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Abstract
A robust statistics approach to curvature estimation on discretely sampled surfaces, namely polygon meshes and
point clouds, is presented. The method exhibits accuracy, stability and consistency even for noisy, non-uniformly
sampled surfaces with irregular configurations. Within an M-estimation framework, the algorithm is able to reject
noise and structured outliers by sampling normal variations in an adaptively reweighted neighborhood around
each point. The algorithm can be used to reliably derive higher order differential attributes and even correct noisy
surface normals while preserving the fine features of the normal and curvature field. The approach is compared
with state-of-the-art curvature estimation methods and shown to improve accuracy by up to an order of magnitude
across ground truth test surfaces under varying tessellation densities and types as well as increasing degrees of
noise. Finally, the benefits of an M-estimation of curvature are illustrated by applying it to the popular applications
of mesh segmentation and suggestive contour rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-
ing]: Geometric algorithms, languages, and systems; curve, surface, solid, and object representations.

1. Introduction

Surface derivatives such as normal and curvature are as
important as surface position for the perception and under-
standing of shape. Aggregates of these attributes are referred
to in design as surface features. Thus, the computation and
processing of these features is crucial in geometric model-
ing. While this problem is straightforward for analytic sur-
face representations, normal and curvature estimation for
discretely sampled surfaces such as polygon meshes is an
area of ongoing research [DKT06]. The importance of cur-
vature as a fundamental descriptor for shape analysis and
understanding is highlighted by its critical role in numer-
ous applications such as surface segmentation [LPRM02,
LDB05], mesh simplification [HG99,She01,SS05], remesh-
ing [ACSD∗03], denoising [MDSB03, LP05], 3D puzzle
assembly [HFG∗06], symmetry detection [MGP06], par-
tial shape matching [GG06], non-photorealistic rendering
[Rus04], feature line extraction [HPW05] and image syn-
thesis [RMB07], to name a few.

Motivation: As pointed out by Meyer et al. [MDSB03],
there is no consensus on the most appropriate approach to
normal and curvature estimation on a discretely sampled sur-

face, largely because the discrete sampling could be taken
from any of a continuum of (piecewise) smooth surfaces.
The problem is further exacerbated in practice by intended
surface derivative discontinuities (i.e. edges) as well as sig-
nal noise that is inherent to real surface scans. The actual
mesh connectivity in many meshes is often just an artifact
of the scanning methodology or the mesh reconstruction
algorithms for CAD or implicit surface models (marching
cubes, see figure 3). Interestingly, irregularities and noise in
sampling are amplified in normal and curvature calculations
while many denoising and resampling applications rely upon
their robust estimation. Surface smoothing and restructuring
are also undesirable in some geometric processing pipelines
such as those pertaining to precision engineering and analy-
sis.

A critical issue at the heart of the problem is determining
the appropriate shape and size of the neighborhood around a
point for the curvature operator. Most commonly used one-
ring neighborhood operators produce accurate results for
well conditioned meshes but are not robust to noise and mesh
irregularities (see figure 2). Operators with a larger region of
support are more stable but tend to have reduced accuracy,
often propagating curvature extrema to irrelevant points past
feature boundaries and may over-smooth the curvature field.
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Figure 1: a) Initial curvature estimate before the execution of the M-estimation algorithm; b) M-estimation curvature values
at the final iteration; c) example renderings of the David’s left eye and part of the nose based on the initial normals; d) same
renderings based on the normals corrected by our algorithm.

Similar problems occur if a-posteriori smoothing of the field
is performed [GI04]. Alternatively, a-priori smoothing of the
mesh is a common approach to dealing with noise. How-
ever, indiscriminate smoothing depreciates surface detail if
not applied judiciously [GG06].

The motivation of this paper is thus to develop robust nor-
mal and curvature estimation that is automatic and operates
on any discretely sampled surface in the presence of surface
derivative discontinuities, sample noise, non-uniform sam-
pling and irregularities.

Approach and contributions: The input to our approach is
a discretized surface including normal estimates. The out-
puts are principal curvature directions and values for the
point samples, as well as re-estimated surface normals and
derivatives of curvature, if desired. We address the problem
of adapting the shape and size of the point neighborhood for
our curvature operator using an M-estimation approach (see
section 2). The algorithm iteratively refines the shape and
size of this neighborhood by weighting samples appropri-
ately based on fitting error. It automatically adapts to small
neighborhoods for well conditioned surfaces, and bigger,
possibly anisotropic neighborhoods in the presence of noise,
irregularities and feature boundaries (see figures 6 and 7.) In
section 3, we show how the M-estimation results can be used
to correct noisy surface normals (see figures 1 and 9). We
have exhaustively compared our approach with three repre-
sentative curvature estimators [CSM03, GI04, Rus04]. Sec-
tion 4 illustrates how our approach compares favorably over
a wide range of models from a variety of sources, with vary-
ing degrees of noise and other irregularities (see figures 2, 3,
10 and 11.) We also illustrate how our curvature estimates
can improve the performance of existing mesh segmenta-
tion [LDB05] and suggestive contour rendering [DFRS03]
applications (see figures 12 and 13.)

A considerable number of papers exist in the computer
graphics, vision and engineering literature concerning dif-
ferential operators on discrete surfaces, especially polygon

meshes (see [GG06] for a recent survey). To the best of our
knowledge our method is the only one to yield a maximum
likelihood estimate of the curvature tensor at a surface point
according to the locally observed normal variation. This es-
timate accounts for varying noise and non-uniform sampling
(in both polygon meshes and point clouds) and irregular
tessellations (in meshes) without any preprocessing of the
input. Through iterative reweighting, the optimal size and
shape of the neighborhood is adaptively determined for each
point separately, resulting in a highly accurate approxima-
tion of the curvature tensor (see figures 10 and 11). In the
following, we will briefly present a categorization of the ex-
isting methods.

1.1. Related work

Local curve and surface fitting approaches: Hamann
[Ham93] fits quadratic functions locally to the surface based
on the projection of one-ring neighborhood points onto the
tangent plane of the point of interest. The curvature ten-
sor is then analytically determined from the derived sur-
face. Quadratic patch fitting is also used in computer vision
approaches, usually on N ×N pixel windows in range im-
ages [JF89]. Stokely and Wu [SW92] and Gatzke and Grimm
[GG06] suggest building a natural local parameterization of
the surface to fit the patch. Chen and Schmitt [CS92] lo-
cally fit circular curves, given the center point and two of
its neighbors. Hameiri and Shimsoni [HS02] instead sug-
gest fitting quadratic curves on the two immediate neighbor
points of the center point or all the neighbor points inside a
given radius across the normal sections to improve stability.
Cazals and Pouget [CP03] show that in the case of a general
smooth surface, the fitting of an osculating n-jet results in
convergence of the estimated curvatures to the true ones as
the degree of the jet and the sampling density increase. Gold-
feather and Interrante [GI04] expanded the quadratic patch
fitting method by using cubic fits from the points and their
normals in a one-ring or two-ring neighborhood, avoiding
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(a) (b)

(c) (d)

Figure 2: Comparative illustration of the curvature val-
ues produced by different methods on the original high-
resolution scan of the David’s right ear: (a) normal cycle
method on a one-ring neighborhood; (b) cubic patch fitting
to points and normals in a two-ring neighborhood as sug-
gested by Goldfeather and Interrante; (c) Per-triangle com-
putation and per-vertex averaging using Rusinkiewicz’s ap-
proach; (d) M-estimation results.

the degenerate cases of quadratic fitting and improving ac-
curacy.

All existing patch fitting methods use a notion of arbitrar-
ily fixed locality in their approximation such as a one-ring,
two-ring or N-ring neighborhood of a vertex in a mesh or
the k-nearest neighbors to each point of interest in a point
cloud. In the presence of noise in vertex positions and asso-
ciated normals, non-uniform tessellations, or feature bound-
aries that represent inherent discontinuities in the curvature
field it is not clear how this neighborhood should be chosen
to ensure stability. In such cases higher-order local surface
approximations can easily result in overfitting.

Discrete vertex-ring methods: Taubin [Tau95] introduced
a 3D curvature tensor having the principal curvature direc-
tions as two of the three eigenvectors and the principal curva-
tures as linear combinations of two of the three eigenvalues.
Langer et al. [LBS07] derived novel weights to obtain exact
quadratures of Taubin’s integral representation of the cur-
vature tensor in the case of non-noisy polygon meshes, but
results are still not competitive with those of the cubic patch
fitting method. Hameiri and Shimsoni [HS02] and Page et
al. [PSK∗02] propose modifications of Taubin’s method by
including more neighbor points inside a geodesic neighbor-
hood of user-defined size and suggest a weighting based on

(a) (b)

(c) (d)

Figure 3: Comparative illustration of the curvature values
produced by different methods on a smooth implicit surface
model tessellated using marching cubes: (a) normal cycle
method on a one-ring neighborhood; (b) cubic patch fitting
to points and normals in a two-ring neighborhood as sug-
gested by Goldfeather and Interrante; (c) Per-triangle com-
putation and per-vertex averaging using Rusinkiewicz’s ap-
proach; (d) M-estimation results.

the inverse of their geodesic distance from the center point.
Stokely and Wu [SW92] estimate the Gaussian curvature
based on the Gauss-Bonnet theorem, considering a closed
path around each point of interest and using the whole area
enclosed in this path for their approximation. Meyer et al.
[MDSB03] suggest the approximation of discrete mean and
Gaussian curvature based on the Euler-Lagrange equation
and Gauss-Bonnet theorem respectively, using the notion of
a mixed area around each vertex of interest to address vary-
ing face proportions. Cohen-Steiner and Morvan [CSM03]
also give discrete definitions for the mean and Gaussian cur-
vature and the curvature tensor based on the normal cycle
theory, and prove that the estimated curvature tensors con-
verge to the true ones of the smooth surface under specific
sampling conditions.

Despite their elegance, simplicity and relatively low com-
putational cost, the above methods are sensitive to irregu-
lar tessellations and noise. In order to account for noise,
it is suggested that one take into account a larger region
for the operator, usually a geodesic ball [ACSD∗03]. Liu
et al. [LPW∗06] and Yang et al. [YLHP06] perform PCA
also inside spherical kernels of fixed radius centered at each
vertex. However, it is unclear how to choose the neighbor-
hood to compensate for noise, non-uniform sampling and ir-
regular tessellation. Moreover, large neighborhoods arbitrar-
ily defined by users may propagate curvature extrema from
feature edges and destroy fine details in the curvature field.
Tong and Tang [TT05] proposed a tensor voting technique
to robustly estimate curvature tensors, which still relies on
fixed preprocessing passes to reject outliers that are decou-
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(a) (b) (c)

Figure 4: (a) Example of a normal variation sample; (b) ex-
ample of mixed irregular tessellation, including non-uniform
sampling, polar distortion and bad aspect ratio triangles
[GGRZ06]); (c) randomly irregular tessellation

pled from curvature estimation. Maximum likelihood esti-
mation of curvature tensors is not guaranteed. The optimal
radius of their operator is globally chosen for the input sur-
face by exhaustively searching an input range of values, pre-
ferring the one that results in the highest peaks among all the
acquired curvature histograms.

Per triangle curvature tensor estimation: Theisel et al.
[TRZS04] and Rusinkiewicz [Rus04] suggest estimating
the curvature tensor per triangle based on vertex normals.
Rusinkiewicz suggests a least-squares fitting of the curva-
ture tensor to the normal variations across the edges of a
given triangle. After solving for a tensor at every incident
triangle, the tensor at the vertex is obtained by rotating the
face tensors so that their coordinate systems align with the
coordinate system of the vertex and then taking a weighted
average based on the corresponding vertex’s associated area
(as defined by Meyer et al. [MDSB03]) for each such tri-
angle. In essence a linear model is locally fit to each mini-
mal surface element and then an average model is taken in
a weighted fashion. While this tends to produce smooth re-
sults because of this local averaging, it does not necessarily
correspond to the maximum likelihood model given the ob-
served normal variation in the point’s vicinity and noise and
outliers can still affect this estimate.

2. M-estimation of curvature

Our approach is based on curvature tensor fitting performed
on appropriate neighborhoods which adapt to noise, irregu-
larities and non-uniform sampling. Constraining the curva-
ture tensor fitting to consider all normal variation samples
inside the chosen neighborhood (as opposed to partially con-
straining it per surface element and then averaging) yields
a maximum likelihood estimate of the curvature tensor un-
der Gaussian noise on surface points and normals. Moreover,
this formulation allows us to employ M-estimation in order
to guarantee a more robust approximation of the tensor by
rapidly decreasing the influence of noise and outliers.

M-estimation [HRRS86,FP02] consists of robustly fitting
a model by minimizing an objective function of the residuals
of the samples with an Iteratively Reweighted Least Squares
(IRLS) scheme. It has been used in various computer vision

(a) (b)

Figure 5: (a) Variance of the residuals of the normal varia-
tion samples in a three-ring neighborhood around each ver-
tex versus their average geodesic distance to the neighbor-
hood center on a monkey saddle surface (red) and the ap-
proximating quadratic curve (blue); (b) The Geman-McLure
weight as a function of the normalized residual.

applications (see [Ste99] for a survey) and recently in com-
puter graphics for robust symmetry detection [SKS06].

In the following, we explain our normal variation sam-
pling scheme. We then proceed to formulate the problem of
curvature tensor fitting using these samples and describe a
weighting scheme that takes into account relevance based
on distance to the point of interest as well the residual from
said fitting.

2.1. Curvature tensor fitting

Our goal is to estimate the curvature tensor from the sec-
ond fundamental form of surfaces. This is expressed in terms
of the shape operator based on the covariant derivatives of
the given normal vector field ~N within a local neighborhood
around each point of interest:[

∇~u~N ·~u ∇~v~N ·~u
∇~u~N ·~v ∇~v~N ·~v

]
(1)

Given a point of interest c at which the surface has orthog-
onal tangential directions~u,~v, for every pair of points p1, p2
with corresponding normals ~n1,~n2 inside a local neighbor-
hood of c we can constrain the curvature tensor according to
the following equation:[

∇~u~N ·~u ∇~v~N ·~u
∇~u~N ·~v ∇~v~N ·~v

]
︸ ︷︷ ︸

unknowns

·
[

~∆p ·~u
~∆p ·~v

]
=

[
~∆n ·~u
~∆n ·~v

]
(2)

where ~∆p = p2 − p1 and ~∆n = ~n2 −~n1. This arrangement
is illustrated in figure 4a. A system of such equations needs
at least three different point pairs with their normal differ-
ences in order to produce an overdetermined solution for the
curvature tensor contained in the fitted model. Similarly to
Rusinkiewicz [Rus04], we also estimate the 2×2×2 deriva-
tive of curvature tensor by fitting it to the obtained curvature
tensor variation samples.
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Figure 6: Visualization of estimation weights on a torus
mesh. Vertices are colored according to the average weight
of all variation pairs that include it. Top: weighting on initial
iteration; bottom: weighting on final iteration; left: noise-
less mesh; right: noisy mesh. Notice how in the noiseless
case the method automatically focuses in more tightly on the
vertex, while in the noisy case the method adapts and con-
siders a wider area.

2.2. Normal variation sampling

In order to robustly estimate curvature at each point of a sam-
pled surface we consider normal variation samples obtained
from all pairs of surface samples and their associated nor-
mals initially within an operating region. This dense sam-
pling, in general, proves to be much more stable and ac-
curate than taking into account only the associated normal
variations across tessellation edges in the case of a polygon
mesh (see figure 10.) Of course, the price to pay is the in-
creased computational cost as the overdetermined linear sys-
tem of equations (2) includes many more samples. In regular
meshes with near-equidistant vertices, the sampling based
on edge pairs alone returns very similar results with a dense
all-pairs sampling and can thus be used instead. In our tests,
presented in the results section, we show error curves based
on both the edge sampling mode of our algorithm and the
dense sampling mode (see figure 10.) Finally, for efficiency
reasons and to quickly reject obvious outliers, we initially
prune any samples whose point normals have a larger than
π/2 angle with the normal of the center point of interest. For
polygon meshes we also prune any samples whose points
have one of their incident face normals creating a larger than
π/2 angle with the center point normal.

2.3. Distance weighting

The IRLS process of the M-estimation iteratively reweights
the samples accordingly in order to minimize an objective
function of their residual error. However, the M-estimation
weights should be combined (multiplied) with prior weights
that also capture the relative spatial relevance of the samples.
The statistics literature [CR88] suggests weighting samples
according to the variances of the residuals grouped by their
distance; i.e. for a class of samples in a distance class with
variance var(ri), their weight should be 1/var(ri) so that the

Figure 7: Visualization of estimation weights on a joined
cylinder/cone mesh. Vertices are colored according to the
average weight of all variation pairs that include it. Left:
weighting on initial iteration; right: weighting on final iter-
ation. Notice how, by the final iteration, the method has dis-
carded the structured outlier pairs crossing into the conical
region.

response variances are mapped to a constant value. Unfor-
tunately, these optimal weights are never known. A strategy
to estimate them is to consider a function that approximates
the variance as a function of sample distance. Figure 5a il-
lustrates that a quadratic function is a good approximation
by plotting the ground truth variance of the residuals of the
samples by distance in comparison to the average geodesic
distance from the center point for a monkey saddle test sur-
face. We found that this behavior holds for all our C2 con-
tinuous test surfaces. In essence, this weighting scheme will
correspond to a prior which weights samples according to
the inverse of the average squared distance of their associ-
ated points from the center point. This coincides with the
intuition that variation samples should be less relevant when
they are further from the point of interest. Similar weight-
ings have been successfully used [HS02] and this proves to
be a good approximation. In polygon meshes, a geodesic dis-
tance can be approximated by a shortest path along edges or
more accurate approaches [SSK∗05], while in point clouds
the Euclidean distance between points can be used instead.

2.4. Cost estimation and reweighting

In the M-estimation formulation, the goal is to minimize the
sum cost of residuals:

min
x ∑

si∈S
ρ(ri,x/σ) (3)

where x is the model with the unknown parameters contain-
ing the curvature tensor, si is the ith variation sample, S is
the sample set, ri,x is the residual of sample si with respect
to model x, σ is a scale factor that is automatically estimated
(see below) and ρ is a robust cost function. In simple least
squares the cost function is quadratic. However, such a cost
function is very sensitive to outliers. For a robust estimation,
we use the Geman-McLure cost function (GM), which is a
proven choice in computer vision [FP02] and graphics appli-
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cations [SKS06] as it exhibits very good behavior in quickly
rejecting structured outliers (see figure 7.)

The minimization of sum cost is achieved by solving:

∑
si∈S

ψ(ri,x/σ)
dri,x

dx
1
σ

= 0

where ψ(ri,x/σ) = ρ
′(ri,x/σ). The above equation can be

solved using an IRLS process with a weight function ex-
pressed for each sample as w(ri,x/σ) = ψ(ri,x/σ)

ri,x/σ
. The cost

function and the weights are given as:

ρ(ri,x/σ) =
(ri,x/σ)2

1+(ri,x/σ)2 w(ri,x/σ) =
2

(1+(ri,x/σ)2)2

This weight function is illustrated in figure 5 for varying val-
ues of σ. The value of this parameter, called the scale esti-
mate, determines the rate with which cost rises and weight
drops with respect to growing residual values. By assuming
that the residuals are modeled with a contaminated Gaussian
distribution [FP02], which is also reasonable in our case, σ

can be automatically estimated as:

σ = 1.4826 ·median
∣∣ri,x

∣∣
This is derived from the fact that the median absolute
value of a large enough sample of unit variance normal-
distributed 1D values is 1/1.4826 = 0.6745. This scale es-
timation causes the estimator to tolerate almost 50% of out-
liers [SAG95]. We also do not let σ fall below its first esti-
mate as given by the initial guess tensor in order to ensure
stability. In order to control leverage, we set to 0 the weights
of the non one-ring neighborhood samples with residuals
more than 2σ [FP02].

2.5. Operating region

The operating region contains all the points whose normal
differences will be taken into account for the initial solution
of the system of equations (2). The operating region bounds
the normal variation sampling and is fixed for efficiency rea-
sons. The M-estimation algorithm will reweight the samples
accordingly inside this initial region in order to converge to
an anisotropic support area during the IRLS process (see
figures 6, 7 and 8). This operating region should be large
enough to guarantee a stable fitting of the curvature tensor.
On the other hand, considering a very large number of sam-
ples would slow down the solving of the system. In our case,
we determine the operating region from a geodesic ball, cen-
tered on the point of interest with a radius equal to 3 times
the average distance to the 6-nearest neighbor points. The
factor of 3 was determined to be a good heuristic experimen-
tally. The M-estimation process tends to reject the increasing
number of outliers even in larger operating regions.

One of the advantages of our approach is its ability to au-
tomatically adapt to local surface features. It is conceivable,

Figure 8: Iteration number versus cost function during
the IRLS process on the noisy torus of figure 6 (20% of
the median edge length). The M-estimation process mini-
mizes the cost function after 13 iterations. The ground truth
principal curvature values for this vertex on the torus were
(k1,k2) = (1.0,0.2). Note that the initial guess was highly
inaccurate and yet the final estimated values are very close
to ground truth.

however, that this may not be desirable for a specific applica-
tion [LZH∗07]. Should a user indeed have reliable informa-
tion about the neighborhood size for each point of interest,
it is trivial to modify our algorithm by limiting the operating
region to this neighborhood and clamping sample weights
from below, not allowing them to drop beneath any particu-
lary desired value.

2.6. Initial model guess

In order to initialize the M-estimation algorithm, an initial
guess of the model, representing the curvature tensor, should
be made. A reasonable initial guess is the estimation using
only the normal variation samples of the one-ring neighbor-
hood edges in polygon meshes, or the normal variations be-
tween the 6-nearest neighbor points in point clouds.

In polygon meshes we also take into account surface ar-
eas associated with each input edge with respect to the ver-
tex of interest. This area is computed as the average of the
mixed areas [MDSB03] associated with the center vertex in
the triangles incident to the edge. This initial guess produces
results very similar to Rusinkiewicz’s [Rus04] method.

2.7. Convergence

There are two issues of convergence. On the one hand, there
is the convergence of the IRLS approach to a final solution.
Secondly, there is the issue of convergence of the method
overall to true curvature values as tessellation (sample den-
sity) increases.

Regarding IRLS convergence, in general, such a method
is guaranteed to converge since each iteration decreases the
fitting error and this error is bounded from below by zero
[Hub81]. Note that we use a support region to control lever-
age. This is a standard approach and, in practice, we observe
no convergence problems in any of our experiments. Figure
8 is indicative of the algorithm’s behavior. In practice, we
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(a) (b) (c)

Figure 9: Re-estimation of normals from final weights on
normal pairs. (a): mesh with 10% noise of median edge
length added to vertices; (b): estimated vertex normals using
[Max99] weighted face normal averaging . (c): Re-estimated
normals using weights obtained from M-estimation resulting
in a 66% error reduction.

typically achieve convergence in 10 to 20 iterations, even
under high noise.

Regarding convergence to true values with increased sam-
pling, maximum likelihood estimates (such as those ob-
tained by M-estimation) converge with increased sample
density (maximum likelihood bias tends to zero as the num-
ber of samples tends to infinity [Kay93].) We also show this
holds in practice in figures 10b through 10d. Not only does
the approach converge, it can be seen to converge with a
higher rate than the others [CSM03, GI04, Rus04]. In par-
ticular, figure 10d addresses the non-noisy tessellation case.

3. Robust normal recomputation

The derived curvature tensors and M-estimation weights
from the IRLS process can be used to recompute the normal
vector field on the surface in order to improve noisy normals.
The normal vector field recomputation is feature preserving
as the M-estimation weights reveal which normal variation
samples are inliers or outliers for the estimation of the dif-
ferential properties at each point of interest.

In order to recompute the normals, we derive a slightly
different expression of equation (4) by including all the
normal variation components in the 3D orthonormal basis
formed by the orthogonal tangent vectors~u,~v and the point’s
normal ~w: ∇~u~N ·~u ∇~v~N ·~u

∇~u~N ·~v ∇~v~N ·~v
∇~u~N ·~w ∇~v~N ·~w


︸ ︷︷ ︸

unknowns

·
[

~∆p ·~u
~∆p ·~v

]
=

 ~∆n ·~u
~∆n ·~v
~∆n ·~w

 (4)

After the final M-estimation iteration for a given vertex c,
we recompute the normal differences between c and every
point p on the surface in the operating region using the final
M-estimation weights. Then the point’s new normal is com-
puted as the normalized weighted sum of the normals of its
neighbor points in the operating region plus the derived ~∆n
between them transformed back from the ~u,~v,~w frame:

~nc← unit(∑
p

wpc(~np + ~∆npc))

The results obtained from this method are illustrated in fig-
ures 1c and d, and 9.

4. Implementation and results

The algorithm for the M-estimation of curvature begins by
gathering the normal variation samples in the operating re-
gion of each point of interest, and computes an initial es-
timate of the curvature tensor. It then proceeds to iterate
between computing the residuals, estimating cost and new
weights, and computing a new tensor estimate based on these
values.

In our experiments we ran this IRLS process for no more
than 50 iterations or until convergence. The resulting M-
estimation weights are then also used to obtain our curvature
derivative estimates.

If there is considerable noise inside a support region, a
higher median residual (and thus larger σ) will imply a
slower-decreasing weight function which gives more weight
to points further from the center point. Conversely, with
lower noise, the weight function becomes more tightly fo-
cused, resulting in a curvature tensor estimate based on the
closest neighbors of each point of interest. This is illustrated
in figures 6 and 7.

Due to the iterative local optimization nature of our ro-
bust M-estimation algorithm, we acknowledge that the ap-
proach becomes slower than fixed-ring neighborhood ap-
proaches. Note, however, that its overall complexity remains
linear in the number of points or vertices of the discrete
surface. We also notice that curvature estimation is an off-
line or non real-time dependent step for many applications,
like non-photorealistic rendering and shape analysis for non-
deforming models.

Indicatively, our current CGAL implementation needs
about 20 seconds for a polygon mesh of 10K vertices, while
for a mesh of 100K vertices it may need approximately 2
minutes on a single core Pentium IV 3.0GHz. For 1M ver-
tices, the running time can be approximately 20 minutes.

Figure 10 summarizes the thorough empirical validation
of our method. This figure presents tests performed on
ground truth surfaces with increasing noise as well as tessel-
lation density. Furthermore, the tests include various types
of tessellations, both regular and irregular (see figure 4b and
c). In all cases our method is compared against the state of
the art and shown to improve on the estimates by up to an or-
der of magnitude (note the log scale.) Figure 2 illustrates an
indicative comparison of results on a scanned mesh, while
figure 3 does so for a marching cubes tessellation of an im-
plicit surface model. Figure 11 shows the comparison of our
method to cubic patch fitting on point clouds. Finally, fig-
ure 12 illustrates the impact of applying our robust estimate
of curvature to mesh segmentation using the curvature-based
method of Lavoue et al. [LDB05] and figure 13 does so for
suggestive contour rendering.
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(a)

(b)

(c)

(d)

Figure 10: Comparison results of our M-estimation
method with state-of-the-art approaches. The same weight-
ing scheme for normal estimation [Max99] is used for the
cubic patch fitting method, Rusinkiewicz’s operator and our
M-estimation algorithm. All error values are plotted on a
logarithmic scale. (a) RMS error of k1 and k2 in a regularly
tessellated torus mesh versus increasing random normal and
tangential noise on its vertices; (b) RMS error of k1 and k2
in an irregularly tessellated (see figure 4c) torus mesh with
2% added random noise versus increasing mesh resolution
(c) RMS error of k1 and k2 in an irregularly tessellated heli-
coid with 2% added random noise versus increasing mesh
resolution; (d) RMS error of k1 and k2 in a monkey sad-
dle with non-noisy mixed tessellation versus increasing mesh
resolution.

(a) (b)

Figure 11: M-estimation of curvature applied to point
clouds (a) Error of M-estimation mean curvature values on
a helicoid point cloud compared to a cubic patch fitting ap-
proach on k-nearest neighbors (b) PointShop3D rendering
of M-estimation principal curvature values obtained for a
scanned point cloud model of a hand. Normals are estimated
by locally fitting planes [HDD∗92]

5. Conclusion and future work

In this paper we presented a robust statistical approach
for the estimation of curvature in discretized surfaces. We
showed an M-estimation algorithm which is capable of
achieving an estimate of the curvature tensor by robustly
fitting a linear model to the normal variation samples in
appropriately varying regions around each point of inter-
est. Furthermore, the method automatically converges to an
anisotropic area for an accurate and stable curvature estima-
tion with no user intervention or preprocessing. Our method
was shown to out-perform current techniques in accuracy,
sometimes by an order of magnitude. An interesting topic
of future research is how robust statistics approaches can be
applied to other problems that require robust estimates of
properties in discretized surfaces.
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