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Abstract

Graphical processing units (GPUs) are critical to high-quality visualization in many application
domains. Running such applications in virtual machine monitor (VMM) environments is difficult
for a number of reasons, all relating to the fact that the GPU hardware interface is proprietary rather
than standardized. This paper describes the design, implementation, and evaluation of VMGL, a
VMM-independent, GPU-independent, cross-platform solution to this problem. VMGL virtualizes
at the OpenGL software interface, recognizing its widespread use in graphics-intensive applica-
tions. Our experiments confirm excellent rendering performance with VMGL, coming within 14%
or better of native hardware accelerated performance measured in frames per second. This is two
orders of magnitude better than software rendering, which is the commonly available alternative
today for graphics-intensive applications running in virtualized environments. Our results confirm
VMGL’s portability across VMware Workstation and Xen (on VT and non-VT hardware), and
across Linux (with and without paravirtualization), FreeBSD, and Solaris. Our results also show
that the resource demands of VMGL align well with the emerging trend of multi-core processors.





1 Introduction
Virtual machine monitor (VMM) technology has been put to many innovative uses, including mo-
bile computing [11, 22, 31], system management [12, 30], intrusion detection [13], and grid com-
puting [14]. However, the difficulty of virtualizing graphical processing units (GPUs) has so far
limited the use of virtual machines (VMs) for running interactive applications. The performance
acceleration provided by GPUs is critical to high-quality visualization in many applications, such
as computer games, movie production software, computer-aided design tools for engineering and
architecture, computer-aided medical diagnosis, and scientific applications such as protein model-
ing for drug synthesis. For this class of applications, software rendering is the prevalent option for
virtualized execution, and it is unacceptably slow.

Virtualizing GPUs is difficult for a number of reasons. First, the hardware interface to a GPU
is highly proprietary, and many technical details are closely held as trade secrets. Hence, it is often
difficult to obtain the technical specifications necessary to virtualize a GPU. Second, because the
hardware interface is not public, GPU vendors feel free to make significant changes in the inter-
face as their product lines evolve. Trying to virtualize across such a wide range of interfaces can
result in a weak lowest common denominator. Third, the software needed to integrate a GPU into
an operating system is typically included with the hardware as a closed-source device driver. In a
virtualized environment, the driver is useless for other guest operating systems. For reasons men-
tioned earlier, the technical details necessary to create a new driver for other guests are typically
not available. In summary, virtualization of a hardware component presumes the existence of a
standard interface such as the x86 instruction set, or the IDE and SCSI interfaces to disks; GPUs
lack such a standard.

This paper proposes a solution that is strongly influenced by how applications actually use
GPUs. Many of the virtualization challenges discussed in the previous paragraph would also com-
plicate the authoring of applications. For example, the absence of a stable GPU interface would
require frequent application changes to track hardware. The large diversity of technical specifica-
tions across GPUs and the difficulty of obtaining them publicly would severely restrict the market
size of a specific application implementation. The graphics community has solved these problems
by creating higher-level APIs that abstract away the specifics of GPUs. The most well-known
and widely-used of these APIs is OpenGL. Today, many applications that use GPUs are written to
the OpenGL API. For each supported operating system, a GPU vendor distributes a closed-source
driver and OpenGL library. The job of tracking fast-moving interface changes to GPUs is thus del-
egated to the GPU vendors, who are best positioned to perform this task. Although OpenGL is a
software interface, it has become a de facto GPU interface. We therefore make it the virtualization
interface.

We describe VMGL, a virtualized OpenGL implementation that offers hardware accelerated
rendering capabilities to applications running inside a VM. VMGL runs the vendor-supplied GPU
driver and OpenGL library in the VMM host (the administrative VM for a hypervisor like Xen or
the hosting OS for a VMM like VMware Workstation). The host runs a vendor-supported operat-
ing system and has direct access to the GPU. Using a GL network transport, VMGL exports the
OpenGL library in the host to applications running in other VMs. When those applications issue
OpenGL commands, the commands are transported to the GPU-enabled host and executed there.
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VMGL thus preserves complete application transparency; no source code modification or binary
rewriting is necessary. VMGL also supports suspend and resume of VMs running graphics accel-
erated applications, and allows suspended VMs to be migrated to hosts with different underlying
GPU hardware. VMGL is not critically dependent on a specific VMM or guest operating system,
and is easily ported across them.

We evaluate VMGL for diverse VMMs and guests. The VMMs include Xen on VT and non-VT
hardware, and VMware Workstation. The guests include Linux with and without paravirtualiza-
tion, FreeBSD and Solaris. In experiments with four graphics-intensive applications, including one
that is closed source, the observed graphics performance of VMGL comes within 14% or better of
native performance and is two orders of magnitude superior to software rendering. Although this
approach incurs the performance overhead of cross-VM communication, our experimental evalu-
ation demonstrates that this overhead is modest. Moreover, our results also show that multi-core
hardware, which is increasingly common, can help in reducing the performance overhead.

VMGL is free and open source software available at the author’s web site [19]. Up to February
2007, VMGL has been downloaded more than 500 times.

The rest of this paper describes the design, implementation and experimental validation of
VMGL, a prototype implementation of OpenGL virtualization for X11-based systems. We begin
in Section 2 with an overview of GPUs and OpenGL. Section 3 then describes the detailed design
and implementation of VMGL. Section 4 presents the experimental validation of VMGL. Section 5
discusses related work and Section 6 concludes the paper and presents our plans for future work.

2 Background
In this section, we provide an introduction to graphics hardware acceleration and OpenGL, the
most commonly used 3D API. We also describe how X11-based applications leverage hardware
acceleration capabilities. Readers familiar with these topics can skip ahead to Section 3.

2.1 Hardware Acceleration
Almost all modern computers today include a Graphics Processing Unit (GPU), a dedicated pro-
cessor used for graphics rendering. GPUs have become increasingly popular as general purpose
CPUs have been unable to keep up with the demands of mathematically intensive algorithms used
for transforming 3D objects on screen or applying visual effects such as shading, textures, and
lighting. GPUs are composed of a large number of graphics pipelines (16–112 for modern GPUs)
operating in parallel. For floating point operations, GPUs can deliver an order of magnitude better
performance that modern x86 CPUs [16].

Modern GPUs range from dedicated graphics cards to integrated chipsets. As individual hard-
ware implementations might provide different functionality, 3D graphics APIs have arisen to iso-
late the programmer from the hardware. The most popular APIs are OpenGL, an open and cross-
platform specification, and Direct3D, a closed specification from Microsoft specific to their Win-
dows platform. We describe OpenGL below in more detail.
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2.2 OpenGL Primer
OpenGL is a standard specification that defines a platform-independent API for 3D graphics. The
OpenGL API supports application portability by isolating developers from having to program for
different hardware implementations.

Vendors implement the OpenGL API in the form of a dynamically loadable library that can
exploit the acceleration features of their graphics hardware. All OpenGL implementations must
provide the full functionality specified by the standard. If hardware support is unavailable for
certain functions, it must be implemented in software. This isolates the programmer from having
to determine available features at runtime. However, the OpenGL specification does allow for
vendor-specific extensions; applications can only determine the availability of these extensions at
runtime.

The OpenGL calls issued by an application modify the OpenGL state machine, a graphics
pipeline that converts drawing primitives such as points, lines, and polygons into pixels. An
OpenGL context encapsulates the current state of the OpenGL state machine. While an appli-
cation may have multiple OpenGL contexts, only one context may be rendered on a window at a
given time. OpenGL is strictly a rendering API and does not contain support for user input or win-
dowing commands. To allow OpenGL contexts to interact with the window manager, applications
use glue layers such as GLX for X11-based systems, WGL for Microsoft Windows, and AGL for
the Macintosh.

Today, OpenGL is the only pervasive cross-platform API for 3D applications. The competing
proprietary API, Microsoft’s Direct3D, only supports the Windows operating systems. OpenGL
implementations are available for Linux, Windows, Unix-based systems, and even embedded sys-
tems. Bindings exist for a large number of programming languages including C, C++, C#, Java,
Perl, and Python.

2.3 X11 Hardware Acceleration
GLX, the OpenGL extension to the X Window System, provides an API that allows X11-based
applications to send OpenGL commands to the X server. Depending on hardware availability,
these commands will either be sent to a hardware-accelerated GPU or rendered in software using
the Mesa OpenGL implementation [27]. As GLX is an extension to X, it allows both local and
remote clients to leverage it. Remote clients can only perform indirect non-accelerated rendering.

Using GLX can lead to significant overhead as all data has to be routed through the X server. In
response, the Direct Rendering Infrastructure (DRI) was created to allow for safe direct access to
the GPU from an application’s address space, while still relying on Mesa for a software fallback.
The Direct Rendering Manager (DRM), a kernel module, controls the GPU hardware resources
and mediates concurrent access by different applications (including the X server). While the DRI
provides a direct path for OpenGL commands, GLX must still be used for interactions with the X
window server.
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3 VMGL
VMGL offers hardware accelerated rendering capabilities to applications running inside a VM.
VMGL virtualizes the OpenGL API v1.5 and provides VM suspend and resume capabilities. The
current VMGL implementation supports Xen and VMware VMMs, ATI, Nvidia and Intel GPUs,
and X11-based guest operating systems like Linux, FreeBSD, and OpenSolaris. VMGL is imple-
mented in userspace to maintain guest kernel and VMM agnosticism, and its design is organized
around two main architectural features:

• Virtualizing the OpenGL API removes any need for application modifications or relinking,
guarantees portability to different guest operating systems, and guarantees compatibility with
graphics hardware from different manufacturers.

• Use of a network transport guarantees applicability across VMMs and even for different
types of VMs supported by the same VMM.

In the rest of this paper, the term host refers to the adminstrative VM in Xen or the underlying
OS for hosted VMMs like VMware Workstation, and guest refers to a VM or domain.

3.1 VMGL Architecture
Figure 1 shows the VMGL architecture, which consists of three user-space modules: the VMGL
library, the VMGL stub, and the VMGL X server extension. The figure also shows an application
running on the guest VM and a viewer which runs on the host and handles the application’s visual
output and user input.

Applications inside guests use the VMGL library as a replacement for standard or vendor-
specific OpenGL implementations. Upon application startup, the VMGL library creates a VMGL
stub on the host to act as a sink for OpenGL commands. The VMGL stub links against the OpenGL
library available on the host to obtain direct rendering capabilities on behalf of the virtualized ap-
plication. When the application inside the guest issues GL commands, the VMGL library forwards
those commands to the VMGL stub using a network transport over a loopback connection.

Figure 1 also illustrates the use of viewer software, typically based on VNC [29], that displays
the 2D output generated by a guest, and captures user input and relays it to the guest. The guest
2D output is generated by an X server drawing to a virtual 2D framebuffer. In the absence of a
virtual framebuffer, 2D output is generated by a VNC X server. We modified a VNC viewer to
interact with VMGL stubs; the VNC viewer modifications are minimal as we offload most of the
functionality onto the stubs. This allowed us to easily add support for the alternative viewers used
by Xen, qemu and other VMMs.

To compose the viewer 2D output and the VMGL stub’s 3D GL output, we augment the guest’s
X server with an extension. The VMGL library uses this extension to register windows bound to
OpenGL contexts. The extension monitors changes to the size, position and visibility of OpenGL-
enabled windows, and forwards those changes to the VMGL stub. The stub applies this information
on its GL graphical output by clipping it to remove sectors that are not currently visible in the
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Figure 1: VMGL Architecture

guest’s desktop, resizing it, and finally superimposing it on the viewer window at the appropriate
relative coordinates. The VMGL X extension is a loadable module that can be added to an existing
X server configuration. The extension operates at the common device independent layer shared by
all variants of X servers, ensuring support for the X11 and Vnc servers used inside guests.

The rest of this section first describes WireGL, the OpenGL network transport used by VMGL.
We then describe VMGL’s suspend and resume implementation, and discuss driver changes neces-
sary to obtain direct rendering capabilities in a Xen configuration. Finally, we discuss limitations
of the current implementation.

3.2 OpenGL Transport
The standard OpenGL transport for remote rendering is GLX, previously described in Section 2.3.
When used over network connections, GLX has two important disadvantages. First, it cannot
provide a direct rendering path from the application to the graphics card. Second, it involves costly
network round-trips for each and every OpenGL command being invoked. The former is solved in
VMGL by interposing a GL stub that channels GL commands into a direct rendering context. For
the latter we leverage the WireGL protocol [10, 21].

WireGL accelerates the marshaling of OpenGL commands by only transmitting changes to
screen-visible state, and by minimizing the number of network round-trips. These goals are
achieved through the use of two techniques. First, WireGL applies the changes to OpenGL state
requested by the application to a local cache. Dirty cache contents are flushed lazily as needed.
This enables smart discarding or postponing of ineffectual state changing commands. For exam-
ple, if glTexSubImage is used to modify a texture portion that is currently not visible, no network
packets will be sent until the modified area becomes visible.

WireGL also employs a frequently-used system’s technique: reorder and buffer commands un-
til a commit point arrives. Geometry commands are buffered in queues. Whenever possible, com-
mands are merged to improve network usage. For example, consecutive glRotate and glTranslate
calls are collapsed into a single matrix modification command. When the application issues state
changing or flushing commands (like glFlush or glXSwapBuffers), the buffered block of geometry
modifications is sent, along with outstanding state changes associated to that geometry.
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3.3 Suspend and Resume
VMGL provides support for VM suspend and resume, enabling user sessions to be interrupted or
moved between computers [11, 22, 30]. Upon VM resume, VMGL present the same graphic state
that the user observed before suspending and retains hardware acceleration capabilities.

VMGL uses a shadow driver [33] approach to support guest suspend and resume. While the
guest is running, VMGL snoops on the GL commands it forwards to keep track of the entire
OpenGL state of an application. Upon resume, VMGL instantiates a new stub on the host, and the
stub is initialized by synchronizing it with the application OpenGL state stored by VMGL.

VMGL keeps state for all the OpenGL contexts managed by the application, and all the win-
dows currently bound to those contexts. For each window we track the visual properties and the
bindings to the VMGL X extension. For each context, we store state belonging to three categories:

• Global Context State: Including the current matrix stack, clip planes, light sources, fog
settings, visual properties, etc.

• Texture State: Including pixel data and parameters such as border color or wrap coordinates.
This information is kept for each texture associated to a context.

• Display Lists: A display list contains a series of OpenGL calls that are stored in GPU
memory in a compact format, to optimize their execution as a single atomic operation at
later times. For each display list associated to a context we keep a verbatim “unrolling” of
its sequence of OpenGL calls.

Like the rest of VMGL, the code implementing OpenGL state restore resides in userspace,
thus retaining OS and VMM independence. Furthermore, OpenGL state is independent of its
representation in GPU memory by a particular vendor. Therefore, VMGL can suspend and re-
sume applications across physical hosts equipped with GPUs from different vendors; provided that
vendor-specific OpenGL extensions are disabled or that the graphics card of the target computer
provides a superset of the extensions supported by the card of the source machine.

3.4 Porting graphic drivers for Xen
VMMs such as VMware Workstation run an unmodified kernel as the host, thus enabling the
VMGL stubs to readily take advantage of hardware-specific drivers for direct rendering. However,
this is not always the case for Xen. Its administrative VM, also known as domain0, is itself a VM
running a paravirtualized kernel, and incompatibilities with closed-source drivers arise.

Xen’s paravirtualized architecture prevents virtual machines from modifying the memory page
tables through direct MMU manipulation. A paravirtualized kernel, even that of domain0, needs
to invoke the mmu update hypercall to have Xen perform a batch of page table modifications on
its behalf. Before manipulating the hardware MMU, Xen will sanity-check the requested changes
to prevent unauthorized access to the memory of another virtual machine. Transferring MMU-
manipulation responsibilities to the hypervisor has introduced another level of indirection in mem-
ory addressing: physical frame numbers in a domain kernel are mapped by Xen into machine frame
numbers, the actual memory frame numbers handled by the hardware.
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To enable direct rendering functionality, OpenGL implementations need to communicate with
the graphics card. This is typically achieved by memory mapping a character device, which results
in the kernel remapping GPU DMA areas into the GL library’s address space. In the absence of
IOMMU hardware support for virtualized DMA addressing [8], Xen needs to interpose on these
operations, translate them to machine frame numbers, and sanitize them. Drivers included in the
Linux kernel distribution and using the Direct Rendering Manager described in Section 2 (e.g. In-
tel’s), use functions that Xen paravirtualizes to provide the proper DMA addressing. Unfortunately,
this is not the case with the proprietary closed-source drivers of Nvidia and ATI cards.

Luckily, these drivers are wrapped by an open-source component that is recompiled to match
the specifics of the current kernel. As long as all DMA mapping functions are contained in the
open-source component, the proprietary driver can be adjusted to run in domain0. We have had a
successful experience with an ATI Radeon X600 PCI-Express card using the fglrx driver version
8.29.6. By changing the DMA mapping macro to use a paravirtual-aware function, we were able to
use the driver in domain0. Similar modifications to the proprietary Nvidia driver version 1.0-8756
provide direct rendering for domain0.

3.5 VMGL Limitations
VMGL currently supports 59 OpenGL extensions, 13 of which are vendor-specific. We are con-
stantly working to extend VMGL support to more GL extensions. For instance, the Unreal Tour-
nament 2004 benchmark used in the next section demanded the implementation of a number of
extensions including GL EXT bgra. Vendor-specific extensions could represent a source of con-
flict if a VMGL-enabled guest is resumed on a new physical host with a different GPU from the
one available where it was last suspended. If the GPU at the resume site claims to not support some
of the vendor-specific extensions in use by an application, we will have to temporarily map their
functionality to supported variants. An alternative solution is to altogether disable vendor-specific
extensions, at the expense of sacrificing functionality.

VMGL currently does not support Windows or MacOS guests. We have not yet developed
the necessary hooks into the windowing systems to provide functionality similar to that of our X
server extension. Finally, the Direct3D API used by some Windows applications can be supported
through the WineD3D [2] Direct3D to OpenGL translation layer.

4 Evaluation
Our evaluation of VMGL addresses the following questions:

Performance How does VMGL compare to software rendering alternatives, such as the Mesa
OpenGL library [27]? How close does it come to providing the performance observed with
unvirtualized graphics acceleration?

Portability Can VMGL be used with different VMMs? Can VMGL be used with different VM
types supported by the same VMM? Can VMGL be used with different guest operating
systems?
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Application Release Date
Quake 3 Dec, 1999

Unreal Tournament (UT2K4) Mar, 2004
Wolfenstein: Enemy Territory May, 2003

Mplayer Jun, 2006

Table 1: Application Benchmarks

Suspend and Resume What is the latency for resuming a suspended OpenGL application? What
is the size of an application’s OpenGL suspended state? Can we migrate suspended OpenGL
applications across GPUs from different vendors?

Sensitivity to resolution What is the effect of rendering resolution on VMGL performance?

Sensitivity to multiple processors How sensitive is VMGL to processing power? Can it take
advantage of multi-core CPUs?

Scalability A popular use for VMs is the deployment of virtual appliances [37]. It is expected
that users will run multiple virtual appliances in a single physical platform, with perhaps
several of these appliances performing 3D drawing concurrently. How can VMGL scale to
the increased needs of these configurations?

4.1 Benchmarks
Table 1 summarizes the four benchmarks we use in the evaluation of VMGL. We focus our evalua-
tion on computer games and entertainment as these classes of applications have effectively become
the driving force in the development of consumer graphics applications and hardware [28].

• Quake 3: Quake III Arena (Figure 2 (a)), was first released in December, 1999. Quake 3 em-
ploys an extensive array of OpenGL drawing techniques [39], including shader scripts; vol-
umetric textures, fog and lighting; vertex animation; Gouraud shading; spline-based curved-
surfaces, and others. This array of features has enabled Quake 3, despite its relative age,
to remain a popular application for benchmarking 3D performance [25, 34]. Quake 3 was
open-sourced in 2005.

• Enemy: Wolfenstein: Enemy Territory (Figure 2 (b)) was initially released in May of 2003.
The game is a third-generation heir to the Quake 3 engine, including enhancements such as
skeletal animation and substantially increased texture and scenic detail. The game logic was
open-sourced in early 2004.

• Unreal: Unreal Tournament 2004 (Figure 2 (c)) has a modern graphics engine [35] that
exploits a variety of features such as vertex lighting, projective texturing, sprite or mesh
particle systems, distance fog, texture animation and modulation, portal effects, and vertex
or static meshes. Like Quake 3, UT2K4 is also heavily favored by the industry as a de
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(a) Quake 3 Arena (b) Enemy Territory

(c) Unreal Tournament 2004 (d) Mplayer

Figure 2: Benchmark screenshots

facto benchmark for 3D graphics performance [4, 34]. Unlike Quake 3 and Enemy, this
application is closed source.

• Mplayer: Mplayer (Figure 2 (d)) is a popular open source media player available for all
major operating systems. It supports a number of different video codecs, and a number of
output drivers, including texture-driven OpenGL output.

For the first three benchmarks, we replayed publicly available demos for 68 seconds (Quake
3), 145 seconds (Enemy), and 121 seconds (Unreal). For the Mplayer benchmark we replayed the
first 121 seconds of a video clip encoded at two different resolutions.
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4.2 Experimental Setup
We tested VMGL with two virtual machine monitors, Xen 3.0.3 [5] and VMware Workstation
5.5.3 [3]. All experiments were run on a 2.4 GHz Intel Core2 machine with two single-threaded
cores, VT hardware virtualization extensions, 2 GBs of RAM, and a Radeon X600 PCI-Express
ATI graphics card. The machine ran the Fedora Core 5 Linux distribution with the 2.6.16.29 kernel
in 32 bit mode, and used Xorg version 7.0 and the fglrx proprietary ATI driver version 8.29.6. All
virtual machines were configured with the same kernel (modulo para-virtualization extensions for
Xen), same distribution, 512 MBs of RAM and no swap. We ran each benchmark in three different
configurations:

• Native: an unvirtualized environment with direct access to hardware and native OpenGL
drivers. VMGL was not used. This represents the upper bound on achievable performance.

• Guest + Mesa Software Rendering: a virtualized guest using software rendering provided
by the Mesa OpenGL library. No hardware rendering facilities were used. This is the com-
monly available configuration for current users of 3D applications in virtualized environ-
ments. The Unreal benchmark refused to run under this configuration.

• Guest + VMGL: a virtualized guest using VMGL to provide 3D hardware acceleration.
This configuration corresponds to Figure 1.

In each of these configurations, all benchmarks were executed at two different resolutions:

• High Resolution: The resolution was set to 1280x1024 except for Mplayer, which had a
resolution of 1280x720 (the closest NTSC aspect ratio).

• Low Resolution: The resolution was set to 640x480 except for Mplayer, which had a reso-
lution of 640x352 (the closest NTSC aspect ratio).

We quantify graphics rendering performance in terms of framerate or Frames per Second (FPS),
a standard metric used for the evaluation of 3D graphics [34, 25, 4]. We also measure VMGL’s
resource utilization in terms of CPU load and network usage. All data points reported throughout
the rest of this section are the average of five runs. All bar charts have standard deviation error
bars.

4.3 Performance
Figure 3 shows the results from running the benchmarks under three configurations, native, Xen
with VMGL, and Xen with Mesa software rendering. All benchmarks in the Figure are run under
high resolution.

First, we observe that VMGL’s performance is two orders of magnitude better than software
rendering. The number of FPS delivered by Mesa ranges from 0.4 to 4. From the user’s perspective,
this low framerate renders the application unusable.
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Next, we observe that VMGL’s performance approximates that of the native configuration,
with the performance drop ranging from 14% for the Enemy benchmark to virtually no loss for the
Mplayer and Unreal benchmarks. In our subjective experience, the user experience delivered by
VMGL is indistinguishable from that of the native configuration.

Figure 3 reports a global average metric that does not convey the variations in framerate per-
formance throughout the duration of a benchmark. A uniform framerate is as important as a high
framerate for crisp interaction with highly detailed graphics environments [15]. Figure 4 plots a
cumulative distribution function for the instantaneous FPS across all five trials on each benchmark.
Plots to the right indicate better performance than plots to the left; the more vertical a plot is, the
smaller variability in framerate. We exclude Mesa results given their very low quality; we also
exclude the Mplayer benchmark as it presents a constant framerate of 25 FPS across the remaining
configurations. We note that VMGL results closely follow the behavior of their native execution
counterparts. The variability in frame rates is minimal and consistent with that observed under
native execution.
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4.4 VMM Portability
Figure 5 shows VMGL’s performance for one VMware Workstation and three Xen configurations:
Xen HVM leverages Intel’s VT extensions to run an unmodified Linux kernel as a guest, and em-
ulates network I/O using code derived from the qemu emulator [7]; Xen PV-on-HVM is similar to
Xen HVM, but a loadable kernel module provides the guest with Xen-aware paravirtualized net-
work device functionality; VMware Workstation runs an unmodified Linux kernel as the guest OS
and uses VMware Tools for proprietary network emulation; Finally, Xen Paravirtual is the same
Xen paravirtualized guest configuration as the Xen + VMGL bars of Figure 3.

As could be expected, Figure 5 shows that the quality of network virtualization is a fundamental
factor affecting VMGL’s performance. Without paravirtualized extensions, a Xen HVM presents
very low FPS ratings. The PV-on-HVM configuration provides almost identical performance to
that of Xen para-virtualized guests. VMware Workstation’s superior emulation techniques yields
an order of magnitude better performance than a pure Xen HVM. We expect VMGL performance
under a VMware hypervisor product like ESX server to be closer to that provided by Xen paravir-
tualization.

4.5 Portability Across Guest Operating System
VMGL userspace design and its implementation in standard C and Python makes it easy to port
across operating systems. In particular, we have ported VMGL to FreeBSD release 6.1 and Open-
Solaris 10 release 06/06. The source code logic remained unmodified. All necessary changes had
to do with accounting for OS idiosyncrasies, such as header inclusion, library linking, and tools
used in the build process.

To test our VMGL port for these two operating systems, we configured them as VMware Work-
stations guests running the open-source Quake 3 port ioquake3 (Quake 3’s authors did not port
themselves the application to OpenSolaris or FreeBSD). Figure 6 compares the performance of
Mesa software rendering and VMGL accelerated rendering for each OS, including Linux. While
FreeBSD did not perform in general as well as OpenSolaris, in both cases VMGL conserves its
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notable performance advantage over software rendering. Configuring our experimental machine to
natively run FreeBSD or OpenSolaris was beyond our time availability. We are confident VMGL
will show a trend similar to that with Linux and maintain performance en par with an unvirtualized
configuration.

4.6 Suspend and Resume
To measure the performance of VMGL’s suspend and resume code, we suspended a guest running
the benchmarks at five different and arbitrary points in time. We then resumed the guest and
verified successful resumption of the OpenGL application. We measured the size of the OpenGL
state necessary to synchronize the GL stub to the current application state, and the time it took
to perform the entire resume operation. We did not observe any noticeable effect of the suspend
and resume code on the application’s framerate performance. The results of these experiments
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Figure 8: Benchmarks in low resolution mode

are displayed in Figure 7. This Figure displays results obtained with Xen paravirtualized guests;
similar results were obtained with VMware Workstation guests.

The resume time (Figure 7 (b)) is strongly dependent on the size of the suspended OpenGL
state (Figure 7 (a)), which can be as large as 70 MB for the Enemy benchmark. Nevertheless, the
resume latency never exceeded 2.5 seconds. Regardless of the suspend point, the size of Mplayer’s
state is always the same, as this state is almost exclusively composed of the texture corresponding
to the current frame. Since the frame is twice as big on each dimension, the state is four times
larger in high resolution mode than in low resolution mode. Finally, we were surprised to note
that the size of Quake 3’s OpenGL state is also invariant with respect to the suspend point. We
conjecture Quake 3 preallocates the entire OpenGL state for a new environment before allowing
interaction.

We performed a second set of experiments in which we suspended and resumed a guest across
two different hosts: our experimental machine and a similar physical host using an Intel 945G
GPU with the DRI driver based on Mesa 6.3.2. The tests completed succesfully after disabling
in VMGL five extensions provided by the ATI card but not by Intel’s (including for example
GL ARB occlusion query), and four more extensions available in the Intel card but not in
ATI’s (including for example GL NV texture rectangle).

4.7 Sensitivity to Screen Resolution
OpenGL drawing primitives use a normalized coordinate system, and rely on the hardware capabil-
ities of the graphics card to scale the geometry to match the current screen resolution. This implies
that the higher the resolution, the busier the GPU and therefore the less noticeable the VMGL
command marshaling overhead becomes. The slightly counter-intuitive consequence is that it is
preferable to run applications under VMGL at higher resolutions, something which is desirable
anyway.

Figure 8 shows the results from running the benchmarks at low resolution (640x480, Mplayer
runs at 640x352) for three configurations: Xen with Mesa, Xen with VMGL, and native. The

14



 0

 20

 40

 60

 80

 100

MplayerUnrealEnemyQuake 3

A
v
e

ra
g

e
 F

ra
m

e
s
 P

e
r 

S
e

c
o

n
d

Application

Single Core
Dual Core

Figure 9: CPU sensitivity – Xen paravirtual + VMGL, Low Resolution

first three benchmarks generate the same stream of OpenGL commands as in the high resolution
experiments (Figure 3), and rely on automatic scaling. Mplayer is different, as each frame is
generated by synthesizing an appropriately sized texture from the input video data, and therefore
it does not involve any hardware scaling.

The increased pressure on the VMGL transport is evident for the Enemy benchmark, presenting
a performance drop with respect to the unvirtualized baseline to approximately half the rate of
frames per second. However, for the remaining three benchmarks the performance of Xen+VMGL
closely matches that of the native configuration. Software rendering is still unable to provide
reasonable performance, perhaps with the exception of the Mplayer benchmark achieving 17.6
average FPS due to the smaller sized frames.

For the remainder of this section, we concentrate on the results from low-resolution experi-
ments as they bias the results against VMGL.

4.8 Sensitivity to Multi-Core Processing
To determine the benefits that VMGL derives from multi-core processing, we also ran all of our
application benchmarks after disabling one of the two cores in our experimental machine. These
results, presented in Figure 9, show a performance drop for Enemy and Unreal, the more modern
applications. There is no significant difference for the older applications.

We analyze the benefits arising from a multi-core setup using Unreal as an example. Figure 10
shows the differences in resource usage for the single and multi-core cases. The increased CPU
utilization possible with dual-core parallelism (Figure 10 (b)) results in a higher rate of OpenGL
commands pushed per second through the VMGL transport (Figure 10 (c)). The consequence is
a higher framerate in the dual-core case (Figure 10 (a)). Unreal’s behavior seems to be a work-
conserving: rather than dropping frames at a low framerate, it takes longer to complete the demo.

The presence of two cores leads to increased resource utilization for a number of reasons.
First, multiple cores allow concurrent execution for the two networking stacks: in the guest where
the application executes and in the host where the viewer resides. It also allows for parallelizing
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Figure 10: Unreal instantaneous FPS and CPU and network usage on dual- vs. single-core con-
figurations, low resolution. CPU utilization includes all components depicted in Figure 1. With a
single-core, the benchmark takes longer to complete due to the reduced framerate.

the marshaling and unmarshaling cycles of OpenGL commands by VMGL. The availability of
two cores also ameliorates the VMM’s overhead of constantly needing to context switch between
the two VMs, and to switch to the hypervisor to handle the interrupts generated by the bridged
networking setup, a previously documented overhead [23, 24].

4.9 Concurrent Guests
To examine VMGL’s ability to support concurrent guests, we compare the performance of two
instances of an application executing concurrently in an unvirtualized configuration, to the perfor-
mance of two instances executing in two separate Xen paravirtual guests.

Figure 11 (a) presents the average per-instance FPS results for the concurrent execution of two
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Figure 11: Concurrent Guests – FPS for running two simultaneous instances of each benchmark at
low resolution. Xen paravirtual.

instances, compared to the average FPS results for a single instance (taken from Figure 8). Fig-
ure 11 (b) normalizes the concurrent execution results against the single-instance results (i.e. Xen
+ VMGL, concurrent divided by Xen + VMGL, single). The purpose of normalization is to ob-
serve the “natural” scalability inherent to the application: simultaneous instances may compete for
CPU and memory resources. The additional drop in normalized FPS for the VMGL configurations
reflects the overheads of GL marshaling and context-switching VMs.

The Mplayer benchmark, more representative of a multiple virtual appliance scenario, presents
excellent scalability results. We observe decreasing VMGL scalability as the application becomes
more heavyweight and places a larger demand on the GL transport: 10% additional overhead for
Quake 3, 20% for Enemy, and 43% for Unreal. Figure 10 (c) indicates that the bandwidth de-
mands of a single instance of Unreal can peak at almost 2 Gbit/s. Extreme configurations with
multiple high-end applications rendering concurrently may impose an aggregate bandwidth de-
mand on VMGL of several Gbit/s. A VMM-specific shared memory transport may be preferrable
under those circumstances.

5 Related Work
While there have been other solutions that aim to provide 3D acceleration for Virtual Machines,
they weaken the strengths of VM technology. The most straightforward solution is to allow a
driver VM direct access to hardware. While the driver VM may occupy the same role as the host in
our architecture, in the absence of an IOMMU [8] it will violate the safety and isolation properties
of VMs. A rogue VM with direct hardware access would be able to initiate DMA to and from
memory owned by other VMs running on the same machine. Further, a VM with direct hardware
access cannot be safely suspended or migrated to a different machine without driver support.

Other proposed solutions include the Blink [20] system for Xen, and VMware’s experimental
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support for 3D Acceleration [38]. Blink, like VMGL, virtualizes the OpenGL API. However, it
requires application modification and does not work with legacy or closed-source applications.
VMware’s solution virtualizes the Direct3D API and therefore only provides virtualization for
Windows applications. Further, both systems are VMM-specific as they used shared memory and
do not support suspending or migrating a VM.

Accelerated Indirect GLX (AIGLX) [1], has been developed to provide accelerated GLX ren-
dering for remote clients. While originally designed to enable OpenGL-accelerated compositing
window managers, it could be used as an alternative transport for VMGL. However, AIGLX lacks
the transport optimizations used by WireGL and would severely constrain applicability with its
greater bandwidth utilization.

A number of projects for remote visualization of scientific data have tried to optimize remote
OpenGL rendering. Some, like Visapult [9], SciRun [26], and Cactus [17], require their applica-
tions to be written to a particular interface and are therefore useful only when application source
code is available. Other systems [32, 36] render data using remote GPUs and ship the resulting
images using slow or lossy thin client protocols such as X11 or VNC.

6 Future Work and Conclusion
This work solves a problem that has limited virtualization of a growing class of graphics-intensive
applications. We have designed and implemented VMGL, a VMM-independent, GPU-independent,
cross-platform OpenGL virtualization solution. VMGL allows graphics applications executing
within virtual machines to leverage hardware rendering acceleration. Our experimental results
from a number of graphics-intensive applications show that VMGL provides excellent rendering
performance. In most cases, graphics performance is very close to that obtained with native graph-
ics hardware acceleration. Further, VMGL’s performance is two orders of magnitude superior to
software rendering, the commonly available alternative today for graphics-intensive applications
running in virtualized environments.

Our results also show that the resource demands of VMGL align well with the emerging trend
of multi-core processors. In other words, there is natural and easy-to-exploit parallelism in the
VMGL architecture. Our work thus reveals an opportunity for three emerging trends (virtualiza-
tion, multi-core processing, and growing use of GPUs by applications) to evolve in a mutually
supportive way.

Our work so far has focused on portability across VMMs and guest operating systems. We have
therefore avoided all performance optimizations that might compromise portability. By carefully
relaxing this constraint, we anticipate being able to bring VMGL performance closer to native per-
formance for very demanding applications at high levels of concurrency. Under such workloads
the total bandwidth between application VMs and the OpenGL stubs becomes the performance
bottleneck. A shared-memory rather than network transport implementation could relieve this
bottleneck. By implementing this optimization in a way that preserves the external interfaces of
VMGL, we could enable VMM-specific and guest-specific code to be introduced with minimal
negative impact on portability. The network transport would always remain a fallback for environ-
ments without support for shared-memory transport.
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While its main target is graphical applications, VMGL can provide access to the computing
power of GPUs to an emerging class of GPU-based scientific applications [6, 16]. The highly
parallel and efficient architecture of GPUs has proved tremendously useful in producing high-
performance solutions to several scientific problems. Algorithms that solve these problems using
GPU processing are written mainly in OpenGL [18]. Scientific application migration techniques
using VMs, like those proposed for the grid [14], will be able to leverage VMGL for improved
performance.
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