t9} 1.0
10. {tg,t6,t7,t9} 1.0

Figure 10. Preferred Alternatives

10 Tool

Rankings of preferred plans can be produced using our yydbol for evaluating preferences. The
tool reads a goal model, a set of the domain predicates miirg circumstances of interest, and a
preference formula, all in the form of Prolog predicates] egturns a set of sequences of tasks ranked
by the degree by which they satisfy the preference formula.m&ntioned above, the tool is heavily
based on PPlan ([4]), which employs a best-first searcleglydb find preferred plans. In the following
subsections, we provide a brief overview of PPlan, dest¢hbextensions we developed and discuss its
performance in a number of examples that we ran.

10.1 An overview of PPlan

PPlan employs an A* best-first search to identify plans frospecified initial situation to a situation
that best satisfies a given preference formula. Beginnioig fihe initial situation and the empty plan,
the algorithmprogresseshrough possible next situations that form through theqrerénce of actions,
aiming at reaching a situation in which the goal formula ssé@d. Hence, at every step, the algorithm
first identifies which actions satisfy their preconditiomcams and can be considered as the next action to
be performed. Thus, a list of potential extensions to theetuipartial planrieighbor$ are constructed
and then ordered subject to amaluation functionforming thefrontier. The candidate with the best
score in the evaluation function is pursued, and the sanwedure repeats from there.

The evaluation function is a prediction of the best and waste the preference formula can possibly
acquire in later stages, given the current situation. Tlaesecalculated by examining whether it is
possible for the basic desires of the preference formulaecfwwe here call OCFs) to be true or false in
subsequent situation, given the current situation andgbatan. For example, if in the current situation
the fluentp holds, the desiré—p that may appear as part of a preference formula can obvioesigr
be true, independent of what further choices are going to d&demin other words, both optimistic and
pessimistic estimations far—p, if we continue on the current partial plan, are that it iséal On the
other hand, again given thatholds, the desiredp is true and will stay true independent of further
choices. Nevertheless, jfhas been true in all previous situations, a prediction ofttath value for
formula G—p can be either truep(continues to hold until a plan is found) or falsep(holds in some
future situation due to the performance of an action). Sinobservations can be made with formulas
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based on other temporal operators as well as compound oaasfav the reader to [4] for a more formal
account.

Thus, given a partial plan and a preference formula, eacktitoant desire of the preference formula
can be evaluated with its best and worst possible truth salu®viding us with overall optimistic and
pessimistic weights of the preference formula, respelgtivehe evaluation function for the A* search
is exactly the optimistic score of the preference formulgegia partial plan and the current situation.
Thus, given a set of candidate partial plans for the nexésdn, the one with the best optimistic score
is chosen. In case of a draw (equal optimistic scores), thsiéstic score is used. If there is a draw
there, too, the shortest candidate plan is chosen.

The evaluation function iadmissible which means that the first solution that is found is guarhte
to be the optimal. This is because the actual weight calkedlahce the plan is found, cannot be better
than the optimistic weight estimated for partial plan in search process.

10.2 Extending PPlan

Two extensions were considered to serve our purposes. Ga Rlog implementation of the ALP
algorithm we discussed earlier and its incorporation t@R&kearch process. Thus, the ALP algorithm
runs as part of PPlan’s calculation of a progression. Aftergrogression has been performed and a new
set of fluents has emerged, the set is passed to the ALP execatitine which evaluates the impact of
the new situation to the satisfaction and denial values @&thftgoals. The fluents of type(r, s) and
vq(r, s) are updated according to the results of the ALP execution.

Our second extension to PPLan is an enhancement of thengxiguristic aiming at exploiting the
structure of the goal tree. In particular, at a given situatwhere a subset of leaf-level tasks of the
goal model have already been performed, it is possible tutak an estimation of the maximum and
minimum number of tasks that need to be performed for thegoat to be satisfied. L&t be a set of
nodesg comprising an AND/OR decomposition tree. For every suckenod G, let g,,;, andg,.... be
the minimum and maximum, respectively, number of tasksribatl to be performed for the satisfaction
of g. Also letg’ be thei—th child of g andg’ .. andg’ . its corresponding distances. Then the procedure
for calculating the minimum and maximum distance from adhigthe goal, given the set of all nodes
given the sef’ of leaf level nodes that have already been performed candreisé-igure 11.

The distance of a candidate plan from satisfying the rool igassed together with the heuristics that
are already employed in PPLan, but it is given lower prioftgus, PPlan’s frontier is set to sort partial
plans with the following order: i) Optimistic Weight, ii) Bsimistic Weight, iii) Minimum Distance to
Goal, and iv) Maximum Distance to Goal. In other words, whemparing two partial plans, their
optimistic weight is first checked, and the plan with the lstwalue is picked. In case of a draw (the
weights are equal) the pessimistic weight is checked, amlbttest pessimistic weight is chosen. If there
is a draw in the pessimistic weights too, we choose the plamtve smaller minimum distance to goal.
If there is a draw there, too, we choose the one with the snmrallximum distance to goal. If all these
are equal we choose non-deterministically. In Figure 12 pidisic PPLan algorithm is sketched together
with the function COMPAREVAL, which used by SORTNMERGEBYWAor comparing partial plans.

Theorem 10.1 (Admissibility) The score evaluation is admissible.

Proof. Admissibility follows trivially by the fact the distance+goal criterion is given a lower priority
than the optimistic and pessimistic weight criteria, whidve been proven to constitute admissible

28



CalculateDistance(T")
INPUT:
T A set of task already been performed
g: The goal for which we calculate distance
RETURNS:
g With itS ¢,.in, 9ma Values updated
BEGIN
if g is leaf then
if ginT then
Imin = 0: Imaz = 0;
else
Imin = 1, Gmaz = 1;
returng;
if g is AND decomposition then
for every childg’
¢' = CalculateDistance(, T);
Gmazx = Zig;na;p;
returng;
if g is OR decomposition then
for every childg’
¢' = CalculateDistance(, T);
Gmin = min; (g;nm)’
Imax = MAT; (g:nax);
returng;
END

Figure 11. Distance-to-Goal Calculation
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PPLAN(state, goal, pre ferences)
frontier ;= INITFRONTIER(state, pre ferences)
while frontier # @
current:= REMOVEFIRST (frontier)
state:= UPDATESTATEurrent, state)
preferences:= UPDATEPREFERENCES(irrent, state, pre ferences)
if goal C state and optW¢urrent) = pesWeurrent)
returncurrent, optW(current)
end if
neighbours:= EXPAND(current, state, pre ferences)
frontier:= SORTNMERGEBYVAL(eighbours, frontier)
end while

Partial Plan COMPAREVAL (Partial Plapi1, Partial Plarp(2)
[* Comparisons between two partial plams, pl,
are performed as follows: */
if optW(pl1) # optW(pl2)
return argmin(optW/1), optW({pi2))
if pesW(lil) # pesWpi2)
return argmin(optW/1), optW({pi2))
gRoot! = CalculateDistanc@@oot, pl1)
gRoot? = CalculateDistanc@@oot, pl2)
if (9Root! . > gRoot? )
returnpl2
else if (Root! . < gRoot? )
returnpl1
if (9Root} . > gRoot? )
returnpl2
else if (Root}., .. < gRoot?,..)

returnpl1
return pickNonDetfl1, pl2)

Figure 12. Adapted PPlan
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evaluation ([4]).0

The rationale behind using the distance-to-goal critersothat, according to our experience, the
minimum number of tasks that need to be performed for the obat goal model to be satisfied is
usually proportional to the size of the goal model. The oadjversion of PPlan ignores that, and biases
towards examining all plans of a certain length before iidiexto examine longer ones, even when the
goal model suggests that there does not exist a plan of thgtihle

10.3 Static Analysis

As we saw in Section 9 it is possible to do interesting prefeeeanalysis without using the temporal
aspect of our goal and preference models. This greatly giegpthe reasoning task.

The algorithm for reasoning about time-independent peefegs is seen in Figure 13. Intuitively,
through simple traversal, the algorithm goes through édirahtive solutions of the AND/OR tree. For
each such alternative, it checks whether the constraietsatrsfied, and if yes — which means it is an
admissible alternative — it is used to evaluate the preteréormula. The alternative is then assigned a
number based on the score with which it satisfies the preterfatmulae. Based on that assigned score
the alternative takes the appropriate place in the ranKinigeoso far visited alternatives. The algorithm
returns when all alternatives of the AND/OR tree have besited.

Traverse(;’, Pimt) f;l)ref)
INPUT:
G: a graph representing the goal model
P,,.;:: the set of domain predicates that hold true
Jores: @ preference formula (PF or WPF)
RETURNS:
A rankingrank of alternatives ordered by their score in satisfyjig
BEGIN
ConstructC, by reading the “breaks”, “makes” and “pre” relationsin
translateP;,,;; into a propositional interpretatiol’» for the domain predicates;
For each solutiosolnof the AND/OR tree oy
translatesolninto the corresponding interpretatidis of the literals inS;
setM = Mg U Mp;
if M = C, then
for all soft-goald in G
calculateval Sy, (1) andval Dy, (1);
calculate the scorscof f,,..; based onV/, val Sy (1) andval Dy (1);
insert-sortsolnin rank based orsc
end-if
next solution
END

Figure 13. Algorithm For Static Analysis
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Theorem 10.2 The static analysis algorithm terminates after having aa&d all alternatives of the
goal model.

Proof. Recall that the hard-goal subgraph of static goal model eaimamslated into a formul@ =
Sy N\ Cy, WheresS, is the subformula that is constructed by reading the AND/OR! gtructure, and’,
the one that is formed by putting together all “pre”, “makast “breaks” conjuncts. Triviallgz = S,,
that is every solution t6: must necessarily be a solution$g. Thus, by generating all possible models
(truth assignments) fof, we are sure to have visited all possible solution&/@ind perhaps more (e.g.
those that do not satisf/,). But all possible models faf, are all possible solutions to the AND/OR
tree and vice versa. Termination trivially follows from ttaet that the AND/OR tree has a finite number
of alternatives and all functions called from within the porminate 3

Preferences are evaluated according to the propositiat@allas semantics given in Section 9: every
alternative of the AND/OR tree together with the truth valuwe all domain predicates constitutes a
model M for G. This allows evaluation of SOCFs based on the rules of Se&@iand subsequent
calculation of PF and WPF score based on the same rules fhigtfaptemporally-extended preferences.

10.4 Performance Evaluation - Behavioral Analysis

We now take a look at the performance of our tool. While we ekji¢o be close to that of PPlan (dis-
cussed in [4]), we also expect that the distance-to-goaisteureduces the search time for certain types
of preference formulae. In general, our experiments shawthie distance-to-goal heuristic significantly
boosts performance with simple preferences with mostigfeable constituent desires. However, when
preferences are more complex and involve unsatisfiableedes$he performance of the heuristic may be
less stable and occasionally worsen the performance ofrihi@al PPLan.

Our first experimental study is the sensitivity of the pariance of the heuristic with respect to the
minimum plan length that the goal model implies. We congdeoal models with AND-decompositions
only and varied the number of tasks and therefore the minirplam length. We tried minimum plan
lengths from 6 to 9. We removed any temporal constraintsdieioro maximize the search space. For
each of these four models we constructed a similar set oémete formulae. The set contains a subset
of satisfiable formulae (returning 0.0), a set of unsatiséifdrmulae (returning 1.0) and a set of mixed
ones (returning anything in between 0.0 and 1.0). Each se¢dsin PPlan with or without the distance-
to-goal heuristic. An AMD Phenom, with 2.5Ghz CPU, 4MB caelmel 1Gb of available memory is
used and stack and trail sizes in SWI Prolog are set to 128MB.ea

Regarding the satisfiable set the comparison between thi@alrPPlan and our extension is revealing
of the effectiveness of our distance-to-goal heuristicldhle 10.4 we simply average the running times
over the satisfiable preferences. By increasing the minimplamlength, original PPlan’s execution time
increases exponentially, while the heuristic-enabledivarremains low. The star (*) in the table means
that the program run out of memory in all cases (within 8 hafisomputation).

However, unsatisfiable and mixed preferences do not exdulbh encouraging results. Instead, when
preferences are unsatisfiable or mixed, the performancleeohé¢uristic may demonstrate remarkable
fluctuations. Characteristic is the case of our model withimum plan length 7, which we present
through a boxplot in Figure 14. The graph summarizes expgrial results with 13 different arbitrarily
constructed unsatisfiable and mixed preference formulbse®e that while the median of the heuristic-
enabled version is lower than that of the original versiberé is significant fluctuation as indicated by
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Min. Plan Length Original | Heuristic-Enabled
6 0.79 £+ 0.02 0.04 £ 0.006
7 10.14 £ 0.05 0.05 £ 0.008
8 353+ 3 0.07 £ 0.013
9 * 0.135 4 0.013

Table 7. Performance for satisfiable preferences (behavior  al analysis).

the great distance between the quintiles. Note that formmima plan lengths of 10 and above, the
running time would typically exceed our 8 hour limit..

400.00 =

300.00 =

200.00 =

Execution Time (sec)

100.00 =

0.00 = !

T T
DTG-Disabled DTG-Enabled

Heuristic Use
Figure 14. Performance for unsatisfiable and mixed preferen ces (behavioral analysis).

Our exploration reveals that the distance-to-goal haamisthibits such negative results when it builds
a plan prefix (i.e. a partial plan) that leads to a situatiothwio solution or with a (“suddenly”) sub-
optimal one. This can happen due to a choice that has been eaalgen the plan building process.
The tenancy of our distance-to-goal heuristic to backttaelprogression towards plans that tend to be
closer to the minimum distance-to-goal, may imply that tberistic will take longer to correct the early
choice. To confirm this we worked qualitatively. We develdpee AND/OR tree of Figure 15. The
“troubling” property of this tree is the precedence thatroeetst; with ¢,5. A preference specification
of that includes a desire for both, for examplg andt;, will obviously lead our search procedure in
a “trap”™: the planner will look for plans beginning from which however implies that;; cannot be
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Formula Original | Heuristic-Enabled

Oty 0.07 0.06

Oty 2.26 0.24

Ot 2.37 0.16

Oty x 0.6 4+ Otyg x 0.4 26.15 208.51

Oty x 0.7 4+ Oty x 0.1 + Otgg x 0.2 26.08 211.09
Oty x 0.4+ Oty x 0.6 35.24 216.68

Table 8. Trapping the distance-to-goal heuristic (behavio ral analysis).

performed. We are, then, questioning the ability of ouratise-to-goal heuristic to escape the “trap”
sooner than the original PPlan. In Table 10.4, the perfoomajven particular preference formulae
is given (times are in seconds). It is clear that while in darfprmulae our heuristic performs better,
formulae that lead the search routine in such traps can lealdeuristic to perform worse.

Figure 15. A goal model with non-local constraints.

As a last experimental step with the behavioral analysispmrmant, we aimed at establishing the
worst- and best- case performance boundaries of our hetgishbled tool. We experimented with a
number of “artificial” goal models (i.e. models with dummyeients) but of several sizes, and arbitrarily
constructed preference formulae. From the several randoonistructed goal structures, which vary in
terms of the number of OR-decompositions and temporal caingt, we chose ones that appeared to
generally worsen performance. We run the experiments osaime hardware infrastructure as above (a
Pentium IV, with 2.5Ghz CPU and 1Gb memory). Using the nunabésaf level tasks as an indication
of the size of the goal model, we report in Table 9 the best amdevtimes we ever observed with any
of the models we have tried, the symbol (*) meaning longen thday of computation.

Thus, the evaluation of an arbitrary preference formulanimibitrary goal tree is between these two
extremes, without however necessarily reaching any oftleatremes. For instance, the preference of
Figure 7 over the 9-task model of Figure 1, is evaluated iuabh seconds although it is unsatisfiable.
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#tasks| 6 7 8 9 10 | 20| 30| 40
Best| <0.1|<01{<01|<01|<01| 1]15|2m
Worse | 11 24 10m | 1.4h * o *

Table 9. Worst and best case times (behavioral analysis)

Model (plan Igth / #alt)| Avg. (Behav.)| Avg. (Static)
Nursing (6/24) 0.1s 0.1s
ATM (16/32) 0.25s 0.4s
Bookseller (16/2) 0.2s 0.02s
Mtg. Sched. (12/4088 4.3m 3.2m

Table 10. Realistic Model Results for Behavioral and Static Analyses

10.5 Performance Evaluation - Static Analysis

Performance of static analysis significantly deviates ftbenabove results. Recall that for static anal-
ysis we perform brute-force exhaustive search of solutamnhie AND/OR tree. Thus, performance
is linear to the number of solutions of the AND/OR tree andsteMponential to the number of OR-
decompositions the tree contains. We found that our toalireg about 50 sec to process 1,000 such
alternatives, making it usable in all practical goal modeéshave worked with. It is interesting to ob-
serve that our brute-force approach allows rough estimatiohe time that is required for a result to be
returned, by simply multiplying the number of solutionsioé tAND/OR tree (which can be found by re-
cursively adding the number of solutions of OR-rooted sdgrand multiplying the number of solutions
of AND-rooted subtrees) by the time that the tool needs tagse (check constraints, label propagate,
calculate preference weights) each alternative. To coepanrformance of static analysis with best-case
behavioral analysis, in Table 10, we provide the averageingtimes for behavioral analysis over sat-
isfiable preferences as well as the average time for stasitysis observed while experimenting with
our realistic models; the maximum plan length and numbeitefraatives of each model are given in
parentheses.

11 Applications
11.1 Adding an Interaction Layer

The preference specification language we described hasdesamed to allow construction of arbi-
trarily complex temporal desires, which can be prioritiredeveral ways using real numbers as score
values. In practice, however, users of the language maysehimouse only part of its expressive power
in return for simplicity and intuitiveness. Thus, the laage can be seen as a low-level preference
modeling infrastructure on top of which additional layef®licitation mechanisms can be constructed.
Probably the simplest example of implementing such a lagday constructing yet another preference
specification language which is, however, much more alistiess technical and therefore potentially
useable by users without knowledge of LTL or of informed weyysome up with weights.
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To show how this is possible we constructed such a languaigallows users to write sentences
whereby they express their optional desires or prefereimceuctured English. To express desires,
users can use elements of the goal model together with tenp@positions, such as “before”, “until”
or “after”. For soft-goals, in particular, reference to gtieative measure of satisfaction is replaced
by qualitative labeling. The upper section of the top boxigiiFe 16, shows examples of three desires.
Desire sentences are given unique identifiers (des1, delsies3 in the figure) to allow them be referred
by preference sentences. The latter, seen at the bottoraffhe top box of Figure 16, are used to rank
desires subject to their relative importance. Again thengjtetive measures of relative importance have
been replaced by qualitative labels such as ‘strongly’ arehkly’.

Desire and Preference Sentences
(desl) | desire that Happy Patient is never denied more than a little.
(des?2) | desire that Nurse Walks to Nursing Station is not performed
before Nurse Walks to Patients Room is performed. (des3) | desire

that Happy Nurse is eventually satisfied more than quite.

| strongly prefer des1 from des3. | weakly prefer des2 from des1.

og Interpreter

Vi

Preference Formula

{notB(eventually(valD(‘Happy Patient’)>=0.1)) [0.0] >>
eventually(valS(‘Happy Nurse’)>=0.3) [0.7]} x 0.5 +
{orB(always(notB(isperformed(‘Nurse Walks To Patients Room’))),
until(notB(isperformed(‘Nurse Walks To Patients Room’)),
notB(isperformed(‘Nurse Walks To Nursing Station’)))) [0.0] >>
notB(eventually(valD(‘Happy Patient’)>= 0.1)) [0.3]} x 0.5

Context

{isTime(night),

patientsCondition
(moderate)}

I~ Enable Speaker
~ Enable Mobile

I~ Nursing Station
¥ Mobile Device

(Notificaﬁo Devices ( gmmunication Devices —

Figure 16. From Preference Sentences to Configurations

We constructed an interpreter that allows the translatfom $et of such desire and preference sen-
tences into the formal preference specification languadee ifiterpreter deals with temporal prepo-
sitions (“before”, “until” etc) by considering the LTL pa&iin system, introduced in [7], which offers
a mapping from informal expressions of high-level temp@raperties to complex formulae in linear
temporal logic. In addition, the interpreter is suppliedhna mapping from qualitative labels to quan-
titative values for both soft-goal satisfaction and deaiadl for ranking weights. The construction of
such a mapping depends on the intuition of the analysts. ,Thusur language, in terms of soft-goal
satisfaction and denial value we assigned to expressiaftsasi“a little”, “quite” and “a lot” numeric
satisfaction or denial values such as 0.1, 0.3 and 0.7, cagely. In terms of weights of PFs, which can
involve only two OCFs in our informal language, we associaggms such as “weakly” and “strongly”
with numeric values chosen from the interval (0,1] for thaskepreferred OCF, and the value O for the
most preferred one. Thus, “weakly prefer” implies that sk preferred OCF has a value of 0.3 while
for “strongly” the least preferred OCF has a value of 0.7. iAgthese choices for interpreting linguistic
elements into numerical weights in preference formulae fandising PFs versus WPFs heavily rely
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on intuition. Our study of this semi-formal language, hoam\clearly illustrated that the complex-
ity of our formal preference language can be hidden behingston-made preference communication
mechanism.

11.2 Configuration

Apart from allowing exploration and understanding of thepaut of stakeholder attitudes to design
decisions, our framework also has a potential applicatidhé configuration of the software artifact that
results from the requirements and design process. In [22weved that it is possible under certain
assumptions to associate alternative configuration optida common software system with leaf-level
elements of goal decomposition trees. When such a mappipgssible in the domain of interest,
preference specification and analysis can be used for comiigthe corresponding software system.
From the output of the reasoning procedure, the top plan eaelected and, in turn, the configurations
that map with the selection of the tasks that comprise the gie constructed.

At the bottom of Figure 16, the configuration screen of a higpttal nurse notification and commu-
nication system for our case study is presented. The higth peeference sentences presented at the top
box, have translated into a ranking of preferred plans, teedf which is used to define the current con-
figuration. Thus, the absence of the t&jkstem Notifies through Speakevhich is due to the fact that it
is night and there is a preference not to disturb the patieniisterpreted into a disabled speaker system
of the unit at the configuration level. Notice that the samefgrence may yield a different preferred
plan if it is not night-time, which would, in turn, imply enkslal speakers.

12 Preliminary Evaluation

The main source of feasibility evidence comes from our casdyson the nursing domain. The
study is an exploratory one, as the domain investigationwslding during the initial development
of our framework without a-priori hypotheses. The domawestigation process involved a series of
interviews with health professionals. Acting as goal asi@yve iteratively developed goal models and
temporally extended them to a point where we thought thatelelt would reflect our understanding
of the domain. We then attempted to construct simple preéeréormulae (using the formal low-level
language) for each stakeholder, again based on our senskabftie desires and preferences of the
stakeholders we interviewed were. Both the goal model aagthference formulae were iteratively
revised by using the tool and testing the resulting planiraggkagainst our intuition of the domain.

We felt that the process converged to satisfactory goal eefégnce models. The use of the reasoning
tool helped us explore the domain of possible solutionsrdv@d particularly useful for understanding
the conflicts between stakeholder desires and how theyt éiffechoice of the end solution. The desires
of the nurses and the managers, for example, although th@y skem to be related when stated as
high-level statements, they are found to be conflicting winégrpreted into operational details, as we
illustrated in Section 8.

We found, however, that more research needs to be done toWadievelopment of instruments for
systematic acquisition for: a) the weights and qualitigss(RPersus WPFs) of the preference formulae,
b) the weights of the contribution links in the goal model &nel comparison constants fo#/S() and
valD() in the preference formulae. Regarding the choice of weighizreference formulae, as we
saw earlier, the software engineering community has shoanhthe elicitation of priorities amongst
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competing requirements is possible in a variety of wayshéugh the concepts under comparison in
existing requirements prioritization frameworks are seagrained software features, we believe that the
same or similar techniques should also be effective foitglgcand quantifying priorities over behavioral
and quality properties of the type we present here. Thetyualthe preference formula also depends on
the elicitation method, PFs reflecting ranking-based agugires to preference, as discussed in economics
(e.g. [30]) and WPFs being closer to weight-based formtina of relative importance (e.g. AHP-style
[20]). In terms of choosing weights for the contributiorkdgnand the satisfaction or denial of soft-goals,
in our applications we often found convenient to limit olves to three or four equidistant values from
the interval [0,1] which we would intuitively and uniformtifroughout our analysis associate with terms
such as “a little”, “a lot” etc. The usefulness of such a maggietween linguistic terms and weights
became more evident in our experimentation with the semmiéblanguage we presented in Section 11.
However, we believe that more research needs to be donedswadormal acquisition process of such
mappings based on, for example, quantitative questioesair

In addition to the nursing domain (size: 31 goal elementshige tried the same process on other
generic domains, without however employing a realistiestigation process. Thus, we created models
for the meeting scheduling problem (65 elements), for th#Allomain (34 elements), as well as for a
(hypothetical) on-line bookstore (34 elements). Despiédack of actual input from stakeholders, which
would offer an increased sense of validity of the modelirgule our application on those examples
offered further evidence that our modeling and analysisagah is feasible.

13 Conclusions

Evaluating alternative solutions subject to stakehold@ripies and preferences is an integral part
of the requirements analysis process. The main contribsitad this paper are the introduction of a
goal-oriented approach for modeling temporally extendetiboal and preference requirements and a
proposal for using such requirements for exploring anduatalg alternative solutions. We demon-
strated possibilities for tool support both at the level @fisoning about alternatives, and at the level
of acquiring preference specifications through structigedlish. Through our practical applications,
we found that the overall framework is useful for understagdhe impact of the attitudes of differ-
ent stakeholders to the selection of a solution, and, pialgntor allowing automatic derivation of the
appropriate low-level design and configuration choices.

For the future we need to better understand the merits ankingsaes of the proposed framework by
applying it at larger scale case studies. Firstly, altevagireference elicitation processes need to be
explored, by potentially adopting existing work from areash as Al, Economics and Psychology. Sec-
ondly, we plan to develop and experiment on a concrete imgheation of a preference-based software
configuration tool. And, thirdly, we intend to explore wagdmprove the performance of our reasoning
tool. Recent advances in preference-based planning ayeenoburaging towards this direction.
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