
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006), pp. 1–9
M.-P. Cani, J. O’Brien (Editors)

Spatial Pose Trees: Creating and Editing Motions Using a
Hierarchy of Low Dimensional Control Spaces

Igor Mordatch, Patrick Coleman, Karan Singh, and Ravin Balakrishnan†

University of Toronto

Abstract

Spatial pose trees are a representation of motion that organizes motion data as a hierarchy of components. Each
component has an associated set of target poses, as well as a user–editable 3D control space for creating motion by
pose interpolation. This hierarchical partitioning, along with a selective display of poses relevant to a particular
motion component, allows users to easily navigate large sets of poses that would be impractical to manage with a
single layout. In addition to providing a system for creating motion with this representation, we present techniques
for embedding and subsequently editing existing motions, as control curves within a control space. Users can
introduce new poses to a control space, either to edit a motion for aesthetic reasons or to meet specific constraints,
or to reduce interpolation error. Edited motions introduce new control curves, with associated poses created
by interpolation or displacement mapping. This results in a region of control space that produces motions that
meet changing constraints. To assist users with system interaction, we introduce tools for simplifying hierarchy
construction and 3D control space navigation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

In creating a 3D character animation, animators often take
an approach of first constructing a basic motion layout and
then adding refinements and subtleties [TJ81, Wil01]. Exist-
ing tools do not explicitly facilitate such a workflow, how-
ever, as they represent motion as a set of splines that can be
organized into a hierarchy of degrees of freedom, without
consideration of motion content.

This paper presents spatial pose trees, a new motion rep-
resentation that addresses the motion refinement problem by
representing motions as a set of multi–target pose interpo-
lations, which are organized in a hierarchy of low dimen-
sional control spaces. Each control space in the hierarchy
represents a motion component, a basic motion that can be
blended with others to produce a refined motion. As each
child node provides its parent node with a changing pose,
the characteristic poses of a repetitive motion can be varied
in time as a motion refinement.

† igor@mordatch.com, {patrick | karan | ravin }@dgp.toronto.edu

For example, if the top level node contains a generic walk
cycle, the child nodes can contain the time–varying change
of the characteristic poses of that walk cycle. This also al-
lows for motion reuse with parameterized individuality, as
child nodes can provide a node containing a generic motion
with pose refinements for specific characters. A more gen-
eral example would be a set of child nodes, each containing
motions of particular actions. The parent node would then
control the transition among such actions.

Spatial pose trees are more amenable than existing tools
to workflows involving refinement and multi–user creation.
A user can create a motion sketch in a top level node, with
refinements applied in child nodes. The independence of the
motion components allows each to be authored by a differ-
ent user, if desired. Spatial pose trees generalize the one–
dimensional time–based parameterization that users manip-
ulate in current motion spline editors. We choose to use three
dimensional control spaces, as we wish to eventually use de-
vices that take advantage of human skills in 3D perception
and manipulation [GWB04]. 3D interpolation spaces also al-

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

2 I. Mordatch & P. Coleman & K. Singh & R. Balakrishnan / Spatial Pose Trees

low for greater creative freedom, as a given motion can re-
visit a target pose without duplication.

Spatial pose trees also generalize systems in which users
can edit poses in low dimensional control spaces [IMH05,
GMHP04]. In these systems, users navigate 2D control
spaces to interactively select and blend poses, using a re-
gression model built from the set of examples. In Igarashi
et al. [IMH05], users explicitly position poses. Radial ba-
sis functions define the control space to pose mapping. As
spatial pose trees include user control of pose layout, we in-
corporate their control space model. The system of Grochow
et al. [GMHP04], uses a scaled GPLVM† to both lay out a
set of poses and define a continuous mapping. As their sys-
tem focuses on inverse kinematics optimization on a smooth
manifold, the automatic layout is preferable. We also sup-
port automatic pose sequence layout, but we retain user con-
trol over editing this layout. In addition, one of our layout
techniques has been chosen specifically to provide visual
meaning to the layout of poses from an embedded motion.
Our user–editable control space model, hierarchical struc-
ture, and tools for navigation and organization allow for bet-
ter user control as data sets scale in size, a necessity for cre-
ating refined character motion.

As spatial pose trees allow users to create and edit motion
with a new representation, we consider and address design
challenges in the following areas:

Control Space Creation: The spatial pose tree system
targets the creation of complex, refined motion. As the num-
ber of target poses in a control space increases, data man-
agement becomes a time–consuming challenge to the user.
This, in part, motivates the use of a hierarchy, as it reduces
the complexity of the data presented to the user at any given
moment. Furthermore, we provide a tool that assists users
with positioning new poses in a control space, while mini-
mizing changes to the pose mapping.

Control Space Navigation: While prefer 3D control
spaces, we recognize the difficulty of visualizing and explor-
ing 3D space using 2D input and visualization devices. To
simplify this complexity, we provide a tool that assists users
in modifying 3D control space layouts for easy visualization
and navigation with these devices.

Hierarchy Editing: Large pose data sets for refined mo-
tion can be difficult and time–consuming to organize. To as-
sist users with this process, the system provides a tool for
automatically arranging a set of poses into a hierarchy, such
that each node contains similar poses and different nodes
contain dissimilar poses.

Motion Creation: Most animation systems allow anima-
tors to set full body keyframe poses at specific times. Non–
temporally aligned degree of freedom extrema, a character-

† Gaussian process latent variable model

istic of both natural motion and high quality character an-
imation, have to be explicitly added by the user. The inde-
pendence of timing in spatial pose tree motion components
allows for this to be created as refinements are added, with-
out changing the representation of the basic motion.

Motion Layout: It can be time–consuming for users to
position existing motions in control spaces for subsequent
editing. We provide tools to automate this layout.

Motion Editing: Users should be able to edit an exist-
ing motion, both for creative exploration and to meet spe-
cific constraints. The spatial pose tree system allows users to
make sparse edits to a motion that then define new motion
variations, while preserving the original. The results of all
iterations remain available for reuse.

1.1. Approach

To work with the system, users create or import a set of tar-
get poses (Figure 1a) for each node. For each pose, users
then position an associated control target—a cube icon—in
the 3D control space of that node (Figure 1b). The position
of an interpolation cursor—a cross hairs icon—in the same
control space determines the desired blend of the example
poses. Each node in the hierarchy has an independent con-
trol space with an independent set of target poses, as well as
its own interpolation widget. Parent nodes contain the inter-
polated poses of child nodes as additional target poses. To
create an animation, users keyframe animate the interpola-
tion widgets, typically in a top down order. Additional poses
and nodes can be added as desired. This allows for a work-
flow in which motion can be refined from a rough sketch to
detailed, nuanced animation.

Typically, top–level nodes contain a small set of poses
corresponding to major body actions. For example, one or
two will indicate arm extensions, one or two will indicate
leg extensions, etc. Child nodes parameterize these parent
node poses as an interpolation among more detailed poses.
These child node poses can represent stylistic variations or
changing constraints. There is no restriction on the type of
pose variation, breadth of the tree, or depth of the tree; it
is adaptable to different animation styles and problems and
different individual user workflows.

As we seek to provide a system for interacting with com-
plex data sets, we include tools to help users navigate among
and organize many poses more effectively. First, we provide
a tool to help users partition a node with many poses into a
set of child nodes, each of which will contain a set of poses
from the original node that are similar. Second, we provide
an approach to changing the layout of a control space, such
that when overlaid with the 3D scene, users can navigate
among as many poses as possible with a 2D input device.

In addition to working with poses to create new motions,
we provide a set of techniques for importing existing mo-

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

I. Mordatch & P. Coleman & K. Singh & R. Balakrishnan / Spatial Pose Trees 3

(a)

(b)

(c)

Figure 1: For each node, the user positions example
poses (a) in a 3D control space with corresponding control
targets, which overlay the 3D scene (b). The position of the
3D cursor defines an interpolated pose using the poses as-
sociated with the selected node of the pose tree (c).

tions and then editing them within a control space. Consid-
ering the motion as a pose sequence, a motion control path
is created within the low dimensional control space. Users
can then independently edit either the motion path or the in-
dividual poses. New paths in control space define new mo-
tions, allowing users to quickly create new variations of an
existing motion, or to edit a motion to meet specific con-
straints. For example, a change in a single pose (as shown
in Figure 2a and b), results in the creation of a new motion
following a new control path, which smoothly varies to meet
the pose constraint (Figure 2c).

(a) (b)

(c)

Figure 2: Motions can be edited in the 3D control space
by changing one or more poses (a, b) and their associated
control targets (red, in c). The change in each is propagat-
ing to adjacent frames (‘x,’ in c) by altering a control space
embedding of the motion.

2. Related Work

Our representation of motion that allows users to create a
rough motion sketch and then add refinements is similar in
spirit to Neff and Fiume’s AER system [NF05]. Their system
is complementary to ours, in that they provide a set of tools
for procedural refinements, while our refinements are under
complete user control. The system of Laszlo et al. [LNS05]
adaptively predicts possible future poses of a simulated char-
acter. It displays these as icons in a control space that maps to
simulation parameters. In contrast, our system directly maps
control space to specific poses.

The editing of motion paths has been investigated us-
ing world space techniques [Gle01]. We also introduce ap-
proaches to editing with motion paths; however, our paths
exist in an abstract control space. Our path based editing is
intended to fundamentally change the motion, rather than to
reuse the motion details on a new world space path.

Multi–target pose interpolation is a commonly used tech-
nique for facial animation [Par72], and the use of radial ba-
sis functions has been adapted to full body pose interpola-
tion [LCF00]. Radial basis function interpolation has also
been used to interpolate among example motions to meet
specific constraints [RSC01, ES03].

Low dimensional data embeddings created with regres-
sion models can be useful for both compressing motions and
optimizing motions based on example data. Safanova uses a
low dimensional linear embedding of example motions to ef-
ficiently compute spacetime optimization solutions for new
motions of similar style [SHP04]. Grochow et al. estimate la-

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

4 I. Mordatch & P. Coleman & K. Singh & R. Balakrishnan / Spatial Pose Trees

tent space pose probability distributions using a scaled Gaus-
sian process latent variable model, and character poses are
optimized to meet inverse kinematics constraints using the
latent space likelihood function [GMHP04]. They also al-
low users to navigate the latent space to select poses, al-
though the lack of pose layout control makes such naviga-
tion unpredictable. Wang et al. build upon this approach,
using Gaussian processes to model the temporal dependen-
cies among adjacent poses when constructing their embed-
ding [WFH05].

The interpolation of example motions has been addressed
with a number of techniques. Frequency band interpola-
tion can capture the transition among cyclic motions such
as locomotion [BW95, UAT95]. Nearest neighbor searches
combined with linear interpolation allow for similar new
motions to be created that approximately meet given con-
straints [WH97]. Radial basis functions better capture the
nonlinearities of arbitrary motion parameterizations with re-
spect to control parameters [RBC98]. The two–component
statistical model of Mukai and Kuriyama takes a different
approach for accounting for the nonlinearity, using control
parameters alone to predict it [MK05]. Robust time align-
ment among examples [KG03] and automatic extraction of
similar motions for interpolation [KG04] have also been in-
vestigated.

We also create edited motions by interpolation, but con-
struct each new frame using a combination of poses at neigh-
boring frames and displacement–mapped motion variations
created from new poses provided by the user. The use of
displacement maps to edit motions to meet specific con-
straints has been investigated using both kinematic tech-
niques [LS99] and spacetime optimization [Gle97, Gle98].

3. Spatial Pose Trees

Spatial pose trees allow users to organize target poses in a hi-
erarchy such that each node can be uniquely specialized to a
particular degree of fidelity in creating a motion. Within each
node, the pose layout defines an interpolation space such that
any point c in the control space maps to a pose p(c). By mov-
ing a cursor in control space (we use three dimensional con-
trol spaces), users blend among example poses pi with asso-
ciated control targets ci. These control targets—locations in
control space that map exactly the given poses—are either
positioned by the user or automatically laid out using one
of the techniques described in Section 4.1. By casting this
problem as function approximation, we define a continuous
mapping from control pace to pose space using sparse data
interpolation, as was done by Igarashi et al. [IMH05].

The hierarchical structure of the pose tree allows a child
node to compute an interpolated pose, which the parent node
includes as a pose pi and control target ci. For example,
the top level node will typically have a small set of target
poses that are sufficient to capture a simple animation. This

(a)

(b)

(c) (d)

Figure 3: Contents of an example pose tree (a): Each node
contains references to either user–created poses or interpo-
lated poses, which child nodes create (b). Leaf nodes con-
tain only example poses; these sets are typically task spe-
cific. This example decouples leaning poses (c) from hand
contact poses (d).

might include the different poses of a walk cycle or different
limb extensions. Each of these poses can then have a cor-
responding child node, which will include variations of the
pose. These can be stylistic variations, constraint–based vari-
ations, or semantically important, but more detailed poses
(for example, posing the hand). An arbitrary degree of re-
finement is possible; the final complexity of the pose tree is
dependent on both the application and required motion qual-
ity.

To create an animation using spatial pose trees, users first
lay out poses within each node of the control space hierar-
chy. We keyframe animate widgets in each node to capture
the variation of pose over time; the location of these wid-
gets defines the interpolated pose. This can be thought of as
the child node contributing a motion component to the over-
all motion of the parent node. Thus, a top level node can be
animated to blend among a punch, a kick, a rest pose, and
a block, while child nodes which specialize each of these
poses can have their control widgets animated to provide
variation within the sequence of punches, kicks, etc. This
representation also provides the benefit that individual mo-

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

I. Mordatch & P. Coleman & K. Singh & R. Balakrishnan / Spatial Pose Trees 5

tion components can be reused, retimed, or warped, indepen-
dently of the remainder of the motion.

At a technical level, we wish to approximate, for each
node, a pose approximation function p(c), in which the ex-
ample poses pi and associated control targets ci are consid-
ered as evidence for the overall shape of the function. Note
that a subset of these poses are computed by interpolation
in a child node; the remainder are explicitly specified by the
user. As in Igarashi et al., we use radial basis functions with
Euclidean distance metric kernel functions. This results in
the functional form

p(c) = ∑
i

wi|c− ci|+a(c), (1)

where a(c) is a hyperplane in pose space that accounts
for the linear components of the function. The basis func-
tion coefficients wi are found by enforcing the constraints
p(ci) = pi. This leads to a linear system; see Igarashi et
al. for a description of the computation. As in their system,
we choose this kernel function for its intuitive mapping be-
tween change in cursor position and change in pose.

3.1. Pose Location Suggestion

When a control space contains many poses, it can be diffi-
cult for the user to select locations for the control target of
a new pose that do not significantly modify the overall con-
trol space. We provide an assistance mode, in which the user
can create a pose, and a control target location is automati-
cally determined that minimally modifies the control space.
We cast this as an optimization problem, seeking to mini-
mize the objective function L(c) = |p(c)− p′|. Here, p′ is
the new user–provided pose, and the optimization solution
c = c′ gives us the suggested location for the control target.
We use a pose distance metric similar to that of Kovar et al.,
which measures the aggregate distance among correspond-
ing joint positions relative to the root [KGP02].

To minimize L(c), we use particle swarm optimization, a
stochastic global optimization algorithm [KE95]. Candidate
solutions si are created at the locations of each of the current
control targets ci. Each solution is then treated as a particle in
control space, with associated velocity vi. We track the best
solution values s′i for each candidate particle, as well as a
global best solution sg. Each candidate solution is iteratively
updated using a flocking–like update rule that advances it to-
ward a stochastic interpolation between s′i and sg. We sample
two uniformly distributed random numbers r1 and r2, each
∈ [0,1], and apply these particle update rules:

vi = vi +w1r1(s
′
i − si)+w2r2(sg − si)

si = si +vi.

We set the relative weighting coefficients to w1 = w2 = 0.15.

To update the best candidate solutions s′i , we evaluate
e(si) = p′−p(si). Each p(si) is computed using Equation 1.

We also track best error evaluation values ei associated with
s′i , and update these best candidate solutions when e(si) is
less than ei. We similarly update sg, and accept the best so-
lution after a fixed number of iterations (100). While this
does not guarantee the best possible location will be found
precisely, in practice, an exact minimum is not as important
as interactive manipulation that allows concurrent display
of the suggested control target as the user modifies the new
pose.

3.2. Automatic Hierarchy Construction

We allow users to automatically construct a set of child
nodes from a set of poses in a given node, as a form of au-
tomatic hierarchical organization. This approach is intended
for nodes containing a large set of sparsely spaced example
poses, and not for a dense set of poses such as motion data,
in which categorization is not intuitively clear. For example,
a set of poses containing various kick poses, various resting
poses, and various punching poses would be more amenable,
as the data better admits categorization. The user selects a
desired number of child nodes (one for each recognizable
category), and we use k–means clustering to partition the se-
lected poses into a set of new child nodes. We retain the cor-
responding control target locations. For clustering, we again
use a pose–to–pose distance metric similar to that of Kovar
et al. [KGP02]. Figure 4 illustrates this process; each result-
ing child node contains poses that have similar stance.

3.3. Control Space View Selection

Given a preferred view for working with a given motion, it
is possible that the control targets ci are laid out such that it
is difficult to select desired poses. This arises due to the loss
of a degree of freedom in using a 2D interface to explore
a 3D control space. For example, the group of control tar-
gets to the left of the character in Figure 5a has a great deal
of screen space overlap. To reduce this loss of control, we
can transform the control spaces such that the screen space
projection captures maximal variance among the control tar-
get locations. We first partition the poses into a set of clus-
ters using k–means clustering. We then compute a principle
components analysis basis on the control target positions ci
for each cluster. Each cluster of targets is repositioned such
that the two eigenvectors whose corresponding eigenvalues
are larger than the third are orthogonal to the image plane’s
normal vector. We also center and scale the data relative to
the center and dimensions of the image space projection. We
find that clustering works well, as users have a strong ten-
dency to spatially organize data into groups of related tar-
gets. If this is not the case, users can request single cluster
processing, in which case all targets are considered as a sin-
gle group. An example layout from three nodes is shown
Figure 5b.

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

6 I. Mordatch & P. Coleman & K. Singh & R. Balakrishnan / Spatial Pose Trees

(a)

(b)

(c) (d)

(e) (f)

Figure 4: Automatic hierarchy construction: We cluster the
target poses of a single node (a) into a set of child nodes (b),
using a pose space distance metric. Control targets retain
their positions, but the simpler control spaces are easier for
users to recall (c–f). We overlay target poses for illustration.

4. Motion

For motion, the hierarchical structure provides a rather pow-
erful editing system. Motion refinements applied only to cer-
tain limbs can be stored in child specialization nodes. Build-
ing on this, the entire motion can be broken down into a
hierarchy of motion components to assist animators in orga-
nizing motion data. Furthermore, any given node can store
similar variations of a motion, allowing users the freedom to
interactively select among stored options for different mo-
tions that can be applied to different parts of a character.

To edit a motion, a user first embeds the motion into a
low–dimensional control space. Rather than requiring the
user to do this manually, we provide two automated tools
for embedding a motion. By modeling a motion M as a se-
quence of poses {p1,p2, . . .pn} with an associated sequence

(a)

(b)

Figure 5: As control targets exist in 3D space, some pose
sets can be difficult to navigate from a particular view, for
example the set to the left of the character (a). Repositioning
each set of poses relative to the current view alleviates this
difficulty (b).

of control targets {c1,c2, . . .cn}, we can explicitly connect
adjacent poses in control space to create an abstract control
path. By doing so, we can apply an edit to a motion and
also create a new associated abstract control path in con-
trol space. We supply tools for motion playback, such that a
user can interactively select among multiple paths in a con-
trol space to create variations of a motion. The approach of
keyframe animating a control space widget then treats the
per–frame poses of the motion paths as interpolation targets
for generating new motions.

4.1. Embedding Motions

We provide two approaches for embedding a motion as a
path in control space: one attempts to capture maximal pose
variance in the layout and the other attempts to provide a vi-
sual metaphor by tracking an important character position.
The latter approach is particularly useful for motions that
follow a path, such as locomotion, as the control path pro-
vides a guideline for the character’s position in space. For
in–place motions such as gestures or dance, it can be difficult
to work with; in this case, the maximal variance embedding
is more appropriate.

To capture maximal variance, we use principle com-
ponents analysis to reduce the dimensionality of the set
of poses pi ∈ M. We allow users to select either two–
dimensional or three–dimensional PCA projections of the

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

I. Mordatch & P. Coleman & K. Singh & R. Balakrishnan / Spatial Pose Trees 7

poses, depending on whether screen space or 3D control
is preferred. We choose the 2 or 3 eigenvectors with cor-
responding eigenvalues of maximal magnitude, and project
the poses onto the basis they form. This embedding tends
to follow low–frequency curves in the projected spaces, as
seen in figure Figure 6a, maintaining our metaphor of pro-
viding an abstract motion path. We assign each pose pi to
a control target ci located at the pose’s projection into the
reduced–dimensional space.

To provide a visual metaphor, we allow the user to select
a joint on the character. For each frame i, we then assign the
pose pi to a control target ci. This is illustrated in Figure 6b.

(a)

(b)

Figure 6: Users can embed existing motions as control
curves for editing, visualization, and playback. The lay-
out of an embedding either maximizes variance among the
poses (a) or follows the path of a joint (b).

4.2. Editing Motions

We currently support two approaches for editing motions:
creating deformations by interpolation that meet sparse con-
straints provided by the user, and creating displacements that
propagate such constraints along the motion in time such that
an interpolatable space of motions is created. In each case,
we place the edited region of the motion along an alternate
branch of the control path.

Each technique allows users to edit motions to meet spe-
cific constraints. The first approach, which includes interpo-
lated poses, works well when the alternate path is placed
near the original. This distance is approximately propor-
tional to how broadly in time the effects of the new pose
are apparent. As distance from the original path increases,

believability reduces, however, as the interpolation acts as a
low pass filter. Should this become objectionable, the user
can select any non–explicitly provided pose and edit it, pop-
ulating the interpolation space to increase believability. The
second technique contains no pose computed as an interpola-
tion of other poses. Only changes to the degrees of freedom
are interpolated. However, this populates the control space
with many more basis functions, which can decrease effi-
ciency when many motions are stored in a node.

Given edited branches such as these, users can interpolate
among the branch locations to create motion blends. They
can also keyframe animate interpolation widgets to follow a
path near the branches, allowing for retiming and changing
interpolation weights. This also allows a single constraint–
based edit to provide information for a continuously vary-
ing constraint, and users can provide as many branches as
necessary to model the relevant constraint space. Note that
users populate this space by specifying only a few poses per
branch, regardless of how the branch is evaluated, and this is
a relatively quick process.

Figure 7: After embedding a motion, users can alter the lo-
cation of the control path to create interpolated variations
that pass through poses other than those originally in the
motion.

To deform a motion, a user selects a starting pose, an
ending pose, and a set of poses to edit. Let these be
ps,pe,{p j}∈M, respectively. Each edited pose p′

j has a cor-
responding new control target c j, which the user positions
along the desired path of the edited branch. We compute the
control path of the new branch by fitting an interpolating
spline through ps, each p′

j, and pe. We add new intermediate
control points along the branch to maintain the total number
of frames, although these intermediate control points need
not have associated poses that introduce new interpolation
constraints.

In the interpolation approach, each of the edited poses p′
j

and control targets c j act as new constraints on the control
space, and we simply re–solve for the coefficients and linear
component of Equation 1. The intermediate control targets
do not have new associated poses, and as playback passes
through these locations in control space, we evaluate the
pose with interpolation. Figure 7 illustrates this technique.

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

8 I. Mordatch & P. Coleman & K. Singh & R. Balakrishnan / Spatial Pose Trees

The second approach applies motion displacement map-
ping [BW95], or warping [WP95], to generate new poses
along the path. We fit an endpoint–interpolating spline
through the pose differentials p′

j −p j and sample this spline
to generate the new data points. We then re–solve for the
coefficients and linear component of Equation 1.

5. Implementation Details and Results

Spatial pose trees have been implemented as a set of plugins
and scripts to Autodesk’s 3D Studio Max animation system.
We allow the system to work with an arbitrary parameter-
ized character, as well as whatever interpolation parameteri-
zation is appropriate to a given character rig. The 3D control
spaces coexist in world space along with the 3D scene the
user works with, although this is not necessary. Our graphic
tree representation is edited using an internal node editing
utility, and we display the poses associated with the control
spaces of all currently selected nodes. Animation of control
space interpolation widgets is accomplished using the avail-
able set of animation tools.

A number of example pose trees have been created for
interactive manipulation. Figure 1c contains a pose tree or-
ganized for everyday activities, while the particular control
space shown in Figures 1a and 1b contains a collection of
stylized character poses. Figure 3 is a simpler, more illustra-
tive example. As the system can control arbitrary parameter-
ized models, we illustrate its application to facial animation
in Figure 8, in which the user interactively drags among five
target facial poses to create expression combinations. In Fig-
ure 9, the original motion (a) has the character make contact
with the dark target. By editing the contact pose, the motion
smoothly varies to meet the new contact constraint (b). This
example uses motion displacement mapping.

Figure 8: Spatial pose trees can control any parameterized
model. In this example, the user creates four new facial ex-
pressions by interactively blending among sculpted example
poses.

(a)

(b)

Figure 9: In this example, the user changes a single pose of a
given motion (a) such that it makes contact with a new target
(b). Adjacent frames smoothly vary to meet the constrained
pose.

6. Conclusion and Future Work

Spatial pose trees provide a system in which animators can
create and edit motion using a top–down approach. As users
refine a motion, they explicitly organize the data they create.
The tree representation also provides an interface for navi-
gating, selecting, and editing the user–created components
of a motion; existing systems do not provide this. Our rep-
resentation is amenable to multi–user workflows, in which
a team of animators can refine a motion, as the motion re-
finements are independently represented. The view selection
and hierarchy creation tools assist users with interacting with
this representation, reducing the time spent organizing and
navigating among pose data. The motion embedding system
generalizes spatial pose trees to facilitate interactive blend-
ing, editing, and deformation of motions to meet both aes-
thetic goals and explicit motion constraints.

While our three dimensional control space facilitates the
layout of more complex sets of poses, interaction based on
a two dimensional interface and display does decrease the
user’s perception of data and their control accuracy. While
the control target layout tool decreases this difficulty, we aim
to explore the use of fully 3D navigation and visualization
interfaces to refine the system interaction [GWB04].

While our motion embedding tools allow visualization
and editing among many example motions, the playback sys-
tem could be extended to allow for interactive visualization

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

I. Mordatch & P. Coleman & K. Singh & R. Balakrishnan / Spatial Pose Trees 9

and editing of complex motions graphs [KGP02]. Our sys-
tem currently addresses constraints by introducing new mo-
tions at user–positioned paths; an alternative would be to
search for a path that best meets the constraints, similar to
our pose suggestion system. To avoid populating the con-
trol space too densely, constraints could be layered on top of
motions using an inverse kinematics system.

Finally, we would like to investigate the use of visual
metaphors to aid users in navigating a control space. Igarashi
et al. address this by making the control cursor an integral
part of the scene being created [IMH05]. However, this is
not appropriate for many animation applications, as many
motions are not focused on object manipulation. A sugges-
tive navigation interface that provides hints as to potential
future states, such that presented by Laszlo et al. [LNS05],
might be more appropriate for general animation.

References

[BW95] BRUDERLIN A., WILLIAMS L.: Motion Signal Pro-
cessing. In SIGGRAPH 1995: Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques
(1995), pp. 97–104.

[ES03] ELKOURA G., SINGH K.: Handrix: Animating the Hu-
man Hand. In SCA 2003: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2003).

[Gle97] GLEICHER M.: Motion Editing with Spacetime Con-
straints. In I3D 1997: Proceedings of the 1997 Symposium on
Interactive 3D Graphics (1997).

[Gle98] GLEICHER M.: Retargetting Motion to New Characters.
In SIGGRAPH 1998: Proceedings of the 25th Annual Conference
on Computer Graphics and Interactive Techniques (1998).

[Gle01] GLEICHER M.: Motion Path Editing. In I3D 2001:
Proceedings of the 2001 Symposium on Interactive 3D Graph-
ics (2001).

[GMHP04] GROCHOW K., MARTIN S. L., HERTZMANN A.,
POPOVIĆ Z.: Style–Based Inverse Kinematics. ACM Trans.
Graph. 23, 3 (2004), 520–531.

[GWB04] GROSSMAN T., WIGDOR D., BALAKRISHNAN R.:
Multi–Finger Gestural Interaction with 3D Volumetric Displays.
In UIST 2004: Proceedings of the 17th Annual ACM Symposium
on User Interface Software and Technology (2004), pp. 61–70.

[IMH05] IGARASHI T., MOSCOVICH T., HUGHES J. F.: Spatial
Keyframing for Performance–Driven Animation. In SCA 2005:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Sympo-
sium on ComputerAnimation (2005), pp. 107–115.

[KE95] KENNEDY J., EBERHART R. C.: Particle Swarm Opti-
mization. In Proceedings of the IEEE International Conference
on Neural Networks (1995), pp. 1942–1948.

[KG03] KOVAR L., GLEICHER M.: Flexible Automatic Motion
Blending with Registration Curves. In SCA 2003: Proceedings
of the 2003 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (2003).

[KG04] KOVAR L., GLEICHER M.: Automatic Extraction and

Parameterization of Motions in Large Data Sets. ACM Trans.
Graph. 23, 3 (2004).

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion Graphs.
In SIGGRAPH 2002: Proceedings of the 29th Annual Confer-
ence on Computer Graphics and Interactive Techniques (2002),
pp. 473–482.

[LCF00] LEWIS J. P., CORDNER M., FONG N.: Pose Space
Deformation: A Unified Approach to Shape Interpolation and
Skeleton–Driven Deformation. In SIGGRAPH 2000: Proceed-
ings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques (2000), pp. 165–172.

[LNS05] LASZLO J., NEFF M., SINGH K.: Predictive Feedback
for Interactive Control of Physics–Based Characters. In Proceed-
ings of Eurographics 2005 (2005).

[LS99] LEE J., SHIN S. Y.: A Hierarchical Approach to Inter-
active Motion Editing for Human–Like Figures. In SIGGRAPH
1999: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (1999), pp. 39–48.

[MK05] MUKAI T., KURIYAMA S.: Geostatistical Motion Inter-
polation. ACM Trans. Graph. 24, 3 (2005).

[NF05] NEFF M., FIUME E.: AER: Aesthetic Exploration and
Refinement for Expressive Character Animation. In SCA 2005:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (2005).

[Par72] PARKE F. I.: Computer Generated Animation of Faces. In
ACM 1972: Proceedings of the ACM Annual Conference (1972),
pp. 451–457.

[RBC98] ROSE C., BODENHEIMER B., COHEN M. F.: Verbs
and Adverbs: Multidimensional Motion Interpolation Using Ra-
dial Basis Functions. Computer Graphics and Applications 18, 5
(1998), 32–40.

[RSC01] ROSE C. F., SLOAN P.-P. J., COHEN M. F.: Artist–
Directed Inverse Kinematics Using Radial Basis Function Inter-
polation. In Eurographics 2001 (2001).

[SHP04] SAFONOVA A., HODGINS J. K., POLLARD N. S.:
Synthesizing Physically Realistic Human Motion in Low–
Dimensional, Behavior–Specific Spaces. ACM Trans. Graph. 23,
3 (2004), 514–521.

[TJ81] THOMAS F., JOHNSTON O.: The Illusion of Life: Disney
Animation. Abbeville Press, 1981.

[UAT95] UNUMA M., ANJYO K., TAKEUCHI R.: Fourier Prin-
ciples for Emotion–Based Human Figure Animation. In SIG-
GRAPH 1995: Proceedings of the 22nd Annual Conference on
Computer Graphics and Interactive Techniques (1995), pp. 91–
96.

[WFH05] WANG J., FLEET D., HERTZMANN A.: Gaussian Pro-
cess Dynamic Models. In NIPS 2005: Proceedings of the 2005
Conference on Neural Information Processing Systems (2005).

[WH97] WILEY D. J., HAHN J. K.: Interpolation Synthesis of
Articulated Figure Motion. Computer Graphics and Applications
17, 6 (1997), 39–45.

[Wil01] WILLIAMS R.: The Animator’s Survival Kit. Faber and
Faber, 2001.

[WP95] WITKIN A., POPOVIC Z.: Motion Warping. In SIG-
GRAPH 1995: Proceedings of the 22nd Annual Conference on

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

10 I. Mordatch & P. Coleman & K. Singh & R. Balakrishnan / Spatial Pose Trees

Computer Graphics and Interactive Techniques (1995), pp. 105–
108.

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

