
Representing and Reasoning with Preference Requirements
Using Goals (revised)

No: CSRG-542

Sotirios Liaskos
School of Information Technology

York University
liaskos@yorku.ca

Sheila McIlraith
Dept. of Computer Science

University of Toronto
sheila@cs.toronto.edu

John Mylopoulos
Dept. of Computer Science

University of Toronto
jm@cs.toronto.edu

February 11, 2009

Contents

1. Introduction 2

2. Related Work and Background 3

3. Motivating Example 4

4. Goal Models 5
4.1. Overview 5
4.2. The hard-goal subgraph 7
4.3. The Soft-goal subgraph 8

4.3.1 Qualitative Modeling Framework 8
4.3.2 Quantitative Modeling Framework 10

5. Label Propagation 11

6. Goal Semantics in Situation Calculus 12
6.1. Situation Calculus 12
6.2. Translating the Goal Model 13

6.2.1 Primitives .. . 13
6.2.2 Successor State Axioms 14
6.2.3 Ramification Axioms 15
6.2.4 Action Precondition Axioms 16
6.2.5 Initial Situation 17
6.2.6 Plans . 17

6.3. On the Ramification Problem 17

7. The Preference Specification Language 19
7.1. Optional Condition Formule 19
7.2. Preferences over Conditions 21

8. Behavioral Analysis 22

9. Static Analysis 23
9.1. Time-independent Goal and Preference Models 23
9.2. Time-independent Analysis 26

10 Tool 27
10.1 An overview of PPlan 27
10.2 Extending PPlan 28
10.3 Static Analysis 31
10.4 Performance Evaluation - Behavioral Analysis 32
10.5 Performance Evaluation - Static Analysis 35

11 Applications 35
11.1 Adding an Interaction Layer 35
11.2 Configuration 37

12 Preliminary Evaluation 37

13 Conclusions 38
Abstract

We introduce a goal-based framework for representing and reasoning with preference and optional
requirements. Temporally extended goal models are used forrepresenting large numbers of alternative
plans by which stakeholder goals can be fulfilled. Stakeholder preferences are then specified as weighted
rankings over optional high-level characteristics of suchplans. Well-studied algorithms and tools for
preference-based planning are appropriately adapted and used to search the space of alternative plans
and identify those that best fit the specified preferences. This way, priorities over the high-level desires
of stakeholders can be used to explore solution configurations that are most suitable for them in given
situations and contexts. We also explore ways by which preference formulae can be written using high-
level structured English and discuss our experiences from our application at the health-care domain.

1. Introduction

Requirements are traditionally understood as statements that describe conditions over states and events
in the world ([17]). These conditions are assumed to be desired by the stakeholders. Thus, posing a
requirement statement is a way to imply that the stakeholderprefers states of the world in which the
requirement is satisfied over states in which it is not satisfied.

Therefore, requirements can always be seen aspreferences. For instance, assume we are analyzing
the requirements for a meeting scheduler and, regarding theprocess of, for example, deciding the exact
meeting time and place, we come up with the requirementSystem to Choose Time and Place. This means
that a state of the world in which the system has decided the time and place of the meeting is preferred
from a state of the world in which the system hasn’t done that or a state in which the system does not
even exist. From a point of view, this approach to requirements modeling assumes that stakeholders
envision in an “all-or-nothing” manner in which there is nothing between something being appropriately
fulfilled and the same thing being unfulfilled. Thus, in our example, either the system will choose the
time and place or there is no other solution that will satisfythe stakeholder.

It is obvious, however, that stakeholder preferences are rarely so absolute. Stakeholders often prefer
states of the world in which something is true over states of the world in whichsomething elseis true, the
latter being also desired but to a lesser degree. In the previous example, the requirement forSystem to
Choose Time and Placeis, as we saw, preferred from its negation, but it may also be preferred from the
requirementSecretary to Choose Time and Place. There may even be more options such asParticipants
Collectively Pick a Time and Place over E-mailor Busiest Participant Decides Time and Place. Each
stakeholder may find each of these options attractive to a different degree, implying a preference of each
one over each of the others.

Such preferences can also be posed over higher level desiresof stakeholders. The goalsEnsure
Scheduling Reliabilityor Keep Secretary Unburdenedare examples of such high-level desires. In differ-

2

ent situations, different stakeholders may assume that oneis more important than the other. Furthermore,
the way by which stakeholders pose their preferences over such high-level desires influences the choice
of the design that will satisfy these desires. Having the secretary choose the time and place of the meet-
ing is more reliable than having the system to do so, but comesat a cost of burdening the secretary. Thus,
alternative assertions about the relative importance of scheduling reliably over keeping an unburdened
secretary imply alternative designs of the time and place selection process.

While prioritization and decision making in requirements engineering has been well studied, both
the problem ofmodelingstakeholder priorities and preferences and the use of such models toreason
about alternative designs has not been the focus so far. In this paper, we introduce a framework for
both specifying requirements preferences and for using them for selecting behavioral designs that best
fit the priorities of stakeholders. We begin by building on our previous work on goal-oriented variability
modeling and propose a temporally extended goal-modeling language which allows representation of
a great number of alternative system behaviors that can fulfill the same stakeholder goal. We then
present a formal language for specifying preferences. The language is based on the construction of desire
formulae in Linear Temporal Logic (LTL) and their subsequent use in weighted orderings depending on
their relative importance. Then, we present a tool for selecting behavioral designs that best satisfy the
specified preferences.

We organize our presentation as follows. In Section 2 we discuss related work. Section 3 provides
a motivating example. Sections 4, 5 and 6 describe our modeling formalism and its semantics. Then,
in Section 7, we describe the preferences language and its semantics and in Section 8 we show how
reasoning about preferences is possible. In Section 9 we provide a modeling and reasoning alternative to
behavioral analysis that is independent of time. We discusshow the tools for performing both types of
analysis (Section 10) are implemented and how they perform.In Section 11 we show how preferences
can be generated through higher level preference elicitation techniques. We provide our early feasibility
evidence in Section 12 and conclude in Section 13.

2. Related Work and Background

The need for a view of requirements that explicitly takes attitudes, preferences and optionality into
account has recently been illustrated by Jureta et al. in [19] through reference to the nature of the lin-
guistic matter that serves the communication between stakeholders and analysts. The traditional notion
of requirements prioritization originates exactly from the observation that not all requirements have the
same importance for all stakeholders. An elementary requirements prioritization approach, for example,
is to divide requirements into “must-haves” and “nice-to-haves”, whereby the former are understood as
more important, urgent or otherwise of higher priority (e.g. [3]). In addition to this common qualitative
approach, more elaborate quantitative prioritization techniques, such as the Analytic Hierarchy Process
([20, 2]) or multi-criteria preference analysis methods ([16]) have also been proposed and successfully
used in practice. The use of multi-attribute decision theoretic approaches has also been explored, e.g. in
[21].

The modeling and reasoning side of prioritization, however, has not received as much attention in
requirements engineering. Instead, researchers have mostly been focusing on modeling requirements
variability (e.g. [14, 8, 10, 32]), without including in their scope the problem of selecting requirements
variants according to given stakeholder priorities. The limited number of efforts that do attempt reason-
ing about variability subject to given criteria focus, in most cases, on identifying combinations of coarse

3

grained features of the system-to-be rather than behavioral details that derive from the stakeholder goals.
In [36], for instance, the use of Bayesian belief networks for capturing the impact of low level feature-
model based configuration decisions is proposed. This approach does not take into account behavioral
properties of potential solutions nor does it introduce a method for searching for solutions given desired
values in the Bayesian network. In [5], on the other hand, direct manipulation of feature models is pro-
posed through staged variability binding. Closer to our proposal, a method for scenario generation from
generic use-cases, proposed in [31], introduces a constraint language for selecting scenario instances.
However, that language is a constraint language rather thana preference specification one and it is gen-
erally geared towards solution-oriented use-cases ratherthan stakeholder goals and partial satisfaction
thereof.

The idea of specifying criteria for selecting among a large space of designs has also been studied
in theproduct configurationcommunity. In product configuration technologies ([28] fora survey) the
typical solution is to construct a (generic) product model with a great number of degrees of freedom
([27]), accompany it by an infrastructure for describing individual requirements and constraints, and
introduce an inference engine to search for configurations that satisfy both the generic and individual
model (e.g. [9]). Preferences over predefined low-level decision points ([18]) and evaluation based on
impact of decisions to high level qualities of the result ([1, 27]) have been proposed. Along the same
lines, Zhang et al. propose the use of Bayesian belief networks for understanding the impact of low level
feature-model based configuration decisions ([36]). None of these proposals supports the definition of
constraints over temporal characteristics of admissible behavior; something that we introduce in this
paper at a stakeholder goal level.

Goal models ([6, 34]) have been found to be effective in concisely capturing large numbers of alterna-
tive sets of low-level tasks, operations, and configurations that can fulfill stakeholder goals. The capture
of a large space of such alternatives has been shown to be useful for exploring alternative designs during
the analysis process ([25]), for customizing designs to fit individual user characteristics ([15]), or even
for coping with the vast space of configurations that common desktop applications offer to users ([22]).
An interesting feature of goal variability analysis is the ability to assess the impact of each concrete goal
alternative to the satisfaction of more abstract goals thatstakeholders pose. Thus, in [13], Giorgini et al.
propose a formal approach that allows bottom-up assessmentof satisfaction of high-level goals based on
evidence about the fulfillment of low-level operational ones. We will discuss this proposal in more detail
below. In addition to this bottom-up framework, top-down propagation of satisfaction values has also
been introduced in [29]. In that work, an algorithm for deciding satisfaction configurations of low level
goals given desired satisfaction values for high-level goals is given. Although our motivation is similar,
our approach introduces some important possibilities, including that, again, we consider a language for
specifying preferences versus hard constraints and that wefocus on behaviors, i.e. sequences of goals
and tasks, rather than plain sets thereof.

3. Motivating Example

To see how the need to model goal variability and user preferences over alternatives emerges during
early requirements elicitation processes, we consider an example from the health-care domain, where
we tried the ideas discussed in this paper. The context of theapplication is a geriatric assessment unit,
where elderly with a variety of health issues are hospitalized for a period of time. The primary objective
of the application is to increase the efficiency of the nursing activities by appropriately assisting nurses

4

with their assigned tasks. In our example, we analyze the case where a patient needs to be attended to by
a nurse due to an event. For instance, the patient may be trying to get up even though she is not allowed
to due to her health condition, or she may have called the nurse herself to ask a question, or to request
additional medicine. The nurse needs to be notified somehow,either through a broadcasted notification
using the speakers of the unit, or through earphones he wearswhile on duty. Then, the nurse’s reaction
needs to be determined. Normally, he has to visit the patient’s room, but if the patient only wants to ask
a question or request permission for something, the visit may be replaced by establishing a voice link
between patient and nurse. For example, the nurse may be carrying a mobile set with microphone and
earphones, or there may be a device at the nursing station, which is conveniently located in the unit. The
nurses think that this would increase unnecessary disturbance from some patients, but they acknowledge
it would also increase their productivity, and save them from extra walking effort.

All these are alternative behavioral designs that need to beevaluated subject to criteria posed by
individual stakeholder and context instances. Different geriatric assessment units, different stakeholders
in the same unit or even the same stakeholders in different times and situations, may have different
priorities over high-level characteristics of the desiredsolution. For example, in a particular unit the
nurses may state that“[they] don’t like the idea of talking to the patient remotely, but if they had to,
they would choose to do so at the nursing station.”. The managers of the unit, on the other hand,
will use a more high-level language:“we should definitely avoid anything that would make the patient
unhappy, but it would also be nice to increase nurses’ productivity somehow.” How can we translate
these statements into a selection of behavioral designs that best satisfy them? In this paper we attempt
an approach to this problem. In the following section, we start by looking at the goal modeling language
that can help us represent the various alternatives.

4. Goal Models

4.1. Overview

The goal modeling language we will use adopts the basics of existing goal modeling notations (par-
ticularly i* - [34]) and is extended in order to accommodate quantitativeanalysis of goal satisfaction
(adopting [13]), temporal constraints (similar to [12] and[33]) as well as variables describing the envi-
ronment. More specifically, our goal model consists of:

1. a set ofhard-goalsH,
2. a set ofsoft-goalsL,
3. a set oftasksT ,
4. a set ofdomain conceptsO.
5. a set ofdomain predicatesR, which represent relations over domain concepts.
Goals are states of affairs or conditions that one or more actors of interest would like to achieve

([35]). Hard-goals are goals for which there is a clear-cut criterion to decide whether they are satisfied
or not. For soft-goals, instead, such a criterion does not exist; soft-goals are satisfied to a “good enough”
degree, depending on subjective judgment and based on relevant evidence. Thus,Have Nurse Notifiedis
an example of a hard-goal, whileHappy Patientis a typical soft-goal. Tasks, on the other hand, describe
particular activity that the actors perform in order to fulfill their goals, e.g.Send Audio Notification.
We use thesatisfaction predicates issat(g) and isperformed(t)to denote that a hard-goalg or a task
t has been satisfied or performed, respectively. For exampleisperformed(‘Send Audio Notification’)

5

means that the taskSend Audio Notificationhas been performed. Domain facts express ways by which
domain concepts, such asnurse, nursingStation, english, printer, relate to each other at a particular
time instance and while actors are performing tasks to fulfill their goals. Examples of domain facts are
isAt(nurse, nursingStation), isAvailable(nursingStation, printer)andspeaks(patient, english). The truth
value of domain facts may or may not change due to the performance of tasks.

Using the domain facts together with 0-ary predicates that describe tasks and goals we can construct
simple first-order formulae, which we will callcondition formulae.
Definition 4.1 (Condition Formula - CF) A condition formulaφ is drawn from a setK for which:
1. R ⊂ K
2. if g ∈ H thenissat(g)∈ K
3. if t ∈ T thenisperformed(t)∈ K
4. if φ, φ1, φ2 ∈ K then so do:¬φ, φ1 ∧ φ2, φ1 ∨ φ2.

A CF is understood in the context of a course of activities that aims at fulfilling a root goal. Predicates
that represent tasks (respectively goals/domain facts) are true if and only if the respective task (goal/fact)
has been performed (is satisfied/is true) at a given time instance, while the actor is active in order to fulfill
the root goal. For example,issat(‘Nurse Notified’)∧ isAt(nurse, nursingStation)is true at a given point
in time if the goalNurse Notifiedhas been satisfied and the nurse is at the nursing station at that point.

Figure 1 shows how the above are represented diagrammatically. Each oval-shaped element represents
a goal and each cloud-shaped element represents a soft-goal. Hexagonal elements represent tasks. There
are also two types of rectangle-shaped elements: the condition elements (CE) and the effect elements
(EE), each containing a CF and a list of effects, respectively. Further, to be concise in the rest of the
paper, we have annotated each task in Figure 1 with a literal of the form ti. In the rest of the paper, we
will refer to each task using the corresponding literal. Thus, t8 refers to the taskNurse Skips Visitand
t9 to Turn Request Off. Also, to ease our presentation, reference to goals in CFs (and all other types
of formulas we will introduce) is done through quoting the exact informal title of the goal as seen in
the model, instead of introducing special types of identifiers; for example, we useisperformed(‘System
Notifies through Speakers’) instead of e.g.isperformed(systemNotifiesThroughSpeakers). Finally, in the
Figure, annotations have been added to distinguish betweendifferent types of elements, although these
are easily distinguished by the type of links by which they connect to the rest of the graph, as it will

become apparent below. To further ease our presentation we will also use
−→

pe(~o) to denote the list of
domain factspe(~o) contained in EEe.

Hard-goals and tasks form a decomposition tree and togetherwith all EEs and some CEs form the
hard-goal subgraph. Soft-goals, on the other hand, as well as the rest of the CEs,some goals and
some tasks, form their own directed andacyclicsubgraph, thesoft-goal subgraph. The two subgraphs
are connected through contribution links that originate from tasks and goals of the hard-goal graph and
target soft-goals of the soft-goal graph. These tasks and goals are also considered to be parts of the
soft-goal graph. The two sub-graphs have distinct functions in our framework. The hard-goal graph
allows us to represent alternative ways by which a root hard-goal can be satisfied (e.g. different ways
to have theNurse Notified), whereas the soft-goal graph allows us to assess how each alternative affects
high-level quality goals of the stakeholders (e.g. how different ways to have theNurse Notifiedaffect
the soft-goalPatient’s Privacy).

6

0.2
S-

Nurse

Notified

System

Notifies

through

Earphones

System

Notifies

through

Speakers

OR

OR

Nurse to Attend to

Patient

AND

Nurse

Responded Call

AND

Patient

Visited

Nurse Walks

 to Patients Room

OR

AND

OR

Nurse Walks

to the Nursing

Station

Talked from the

Nursing Station

OR
 OR

Nurse Talks

through Mobile

Device

Nurse talks to

the Patient at the

Nursing Station

AND

AND

~patientsCondition(severe)

~isperformed(‘Nurse doesn’t talk with Patient’)

pre

Happy

Patient

Happy

Nurse

Avoid Nurse

Disturbance
 Increase

Nurse

Productivity

0.4
D+

0.6
S-

0.4
S+

0.4
S+

0.5
S-

pre
 pre

CE

0.3
S+

Nurse

Skips

Visit

isperformed('System Notifies

through Speakers')

isTime(night)

Avoid Patient’s

Disturbance

0.5
S-

CE

Nurse

Comfort

0.4
S-

t
1

t
2

0.3
+

Patient Feels

Cared For

Communication

Handled

Nurse doesn’t

talk with Patient

OR

AND

AND

isAt(nurse, nursingStation)

eff

EE

eff

isAt(nurse, patientsRoom),

~isAt(nurse, nursingStation)

EE

Turn

Request Off

t
3

t
4

t
5

t
6

t
7

t
8

t
9

Talked With

Patient

OR

pre

pre

0.5
+

0.8
+

Figure 1. A goal model

4.2. The hard-goal subgraph

We now present the hard-goal graph in more detail. Its backbone is an AND/OR decomposition tree
which consists exclusively of hard-goals and tasks. Leaf level nodes are only tasks, and tasks can only
be leaf level nodes of the hard-goal graph. The decomposition tree represents alternative ways by which
its root gr can be satisfied. When a goalg is AND-decomposed into goals or tasksg1, . . . , gn theng
is satisfied iffgi are satisfied (performed in the case of tasks) for alli. If g is OR-decomposed, theng
is satisfied iff there exists ani such thatgi is satisfied (performed if it is a task). Thus, any AND/OR
decomposition tree rooted atgr implies a set of subsets ofT that are capable of satisfying the root goal
gr. We call thesealternativesfor gr.

Two additional types of links are associated with the hard-goals graph. The first one is theprecedence
constraint linkthat is applied in three ways:

At the leaf level,φ
pre
−→ t, whereφ a CF andt a task, means thatt can be preformed only ifφ is true

7

at the time when performance oft is attempted.
Between AND-subgoals,g1

pre
−→ g2, means that no task that is part ofg2’s subtree can be performed

unless a set of tasks that constitutes an alternative forg1 has already been performed.

The second type of links, theeffect linkst
eff
−→ e and, respectivelyt

nef
−→ e, are applied from a task

t to an EEe and imply that completion of performance of the former instantly causes all factspe(~o)
contained in the latter to become true (respectively, false).

4.3. The Soft-goal subgraph

Soft-goals, as well as some CFs, some hard-goals and some tasks form their own sub-graph, thesoft-
goal subgraph. Each such elementl that participates in the soft-goal graph is assigned two variables:
valS(l) which represents the degree by which we believe the element is satisfied andvalD(l) which
represents the degree by which we believe the element is denied. As we will see, the domain of values
of each such variable depends on the type of element: CFs, hard-goals and tasks can not be partially
satisfied and are therefore treated differently from soft-goals.

The elements of the soft-goal graph are exclusively connected through weighted contribution links.
The contribution links are drawn between soft-goals, or from hard-goals, tasks or CFs to soft-goals.
Thus, CFs, hard-goals and tasks can only be sources in the soft-goal graph. The links show how the
satisfaction and denial evidence of their source can influence our knowledge of satisfaction or denial of
its destination. In general, the domain of satisfaction anddenial variables as well as the type of contri-
bution links depend on the representation granularity we wish to achieve. In this thesis, we follow the
Giorgini et al. modeling and evaluation framework ([13]) which offers two representation alternatives: a
qualitativeand aquantitativeone. Below, we detail the specific modeling rules for each as well as their
intuitive semantics.

4.3.1 Qualitative Modeling Framework

In qualitative modeling of soft-goal satisfaction propagation, the variablevalS(·) (respectivelyvalD(·))
take values in the domain{F, P, N}, which meanFull satisfaction (resp. denial),Partial satisfaction
(resp. denial) orNo evidence of satisfaction (resp. denial) at all, respectively. It is assumed that these
three values are totally ordered:F > P > N . For, CFs, hard-goals and tasks, for which partial
satisfaction/performance is not defined, the domain is restricted to the valuesF andN . Thus, if valS
(‘Avoid Nurse Disturbance’) equalsP , this means that the goalAvoid Nurse Disturbanceis partially
satisfied. IfvalD(‘Happy Patient’) equalsF , this means that the respective soft-goal is known to be fully
denied. However there cannot be such thing asvalS rm (‘Nurse Notified’)equalsP , as the goalNurse
Notifiedis either known to be fully satisfied or not; it cannot be “almost” satisfied or satisfied “to some
extend”.

Furthermore, there are eight types of contribution links between two elementsl1 andl2 of the soft-goal
graph, seen in Table 1. In the Table, the subscriptsS andD, represent whether it is the satisfaction or
the denial ofl1 that is influencingl2, respectively. The sign of the propagation shows whether the link
implies contribution to the satisfaction or the denial ofl2, depending on whether it is positive+/ + +
or negative−/ −− respectively. The number of signs, one (+/−) versus two (+ + / −−), show weak
and strong influence, respectively. A qualitative version of the goal model of Figure 1 is given in 2. In
the figure,Talked with Patient

+S−→Patient Feels Cared For, means that satisfaction of the goal to have

8

h

Weak Contributions Strong Contributions

l1
+S−→ l2 l1

++S−→ l2

l1
−S−→ l2 l1

−−S−→ l2

l1
+D−→ l2 l1

++D−→ l2

l1
−D−→ l2 l1

−−D−→ l2

Table 1. Qualitative Propagation Links

the nurse talk somehow with the patient partially helps to satisfy the goal to have patients feel cared

for. Avoid Nurse Disturbance
−D−→Happy Nursemeans that denial of the goal to avoid the nurses being

disturbed strongly hurts the goal to keep them happy. Absence of the subscriptS or D implies that both

possibilities are in effect. Thus,l1
+

−→ l2 implies bothl1
+S−→ l2 andl1

+D−→ l2.

-s

Nurse

Notified

System

Notifies

through

Earphones

System

Notifies

through

Speakers

OR

OR

Nurse to Attend to

Patient

AND

Nurse

Responded Call

AND

Patient

Visited

Nurse Walks

 to Patients Room

OR

AND

OR

Nurse Walks

to the Nursing

Station

Talked from the

Nursing Station

OR
 OR

Nurse Talks

through Mobile

Device

Nurse talks to

the Patient at the

Nursing Station

AND

AND

~patientsCondition(severe)

~isperformed(‘Nurse doesn’t talk with Patient’)

pre

Happy

Patient

Happy

Nurse

Avoid Nurse

Disturbance
 Increase

Nurse

Productivity

+

D

-

S

+

S

+
S

-

S

pre
 pre

CE

+
S

Nurse

Skips

Visit

isperformed('System Notifies

through Speakers')

isTime(night)

Avoid Patient’s

Disturbance

-
S

CE

Nurse

Comfort

-
S

t
1

t
2

+

Patient Feels

Cared For

Communication

Handled

Nurse doesn’t

talk with Patient

OR

AND

AND

isAt(nurse, nursingStation)

eff

EE

eff

isAt(nurse, patientsRoom),

~isAt(nurse, nursingStation)

EE

Turn

Request Off

t
3

t
4

t
5

t
6

t
7

t
8

t
9

Talked With

Patient

OR

pre

pre

+

++

Figure 2. A goal model with qualitative labels

The satisfaction and denial value of a soft-goal depends on the satisfaction and denial values of all soft-
goal graph elements that contribute to that goal through a link. More specifically, given a contribution
link from elementl1 to soft-goall2, valS(l2) andvalD(l2) are determined by the correspondingvalS(l1)
andvalD(l1) values as well as the type of the contribution link, as shown in Table 2. We will later discuss
the case of multiple contribution links targeting the same soft-goal.

9

Contribution valS(l2) valD(l2)

l1
+S−→ l2 min{valS(l1), P} N

l1
++S−→ l2 valS(l1) N

l1
−S−→ l2 N min{valS(l1), P}

l1
−−S−→ l2 N valS(l1)

l1
+D−→ l2 N min{valD(l1), P}

l1
++D−→ l2 N valD(l1)

l1
−D−→ l2 min{valD(l1), P} N

l1
−−D−→ l2 valD(l1) N

Table 2. Qualitative Contribution Links

4.3.2 Quantitative Modeling Framework

The quantitative framework allows more fine-grained analysis of satisfaction/denial propagation by us-
ing real numbers instead of labelsN , P andF . Thus, the domain of the variablesvalS(·) andvalD(·) is
the set of real numbers in the interval[0, 1]. Again, however, specifically for CFs, hard-goals and tasks,
the domain is restricted to the values0 and1. Thus if valD(‘Happy Patient’) equals 0.4, the number
implies the degree by which the respective soft-goal is known to be denied. Again, there cannot be such
thing as e.g.valS(‘Nurse Notified’)=0.7, as the goalNurse Notifiedis either known to be fully satisfied
or not; thereforevalS(‘Nurse Notified’) can be either 1 or 0.

Contributions of Satisfaction Contributions of Denial

Contributions to Satisfaction l1
wS+

−→ l2 l1
wD

−

−→ l2

Contributions to Denial l1
wS

−

−→ l2 l1
wD+

−→ l2

Table 3. Quantitative Propagation Links

The contribution links we use when modeling for quantitative analysis can be seen in Table 3. In-

tuitively, l1
wS+

−→ l2 (respectively,l1
wS

−

−→ l2), denotes that the satisfaction (respectively, denial) ofl2 is

understood to be equal tol1’s satisfaction factored byw. Similarly, l1
wD+

−→ l2 (respectively,l1
wD

−

−→ l2),
denotes that the denial (respectively, satisfaction) ofl2 is calculated as a proportion ofl1’s denial. Again,
the value ofvalS(l2) andvalD(l2), depending on the respective values ofl1 and the type of contribution
link from l1 to l2, are decided based on rules which are shown in Table 4. Note that, while [13] discusses
several possibilities for interpreting quantitative propagation, Table 4 reflects the probabilistic approach.
More details on other interpretations can be found in [13]. Again, as in the qualitative case, we omit the
subscriptS or D to denote coexistence of links of both satisfaction and denial. Thus,l1

w+

−→ l2 implies

bothl1
wS+

−→ l2 andl1
wD+

−→ l2.
While the quantitative framework is more expressive and allows fine-grained expression of how goals

influence each other’s satisfaction, it appears to be less popular than the qualitative one, in that it poses
the difficulty of assessing the contribution weights. In Section 11 however we will see that we may use

10

Contribution valS(l2) valD(l2)

l1
wS+

−→ l2 w × valS(l1)

l1
wS

−

−→ l2 w × valS(l1)

l1
wD+

−→ l2 w × valD(l1)

l1
wD

−

−→ l2 w × valD(l1)

Table 4. Quantitative Contribution Links

the flexibility of the quantitative approach without compromising usability, through the construction of
mappings from qualitative characterizations of satisfaction and contribution to numerical values. Thus,
in our study, emphasis has been given to the quantitative propagation framework as it is more powerful
and technically challenging.

5. Label Propagation

The purpose of introducing the propagation rules of Tables 2and 4, apart from providing an intuition
of what satisfaction/denial contribution means, is that itallows us to reason about satisfaction or denial
of certain soft-goals in our soft-goal subgraph based on evidence that we have about the satisfaction or
denial of the others. In [13], Giorgini et al. introduce suchan algorithm, called thelabel propagation
(LP) algorithm. Starting from initial satisfaction and denial values for goals that are sources to the graph,
the LP algorithm iterates over the propagation rules until convergence for the satisfaction/denial degrees
of all goals is reached. At each iteration, when a soft-goal is a target of many contribution links, from
all potential satisfaction and denial values (including the existing ones), the maximum one (by absolute
value) is selected to be the new value. We sketch this algorithm in Figure 4, which has been adapted
from [13].

We introduce an adapted version of the label propagation algorithm presented in [13], which assumes
that the soft-goals graphs do not contain directed cycles. We identify our algorithm as ALP (LP for
Acyclic goal models). The additional acyclicity assumption allows us to change the original Label
Propagation algorithm in a way that guarantees convergencewithin one iteration. To achieve this, for
each goal node we calculate itsdepth, that is the maximum path length for reaching the node from any
of the sources of the graphs (which are all hard-goals, tasksor CEs in our case). In Figure 3 the soft-goal
subgraph of the goal graph of Figure 1 is shown, where each node is annotated with a number indicating
its depth. Thusl5 has a value of 3, which is the length of the path fromt1 or t2.

Hence the ALP algorithm includes three changes, compared tothe LP. Firstly the label updates are
(partially) ordered by maximum path length ascending. Thus, in the Figure 3,l1 and l2 are evaluated
first (in any order),l3 next, and lastl4 andl5, again the last two in any order. Secondly, the update does
not (need to) take into account the current label of each node. Therefore, thirdly, only one iteration is
needed.

In Figure 5, the pseudocode describing the algorithm is given, next to the original one presented in
[13]. In the Figure,withdepth(G, d) returns a set of nodes whose depth equalsd or NULL if no nodes
of such depth exist. Also,Label denotes a pair of satisfaction and denial values, aLabelSet C is a set
of such Labels,Cg denotes the Label inC that is associated with goalg, andcandSi

g andcandDj
g, are

11

g
3

l

1

l

2

l

4

l

5

l

3

0.2
 S+

0.8
 S-

0.3
 S-

0.5
S+
0.5
 S-

0.3
D-

0.8
S+

0.7
 D+

0.3
 S-

0.4
 D+

0.1
S+

p

3

AND
 t

7

0.3
 S+

t

1

t

2

t

6

t

9
CE

1

2

3

3

1

0

0

0

0

0

0

Figure 3. Maximum Path Lenght

arrays of candidate satisfaction and denial values, respectively, for goalg.

6. Goal Semantics in Situation Calculus

While we provided some rules for understanding and calculating propagation of satisfaction of soft-
goals, we still need to provide semantics for the combined goal tree, which includes both the hard-goal
subgraph where a family of sequences of possible leaf level tasks is modeled and the hard-goal subgraph
which models how the performance of tasks influences the satisfaction of soft-goals. Thus, we appeal
to the situation calculus to define the semantics of our goal language, which enables us to easily exploit
existing algorithms and tools for preference-based planning for the purpose of evaluating goal-level
preferences.

6.1. Situation Calculus

The situation calculus is a logical language for specifyingand reasoning about dynamical systems
[26]. In the situation calculus, thestateof the world is expressed in terms of functions and relations
(fluents) relativized to a particularsituations, e.g.,f(~x, s). A situations is a history of the primitive
actions,a ∈ A, performed from a distinguished initial situationS0. The functiondo(a, s) maps a situation
and an action into a new situation thus inducing a tree of situations rooted inS0. The predicatePoss(a,s)
is true if actiona is possible in situations.

A basic action theory, comprises the domain-independent foundational axioms of the situation cal-
culus, successor state axioms, precondition axioms, axioms describing the intial state of the system,
unique names axioms for actions and domain closure axioms for actions. D may also include some
state constraints, such as ramification axioms or definitional axioms for fluents. Given a goal formula
G, aplan in the situation calculus is a sequence of actions~α = α1, α2 . . . , αn such that for the situation
s = do(αn, . . . , do(α1, S0)), G holds ins and the precondition axioms are satisfied throughout~α.

12

LabelSet LabelGraph(GoalGraphG, LabelSetInitial)
Current = Initial;
do

Old := Current;
for eachg in G

Currentg := U pdateLabel(g, Old);
until (Current == Old);
returnCurrent;

Label UpdateLabel(SoftGoalg, LabelSetOld)
for each nodegi that contributes tog

candSi
g = Apply Rules Sat(g, gi, Old);

candDi
g = Apply Rules Den(g, gi, Old);

return〈max{maxi(candSi
g), Oldg.valS},

max{maxi(candDi
g), Oldg.valD}〉

Figure 4. Label Propagation

LabelSet LabelPropagation(GoalGraphG)
LabelSet C = NULL;
LabelSet Res = NULL;
int depth := 1;
C := withdepth(G, depth);
repeat

for eachg in C

Cg = U pdateLabel(g);
Res := Res ∪ C;
depth := depth+1;
C := withdepth(G, depth);

until (C == NULL)
returnRes;

Label UpdateLabel(SoftGoalg)
for each nodegi that contributes tog

candSi
g = Apply Rules Sat(g, gi);

candDi
g = Apply Rules Den(g, gi);

return〈maxi(candSi
g), maxi(candDi

g)〉

Figure 5. Adapted Label Propagation

The details ofD are described in [26]. In the section that follows, we show how to translate our goal
model into a basic action theory,D.

6.2. Translating the Goal Model

We now present the semantics of our visual goal language via aset of translation rules. Similar
translation proposals are introduced in [12] and [33], but for different purposes; a distinguishing feature
of our approach is the consideration of soft-goals as part ofthe translation. We first establish a mapping
from the primitives of the goal based graphical language to those of the situation calculus:

6.2.1 Primitives

• For every taskt that appears in the goal model introduce an actionαt and a relational fluent
performed(t,s)in the situation calculus domain theory.

• For every goalg introduce an AND/OR formulaϕg(s) of predicates of the typeperformed(t,s).
The formula is constructed as follows. Starting fromg, each goal is recursively replaced by the
conjunction or disjunction of its children, depending on whetherg is AND or OR decomposed. If
these subgoals are tasks, then the predicateperformed(t,s)is used and the recursion terminates.

• For every domain predicatep(~o) introduce a relational fluentfp(~x, s), where~x are individuals
representing domain concepts~o.

• Use individuals (constants)rt, rg, rl andre, to identify a taskt, a goalg, a soft-goall and a CE
e that are part of the soft-goals graph. Also, letPT , PH , PL andPE respectively be the set of all

13

such individuals andP their union. Then define fluentsv
s
(r, s, w) andvd(r, s, w), wherer is an

individual inP , i.e. represents a node in the soft-goal graph. Thus, these fluents represent respec-
tively the satisfaction and denial degreew of soft-goal graph noder in situations. Obviously, the
domain ofw depends on the framework of use. Thus:

Quantitative: [0,1]
Qualitative: {N,P,F}

Notice that CEs, tasks and hard-goals also have a satisfaction value, albeit with a restriction, as we
will see later.

• Introduce the fluentlink(r1, r2, y, w), wherer1 is inP , r2 is inPL andy ∈ {“S+”,“S-”,“D+”,“D-” }.
The fluent represents the weightw of the contribution link originating fromr1 targetingr2, while
y denotes the type of the link. Again the domain ofw depends on the framework we are using:

Quantitative: (0,1]
Qualitative: {some, full}

For example the contribution linkl1
0.3D+

−→ l2 produceslink(rl1 , rl2, D+, 0.3). On the other hand the

contribution linkl1
++D−→ l2 produceslink(rl1 , rl2 , D+, full) andl1

−S−→ l2 giveslink(rl1 , rl2, S-, some).

• For every CFφ appearing in a CE, produce its translationϕ into the situation calculus ontology
by translating each task predicatet, goalg and domain predicatep(~o) mentioned in the CF to the
corresponding fluentperformed(t,s), formulaϕg(s), and fluentfp(~x, s).

6.2.2 Successor State Axioms

We can now construct the successor state, precondition and initial situation axioms based on the follow-
ing rules. Note that⊃ denotes the implication connective.

• Recall that effect links connect tasks with effect elements(EEs), the latter being lists of effects,

i.e. sole domain predicates. For every such effect linkt
eff
−→ e from a taskt to an EEe and every

effectpe(~o) contained in thate introduce a successor state axiom of the type:

Poss(α, s) ∧ (α = αt) ⊃ fpe
(~x, do(α, s)) (1)

Dually, for every negative effect linkt
nef
−→ e and every effectpe(~o) contained in thate introduce

a successor state axiom of the type:

Poss(α, s) ∧ (α = αt) ⊃ ¬fpe
(~x, do(α, s)) (2)

In both axioms,fpe
(~x, s) is the situation calculus formula that results from the translation ofpe(~o).

Intuitively, the axioms ensure that relationships appearing in effect elements will be enabled (or
disabled accordingly) when any of the tasks that points to these elements is performed, provided
that the appropriate conditions are satisfied at that time.

14

• For each of the fluentsperformed(t,s)introduced above, construct a successor state axiom as fol-
lows:

Poss(α, s) ∧ (α = αt) ⊃ performed(t,s) (3)

Thus, the fluentperformed(t,s)will become true once the action associated with the taskt is
performed.

6.2.3 Ramification Axioms

Ramification axioms describe consequences of direct effects. In our context, the existence of indirect
effects in situation calculus reflects the effect of the performance of low level tasks to the satisfaction and
denial of soft-goals, which may, in turn, influence the satisfaction or denial of other soft-goals. Thus,
the axioms are written in accordance to the structure of the soft-goals graph, in a way that performance
of our adapted label propagation algorithm is ensured. Thus:

• For every individualrt ∈ PT , rg ∈ PG andre ∈ PE introduce a pair of axioms that associates
the value ofv

s
(rt, s, w), v

s
(re, s, w), andv

s
(rg, s, w) with formulae grounded on fluents of type

performed(·, s). Depending on whether we are working with the quantitative or qualitative frame-
work we respectively have:

Quantitative Qualitative
performed(t,s)⊃ v

s
(rt, s, 1) performed(t,s)⊃ v

s
(rt, s, F) (4)

¬performed(t,s)⊃ v
s
(rt, s, 0) ¬performed(t,s)⊃ v

s
(rt, s, N) (5)

ϕg(s) ⊃ v
s
(rg, s, 1) ϕg(s) ⊃ v

s
(rg, s, F) (6)

¬ϕg(s) ⊃ v
s
(rg, s, 0) ¬ϕg(s) ⊃ v

s
(rg, s, N) (7)

ϕc(s) ⊃ v
s
(re, s, 1) ϕc(s) ⊃ v

s
(re, s, F) (8)

¬ϕc(s) ⊃ v
s
(re, s, 0) ¬ϕc(s) ⊃ v

s
(re, s, N) (9)

Whereϕc is the situation calculus translation of the CF contained ina condition elementc. The
above formulas set the satisfaction degree of soft-goal graph nodes which are tasks, goals or CFs.
Observe that we prevent partial satisfaction to such nodes.

• For every soft-goall in the goal model, letRS+
andRD

−

be the sets of soft-goal graph nodes

ki ∈ RS+
andmj ∈ RD

−

for whichki

wS+

−→ l andmj

wD
−

−→ l, respectively, wherew is the respective
weight.

Let zS+
be an abbreviation forzk1

S+
, zk2

S+
, . . . for k1, k2, . . . , ki, . . . ∈ RS+

. Similarly, zD
−

is an
abbreviation forzm1

D
−

, zm2

D
−

, . . . for m1, m2, . . . , mj, . . . ∈ RD
−

. Then construct the successor state
axiom:

{
∧

ki∈RS+

link(rki
, rl, “S+” , wki

) ∧ v
s
(rki

, s, yki
) ∧ rule(zki

S+
, wki

, yki
)}

∧ {
∧

mj∈RD
−

link(rmj
, rl, “D-” , wmj

) ∧ vd(rmj
, s, ymj

) ∧ rule(z
mj

D
−

, wmj
, ymj

)}

∧ max(zmax, zS+
, zD

−

) ⊃ v
s
(rl, s, zmax) (10)

15

Dually, for every soft-goall in the goal model, letRS
−

andRD+
be the sets of soft-goal graph

nodeski andmj for whichki

wS
−

−→ l andmj

wD+

−→ l, respectively, wherew is the respective weight.
Let zS

−

be an abbreviation forzk1

S
−

, zk2

S
−

, . . . for k1, k2 . . . , ki, . . . ∈ RS
−

. Similarly zD+
, is an

abbreviation forzm1

D+
, zm2

D+
, . . . for m1, m2, . . . , mj, . . . ∈ RD+

. Then construct the successor state
axiom:

{
∧

ki∈RS
−

link(rki
, rl, “S-” , wki

) ∧ v
s
(rki

, s, yki
) ∧ rule(zki

S
−

, wki
, yki

)}

∧ {
∧

mj∈RD+

link(rmj
, rl, “D+” , wmj

) ∧ vd(rmj
, s, ymj

) ∧ rule(z
mj

D+
, wmj

, ymj
)}

∧ max(zmax, zS
−

, zD+
) ⊃ vd(rl, s, zmax) (10)

Also, max(y, x1, x2, . . . , xn) holds iff y equals the maximum ofx1, x2, . . . , xn. Furthermore,
rule(z, w, y) is defined as follows depending on which framework we are considering:

Quantitative: rule(z, w, y) ≡ (z = w · y)

Qualitative: The definition ofrule(z, w, y) is based on the following table:

w z

some (+/-) min(y,P)
full (++/--) y

These axioms ensure that the satisfaction labels of the sources of the soft-goals graph are propa-
gated according to the propagation rules we introduced earlier. Note, however, that the syntactic
features of ramification axioms can cause an issue called theramification problem, whereby un-
intended models of the ramification axioms are satisfied. We will discuss this problem below
and show that the structure of our action theory is such, thatmakes it amenable to a syntactic
manipulation that can lift the ramification problem.

6.2.4 Action Precondition Axioms

• For every taskt in the goal model construct a precondition axiom as follows.First construct
formulaϕcomp as follows. Consider the path fromt to the root goal. LetGOR be the set of all
nodesgOR in the path which are OR-decomposed, including the root andt’s parent. For each such
gOR consider its children that do not belong to the path fromt to the root goal. LetGcomp be the
set of all such children of allgOR ∈ GOR. Finally letTg be the set of all leaf level tasks that are
successors of a goalg. The formulaϕcomp is constructed as follows:

ϕcomp ≡
∧

∀g∈Gcomp

(
∨

∀t∈Tg

performed(t,s))

Observe thatt does not occur in any alternative together with any of the tasks inTg, ∀g ∈ Gcomp.
Excluding consideration oft together with any of these tasks ensures that the plans are minimal
with respect the goal tree, or, in other words, no subset of the tasks included in the plan satisfies
the root goal. Thus,ϕcomp will be true if some of the competing tasks has already been performed
makingt redundant.

Then consider the setGpre of all hard-goalsgi such thatgi
pre
−→ gj, wheregj is any ancestor oft in

the hard-goals subgraph. The precondition axiom fort is the following:

16

Poss(αt, s) ≡ (
∧

∀gi∈Gpre

ϕgi
(s)) ∧ (

∧

ϕ(s)∈Φ

ϕ(s)) ∧ (¬ϕcomp) (12)

whereΦ is the set of CFsϕ, for whichϕ
pre
−→ t.

6.2.5 Initial Situation

For the initial situationDS0
, every predicate of typeperformed(·, S0) is set to false and every fluent of

typefp(~x, S0) is set according to information given in the domain aboutp(~o). Moreover, every fluent of
typev

s
(r, s, y) andvd(r, s, y) is initialized depending on the framework of consideration:

Quantitative: v
s
(r, S0, 0), vd(r, S0, 0)

Qualitative: v
s
(r, S0, N), vd(r, S0, N)

6.2.6 Plans

If D is the action theory derived from the goal model andϕg the formula representing the root goalg,
then we will use the termrequirements planor simplyplan to refer to a plan forD that achievesϕg.

6.3. On the Ramification Problem

The ramification problem arises from the syntactic characteristics of ramification axioms when com-
pared to their intended meaning. Consider the simple example of Figure 6. The ramification axioms
associated with the satisfaction values of goall1 are:

link(rt2 , rl1, “S+” , 0.6) ∧ v
s
(rt2 , s, yt2) ∧ rule(zt2 , 0.6, yt2)

∧ max(zmax, zt2) ⊃ v
s
(rl1, s, zmax)

For goall2 the corresponding axiom is the following:

link(rt1 , rl2, “S+” , 0.5) ∧ v
s
(rt1 , s, yt1) ∧ rule(zt1 , 0.5, yt1)

∧ link(rl1 , rl2, “S+” , 0.9) ∧ v
s
(rl1 , s, yl1) ∧ rule(zl1 , 0.9, yl1)

∧ max(zmax, zt1 , zl1) ⊃ v
s
(rl2 , s, zmax)

0.5
 S+

0.9
 S+

0.6
 S+
t
1

l
2

l
1

t

2

Figure 6. Simple Ramification Example

17

Assume now thatv
s
(rt1 , s, 1) andv

s
(rt2 , s, 1), due to the performance of taskst1 andt2. The obvious

indirect effect to soft-goal satisfaction would bev
s
(rl1 , s, 0.5) andv

s
(rl2 , s, 0.54). But the way our rami-

fication axioms are expressed may as well imply thatv
s
(rl1, s, 0.6),¬v

s
(rl1 , s, 0.7) and¬v

s
(rl2 , s, 0.56).

Arguably the latter is not very useful for understanding thesatisfaction value ofl2. Hence, we need to
find a way to prevent our system of axioms from being satisfied by models (truth assignments) which do
not completely calculate the satisfaction and denial values of all goals. For this to be true, the implica-
tion connective (⊃) of the ramification axioms needs to be treated asdefinitional[24], in a sense that the
right-hand side of the implication connective is understood as defined in terms and only in terms of the
left-hand side.

It has been shown in [24] that if the action theory in situation calculus is asolitary stratified theory
then it can be re-written in a form that does not imply such unwanted models. A solitary stratified theory
has the following characteristics:

Definition 6.1 SupposeD is a theory in the language of the situation calculus with domain fluents,L.
ThenD is a solitary stratified theory with stratification (D1, D2, . . . , Dn) and partitionL1,L2, . . . ,Ln if

• for i = 1, . . . , n,Li is the set of fluentsFi that are defined in stratumDi andL1∪L2∪, . . .∪Ln = L

• D is the unionD1∪D2∪, . . .∪Dn of sets of axiomsDi where for each stratum,Di is solitary with
respect toLi, that is eachTi can be written as the union (Mi ≤ ¬Li ∪ Ei ≤ Li), where:

1. Li is the set of fluentsFi, such that[¬]Fi is defined inDi.

2. Mi ≤ ¬Li is a set of formulae of the form (Mi ⊃ ¬Fi), at most one for each fluentFi ∈ Li,
where eachMi is a formula containing no fluents drawn fromLi, . . . ∪ Ln.

3. Ei ≤ Li is a set of formulae of the form (Ei ⊃ Fi), at most one for each fluentFi ∈ Li,
where eachEi is a formula containing no fluents drawn fromLi, . . . ∪ Ln.

We will now show that our translation rules always provide a solitary stratified theory in situation
calculus. Recall that in our goal graph,depthof a node is the length of the longest path from a source to
that node. From the set of soft-goalsL, let Lj ⊂ L be the subset with depthi. Thus,L0 is the set of the
sources (tasks, hard goals, CEs). Fori ≥ 1, Li are soft-goals. Then the strata are shown in Table 5 and
the corresponding partitions in Table 6.

D1 Successor state axioms of type (1) and (2)
D2 Successor state axioms of type (3)
D3 Ramification axioms of types (4)-(9)
D4 Ramification axioms of types (10) and (11) for soft-goals inL1

D5 Ramification axioms of types (10) and (11) for soft-goals inL2

.
Di Ramification axioms of types (10) and (11) for soft-goals inLi−3

Table 5. The stratified theory.

Theorem 6.1 The theoryD = D1∪D2∪. . .∪Dn of Table 5 is stratified with stratification(D1, D2, . . . , Dn):

18

L1 fp(~x, s)
L2 performed(·, s)
L3 v

s
(r, ·, s), wherer is a task or hard-goal

L4 v
s
(r, ·, s), vd(r, ·, s) wherer is a soft-goal of depth 1

L5 v
s
(r, ·, s), vd(r, ·, s) wherer is a soft-goal of depth 2

.
Li v

s
(r, ·, s), vd(r, ·, s) wherer is a soft-goal of depthi − 3

Table 6. The partition.

Proof. To prove this we will show how the stratification of Table 5 complies with the definition.

• Each set of fluentsLi is defined in stratumDi, respectively, as seen on Table 6.

• For i = 1, 2, 3 stratumDi is trivially solitary with respect toLi, i = 1, 2, 3, respectively.

• For i ≥ 4, the axioms inDi are in the formEi ⊃ Fi. To prove thatDi is solitary with respect to
Li we need to show that for everyj > i, Ei does not contain fluents fromLj.

Indeed, fori ≥ 4, Fi is a fluent of the formv
s
(rli , ·, ·) or vd(rli, ·, ·) whererli is a soft-goal with

depthdepth(rli) = i − 3 in the soft-goals graph. On the other hand, the partitionLj, j > i,
contains (exclusively) fluents of the formv

s
(rlj , ·, ·) or vd(rlj , ·, ·) whererlj is a soft-goal with

depthdepth(rlj) = j − 3 > depth(rli). Since the depth ofrli is less than that ofrlj , we infer that
there is no path fromrlj to rli . Hence, nor is there a contribution linkrlj −→ rli. Since there is no
such a contribution link, fluents of the fromv

s
(rlj , ·, ·) or vd(rlj , ·, ·) do not appear inEi. But such

fluents is all whatLj contains. Therefore, none of the fluents contained inEi are inLj. 2

7. The Preference Specification Language

Preference specification allows selection of behaviors that satisfy specific fitness criteria posed by
stakeholders. Thus, instead of asking stakeholders to readand select from a vast set of alternatives,
the stakeholders themselves describe what properties of the preferred behaviors are important for them.
Alternatives that best satisfy those properties are then selected through automated search.

Our language for specifying stakeholder preferences is based on expressing priorities over temporal
properties of behaviors implied by the goal model. Temporalproperties are expressed through temporal
logic based formulae, which we describe below.

7.1. Optional Condition Formule

We form Optional Condition Formulae (OCFs)to describe temporal characteristics of the behavior
that emerges while goals are being fulfilled in a particular order and under certain circumstances. Linear
Temporal Logic (LTL) is used to form OCFs. Thus:

Definition 7.1 (Optional Condition Formula - OCF) An Optional Condition Formula (OCF) is an
LTL formula formed with atoms fromH ∪ L ∪ T ∪ R. It is drawn from the smallest setK for which:
1. R ⊂ K

19

2. if g ∈ H thenissat(g)∈ K
3. if t ∈ T thenisperformed(t)∈ K
4. If l, l1, l2 ∈ L, thenvalS(l)〈op〉c, valD(l)〈op〉c, valS(l1)〈op〉valS(l2) andvalD(l1)〈op〉valD(l2) are
in K, where〈op〉 is one of≤,≥ andc is a real constant in [0..1].
5. If φ, φ1, φ2 are inK, then so do¬φ, φ1 ∧ φ2, φ1 ∨ φ2, ◦φ, 2φ, 3φ, φ1Uφ2 andfinal(φ).

The symbols2,3, ◦ and U , represent the temporal operatorsalways, eventually, nextand until,
respectively. OCFs are similar to OCFs with two differences: the use ofvalS() andvalD() predicates
and the use of temporal operators. Thus, as opposed to CFs, which express a condition for a given time
point, OCFs describe properties of a whole sequence of tasks. For example, given a course of tasks, the
statement2(isAt(nurse,patientsRoom))is true if the nurse is at the patient’s room at all times during that
course.

Given an OCF and a plan for the root goal (therefore: a plan in the corresponding action theory),
whether the plan satisfies the OCF can be evaluated by appealing to the situation calculus-based seman-
tics of LTL given by Gabaldon ([11]). More specifically let ususe the notationϕ[s, s′] to denote that
ϕ holds in all situations froms to s′ ≡ do(~α, s). Also, s v s′ means that eithers = s′ or there is a
sequence of actions~α = α1, α2, ... such thats′ = do(~α, s). The semantics of OCFs in situation calculus
terms are as follows.

p(~o) ∈ R thenp(~o)[s, s′] ≡ fp(~x)[s]
g ∈ H thenissat(g)[s, s′] ≡ ϕg[s]

t ∈ T thenisperformed(t)[s, s′] ≡ performed(t)[s]
l ∈ L thenvalS(l)〈op〉c ≡ v

s
(rl, y) ∧ (y〈op〉c)[s]

l1, l2 ∈ L thenvalS(l1)〈op〉valS(l2)[s, s
′] ≡ v

s
(rl1 , y1) ∧ v

s
(rl2 , y2) ∧ (y1〈op〉y2)[s]

l ∈ L thenvalD(l)〈op〉c ≡ vd(rl, y) ∧ (y〈op〉c)[s]
l1, l2 ∈ L thenvalD(l1)〈op〉valD(l2)[s, s

′] ≡ vd(rl1 , y1) ∧ vd(rl2 , y2) ∧ (y1〈op〉y2)[s]
3φ[s, s′] ≡ (∃s1 : s v s1 v s′)ϕ[s1]
2φ[s, s′] ≡ (∀s1 : s v s1 v s′)ϕ[s1]

◦φ[s, s′] ≡ (∃α.do(α, s) v s′)ϕ[do(α, s), s′]
final(f)[s, s′] ≡ f [s′]

φ1Uφ2[s, s
′] ≡ (∃s1 : s v s1 v s′)ϕ2[s1, s

′] ∧ (∀s2 : s v s2 v s1)ϕ2[s2, s
′]

Returning to our example of Section 3 and Figure 1, consider the statement“we should definitely
avoid anything that would make the patient unhappy”, expressed by the managers of the unit. In other
words, while a sequence of tasks to attend to a patient’s is executed, the patient should not be unhappy
at any point. In our goal language this means that at any time (i.e. always, 2), the denial value of the
soft-goalHappy Patient(i.e. valD(‘Happy Patient’)) must remain below a very small value (say0.01 –
we discuss how we come up with such numbers in later sections). Thus, we would write the OCF as
follows:

2(valD(‘Happy Patient’) ≤ 0.01) (1)
Moreover, we can define more interesting time intervals in which a desire to satisfy (or deny) a high-

level goal is relevant. Consider for example, the desire“we should not avoid disturbing the nurse as
long as the patient’s condition is severe”. This desire implies that the importance of the soft-goalAvoid
Nurse Disturbanceis relevant only when a certain condition is true and for as long as it is true. The OCF
formula to express this is:

20

2(valD(‘Avoid Nurse Disturbance’) ≤ 0.1 → ¬patientsCondition(severe)) (2)
Similarly, an operational detail may depend on the level of satisfaction or denial of a soft-goal. For

example,“if the patient is unhappy for any reason, then the nurse should not skip the visit”would be
again formalized as:

2(valD(‘Happy Patient’) > 0 → 3(isAt(nurse, patientsRoom))) (3)
Observe how the use of soft-goals such asHappy Patientallows us to indirectly refer to desired

operational level decisions without having to explicitly specify or even exactly know them at the time
we construct the OCF.

The expressive power of LTL can be used to pose purely temporal constraints to preferred plans.
These temporal constraints can be seen as optional counterparts of the mandatory constraints that are
implemented in the goal graph through precedence links. Forexample“the nurse should turn the request
off only after she has responded to the patient’s call”can be formulated as follows:

¬ isperformed(‘Turn Request Off’)U issat(‘Nurse Responded Call’) (3)
Given an OCF and a plan for the root goal, the plan will either satisfy or not satisfy the OCF. Thus,

going back to Figure 1, OCF (1) above is satisfied by plan[t1, t3, t7, t9] but not by plan[t1, t3, t8, t9],
due to the (indirect) negative contribution oft8 to the soft-goalHappy Patient. Formally, whether a plan
satisfies an OCF can be evaluated by appealing to the situation calculus-based semantics of LTL given
by Gabaldon ([11]) and the corresponding semantics of goal plans; more details are again in [23].

7.2. Preferences over Conditions

Two types of preference formulas are used:preference formulaeandweighted preference formulae.
Definition 7.2 (Preference Formula (PF)), is a formula of the formφ0[w0] � φ1[w1] �, . . . ,�

φn[wn], wheren ≥ 0, eachφi is an OCF,w0 ≥ 0, wn ≤ 1 andwi < wj for i < j. When n=0, preference
formulae correspond to single OCFs.

The satisfaction of a PF is assessed as follows. Defined(φ) be the satisfaction degree of a OCFφ,
for a given plan. If the plan satisfiesφ, we setd(φ) = 0 otherwised(φ) = 1. Given a whole preference
formulaΦ = φ0[w0] � φ1[w1] �, . . . ,�, φn[wn] thend(Φ) = wi wherei is the minimumi for whichφi

is satisfied by the plan ord(Φ) = 0 if no suchi exists.
Returning to our example of Figure 1, the following is a PF consisting of two OCFs:
3 isperformed(‘Nurse doesn’t talk with patient’)[0.2] � 3 isperformed(‘Nurse Skips Visit’)[0.5]
It means that the first OCF3 isperformed(‘Nurse doesn’t talk with patient’)is preferred from the second

one3 isperformed(‘Nurse Skips Visit’). Given a plan, the PF is satisfied by a particular score, depending
on which of its constituent desires is satisfied by the plan. Thus, if the first OCF is satisfied, then the
PF is assigned a score 0.2 (as indicated inside the first pair of brackets), otherwise, if the second OCF is
satisfied, then the PF is assigned a (worse) score of 0.5, as indicated inside the second pair of brackets. If
neither of the constituent OCFs is satisfied, the PF is assigned the worst possible score: 1.0. Thus, plans
[t1, t6, t8, t9], [t1, t3, t8, t9] and[t1, t3, t7, t9] satisfy the above PF with score 0.2, 0.5 and 1.0 respectively.

Using PFs analysts can define priorities over desires posed by the same or different stakeholders. In
our example, the nurse’s statement that“[they] don’t like the idea of talking to the patient remotely, but
if they had to, they would at least choose to do so at the nursing station” can be formulated through this
PF:

2(¬ issat(‘Talked With Patient’))[0.0] � 3 issat(‘Talked from the Nursing Station’)[0.5]
We use the PF when the satisfaction of an OCF at a higher priority implies that we are indifferent

21

about the satisfaction of OCFs of a lower priority, which is the case in this example. Otherwise, we may
useweighted preference formulae(WPFs), which are constructed from PFs as follows:

Definition 7.3 (Weighted Preference Formula - WPF), is a formula of the formΣi(wi × {φi}),
where0 ≤ wn ≤ 1, Σi(wi) = 1, andφi a PF.

The weight of individual formulaeφi in WPFs is also calculated as above. Note that PFs may consist
of a single OCF. Returning to our nursing example, assume that the management provides a combination
of desires:“we should definitely avoid anything that would make the patient unhappy, but it would also
be nice to increase nurses’ productivity somehow.”The statement implies a priority of the patient’s
happiness over the productivity of the nurses. The WPF to represent this can be:
{2(valD(‘Happy Patient’)≤ 0.1)[0.0]} × 0.8+ {final(valS(‘Increase Nurse Productivity’)≥ 0.1)[0.0]} × 0.2

The above WPF has a score of 0.0 if the OCFs of both of its constituent single-OCF PFs are satisfied,
0.2 if only the OCF of the first PF is satisfied, 0.8 if only the OCF of the second PF is satisfied and 1.0
if the OCF of neither PF is satisfied.

The ideal application of WPFs is them being the high-level result of combining PFs and WPFs of
individual stakeholders, where the weights associated with each formula express the analyst’s perception
over the relative importance of each stakeholder and her overall desires. Thus, by giving the preferences
of the management a weight of 0.9 and to the nurses 0.1, the formula of Figure 7 is the WPF resulting
from combining the two individual formulas.

{2(valD(‘Happy Patient’)≤ 0.1)[0.0]} × 0.72+
{final(valS(‘Increase Nurse Productivity’)≥0.1)[0.0]}×0.18+

{2(¬ issat(‘Talked With Patient’))[0.0] �
3 issat(‘Talked from the Nursing Station’)[0.5]} × 0.1

Figure 7. Preference Formula

The preferences language we propose is a simplification and adaptation of the one presented in [4]
for the purposes of preference-based planning. In contrastto that proposal, we exclusively focus on
quantitative aggregation of preferences and we also introduce WPFs which turned out to be very useful
in practice. However, users of our goal-oriented frameworkthat desire to adjust the expressive power of
the preference specification language, can still use the same diagrammatic and evaluation infrastructure
introduced in this paper, but formulate preferences following [4].

8. Behavioral Analysis

As we saw, the models constructed through the goal language we presented in Section 4 imply a
great number of alternative plans for fulfilling the root goals. Given such a model and a preference
specification, certain behaviors implied by the former become interesting in that they satisfy the latter
with optimal score.

We extended a preference-based planner, called PPLan ([4]), to allow automatic search for plans and
satisfy preference formulae of the type we discussed above.To perform this reasoning task, the planner
takes as input a goal model, a preference formula and initialvalues for the domain facts, and returns a
list of plans for the goal model prioritized by the degree by which they satisfy the preference formula.

In our example of Figure 1, assuming that we are given initialvalues for the domain predicates
{isT ime(afternoon), patientsCondition(moderate)} and the preference formula of Figure 7, the
resulting ranking can be seen in Figure 8.

22

Rank Plan Score
1. [t1, t3, t7, t9] .1
2. [t2, t3, t7, t9] .1
3.-6. [. . . , t3, . . . , t7, . . .] .1
7. [t1, t4, t5, t7, t9] .23
8.-14.23
15. [t1, t4, t5, t8, t9] .77
16.-22.77
23. [t1, t3, t8, t9] .82
24.-28.82
29. [t1, t6, t7, t9] .9
30.-34.9

Figure 8. Preferred Plans

Thus, plans that include the nurse talking through a mobile device and eventually visiting the patient
too end up having better score (0.1) due to the significant importance of patient satisfaction in the pref-
erence formula. None of the alternatives at the top half of the list seems to completely satisfy the nurses’
desire not to establish any voice connection with the patient. However, if the nurses had been given the
same weight as the management in constructing the WPF, that is 0.5 each, the top plans would involve
at least partial satisfaction of the preferences of nurses,namely absence of carrying and talking through
a mobile device, which is something that we know they dislike.

Thanks to the presence of CFs in the goal model, the resultingranking is also sensitive to the original
values of the domain predicates, which represent the state of the context. Consider the WPF:

{2(valD(‘Avoid Patient’s Disturbance’) ≤ 0.1)[0.0]} × 0.7+
{2(valD(‘Nurse Comfort’) ≤ 0.1)[0.0]} × 0.3

In circumstances in whichisT ime(night) doesnot hold, the score of the preference is minimized to
0.0 for any behavior of the form[t2 . . .]. The same behaviors, however, take a score 0.7 if the circum-
stances includeisT ime(night). In the latter case, behaviors such as[t1 . . .] are more preferred as they
satisfy the WPF with 0.3.

The actual ranking of alternatives should be interpreted asan indication of groups of alternatives
that have significant differences in their preference score. In the ranking above, for example, there is a
clear distance between the first 14 alternatives and the remaining in the list. However, one should resist
the temptation of comparing alternatives with similar scores, such as, for instance, the 6th and the 7th
alternative in the ranking.

9. Static Analysis

9.1. Time-independent Goal and Preference Models

The use of the temporal extension of the goal modeling language and the LTL operators in the pref-
erence specification language are not mandatory for performing useful preference analysis. We can
perform static (i.e. time-independent) analysis when we are not interested in the sequence of execution
of tasks or satisfaction of goals. This implies the use of time-independent goal and preference models.

23

A time-independent version of the goal model of Figure 1, which we have been discussing so far, can be
seen in Figure 9.

0.2

S-
Nurse

Notified

System

Notifies

through

Earphones

System

Notifies

through

Speakers

OR

OR

Nurse to Attend to

Patient

AND

Nurse

Responded Call

AND

Patient

Visited

Nurse Walks

 to Patients Room

OR

AND

OR

Nurse Walks

to the Nursing

Station

Talked from the

Nursing Station

OR

OR

Nurse Talks

through Mobile

Device

Nurse talks to

the Patient at the

Nursing Station

AND
 AND

~patientsCondition(severe)

pre

Happy

Patient

Happy

Nurse

Avoid Nurse

Disturbance
 Increase

Nurse

Productivity

0.4

D+

0.6

S-

0.4

S+

0.4
S+

0.5

S-

CE

0.3

S+

Nurse

Skips

Visit

isperformed('System Notifies

through Speakers')

isTime(night)

Avoid Patient’s

Disturbance

0.5
S-

CE

Nurse

Comfort

0.4

S-

t
1

t
2

0.3

+

Patient Feels

Cared For

Communi-

cation Handled

Nurse doesn’t

talk with Patient

OR

AND

AND

Turn

Request Off

t
3

t
4

t
5

t
6

t
7

t
8

t
9

Talked With

Patient

OR

0.5

+

0.8

+

wears(nurse,earPhones)

pre

pre

wears(nurse,mic)

breaks

makes

CE

CE

g
r

g
1
 g
2

g
3

g
4

g
5

g
6

Figure 9. A goal model for static analysis

The new time-independent model is different in several ways. Thus, effect links and EEs are not used.

Instead,
makes
−→ and

breaks
−→ links, borrowed fromi* ([34]), are used to represent satisfaction constraints

between hard-goals, tasks, CFs. Such links are drawn from hard-goals, tasks and CFs to goals and tasks.

Thus, the linkNurse Skips Visit
make
−→Talked With Patient, shows that if the task toNurse Skips Visitis

included in a solution, this necessarily implies thatTalked with Patientmust necessarily be satisfied

in the same solution. Conversely, the linkNurse does’t talk to patient
breaks
−→ Nurse Skips Visit, shows

that if not talking to the patient is part of the solution, skipping the visit cannot be part of the same
solution. Further, the

pre
−→ link acquires a different interpretation: it represents a condition rather than

a precedence. Thuswears(nurse,mic)
pre
−→Nurse Talks through Mobile Device, means that for the task

Nurse Talks through Mobile Deviceto be included in a solution,wears(nurse,mic)must hold true in the
same solution.

Given these simplifications, the hard-goals sub-graph can now be formalized in propositional logic.
We can associate each goal with a propositional literal and represent the satisfaction of the root goal in
terms of a propositional formulaG ≡ Sg∧Cg. Sg represents the AND/OR structure in terms of leaf level
literals. Each non-leaf hard-goal nodeg is recursively replaced by the conjunction or XOR-disjunction of
its children depending on whether the decomposition is AND or OR, respectively. We call the resulting
formulatask-grounded formulaof the hard-goalg. In Figure 9, for example,g4’s task grounded formula
is t3 ⊕ (t4 ∧ t5). Notice the XOR treatment of OR-decomposition in constructing the task-grounded

24

formula, for the interest of focusing on minimal solutions only. Cg represents the additional “makes”,
“breaks” and “pre” links. Each constraint link in the model results in a conjunct in the formulaCg as
follows:

Link Type Conjunct

g1
makes
−→ g2 g1 ⇒ g2

g1
breaks
−→ g2 g1 ⇒ ¬g2

g1
pre
−→ g2 g2 ⇒ g1

In all cases,g1 can be a condition formula, goal or task, whileg2 can be a goal or task. Wheneverg1

or g2 represent goals, they are replaced with the corresponding task-grounded formula. This way, the
entire formulaG is grounded on literals representing leaf level tasks or domain predicates.

In the Figure,G is the conjunction of:
Sg ≡ (t1 ⊕ t2) ∧ (((t3 ⊕ (t4 ∧ t5)) ⊕ t6) ∧ (t7 ⊕ t8)) ∧ t9
Cg ≡ (t1 ⇒ wears(nurse,earphones))∧(t3 ⇒ wears(nurse,mic))∧(t8 ⇒ ¬patientsCondition(severe))∧

(t6 ⇒ ¬t8) ∧ (t8 ⇒ (t3 ∨ (t4 ∧ t5)))
An alternative in the static hard-goal subgraph are defined in a way similar to the alternatives in the

temporally extended version: an alternative for a goal is a solution to the AND/OR tree rooted to that
goal. Further, in static graphs, anadmissible alternativein the hard-goal subgraph is a solution of the
AND/OR tree that also satisfies the “breaks”, “makes” and “pre” constraints, given a truth assignment
for the domain predicates. In propositional terms, an alternative is the part of a model ofG (i.e. a
truth assignment of its literals that satisfies it) that mentions only the leaf level tasks (i.e. without the
domain predicates). In Figure 9,{t1, t3, t7, t9} is an alternative given initial conditions e.g.{wears(nurse,
earphones),¬ wears(nurse, earphones),¬ patientsCondition(severe)}. Should the domain predicates be{
¬ wears(nurse, earphones),¬ wears(nurse, earphones),¬ patientsCondition(severe)}, then{t1, t3, t7, t9}
would not be an alternative as it would violate the constraint (t1 ⇒ wears(nurse,earphones)).

Given an alternative of the hard-goal subgraph and a truth value for the domain predicates, the sat-
isfaction and denial values of the soft-goal subgraph is found as follows. LetM be a propositional
interpretation of the literals that compriseG (i.e. a truth assignment) such thatM |= G. Then, each
element of the soft-goals subgraphl is assigned two functionsvalSM(l) andvalDM (l). The functions
represent the result of the application of the label propagation algorithm (Figure 5) with initial values
valS0

M(l) andvalD0
M(l) set as follows:

• If l is a literal of formula representing a task thenvalS0
M(l) = 1 iff M |= l andvalS0

M(l) = 0
otherwise. Ifl represents a goal or a CF then letfl be the corresponding a formula based on literals
representing tasks or domain predicates. Then, setvalS0

M(l) = 1 iff M |= fl andvalS0
M(l) = 0

otherwise. We maintainvalD0
M (l) = 0 for all such literals.

• If l is a literal representing a soft-goal thenvalS0
M(l) = valD0

M(l) = 0.

Formulation of preferences, on the other hand, is exactly asdescribed in Section 7, with one obvious
adjustment: temporal operators are not used. Thus, we definethe Static Optional Condition Formula
(SOCF) as follows:

Definition 9.1 (Static Optional Condition Formula - SOCF) A Static Optional Condition Formula
(SOCF) is an propositional formula formed with atoms fromH∪L∪T ∪R. It is drawn from the smallest
setK for which:

25

1. R ⊂ K
2. if g ∈ H thenissat(g)∈ K
3. if t ∈ T thenisperformed(t)∈ K
4. If l, l1, l2 ∈ L, thenvalS(l)〈op〉c, valD(l)〈op〉c, valS(l1)〈op〉valS(l2) andvalD(l1)〈op〉valD(l2) are
in K, where〈op〉 is one of≤,≥ andc is a real constant in [0..1].
5. If φ, φ1, φ2 are inK, then so do¬φ, φ1 ∧ φ2, φ1 ∨ φ2.

The semantics of SOCF are again based on propositional calculus interpretation of the goal model. In
particular letM be a satisfying interpretation ofG andfg be the task-grounded formula of a hard-goal
g:

p(~o) ∈ R thenp(~o) holds iff M |= p(~o)
g ∈ H thenissat(g)holds iff M |= fg

t ∈ T thenisperformed(t)holds iff M |= t
l ∈ L thenvalS(l)〈op〉c holds iff valSM(l)〈op〉c

l1, l2 ∈ L thenvalS(l1)〈op〉valS(l2) holds iff valSM(l1)〈op〉valSM(l2)
l ∈ L thenvalD(l)〈op〉c holds iff valDM (l)〈op〉c

l1, l2 ∈ L thenvalD(l1)〈op〉valD(l2) holds iff valDM(l1)〈op〉valDM(l2)

9.2. Time-independent Analysis

Given the definition of SOCF, Static PFs (SPFs) and Static WPFs (SWPFs) are defined exactly as
in the behavioral, with the difference that the constituentformulae of SPFs are not OCFs but SOCFs.
Returning to our example, assume we are interested in solutions reflecting the fact that on one hand the
nurses“prefer having to walk to the nursing station quite more thanhaving to talk though a mobile
device” and on the other hand the management believes that“having the patient satisfied somehow is
strongly more important than having the nurse satisfied”. The SWPF is then written as follows:

{ isperformed(‘Nurse Talks Through Mobile Device’) [0.0]
� isperformed(‘Nurse Walks To Nursing Station’) [0.3]} × 0.5 +

{ valS(‘Happy Patient)≥ 0.1 [0.0]� valS(‘Happy Nurse)≥ 0.1 [0.7]} × 0.5

In order to reason about such time-independent preference formulae a separate reasoning component
has been implemented. As opposed to behavioral analysis that makes use of a preference-based planner,
the procedure we use to perform static analysis is significantly simpler and faster. The procedure reads as
input the time-independent goal model, the preference formula and the value of the domain predicates
and outputs a set of admissible alternatives (versus plans)ranked by the score by which they satisfy
the preference. For the above SWPF and context (truth value of domain predicates){wears(nurse,mic),
wears(nurse,earPhones), patientsCondition(moderate),isTime(night} the output is the ranking of Figure
10:

The above alternatives are not sequences but rather sets of tasks. Notice how the positive impact of
talking to the patient somehow implies that alternatives that includet6 have a very poor score.

26

Rank Alternative Score
1. {t1, t4, t5, t8, t9} 0.0
2. {t2, t4, t5, t8, t9} 0.0
3. {t1, t4, t5, t7, t9} 0.0
4. {t2, t4, t5, t7, t9} 0.0
5. {t1, t3, t8, t9} 0.15
6. {t2, t3, t8, t9} 0.15
7. {t1, t3, t7, t9} 0.15
8. {t2, t3, t7, t9} 0.15
9. {t1, t6, t7, t9} 1.0
10. {t2, t6, t7, t9} 1.0

Figure 10. Preferred Alternatives

10 Tool

Rankings of preferred plans can be produced using our prototype tool for evaluating preferences. The
tool reads a goal model, a set of the domain predicates representing circumstances of interest, and a
preference formula, all in the form of Prolog predicates, and returns a set of sequences of tasks ranked
by the degree by which they satisfy the preference formula. As mentioned above, the tool is heavily
based on PPlan ([4]), which employs a best-first search strategy to find preferred plans. In the following
subsections, we provide a brief overview of PPlan, describethe extensions we developed and discuss its
performance in a number of examples that we ran.

10.1 An overview of PPlan

PPlan employs an A* best-first search to identify plans from aspecified initial situation to a situation
that best satisfies a given preference formula. Beginning from the initial situation and the empty plan,
the algorithmprogressesthrough possible next situations that form through the performance of actions,
aiming at reaching a situation in which the goal formula is satisfied. Hence, at every step, the algorithm
first identifies which actions satisfy their precondition axioms and can be considered as the next action to
be performed. Thus, a list of potential extensions to the current partial plan (neighbors) are constructed
and then ordered subject to anevaluation function, forming thefrontier. The candidate with the best
score in the evaluation function is pursued, and the same procedure repeats from there.

The evaluation function is a prediction of the best and worstscore the preference formula can possibly
acquire in later stages, given the current situation. Theseare calculated by examining whether it is
possible for the basic desires of the preference formulae (which we here call OCFs) to be true or false in
subsequent situation, given the current situation and partial plan. For example, if in the current situation
the fluentp holds, the desire2¬p that may appear as part of a preference formula can obviouslynever
be true, independent of what further choices are going to be made. In other words, both optimistic and
pessimistic estimations for2¬p, if we continue on the current partial plan, are that it is false. On the
other hand, again given thatp holds, the desire3p is true and will stay true independent of further
choices. Nevertheless, ifp has been true in all previous situations, a prediction of thetruth value for
formula3¬p can be either true (p continues to hold until a plan is found) or false (¬p holds in some
future situation due to the performance of an action). Similar observations can be made with formulas

27

based on other temporal operators as well as compound ones; we refer the reader to [4] for a more formal
account.

Thus, given a partial plan and a preference formula, each constituent desire of the preference formula
can be evaluated with its best and worst possible truth values, providing us with overall optimistic and
pessimistic weights of the preference formula, respectively. The evaluation function for the A* search
is exactly the optimistic score of the preference formula given a partial plan and the current situation.
Thus, given a set of candidate partial plans for the next situation, the one with the best optimistic score
is chosen. In case of a draw (equal optimistic scores), the pessimistic score is used. If there is a draw
there, too, the shortest candidate plan is chosen.

The evaluation function isadmissible, which means that the first solution that is found is guaranteed
to be the optimal. This is because the actual weight calculated once the plan is found, cannot be better
than the optimistic weight estimated for partial plan in thesearch process.

10.2 Extending PPlan

Two extensions were considered to serve our purposes. One was a Prolog implementation of the ALP
algorithm we discussed earlier and its incorporation to PPlans search process. Thus, the ALP algorithm
runs as part of PPlan’s calculation of a progression. After the progression has been performed and a new
set of fluents has emerged, the set is passed to the ALP execution routine which evaluates the impact of
the new situation to the satisfaction and denial values of the softgoals. The fluents of typev

s
(r, s) and

vd(r, s) are updated according to the results of the ALP execution.
Our second extension to PPLan is an enhancement of the existing heuristic aiming at exploiting the

structure of the goal tree. In particular, at a given situation, where a subset of leaf-level tasks of the
goal model have already been performed, it is possible to calculate an estimation of the maximum and
minimum number of tasks that need to be performed for the rootgoal to be satisfied. LetG be a set of
nodesg comprising an AND/OR decomposition tree. For every such node g ∈ G, let gmin andgmax be
the minimum and maximum, respectively, number of tasks thatneed to be performed for the satisfaction
of g. Also letgi be thei−th child ofg andgi

min andgi
max its corresponding distances. Then the procedure

for calculating the minimum and maximum distance from achieving the goalg, given the set of all nodes
given the setT of leaf level nodes that have already been performed can be seen in Figure 11.

The distance of a candidate plan from satisfying the root goal is used together with the heuristics that
are already employed in PPLan, but it is given lower priority. Thus, PPlan’s frontier is set to sort partial
plans with the following order: i) Optimistic Weight, ii) Pessimistic Weight, iii) Minimum Distance to
Goal, and iv) Maximum Distance to Goal. In other words, when comparing two partial plans, their
optimistic weight is first checked, and the plan with the lowest value is picked. In case of a draw (the
weights are equal) the pessimistic weight is checked, and the lowest pessimistic weight is chosen. If there
is a draw in the pessimistic weights too, we choose the plan with the smaller minimum distance to goal.
If there is a draw there, too, we choose the one with the smaller maximum distance to goal. If all these
are equal we choose non-deterministically. In Figure 12, the basic PPLan algorithm is sketched together
with the function COMPAREVAL, which used by SORTNMERGEBYVAL for comparing partial plans.

Theorem 10.1 (Admissibility) The score evaluation is admissible.

Proof. Admissibility follows trivially by the fact the distance-to-goal criterion is given a lower priority
than the optimistic and pessimistic weight criteria, whichhave been proven to constitute admissible

28

CalculateDistance(g,T)
INPUT:
T : A set of task already been performed
g: The goal for which we calculate distance
RETURNS:
g with its gmin, gmax values updated
BEGIN
if g is leaf then

if g in T then
gmin := 0; gmax := 0;

else
gmin := 1; gmax := 1;

returng;
if g is AND decomposition then

for every childgi

gi = CalculateDistance(gi, T);
gmin = Σig

i
min;

gmax = Σig
i
max;

returng;
if g is OR decomposition then

for every childgi

gi = CalculateDistance(gi, T);
gmin = mini(g

i
min);

gmax = maxi(g
i
max);

returng;
END

Figure 11. Distance-to-Goal Calculation

29

PPLAN(state, goal, preferences)
frontier := INITFRONTIER(state, preferences)
while frontier 6= Ø

current:= REMOVEFIRST(frontier)
state:= UPDATESTATE(current, state)
preferences:= UPDATEPREFERENCES(current, state, preferences)
if goal ⊂ state and optW(current) = pesW(current)

returncurrent, optW(current)
end if
neighbours:= EXPAND(current, state, preferences)
frontier:= SORTNMERGEBYVAL(neighbours, frontier)

end while

Partial Plan COMPAREVAL(Partial Planpl1, Partial Planpl2)
/* Comparisons between two partial planspl1, pl2
are performed as follows: */

if optW(pl1) 6= optW(pl2)
return argmin(optW(pl1), optW(pl2))

if pesW(pl1) 6= pesW(pl2)
return argmin(optW(pl1), optW(pl2))

gRoot1 = CalculateDistance(gRoot, pl1)
gRoot2 = CalculateDistance(gRoot, pl2)
if (gRoot1min > gRoot2min)

returnpl2
else if (gRoot1min < gRoot2min)

returnpl1
if (gRoot1max > gRoot2max)

returnpl2
else if (gRoot1max < gRoot2max)

returnpl1
return pickNonDet(pl1, pl2)

Figure 12. Adapted PPlan

30

evaluation ([4]).2
The rationale behind using the distance-to-goal criterionis that, according to our experience, the

minimum number of tasks that need to be performed for the rootof a goal model to be satisfied is
usually proportional to the size of the goal model. The original version of PPlan ignores that, and biases
towards examining all plans of a certain length before it decides to examine longer ones, even when the
goal model suggests that there does not exist a plan of that length.

10.3 Static Analysis

As we saw in Section 9 it is possible to do interesting preference analysis without using the temporal
aspect of our goal and preference models. This greatly simplifies the reasoning task.

The algorithm for reasoning about time-independent preferences is seen in Figure 13. Intuitively,
through simple traversal, the algorithm goes through all alternative solutions of the AND/OR tree. For
each such alternative, it checks whether the constraints are satisfied, and if yes – which means it is an
admissible alternative – it is used to evaluate the preference formula. The alternative is then assigned a
number based on the score with which it satisfies the preference formulae. Based on that assigned score
the alternative takes the appropriate place in the ranking of the so far visited alternatives. The algorithm
returns when all alternatives of the AND/OR tree have been visited.

Traverse(G, Pinit, fpref)
INPUT:
G: a graph representing the goal model
Pinit: the set of domain predicates that hold true
fpref : a preference formula (PF or WPF)
RETURNS:
A rankingrankof alternatives ordered by their score in satisfyingfpref

BEGIN
ConstructCg by reading the “breaks”, “makes” and “pre” relations inG;
translatePinit into a propositional interpretationMP for the domain predicates;
For each solutionsolnof the AND/OR tree ofG

translatesoln into the corresponding interpretationMS of the literals inSg;
setM = MS ∪ MP ;
if M |= Cg then

for all soft-goalsl in G
calculatevalSM(l) andvalDM(l);

calculate the scorescof fpref based onM , valSM(l) andvalDM(l);
insert-sortsoln in rankbased onsc

end-if
next solution
END

Figure 13. Algorithm For Static Analysis

31

Theorem 10.2 The static analysis algorithm terminates after having evaluated all alternatives of the
goal model.

Proof. Recall that the hard-goal subgraph of static goal model can be translated into a formulaG ≡
Sg ∧ Cg, whereSg is the subformula that is constructed by reading the AND/OR goal structure, andCg

the one that is formed by putting together all “pre”, “makes”and “breaks” conjuncts. TriviallyG |= Sg,
that is every solution toG must necessarily be a solution toSg. Thus, by generating all possible models
(truth assignments) forSg we are sure to have visited all possible solutions ofG and perhaps more (e.g.
those that do not satisfyCg). But all possible models forSg are all possible solutions to the AND/OR
tree and vice versa. Termination trivially follows from thefact that the AND/OR tree has a finite number
of alternatives and all functions called from within the loop terminate.2

Preferences are evaluated according to the propositional calculus semantics given in Section 9: every
alternative of the AND/OR tree together with the truth values of all domain predicates constitutes a
modelM for G. This allows evaluation of SOCFs based on the rules of Section 9 and subsequent
calculation of PF and WPF score based on the same rules that apply for temporally-extended preferences.

10.4 Performance Evaluation - Behavioral Analysis

We now take a look at the performance of our tool. While we expect it to be close to that of PPlan (dis-
cussed in [4]), we also expect that the distance-to-goal heuristic reduces the search time for certain types
of preference formulae. In general, our experiments show that the distance-to-goal heuristic significantly
boosts performance with simple preferences with mostly satisfiable constituent desires. However, when
preferences are more complex and involve unsatisfiable desires, the performance of the heuristic may be
less stable and occasionally worsen the performance of the original PPLan.

Our first experimental study is the sensitivity of the performance of the heuristic with respect to the
minimum plan length that the goal model implies. We considered goal models with AND-decompositions
only and varied the number of tasks and therefore the minimumplan length. We tried minimum plan
lengths from 6 to 9. We removed any temporal constraints in order to maximize the search space. For
each of these four models we constructed a similar set of preference formulae. The set contains a subset
of satisfiable formulae (returning 0.0), a set of unsatisfiable formulae (returning 1.0) and a set of mixed
ones (returning anything in between 0.0 and 1.0). Each set istried in PPlan with or without the distance-
to-goal heuristic. An AMD Phenom, with 2.5Ghz CPU, 4MB cacheand 1Gb of available memory is
used and stack and trail sizes in SWI Prolog are set to 128MB each.

Regarding the satisfiable set the comparison between the original PPlan and our extension is revealing
of the effectiveness of our distance-to-goal heuristic. InTable 10.4 we simply average the running times
over the satisfiable preferences. By increasing the minimumplan length, original PPlan’s execution time
increases exponentially, while the heuristic-enabled version remains low. The star (*) in the table means
that the program run out of memory in all cases (within 8 hoursof computation).

However, unsatisfiable and mixed preferences do not exhibitsuch encouraging results. Instead, when
preferences are unsatisfiable or mixed, the performance of the heuristic may demonstrate remarkable
fluctuations. Characteristic is the case of our model with minimum plan length 7, which we present
through a boxplot in Figure 14. The graph summarizes experimental results with 13 different arbitrarily
constructed unsatisfiable and mixed preference formulae. Observe that while the median of the heuristic-
enabled version is lower than that of the original version, there is significant fluctuation as indicated by

32

Min. Plan Length Original Heuristic-Enabled
6 0.79 ± 0.02 0.04 ± 0.006
7 10.14 ± 0.05 0.05 ± 0.008
8 353 ± 3 0.07 ± 0.013
9 * 0.135 ± 0.013

Table 7. Performance for satisfiable preferences (behavior al analysis).

the great distance between the quintiles. Note that for minimum plan lengths of 10 and above, the
running time would typically exceed our 8 hour limit..

Figure 14. Performance for unsatisfiable and mixed preferen ces (behavioral analysis).

Our exploration reveals that the distance-to-goal heuristic exhibits such negative results when it builds
a plan prefix (i.e. a partial plan) that leads to a situation with no solution or with a (“suddenly”) sub-
optimal one. This can happen due to a choice that has been madeearly in the plan building process.
The tenancy of our distance-to-goal heuristic to backtrackthe progression towards plans that tend to be
closer to the minimum distance-to-goal, may imply that the heuristic will take longer to correct the early
choice. To confirm this we worked qualitatively. We developed the AND/OR tree of Figure 15. The
“troubling” property of this tree is the precedence that connectst1 with t13. A preference specification
of that includes a desire for both, for example,t2 andt10 will obviously lead our search procedure in
a “trap”: the planner will look for plans beginning fromt2 which however implies thatt10 cannot be

33

Formula Original Heuristic-Enabled
3t2 0.07 0.06
3t9 2.26 0.24
3t10 2.37 0.16

3t2 × 0.6 + 3t10 × 0.4 26.15 208.51
3t2 × 0.7 + 3t4 × 0.1 + 3t10 × 0.2 26.08 211.09

3t2 × 0.4 + 3t7 × 0.6 35.24 216.68

Table 8. Trapping the distance-to-goal heuristic (behavio ral analysis).

performed. We are, then, questioning the ability of our distance-to-goal heuristic to escape the “trap”
sooner than the original PPlan. In Table 10.4, the performance given particular preference formulae
is given (times are in seconds). It is clear that while in simple formulae our heuristic performs better,
formulae that lead the search routine in such traps can lead our heuristic to perform worse.

t

1

t

2

t

6

t

9
OR

t

3

AND

g

root

g

2

g

1

AND

g
3

g
4

OR

OR

OR

OR

t

7

t

8

t

4

t

5

OR

OR

OR

AND

AND

AND

t

10

OR

g
5

t

11

t

12

t

13

AND

AND

AND

AND

pre

pre

pre

pre

pre

pre

pre

t

14

AND

pre

Figure 15. A goal model with non-local constraints.

As a last experimental step with the behavioral analysis component, we aimed at establishing the
worst- and best- case performance boundaries of our heuristic-enabled tool. We experimented with a
number of “artificial” goal models (i.e. models with dummy elements) but of several sizes, and arbitrarily
constructed preference formulae. From the several randomly constructed goal structures, which vary in
terms of the number of OR-decompositions and temporal constraints, we chose ones that appeared to
generally worsen performance. We run the experiments on thesame hardware infrastructure as above (a
Pentium IV, with 2.5Ghz CPU and 1Gb memory). Using the numberof leaf level tasks as an indication
of the size of the goal model, we report in Table 9 the best and worse times we ever observed with any
of the models we have tried, the symbol (*) meaning longer than 1 day of computation.

Thus, the evaluation of an arbitrary preference formula in an arbitrary goal tree is between these two
extremes, without however necessarily reaching any of those extremes. For instance, the preference of
Figure 7 over the 9-task model of Figure 1, is evaluated in about 1.5 seconds although it is unsatisfiable.

34

tasks 6 7 8 9 10 20 30 40
Best ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 1 15 2m

Worse 11 24 10m 1.4h * * * *

Table 9. Worst and best case times (behavioral analysis)

Model (plan lgth / #alt) Avg. (Behav.) Avg. (Static)
Nursing (6/24) 0.1s 0.1s
ATM (16/32) 0.25s 0.4s
Bookseller (16/2) 0.2s 0.02s
Mtg. Sched. (12/4088) 4.3m 3.2m

Table 10. Realistic Model Results for Behavioral and Static Analyses

10.5 Performance Evaluation - Static Analysis

Performance of static analysis significantly deviates fromthe above results. Recall that for static anal-
ysis we perform brute-force exhaustive search of solutionsof the AND/OR tree. Thus, performance
is linear to the number of solutions of the AND/OR tree and thus exponential to the number of OR-
decompositions the tree contains. We found that our tool requires about 50 sec to process 1,000 such
alternatives, making it usable in all practical goal modelswe have worked with. It is interesting to ob-
serve that our brute-force approach allows rough estimation of the time that is required for a result to be
returned, by simply multiplying the number of solutions of the AND/OR tree (which can be found by re-
cursively adding the number of solutions of OR-rooted subtrees and multiplying the number of solutions
of AND-rooted subtrees) by the time that the tool needs to process (check constraints, label propagate,
calculate preference weights) each alternative. To compare performance of static analysis with best-case
behavioral analysis, in Table 10, we provide the average running times for behavioral analysis over sat-
isfiable preferences as well as the average time for static analysis observed while experimenting with
our realistic models; the maximum plan length and number of alternatives of each model are given in
parentheses.

11 Applications

11.1 Adding an Interaction Layer

The preference specification language we described has beendesigned to allow construction of arbi-
trarily complex temporal desires, which can be prioritizedin several ways using real numbers as score
values. In practice, however, users of the language may choose to use only part of its expressive power
in return for simplicity and intuitiveness. Thus, the language can be seen as a low-level preference
modeling infrastructure on top of which additional layers of elicitation mechanisms can be constructed.
Probably the simplest example of implementing such a layer,is by constructing yet another preference
specification language which is, however, much more abstract, less technical and therefore potentially
useable by users without knowledge of LTL or of informed waysto come up with weights.

35

To show how this is possible we constructed such a language. It allows users to write sentences
whereby they express their optional desires or preferencesin structured English. To express desires,
users can use elements of the goal model together with temporal prepositions, such as “before”, “until”
or “after”. For soft-goals, in particular, reference to quantitative measure of satisfaction is replaced
by qualitative labeling. The upper section of the top box of Figure 16, shows examples of three desires.
Desire sentences are given unique identifiers (des1, des2 and des3 in the figure) to allow them be referred
by preference sentences. The latter, seen at the bottom partof the top box of Figure 16, are used to rank
desires subject to their relative importance. Again the quantitative measures of relative importance have
been replaced by qualitative labels such as ‘strongly’ and ‘weakly’.

Desire and Preference Sentences

(des1) I desire that Happy Patient is never denied more than a little.

(des2) I desire that Nurse Walks to Nursing Station is not performed

before Nurse Walks to Patients Room is performed. (des3) I desire

that Happy Nurse is eventually satisfied more than quite.

I strongly prefer des1 from des3. I weakly prefer des2 from des1.

Interpreter

Preference Formula

{
notB(eventually(valD(‘Happy Patient’)>=0.1)) [0.0] >>

eventually(valS(‘Happy Nurse’)>=0.3) [0.7]
}
 x 0.5
+

{
orB(always(notB(isperformed(‘Nurse Walks To Patients Room’))),

until(notB(isperformed(‘Nurse Walks To Patients Room’)),

notB(isperformed(‘Nurse Walks To Nursing Station’)))) [0.0] >>

notB(eventually(valD(‘Happy Patient’)>= 0.1)) [0.3]
}
 x 0.5

Rank Plan Score

No 1. {t1, t3, t7, t9} 0.0

No 2. {t1, t3, t9, t7} 0.0

… …. ….

Enable Speaker

Enable Mobile

Communication Devices
Notification Devices

Nursing Station

Mobile Device

Planner

Context

{isTime(night),

patientsCondition

 (moderate)}

Goal Model

Nurse Notified

System

Notifies

through

Earphones

System

Notifies

through

Speakers

OR

OR

Nurse to Attend to

Patient

AND

Nurse

Responded

Call

AND

Patient

Visited

Nurse Walks

to Patients

Room

OR

AND

OR

Nurse Walks

to the Nursing

Station

Talked from the

Nursing Station

OR
 OR

Nurse Talks

through

Mobile Device

Nurse talks to the

Patient at the

Nursing Station

AND

AND

~patientsCondition(severe) AND

~issat(‘
 Nurse doesn’t talk with Patient’)

pre

Happy

Patient

Happy

Nurse

Avoid Nurse

Disturbance

Increase

Nurses

Productivity

0.4

D+

0.6

S-

0.4

S+

0.4
S+

0.5
S-

pre

pre

CE

0.3
S+

Nurse

Skips

Visit

issat('System Notifies

through Speakers')

AND
 isTime(night)

Avoid Patient’s

Disturbance

0.5
S-

CE

Nurse

Comfort

0.4
S-

t

1

t

2

0.3

+

0.5
+

Patient Feels

Cared For

0.8
+

Communication

Handled

Nurse

doesn’t talk

with Patient

OR

AND

AND

isAt(nurse, nursingStation)

eff

EE

eff

isAt(nurse, patientsRoom),

~isAt(nurse, nursingStation)

EE

Turn

Request Off

t
3

t

4

t

5

t

6

t

7

t

8

t

9

Talked With

Patient

OR

pre

pre

0.2

S-

Figure 16. From Preference Sentences to Configurations

We constructed an interpreter that allows the translation of a set of such desire and preference sen-
tences into the formal preference specification language. The interpreter deals with temporal prepo-
sitions (“before”, “until” etc) by considering the LTL pattern system, introduced in [7], which offers
a mapping from informal expressions of high-level temporalproperties to complex formulae in linear
temporal logic. In addition, the interpreter is supplied with a mapping from qualitative labels to quan-
titative values for both soft-goal satisfaction and denialand for ranking weights. The construction of
such a mapping depends on the intuition of the analysts. Thus, for our language, in terms of soft-goal
satisfaction and denial value we assigned to expressions such as “a little”, “quite” and “a lot” numeric
satisfaction or denial values such as 0.1, 0.3 and 0.7, respectively. In terms of weights of PFs, which can
involve only two OCFs in our informal language, we associated terms such as “weakly” and “strongly”
with numeric values chosen from the interval (0,1] for the least preferred OCF, and the value 0 for the
most preferred one. Thus, “weakly prefer” implies that the least preferred OCF has a value of 0.3 while
for “strongly” the least preferred OCF has a value of 0.7. Again, these choices for interpreting linguistic
elements into numerical weights in preference formulae andfor using PFs versus WPFs heavily rely

36

on intuition. Our study of this semi-formal language, however, clearly illustrated that the complex-
ity of our formal preference language can be hidden behind a custom-made preference communication
mechanism.

11.2 Configuration

Apart from allowing exploration and understanding of the impact of stakeholder attitudes to design
decisions, our framework also has a potential application to the configuration of the software artifact that
results from the requirements and design process. In [22] weshowed that it is possible under certain
assumptions to associate alternative configuration options of a common software system with leaf-level
elements of goal decomposition trees. When such a mapping ispossible in the domain of interest,
preference specification and analysis can be used for configuring the corresponding software system.
From the output of the reasoning procedure, the top plan can be selected and, in turn, the configurations
that map with the selection of the tasks that comprise the plan are constructed.

At the bottom of Figure 16, the configuration screen of a hypothetical nurse notification and commu-
nication system for our case study is presented. The high level preference sentences presented at the top
box, have translated into a ranking of preferred plans, the first of which is used to define the current con-
figuration. Thus, the absence of the taskSystem Notifies through Speakers, which is due to the fact that it
is night and there is a preference not to disturb the patients, is interpreted into a disabled speaker system
of the unit at the configuration level. Notice that the same preference may yield a different preferred
plan if it is not night-time, which would, in turn, imply enabled speakers.

12 Preliminary Evaluation

The main source of feasibility evidence comes from our case study on the nursing domain. The
study is an exploratory one, as the domain investigation wasunfolding during the initial development
of our framework without a-priori hypotheses. The domain investigation process involved a series of
interviews with health professionals. Acting as goal analysts we iteratively developed goal models and
temporally extended them to a point where we thought that theresult would reflect our understanding
of the domain. We then attempted to construct simple preference formulae (using the formal low-level
language) for each stakeholder, again based on our sense of what the desires and preferences of the
stakeholders we interviewed were. Both the goal model and the preference formulae were iteratively
revised by using the tool and testing the resulting plan rankings against our intuition of the domain.

We felt that the process converged to satisfactory goal and preference models. The use of the reasoning
tool helped us explore the domain of possible solutions. It proved particularly useful for understanding
the conflicts between stakeholder desires and how they affect the choice of the end solution. The desires
of the nurses and the managers, for example, although they don’t seem to be related when stated as
high-level statements, they are found to be conflicting wheninterpreted into operational details, as we
illustrated in Section 8.

We found, however, that more research needs to be done towards the development of instruments for
systematic acquisition for: a) the weights and qualities (PFs versus WPFs) of the preference formulae,
b) the weights of the contribution links in the goal model andthe comparison constants forvalS() and
valD() in the preference formulae. Regarding the choice of weightsin preference formulae, as we
saw earlier, the software engineering community has shown that the elicitation of priorities amongst

37

competing requirements is possible in a variety of ways. Although the concepts under comparison in
existing requirements prioritization frameworks are coarse-grained software features, we believe that the
same or similar techniques should also be effective for eliciting and quantifying priorities over behavioral
and quality properties of the type we present here. The quality of the preference formula also depends on
the elicitation method, PFs reflecting ranking-based approaches to preference, as discussed in economics
(e.g. [30]) and WPFs being closer to weight-based formalizations of relative importance (e.g. AHP-style
[20]). In terms of choosing weights for the contribution links and the satisfaction or denial of soft-goals,
in our applications we often found convenient to limit ourselves to three or four equidistant values from
the interval [0,1] which we would intuitively and uniformlythroughout our analysis associate with terms
such as “a little”, “a lot” etc. The usefulness of such a mapping between linguistic terms and weights
became more evident in our experimentation with the semi-formal language we presented in Section 11.
However, we believe that more research needs to be done towards a formal acquisition process of such
mappings based on, for example, quantitative questionnaires.

In addition to the nursing domain (size: 31 goal elements) wealso tried the same process on other
generic domains, without however employing a realistic investigation process. Thus, we created models
for the meeting scheduling problem (65 elements), for the ATM domain (34 elements), as well as for a
(hypothetical) on-line bookstore (34 elements). Despite the lack of actual input from stakeholders, which
would offer an increased sense of validity of the modeling result, our application on those examples
offered further evidence that our modeling and analysis approach is feasible.

13 Conclusions

Evaluating alternative solutions subject to stakeholder priorities and preferences is an integral part
of the requirements analysis process. The main contributions of this paper are the introduction of a
goal-oriented approach for modeling temporally extended optional and preference requirements and a
proposal for using such requirements for exploring and evaluating alternative solutions. We demon-
strated possibilities for tool support both at the level of reasoning about alternatives, and at the level
of acquiring preference specifications through structuredEnglish. Through our practical applications,
we found that the overall framework is useful for understanding the impact of the attitudes of differ-
ent stakeholders to the selection of a solution, and, potentially, for allowing automatic derivation of the
appropriate low-level design and configuration choices.

For the future we need to better understand the merits and weaknesses of the proposed framework by
applying it at larger scale case studies. Firstly, alternative preference elicitation processes need to be
explored, by potentially adopting existing work from areassuch as AI, Economics and Psychology. Sec-
ondly, we plan to develop and experiment on a concrete implementation of a preference-based software
configuration tool. And, thirdly, we intend to explore ways to improve the performance of our reasoning
tool. Recent advances in preference-based planning are only encouraging towards this direction.

References

[1] L. Ardissono, G. Friedrich, A. Goy, M. Holland, G. Petrone, C. Russ, and R. Schaefer. User-adaptive con-
figuration of products and services. InProceedings of the IJCAI’03 workshop on Configuration, Acapulco,
Mexico, 2003.

38

[2] P. Avesani, C. Bazzanella, A. Perini, and A. Susi. Facingscalability issues in requirements prioritization with
machine learning techniques. InProceedings of the 13th IEEE International Conference On Requirements
Engineering (RE’05), 2005.

[3] K. Beck. Extreme Programming Explained. Addison Wesley, 1999.
[4] M. Bienvenu, C. Fritz, and S. McIlraith. Planning with qualitative temporal preferences. InProceedings of

the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR06), June
2006.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using feature models. InProceedings of
the Third Software Product Line Conference, pages 266–283, 2004.

[6] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition.Science of Com-
puter Programming, 20(1-2):3–50, 1993.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-state verification.
In ICSE ’99: Proceedings of the 21st International Conferenceon Software Engineering, pages 411–420,
Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[8] S. R. Faulk. Product-line requirements specification (PRS): An approach and case study. InProceedings of
the 5th IEEE International Symposium on Requirements Engineering (RE’01), pages 48–55, 2001.

[9] A. Felfernig, G. Friedrich, and D. Jannach. Conceptual modeling for configuration of mass-customizable
products.Artificial Intelligence in Engineering, 15(2):165–176, 2001.

[10] D. Fischbein, S. Uchitel, and V. Braberman. A foundation for behavioural conformance in software product
line architectures. InProceedings of the ISSTA 2006 workshop on Role of software architecture for testing
and analysis (ROSATEA’06), pages 39–48, New York, NY, USA, 2006.

[11] A. Gabaldon. Precondition control and the progressionalgorithm. In D. Dubois, C. Welty, and M. Williams,
editors,Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International
Conference (KR2004), pages 634–643. AAAI Press, 2004.

[12] G. Gans, M. Jarke, G. Lakemeyer, and T. Vits. Snet: A modeling and simulation environment for agent
networks based on i* and ConGolog. InProceedings of the 14th International Conference on Advanced
Information Systems Engineering (CAiSE’02), LNCS 2348, Toronto, Canada, 2002.

[13] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Reasoning with goal models. InProceedings
of the 21st International Conference on Conceptual Modeling (ER’02), pages 167–181, London, UK, 2002.

[14] G. Halmans and K. Pohl. Communicating the variability of a software-product family to customers.Software
and System Modeling, 2(1):15–36, 2003.

[15] B. Hui, S. Liaskos, and J. Mylopoulos. Requirements analysis for customizable software: A goals-skills-
preferences framework. InProceedings of the 11th IEEE International Requirements Engineering Confer-
ence (RE’03), 2003.

[16] H. P. In, D. Olson, and T. Rodgers. Multi-criteria preference analysis for systematic requirements negoti-
ation. InProceedings of the 26th Annual International Computer Software and Applications Conference
(COMPSAC’02), 2002.

[17] M. Jackson. The meaning of requirements.Annals of Software Engineering, 3:5–21, 1997.
[18] U. Junker. Preference programming for configuration. In IJCAI-01 Workshop on Configuration, 2001.
[19] I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core ontology and problem in requirements engi-

neering. InProceedings of the 16th IEEE International Conference on Requirements Engineering (RE’08),
pages 71–80, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

[20] J. Karlsson and K. Ryan. A cost-value approach for prioritizing requirements.IEEE Software, 14(5), 1997.
[21] G. Klein and P. O. Beck. A decision aid for selecting among information system alternatives.MIS Quarterly,

11(2):177–185, June 1987.
[22] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S. Easterbrook. Configuring common personal software: a

requirements-driven approach. InProceedings of the 13th IEEE International Conference on Requirements
Engineering, Paris, France, 2005.

39

[23] S. Liaskos, S. McIlraith, and J. Mylopoulos. Representing and reasoning with preference requirements
using goals (revision). Technical Report CSRG-542, Dept. of Computer Science, University of Toronto,
ftp://ftp.cs.toronto.edu/pub/reports/csrg/542, 2008.

[24] S. McIlraith. Integrating actions and state constraints: A closed-form solution to the ramification problem
(sometimes).Artificial Intelligence, 116(1-2):87–121, January 2000.

[25] J. Mylopoulos, L. Chung, S. Liao, H. Wang, and E. Yu. Exploring alternatives during requirements analysis.
IEEE Software, 18(1):92–96, 2001.

[26] R. Reiter.Knowledge in Action. Logical Foundations for Specifying and Implementing Dynamical Systems.
MIT Press, 2001.

[27] V. Renneberg, R. Stegmann, and T. Leckner. Recommending personalized product configurations based on
product scorings. InProceedings of the ECAI’04 Workshop on Configuration., August 2004.

[28] D. Sabin and R. Weigel. Product configuration frameworks-a survey.IEEE Intelligent Systems, 13(4):42–49,
1998.

[29] R. Sebastiani, P. Giorgini, and J. Mylopoulos. Simple and minimum-cost satisfiability for goal models. In
Proceedings of the 16th Conference On Advanced InformationSystems Engineering (CAiSE’04), 2004.

[30] A. K. Sen. Behaviour and the concept of preference.Economica, 40(159):241–59, August 1973.
[31] A. G. Sutcliffe, N. A. M. Maiden, S. Minocha, and D. Manuel. Supporting scenario-based requirements

engineering.IEEE Transactions on Software Engineering, 24(12):1072–1088, 1998.
[32] T. Ziadi and L. Hélouët and J.-M. Jézéquel. Modeling behaviors in product lines. InInternational Workshop

on Requirements Engineering for Product Lines (REPL), pages 33–38, September 2002.
[33] X. Wang and Y. Lesperance. Agent-oriented requirements engineering using ConGolog and i*. InAOIS-

2001, Bi-Conference Workshop at Agents 2001 and CAiSE’01., 2001.
[34] E. S. K. Yu. Towards modelling and reasoning support forearly-phase requirements engineering. InPro-

ceedings of the 3rd IEEE Int. Symposium on Requirements Engineering (RE’97), Washington D.C., USA,
January 1997.

[35] E. S. K. Yu and J. Mylopoulos. Understanding “why” in software process modelling, analysis, and design. In
Proceedings of the Sixteenth International Conference on Software Engineering (ICSE’94), pages 159–168,
1994.

[36] H. Zhang, S. Jarzabek, and B. Yang. Quality prediction and assessment for product lines. In15th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE), pages 681–695, 2003.

40

