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Università Roma Tre

papotti@dia.uniroma3.it

Lucian Popa
IBM Almaden Research Center

lucian@almaden.ibm.com

ABSTRACT
Many problems in information integration rely on specifications, called
schema mappings, that model the relationships between schemas. Sche-
ma mappings for both relational and nested data are well-known. In
this work, we present a new formalism for schema mapping that ex-
tends these existing formalisms in two significant ways. First, our
nested mappings allow for nesting and correlation of mappings. This
results in a natural programming paradigm that often yields more ac-
curate specifications. In particular, we show that nested mappings
can naturally preserve correlations among data that existing mapping
formalisms cannot. We also show that using nested mappings for pur-
poses of exchanging data from a source to a target will result in less
redundancy in the target data. The second extension to the mapping
formalism is the ability to express, in a declarative way, grouping and
data merging semantics. This semantics can be easily changed and
customized to the integration task at hand. We present a new algo-
rithm for the automatic generation of nested mappings from schema
matchings (that is, simple element-to-element correspondences be-
tween schemas). We have implemented this algorithm, along with al-
gorithms for the generation of transformation queries (e.g., XQuery)
based on the nested mapping specification. We show that the gener-
ation algorithms scale well to large, highly nested schemas. We also
show that using nested mappings in data exchange can drastically re-
duce the execution cost of producing a target instance, particularly
over large data sources, and can also dramatically improve the qual-
ity of the generated data.

1. INTRODUCTION
Many problems in information integration rely on specifications

that model the relationships between schemas. These specifications,
called schema mappings, play a central role in both data integra-
tion and in data exchange. We consider schema mappings over pairs
of schemas that express a relation on the sets of instances of two
schemas. The benefits of using declarative formalisms for schema
mappings are well-known. Such formalisms have the promise of pro-
viding a high-level, natural programming paradigm for mappings,
and can facilitate customization, evolution, and use in different in-
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tegration tasks. Declarative schema mapping formalisms have been
used to provide formal semantics for data exchange [9, 1], data inte-
gration [14], peer data management [12, 5], and model management
operators [18] such as composition [15, 8, 21] and inversion [7].

We start by examining the most widely used formalisms for schema
mappings. For relational schemas, these are based on source-to-target
tuple-generating dependencies (source-to-target tgds) [9] or, equiv-
alently, GLAV (global-and-local-as-view) assertions [10, 14]. For
schemas containing nested data (including XML schemas), direct ex-
tensions have been proposed [24, 27]. We consider the expressiveness
of these mappings to understand what semantics they can, and more
importantly cannot, capture. In addition, we study to what extent
these formalisms meet the goal of providing a natural programming
paradigm for mappings. In particular, we identify several issues that
can lead to inaccurate or underspecified mappings. Furthermore, we
show how existing mapping specifications may be fragmented into
many small, overlapping formulas where the overlap may lead to re-
dundant computation, may hinder human understanding of the map-
pings and, ultimately, may limit the effectiveness of mapping tools.

To alleviate these issues, we propose a new mapping formalism,
nested mappings, that allows for nesting and correlation of mappings.
Nested mappings permit the expression of powerful grouping and
data merging semantics declaratively within the mapping. We show
that nested mappings yield more accurate specifications, and when
used in data exchange can improve the quality of the exchanged data.

1.1 Current Schema Mapping Formalisms
Source-to-target tgds and GLAV assertions are constraints between

relational schemas. They are expressive enough to represent, in a
declarative way, many of the relational schema mappings of interest.
In this work, we start by examining an extension of source-to-target
tgds designed for schemas with nested data that is based on path-
conjunctive constraints [23], and that have been used in systems for
data exchange [24], data integration [27], and schema evolution [26,
28]. We refer to such mappings as basic mappings. They form the
basic building blocks for our subsequent nested mappings.1

To illustrate the use of basic mappings, consider the mapping ex-
ample shown in Figure 1. The source schema, illustrated on the left,
is a nested schema describing departments with their employees and
projects. There is a top-level set of department records, and each de-
partment record has a (nested) set of employee records. There is ad-
ditional nesting in that each employee has a set of dependents and a
set of projects. Each set can be empty, in general. The target schema,
shown on the right, is a slight variation of the source schema.
1In the literature these basic mappings have sometimes been referred
to as nested constraints or dependencies since they are constraints on
nested data. However, the mappings themselves have no structure or
nesting. Hence, we will use the term basic to distinguish them from
the more structured nested mappings that we are proposing.
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location
budget
empsemps: Set of  [

ename
salary
dependentsdependents: Set of  [

name
age

]
projectsprojects: Set of  [

pid
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…

m1

m1: “for every department element, map department info”: 
       ∧∧∧∧


m2: “for every department element with employees, map department and 

employee info”:
           

m3: “for every department element with employees with dependents, …”
m4: “for every department element with employees with projects, …”

m2
m3

m4

m4

Figure 1: Multiple “small” mappings.

The formulas that are sketched below the schemas are examples of
basic mappings. They are constraints that describe, in a declarative
way, the mapping requirements. These formulas may be generated
by a tool such as Clio [24] from the lines (or, correspondences) be-
tween schema elements, or may be written by a human expert and
interpreted by a model management tool such as Moda [18] or other
integration tools such as Piazza [12]. (We will give a precise seman-
tics for the schema and basic mapping notation in Section 2. The
exact details are not essential for this introductory discussion.)

Each formula (that is, each mi) deals with one possible “case” in
the source data (where each case is expressed by a conjunction of
navigation paths joined in certain ways). In order to cover all possible
cases of interest, we need many such formulas. However, many of the
cases overlap (i.e., have common navigation paths). Hence, common
mapping behavior must be repeated in many formulas.

For example, the formula m2 must repeat the mapping behavior
that m1 already specifies for department data (although m2 does it in
a more specialized context). Otherwise, if we specify in m2 only the
mapping behavior for employees, we lose in the target the association
that exists in the source between employees and their departments
(since there is no correlation between m1 and m2). At the same time,
m1 cannot be eliminated from the specification, since it deals with de-
partments in general (that are not required to have employees). Also,
in the example, m3 and m4 contain a common mapping behavior for
employees and departments (but they differ in that they map different
components of employees: dependents and projects).

Such formulas are (relatively) easy to generate and reason about.
This is, partly, why they have been widely used in research. However,
the number of formulas quickly increases with large schemas, leading
to an explosion in the size of the specification. This explosion as well
as the overlap in behavior causes significant usability problems for
human experts and for tools using these specifications in practice.
Inefficiency in execution In a naive use of basic mappings, each
mapping formula may be interpreted separately. Optimization of these
mappings requires sophisticated techniques that deduce the correla-
tions and common subexpressions within the mappings.
Redundancy in the specification When using basic mappings in data
exchange, the same piece of data may be generated multiple times in
the target due to the multiple formulas. In addition to possible run-

for d in dept ⇒

exists d’ in Tdept [   … (mapping conditions from m ) 

∧∧∧∧ for e in d.emps ⇒

exists e’ in d’.emps [ … (rest of m -- not covered by m ) 

∧∧∧∧ for c in e.dependents ⇒

exists c’ in e’.dependents

[ … (rest of m ) ]

∧∧∧∧ for p in e.projects ⇒

exists p’ in e’.projects, p’’ in d’.projects

[ … (rest of m ) ]
]

]

Correlation with 
parent mapping

Figure 2: Nested mapping.

time inefficiency, this puts additional burden on methods for duplicate
elimination or data merging. For the above example, an employee
may be generated three times in the target: once for m2 (with an
empty set of dependents and an empty set of projects), once for m3

(with a non-empty set of dependents) and once for m4 (with a non-
empty set of projects). Merging of the three employee records into
one is more than just duplicate elimination: it requires merging of
two nested sets as well. Furthermore, this raises the question of when
to merge in general (since this is not expressed in any way by the
mapping formulas of Figure 1). This brings us to the next point.
Underspecified grouping semantics The formula m2 requires that
for every department and for every employee record in the source
there must exist, in the target, a “copy” of the department record with
a “copy” of the employee record nested underneath. However, it is left
unspecified whether to group multiple employees that are common
for a given department name (dname), or whether to group by other
fields, or whether not to group at all. Again, one of the reasons for
this lack of expressive power is the simplicity of these basic mapping
formulas. In an early version of Clio [24], a default grouping behavior
is used based on partitioned normal form (PNF) which always groups
nested sets of elements by all the atomic elements at the upper levels.
For example, under the PNF semantics, employees will be grouped
by dname and location (assuming that budget is not mapped
and its value is null). In effect, the semantics of the transformation
is specified in two parts: first the mapping formulas, and then the
implicit (PNF-based) grouping semantics. An important limitation of
this approach is that the default grouping semantics is not specified
declaratively, and it cannot be easily changed or customized when it
is not the desired semantics.

1.2 Nested Mappings
In order to address the above issues, we propose an extension to

basic mappings that is based on arbitrary nesting of mapping formu-
las within other mapping formulas. We shall call this formalism the
language of nested mappings. As a first observation, it can be argued
that nested mappings offer a more natural programming paradigm for
mapping tasks, since human users tend to design a mapping from
top to bottom, component-wise: define first how the top components
of a schema relate, then define, recursively, via nested submappings,
how the subcomponents relate, and so on. For our earlier example,
the corresponding nested mapping is illustrated in Figure 2. The
nested mapping relates, at the top-level, source departments with tar-
get departments; it then continues, in this context of a department-to-
department mapping, with a submapping relating the corresponding
employees, which then continues with submappings for dependents
and projects. At each level, there are correlations between the current
submapping and the upper-level mappings. In particular, nothing is
repeated from the upper level, but instead reused.
Advantages of nested mappings Nested mappings overcome (to a
large extent) the previous shortcomings of basic mappings. First, we
need fewer formulas and overall produce a more natural and accurate
specification. For our example, one nested mapping replaces four ba-



sic mappings. In general, we may still need multiple nested mappings
(one common situation is when we have multiple data sources). Sec-
ond, by using nested mappings, we are able to produce more efficient
data exchange queries. This is because nested mappings factor out
common subexpressions, so we can more easily optimize the num-
ber of passes over the same input data. For our example, department
records can be scanned only once, and the entire work involving the
subelements can be done in the same pass (by the submappings). The
execution will also generate much less redundancy in the target data.
An employee is generated once, and all dependents and projects are
added together (by the two corresponding submappings).

Nested mappings also have a natural, built-in, grouping behavior,
that follows the grouping of data in the source. For example, the
above nested mapping requires that all the employees in the target are
grouped in the same way as they are in the source. This grouping
behavior is ideal for mappings between two similar schemas (which
is common in the important case of schema evolution) where much
of the data should be mapped using the identity (or mostly-identity)
mapping. For more complex restructuring tasks, additional group-
ing behavior may need to be specified. We use a simple, but power-
ful, mechanism for adding such grouping behavior by using explicit
grouping functions (a restricted form of Skolem functions).
Summary of Contributions
• We propose a nested mapping formalism for representing the rela-
tionship between schemas for relational or nested data (Section 2).
• We propose an algorithm for generating nested mappings from match-
ings, or correspondences, between schema elements. The nested na-
ture of the mappings makes this generation task more challenging
than in the case of basic mappings (Section 3).
• We give an algorithm for the generation of data transformation
queries that implement data exchange based on nested mapping spec-
ifications. Notably our algorithm can handle all nested mappings, in-
cluding those generated by our mapping algorithm as well as arbitrary
customizations of these mappings, which may be made, for example,
by a user to capture specialized grouping semantics (Section 4).
• We show experimentally that the use of nested mappings in data ex-
change can drastically reduce the execution cost of producing a target
instance, and can also dramatically improve the quality of the gener-
ated data. We show examples of important grouping semantics that
cannot be captured by basic mappings, and we empirically show that
underspecified basic mappings may lead to significant redundancy in
data exchange (Section 5).
Related Work Schema mappings are so important in information in-
tegration that many mapping formalisms have been proposed for dif-
ferent tasks. Here we mention only a few. The important role of
Skolem functions for merging data has been recognized in a num-
ber of approaches [13, 22] and Skolem functions appear explicitly
as part of the XML-QL query language [6]. Work on model man-
agement has used embedded dependencies (similar to our basic map-
pings) which may be augmented with Skolem functions [3, 18]. HeP-
ToX [5] uses a datalog-like language that supports nested data and al-
lows Skolem functions, but mappings cannot be nested or correlated.
Grammars have been used to specify mappings for (recursive) DTDs
[2]. While most of these formalisms support nested data, to the best
of our knowledge, none of the existing declarative formalisms support
the expression of nesting between mappings.

Our nested mappings are strictly more expressive than basic map-
pings. At the same time, they are less expressive than languages used
for composition [8, 21]. In particular, if we restrict ourselves to the
relational model (for comparison purposes), nested mappings are a
strict sublanguage of the second-order tgds (SO tgds) introduced in
[8]: every nested mapping can be rewritten, via Skolemization, into
an equivalent SO tgd (but not vice-versa). However, this rewriting
would erase the nesting structure of the mapping, and it is not clear

projproj: Set of  [
dname
pname
empsemps: Set of  [

ename 
salary         

]
]

deptdept: Set of  [
dname
budget
empsemps: Set of  [

ename
salary
projectsprojects: Set of  [

pid
]

]
projectsprojects: Set of  [

pid
pname

]]
for p in proj ⇒

exists d’ in dept, p’ in d’.projects

where d’.dname=p.dname ∧ p’.pname=p.pname

for p in proj, e in p.emps ⇒

exists d’ in dept, p’ in d’.projects, e’ in d’.emps, p’’ in e’.projects

where p’’.pid=p’.pid ∧
d’.dname=p.dname ∧ p’.pname=p.pname ∧
e’.ename=e.ename ∧ e’.salary=e.salary

m

m

d

e

s

p

Figure 3: A mapping scenario with two basic mappings.

to what extent such nesting could be extracted from an arbitrary SO
tgd. The language of SO tgds does not allow nesting of formulas,
but instead allows correlation of formulas via arbitrary Skolem func-
tions, a more powerful but arguably less user-friendly programming
concept. We also note that there is no known algorithm for generat-
ing SO tgds; the algorithm for generating nested mappings that we
propose here can, however, be seen as a step in that direction, since
nested mappings correspond to a form of SO tgds.

Many industry tools such as BizTalk Mapper, IBM WebSphere
Data Stage TX, and Stylus Studio’s XML Mapper support the devel-
opment (by a programmer) of mappings. Some support nested map-
pings, though in more procedural languages. However, most, if not
all, of the work done to express such mappings is manual. Generation
of mappings (with no nesting) has been considered in the TranSem
system [20], Clio [19, 24] and HePToX [5]. Also, Bohannon et al. [4]
consider the generation of information preserving mappings (based
on path mappings). Our work extends the Clio mapping generation
algorithm to produce nested mappings.

As part of our generation algorithm, we identify common expres-
sions within mappings. Our goal is to identify possible correlations
between mappings that can be exploited to produce more accurate
mapping specifications. Our techniques are in the same spirit of work
on identifying common expressions within complex queries for use in
query optimization [25]. However, unlike query optimization which
must necessarily preserve query equivalence, our techniques lead to
mappings with better semantics, and so do not preserve equivalence.

Notably the generation of efficient queries for data exchange is not
considered in work like Piazza [12] and HePToX [5] which instead
focus on query generation for data integration. In model manage-
ment [18, 3], query or code generation for data exchange has been
considered for embedded dependencies. Clio [24] generates XQuery,
XSLT, SQL/XML, and SQL queries for basic mappings.

2. MAPPINGS WITHIN MAPPINGS
In this section, we fix the notation and terminology for schemas and

mappings based on our previous work [24, 28]. Furthermore, we take
a closer look at the qualitative differences between basic mappings
and nested mappings.

2.1 Basic Mappings
Consider the mapping scenario illustrated in Figure 3. The two

schemas in the figure (source and target) are shown in a nested re-
lational representation that can be used as a common abstraction for



relational and XML schemas (and other hierarchical set-oriented data
formats). This representation is based on sets and records that can
be arbitrarily nested. In the source schema, proj is a set of records
with two atomic components, dname (department name) and pname
(project name), and a set-valued component, emps, that represents a
(nested) set of employee records. The target schema is a reorgani-
zation of the source: at the top-level we have a set of department
records, with two nested sets of employee and project records. More-
over, each employee can have its own set of project ids (pids), which
must appear at the department level (this is required by the foreign
key shown in the figure with an arrow).

Formally, a schema is a set of labels (also called roots), each with
an associated type τ , defined by: τ ::= Str | Int | SetOf τ | [ l1 : τ1,. . .,
ln : τn], where l1, . . . , ln are labels.2 We point out that this is only a
simplified abstraction: in the system that we implemented, we also
deal with choice types, optional elements, nullable elements, etc.
However, the presence of these additional features does not essen-
tially change the formalism.

In Figure 3, we also show two basic mappings that can be used to
describe the relationship between the source and the target schemas.
The first one, m1, is a constraint that maps department and project
names in the source (independently of whether there exist any em-
ployees in emps) to corresponding elements in the target. The sec-
ond one, m2, is a constraint that maps department and project names
and their employees (whenever such employees exist).

In the figure, we use a “query-like” notation, with variables bound
to set-type elements. Each variable can be a record and hence con-
tain multiple components. Correspondences between schema ele-
ments (e.g., dname to dname) are captured by equalities between
such components (e.g., d′.dname = p.dname). These equalities are
grouped in the where clause that follows the exists clause of a map-
ping. Moreover, equalities can also be used to express join conditions
(or other predicates) in the source or in the target. For example, see
the requirement on pid in m2 that appears in the same where clause.
Logic-based notation Alternatively, we will use a “logic-based” no-
tation for mappings that quantifies each individual component in a
record as a variable. In particular, nested sets are explicitly identified
by variables. Each mapping is an implication between a set of atomic
formulas over the source schema and a set of atomic formulas over
the target schema. Each atomic formula is of the form e(x1, . . . , xn)
where e denotes a set, and x1, . . . , xn are variables.3 The main differ-
ence from the traditional relational atomic formulas is that e may be
a top-level set (e.g., proj), or it may be a variable (in order to denote
sets that are nested inside other sets). We will write the atomic vari-
ables in lower-case and the set variables in upper-case. The formulas
corresponding to the mappings m1 and m2 of Figure 3 are:

m1 : proj(d, p,Es) → dept(d, ?b, ?E, ?P ) ∧ P (?x, p)
m2 : proj(d, p,Es) ∧ Es(e, s)

→ dept(d, ?b, ?E, ?P ) ∧ E(e, s, ?P ′) ∧ P ′(?x) ∧ P (x, p)

For each formula, the variables on the left of the implication are as-
sumed to be universally quantified. The variables on the right that do
not appear on the left are assumed to be existentially quantified. For
clarity, we omit the quantifiers and use a question mark in front of the
first occurrence of an existentially-quantified variable.

To illustrate, in m2, the variable Es denotes the nested set of em-
ployee records (inside a tuple in the top-level set proj). The vari-
ables E, P , and P ′ are also set variables, but existentially quantified.
The variables b (for budget) and x (project id) are existentially quan-
tified as well (but atomic). The meaning of m2 is: for every source

2In Figure 3, we do not show any of the atomic types.
3For simplicity of presentation, we assume strict alternation of set
and record types in a schema.

CS uSearch E

Target data:

projproj: CS B E P

deptdept:

Alice 120K
John 90K 

EE :

Source data:

X uSearch

PP :

CS B E P
CS B E P

deptdept:

X uSearch

PP :

X uSearch

PP :

Alice 120K P ’

EE :

John 90K P ’

EE :

X

PP ’’:

X

PP ’’:

{m ,m }

Figure 4: Source and target instances satisfying {m1, m2}.

tuple (d, p,Es) in proj, and for every tuple (e, s) in the set Es, there
must exist four tuples in the target as follows. First, we must have a
tuple (d, b, E, P ) in dept, where b is some “unknown” budget, E
identifies a set of employee records, and P identifies a set of project
records. Then, there must exist a tuple (e, s, P ′) in E, where P ′ iden-
tifies a set of project ids. Furthermore, there must exist a tuple (x) in
P ′, where x is an “unknown” project id. Finally, there must exist a
tuple (x, p) in the previously mentioned set P , where x is the same
project id used in P ′. Notice that all data required to be in the target
by the mapping satisfies the foreign key for the projects.

2.2 Correlating Mappings via Nesting
We now take a look at actual data in order to understand the seman-

tics of basic mappings, and to see why such specification language is
not entirely satisfactory. In Figure 4, we show source and target in-
stances that satisfy the constraints m1 and m2. In the source, E0

is a “name”, or set id, for the nested set of employee records corre-
sponding to the tuple given in proj. We assume that every nested set
has such an id. Similarly, E1, P1, E2, . . . , P

′

3 are set ids in the target
instance. The top two target tuples, for dept and P1, respectively,
ensure that m1 is satisfied; the rest are used to satisfy m2.

In general, for a given source instance, there may be several target
instances satisfying the constraints imposed by the mapping specifi-
cation. Given the specification {m1, m2}, the target instance shown
in Figure 4 can be considered to be the most general that can be pro-
duced (a universal solution [9]), because it is the one that makes the
least assumptions. For example, it does not assume that E1 and E2

are equal (since this is not required by the specification). However,
this target instance may not be satisfactory for a number of reasons.
First, there is redundancy in the output: there are three dept tuples
generated for “CS”, for different instantiations of the left-hand sides
of m1 and m2. Also, there are three project tuples for “uSearch” (al-
though in different sets). Second, there is no grouping of data in the
target: E2 and E3 are different singleton sets, generated for different
instantiations of the left-hand side of m2 (same for P2 and P3). This
does not violate the constraints, however, since the mapping specifi-
cation does not require E2 and E3 to be equal.

In Figure 5, we show a target instance that is more “desirable”.
This instance has no redundant departments or projects, and it main-
tains the grouping of employees that exists in the source. While this
instance satisfies the constraints m1 and m2, for the given source
instance, it is not required by these mappings. In particular, the spec-
ification given by {m1, m2} does not rule out the undesired target
instance of Figure 4.

We would like to have a specification that “enforces” correlations
such as the ones that appear in the more “desirable” target instance
(e.g., that the two source employees appear in the same set in the
target). In particular, we would like to correlate the mapping m2

with m1 so that it reuses the set id E for employees that is already
asserted by m1 (along with other existentially-quantified elements in
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deptdept:
X uSearch
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Figure 5: Target data required by the nested mapping n.

m1), without repeating the common part, which is m1 itself. This can
be done using the following nested mapping:

n : proj(d, p, Es) →
[ dept(d, ?b, ?E, ?P ) ∧ P (?x, p)
∧ [ Es(e, s) → E(e, s, ?P ′) ∧ P ′(x) ] ]

The inner implication in n (the third line) is a submapping. We
refer to the rest of n as the outer mapping. The submapping is corre-
lated to the outer mapping because it reuses the existential variables
E and x. In particular, the submapping requires that for every em-
ployee tuple in the set Es (where Es is bound by the outer mapping),
there must exist an employee tuple in the set E, which is also bound
by the outer mapping. Also, there must exist a project tuple in the set
P ′ associated to this employee, and the project id must be precisely
the one (x) already required by the outer mapping. Note that P ′ is
now existentially quantified and bound in the inner mapping.

A fundamental observation about the nested mapping n is that
the “undesirable” target instance of Figure 4 does not satisfy its re-
quirements. For example, when we apply the outer mapping of n to
proj(CS, uSearch, E0), we require dept(CS, B1, E1, P1) to be in
the target. Now, when we apply the submapping to E0(Alice, 120K)
and E0(John, 90K), we must have tuples for Alice and John within
the same set E1. The nested mapping explicitly rules out the target in-
stance of Figure 4, and is a tighter specification for the desired schema
mapping.

Another important observation is that there is no set of basic map-
pings that is equivalent to the above nested mapping. (It is not hard to
show this and we leave the details for a larger version of this paper.)
Thus, the language of nested mappings is strictly more expressive
than that of basic mappings.

Finally, we show below the nested mapping in query-like notation.
Notice that the variables p, d′ and p′ from the outer level are being
reused in the inner level.

n: for p in proj ⇒
exists d′ in dept, p′ in d′.projects
where d′.dname=p.dname ∧ p′.pname=p.pname ∧

( for e in p.emps ⇒
exists e′ in d′.emps, p′′ in e′.projects
where p′′.pid=p′.pid ∧

e′.ename=e.ename ∧ e′.salary=e.salary )

2.3 Grouping and Skolem Functions
As seen in the above example, nested mappings can take advantage

of the grouping that exists in the source, and require the target data
to have a similar grouping. In the example, all the employees that
are nested inside one source tuple are required to be nested inside the
corresponding target tuple. In this section, we show how a restricted
form of Skolem functions can be used to model groupings of data that
may not be present in the source.

To illustrate, consider again the source schema in Figure 3. In Fig-
ure 6, we show source and target data for this schema. On the left, we
show a source instance that extends the one of Figure 4. In particular,
the “CS” department is associated with two different projects instead
of one. On the right, we show a desired target instance, where projects
are grouped by department name. This target instance is not required
by the nested mapping n, which allows target instances where we may
have multiple department tuples (with the same dname value), each
with a singleton set containing one project. In other words, the source

data is flat and, consequently, the target data is flat (as far as the re-
lationship between departments and projects goes). Furthermore, the
above nested mapping does not merge sets of employees that appear
in different source tuples with the same department name, in contrast
with the target instance shown in Figure 6.

Suppose now that we do want to group into one set all the projects
of a department, and also all the projects for each employee in a de-
partment. Also, we want to merge all the employees for a given de-
partment. To generate such new groupings of data, we need to add
something else to the specification, since nesting of mappings alone is
not flexible enough to describe such groupings. The mechanism that
we add is that of Skolem functions for set elements. Intuitively, such
functions can express that certain sets in the target must be functions
of certain values from the source. For our example, to express the
desired grouping, we enrich the nested mapping with three Skolem
functions for the three nested set types in the target, as follows:

n′: for p in proj ⇒
exists d′ in dept, p′ in d′.projects
where d′.dname=p.dname ∧ p′.pname=p.pname ∧

d′.emps=E[p.dname] ∧ d′.projects=P[p.dname] ∧
( for e in p.emps ⇒

exists e′ in d′.emps, p′′ in e′.projects
where p′′.pid=p′.pid ∧

e′.ename=e.ename ∧ e′.salary=e.salary ∧
e′.projects=P’[p.dname,e.ename] )

The new mapping constrains the target set of projects to be a func-
tion of only department name: P[p.dname]. Also, there must be only
one set of employees per department name, E[p.dname], meaning that
multiple sets of employees (for different source tuples with the same
department name) must be merged into one. Similarly, all projects of
an employee in a department must be merged into one set.

More concretely, for the source tuple proj(CS, uSearch, E0) of
Figure 6, the outer mapping of n′ requires that the target contains
dept(CS,B1, E1, P ). In addition, E[“CS”] (the result of applying
the Skolem function E to the value “CS”) corresponds to E1. Due
to the inner mapping, the two employees of E0 (“Alice” and “John”)
must be in E1. Now consider the source tuple (CS, iMap, E′

0). The
mapping n′ requires the employees working on the “iMap” project
(Bob and Alice) to also be within the set E1. The reason for this
is that, according to n′, the employees of “iMap” must also be in
E[“CS”], which is E1.

Due to lack of space, we omit the precise definition of nested map-
pings, which is straightforward and follows the examples and intu-
ition given above. We do point out the following natural restriction.
The for clause of a submapping can use a correlation variable (i.e.,
bound in an upper-level mapping) only if that variable is bound in a
for clause of the upper-level mapping. (A similar restriction holds for
the usage of correlation variables in exists clauses.)

Every nested mapping (with no explicit Skolem functions) is equiv-
alent to one in which default Skolem functions are assigned to all the
existentially-quantified set variables (using here the logic-based no-
tation). The default arguments to such Skolem functions are all the
universally quantified variables that appear before the set variable.

As an example, the previous nested mapping n is equivalent to
one in which the target set of projects nested under each dept tuple
is determined by a Skolem function of all three components of the
input proj tuple (i.e, dname, pname, and emps). In other words,
there must be a set of target projects for each input proj tuple. Of
course, this does not require any grouping of projects by departments.
However, once we expose them to a user, the Skolem functions can
be customized, in order to achieve different grouping behavior (such
as the one seen with the earlier mapping n′). This is the approach that
we follow in our system: we first generate nested mappings (with no
Skolem functions), then apply default Skolemization, which can then
be altered in a GUI by a user.
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Figure 6: Example data for the nested mapping n′.

Skolem functions and data merging Our example illustrates how
one occurrence of a Skolem function permits data to be accumulated
into the same set. Furthermore, the same Skolem function may be
used in multiple places of a mapping or even across multiple map-
pings. Thus, different mappings (correlated via Skolem functions)
may contribute to the same target sets, effectively achieving data merg-
ing. This is a typical requirement in data integration. Hence, Skolem
functions are a declarative representation of a powerful array of data
merging semantics.

As an interesting example of a set being shared from multiple places
consider the case when “Alice” has different salaries (120K and 130K)
in the two tuples in the source of Figure 6. Then our mapping n′ re-
quires that there be two different “Alice” tuples in the target (both
in the set E1 = E[“CS”]). Moreover, the same set of projects will
be constructed for the two Alice tuples since the (projects) set id is
a Skolem function (P′) of “CS” and “Alice” (and does not take into
account salary). This showcases an interesting feature of the map-
ping language, which is the ability to merge several components of a
piece of data while still keeping other components separated (perhaps
until further resolution).

3. GENERATION OF NESTED MAPPINGS
In this section, we describe our algorithm for the generation of

nested mappings. Given two schemas, a source and a target, and a
set of correspondences between atomic elements in the schemas, the
algorithm generates a set of nested mappings that “best” reflect the
given schemas and correspondences. The first two steps in the algo-
rithm (Section 3.1) follow the generation of basic mappings that we
introduced in our previous work [24]. We then describe (Section 3.2)
an additional step in which unlikely basic mappings are pruned. This
significantly reduces the number of basic mappings. We define when
a basic mapping can be nested under another basic mapping in Sec-
tion 3.3. The pruned basic mappings are then input to the final step in
the algorithm to generate nested mappings (Section 3.4).

3.1 Basic Mapping Generation
We now review the generation algorithm for basic mappings [24].

The main concept is that of a tableau. Intuitively, tableaux are a way
of describing all the “basic” concepts and relationships that exist in
a schema. There is a set of tableaux for the source schema and a set
of tableaux for the target schema. Each tableau is primarily an en-
coding of one concept of a schema (here, concept is synonymous to a
set type). In addition, each tableau includes all related concepts, that
is, concepts that must exist together according to the referential con-
straints of the schema or the parent-child relationships in the schema.
This will allow the subsequent generation of mappings that preserve
the basic relationships between concepts. Such preservation is one of
the main properties of our previous algorithm [24], and will continue
to apply for the new algorithm as well.
Step 1. Computation of tableaux Given the two schemas, the sets of
tableaux are generated as follows. For each set type T in a schema, we
first create a primary path that spells out the navigation path from the
root to elements of T . For each intermediate set, there is a variable
to denote elements of the intermediate set. To illustrate, recall the

A = { p in proj ; } 

A = { p in proj, e in p.emps ; }

B = { d in dept ; } 

B = { d in dept, e in d.emps ; }

B = { d in dept, e in d.emps, p in e.projects,

p’ in d.projects ; p.pid=p’.pid }

B = { d in dept, p in d.projects ; }
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Figure 7: (a) Source and target tableaux (b) Tableaux hierarchies

earlier schemas in Figure 3. In Figure 7(a), A1 and A2 are primary
paths corresponding to the two set types associated with proj and
emps in the source schema. Note that in A2, the parent set proj
is also included, since it is needed in order to refer to an instance of
emps. Similarly, B1, B2, and B4 are primary paths in the target.

In addition to the structural constraints (parent-child) that are part
of the primary paths, the computation of tableaux also takes into ac-
count the integrity constraints that may exist in schemas. For our
example, the target schema includes the following constraint (simi-
lar to a keyref in an XML Schema): every project id of an employee
within a department must appear as the id of a project listed under the
department. This constraint is explicitly enforced in the tableau B3

in Figure 7(a). The tableau is constructed by enhancing, via the chase
[16, 23] with constraints, the primary path B′

3 that corresponds to the
set type projects under emps:

B′

3 = { d in dept, e in d.emps, p in e.projects; }

The tableau B3 encodes, intuitively, that the concept of a project-
of-an-employee-of-a-department requires the following concepts to
exist: the concept of an employee-of-a-department, the concept of a
department, and the concept of a project-of-a-department.

For each schema, the set of its tableaux is obtained by replacing
each primary path with the result of its chase (with all the applica-
ble integrity constraints). For our example, only one primary path is
changed by the chase (into B3). The rest remain unchanged (since no
constraints are applicable). For each tableau, for mapping purposes,
we will consider all the atomic type elements that can be referred to
from the variables in the tableau. For example, B3 includes dname,
budget, ename, salary, pid,4 pname. We say that such ele-
ments are covered by the tableau. Let us call generators the variable
bindings that appear in a tableau. Thus, a tableau consists of a se-
quence of generators and a conjunction of conditions.
Step 2. Generation of basic mappings In the second step of the al-
gorithm, basic mappings are generated by pairing in all possible ways
the source and the target tableaux that were generated in the first step.
For each pair (A,B) of tableaux, let V be the set of all correspon-
dences for which the source element is covered by A and for which
the target element is covered by B. For our example, if we consider
the pair (A1, B1) then V consists of one correspondence: dname to
dname, identified by d in the earlier Figure 3. If we consider the pair
(A1, B4) then there is one more correspondence covered: pname to
pname (or p).

Every triple (A, B, V ) encodes a possible basic mapping: the for
and the associated where clause are given by the generators and the
conditions in A, the exists clause is given by the generators in B,
and the subsequent where clause includes all the conditions in B
along with conditions that encode the correspondences (i.e., for every
v in V , there is an equality between the source element of v and

4We include only one pid, since p.pid is equal to p′.pid.



the target element of v). We may write the basic mapping repre-
sented by (A, B, V ) as ∀A → ∃B.V , with the meaning described
above. For our example, the basic mapping ∀A1 → ∃B4.{d, p}
is precisely the mapping m1 of Figure 3. Also, the basic mapping
∀A2 → ∃B3.{d, p, e, s} is the mapping m2 of the same figure.

Among all the possible triples (A,B, V ), not all of them generate
actual mappings. We generate a basic mapping only if it is not sub-
sumed and not implied by other basic mappings. This optimization
procedure is described in the next subsection.

3.2 Subtableaux and Optimization
The following concept of subtableau plays an important role in rea-

soning about basic mappings, and in particular in pruning out unlikely
mappings during generation (see the following Step 3). The same
concept also turns out to be very useful in the subsequent generation
of nested mappings.

DEFINITION 3.1. A tableau A is a subtableau of a tableau A′ (no-
tation A ≤ A′) if the generators in A form a superset of the generators
in A′ (possibly after some renaming of variables) and also the condi-
tions in A are a superset of those in A′ or they imply them (modulo
the renaming of variables). We say that A is a strict subtableau of A′

(A < A′) if A ≤ A′ and the generators in A form a strict superset of
those in A′.
For each schema, the subtableau relationship induces a directed acyclic
graph of tableaux, with an edge from A to A′ whenever A ≤ A′.
Such a graph can be seen as a hierarchy where the tableaux that are
smaller in size are at the top. Intuitively, the tableaux at the top cor-
respond to the more general concepts in the schema, while those at
the bottom correspond to the more specific ones. Although the sub-
tableau relationship is reflexive and transitive, most of the time we are
concerned with the “direct” subtableau edges. For our example, the
two hierarchies (with no transitive edges) are shown in Figure 7(b).
Step 3. Pruning of basic mappings We now complete the algorithm
for generation of basic mappings with an additional step that prunes
unlikely mappings. This step is especially important because it re-
duces the number of candidate mappings that the nesting algorithm
will have to explore.

A basic mapping ∀A → ∃B.V is subsumed [11] by a basic map-
ping ∀A′ → ∃B′.V ′ if A and B are respective subtableaux of A′ and
B′, with at least one being strict, and V = V ′. Note that if A and B
are respective subtableaux of A′ and B′, then necessarily V includes
V ′ (since A and B cover all the atomic elements that are covered
by A′ and B′, and possibly more). The subsumption condition says
that we should not consider (A, B, V ) since it covers the same set of
correspondences that are covered by the smaller (and more general)
tableaux A′ and B′. For our example, ∀A1 → ∃B2.{d} is subsumed
by ∀A1 → ∃B1.{d}.

A basic mapping may be logically implied by another basic map-
ping. Testing logical implication of basic mappings can be done using
the chase [16, 23], since basic mappings are tuple-generating depen-
dencies (albeit extended over a hierarchical model). Although in our
implementation we use the chase (for completeness), often a simpler
test suffices: a basic mapping m is implied by a basic mapping m′

whenever m is of the form ∀A → ∃B.V and m′ is of the form
∀A → ∃B′.V ′ and B′ is a subtableau of B. Intuitively, all the
target components (with their equalities) that are asserted by m are
asserted by m′ as well (with the same equalities). As an example,
∀A1 → ∃B1.{d} is implied by ∀A1 → ∃B4.{d, p}.

We note that subsumption also eliminates some of the implied map-
pings. In the earlier definition of subsumption, in the particular case
when B and B′ are the same tableaux then the subsumed mapping is
also implied (by the other one). For example, ∀A2 → ∃B1.{d} is
subsumed and implied by ∀A1 → ∃B1.{d}.

The generation algorithm for basic mappings stops after eliminat-

ing all the subsumed and implied mappings.5 For our example, we are
left with only the two basic mappings, m1 and m2, from Figure 3.

3.3 When Can We Nest?
We now give a formal definition of the notion of a basic mapping

being nestable under another basic mapping. This definition follows
the intuition given in Section 2.2: we nest m2 inside m1 if m1 is
“part” of m2; morever the nesting is done by factoring out the com-
mon part (m1) and adding the “remainder” of m2 as a submapping.
Based on this definition, we will construct a graph (hierarchy) of basic
mappings that will be used by the actual generation algorithm, which
is described in Section 3.4.

DEFINITION 3.2. A basic mapping ∀A2 → ∃B2.V2 is nestable
inside a basic mapping ∀A1 → ∃B1.V1 if the following hold:

(1) A2 and B2 are strict subtableaux of A1 and B1, respectively,
(2) V2 is a strict superset of V1, and
(3) there is no correspondence v in V2 − V1 whose target element is

covered by B1.
For our example, the basic mapping m2 = ∀A2 → ∃B3.{d, p, e, s}
is nestable inside m1 = ∀A1 → ∃B4.{d, p}. In particular, A2 and
B3 are strict subtableaux of A1 and B4; also there are two correspon-
dences in m2 but not in m1 (e and s) and their target elements are not
covered by B4.

DEFINITION 3.3. Let m2 = ∀A2 → ∃B2.V2 be nestable inside
m1 = ∀A1 → ∃B1.V1. Without loss of generality assume that all
variable renamings have been applied so that the generators in A1

(B1) are literally a subset of those in A2 (B2). The result of nesting
m2 inside m1 is a nested mapping of the form:

∀A1 → ∃B1. [ V1 ∧
∀(A2 − A1) → ∃(B2 − B1).(V2 − V1) ]

where ∀(A2 − A1) → ∃(B2 − B1).(V2 − V1) is a shorthand for
a submapping constructed as follows. The for clause contains the
generators in A2 that are not in A1. The subsequent where clause (if
needed) contains all the conditions in A2 that are not among (and not
implied by) the conditions of A1. The exists clause and subsequent
where clause satisfy similar properties with respect to B2 and B1.
Finally, the last where clause also includes the equalities encoding
the correspondences in V2 − V1.

It can easily be verified that, for our example, the result of nesting
m2 inside m1 is precisely the nested mapping n. We next explain
conditions (1) and (3) in Definition 3.2 (condition (2) is the more
obvious one). Assume that m2 and m1 are as in Definition 3.2. The
condition that A2 is a strict subtableau of A1 ensures that the for
clause in the submapping that appears in the result of nesting m2

inside m1 is non-empty.
Assume now that B2 is not a strict subtableau of B1 and it is equal

to B1 (the case when there are additional conditions in B2 does not
affect the discussion). Then, the submapping that appears in the result
of nesting of m2 inside m1 is a formula of the form: ∀(A2 −A1) →
(V2−V1) (i.e., the equalities on the right are implied by the left-hand
side). There is at least one correspondence v in V2−V1, and its source
element is not covered by A1 (otherwise it would be in V1). Hence,
in the right-hand side of the above implication, there is at least one
equality asserting that a target element covered by B1 is equal to a
source element covered by A2 − A1. The problem with this is that
there are many instances of such a source element for one instance
of the target element (since B1 is outside the scope of ∀(A2 − A1)).
This constraint would effectively require that all such instances of the
source element be equal (and equal to the one instance of the target
5Although our original algorithm did not include the elimination of
implied mappings, this step can remove many unnecessary formulas.
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Figure 8: (a) Reverse basic mappings; (b) Nestable relation

element). Such a constraint is unlikely to be desired (even when it
is satisfiable). Although condition (3) is a bit more subtle, a careful
analysis yields a similar justification.

We illustrate this discussion by considering the reverse of the map-
ping scenario shown in Figure 3. The schema on the right of that fig-
ure is now the source schema, while the schema on the left is the target
schema. The correspondences are the same. Also, the tableaux re-
main the same as in Figure 7, with the difference that B1, B2, B3, B4

are now source tableaux, and A1 and A2 are target tableaux.
There are four basic mappings (not implied and not subsumed) that

are generated by the algorithm described in Section 3.1. These map-
pings are shown in Figure 8(a). We have that m5 is nestable inside
m3 and m6 is nestable inside m4. However, m4 is not nestable in-
side m3 (because the target tableaux is the same). Similarly, m6 is
not nestable inside m5. If we try to nest m4 inside m3, we would
obtain the following nested mapping:

n34: for d in dept⇒
exists p′ in proj
where p′.dname=d.dname ∧

( for p in d.projects ⇒ p′.pname=p.pname )

This constraint says that if there are multiple projects in one dept
tuple (which is possible according to the source schema) then all these
projects are required to have the same pname value (which must also
equal the pname value in the corresponding target proj tuple). This
puts a constraint on the source data that is unlikely to be satisfied.
Our algorithm does not generate such mappings.

3.4 Nesting Algorithm
In the next step of the algorithm, we use the nestable relation of

Definitions 3.2 and 3.3 to create a set of nested mappings. The input
to this step is the set of basic mappings that result after Step 3.
Step 4. Generation of nested mappings In this step, the algorithm
first constructs a DAG G = (M, E) that represents all possible ways
in which basic mappings can be nested under other basic mappings.
Here, M is the set of basic mappings generated in Step 3, while E
contains edges mi → mj with the property that mi is nestable under
mj according to Definition 3.2. To create nested mappings out of
G, the root mappings of G are identified and a tree of mappings is
extracted from G for each root. Each such tree of mappings becomes
a separate nested mapping.

To understand the shape of G and the issues involved in its con-
struction, we examine the properties of the nestable relation of De-
finition 3.2. Given two basic mappings mi and mj , let us write
mi ⇒ mj if mi is nestable inside mj . We note that:

(1) The nestable relation is not reflexive and not symmetric. In fact,
stronger statements hold: (a) for all mi, mi )⇒ mi, and (b) if
mi ⇒ mj , then mj )⇒ mi. This follows from the strict sub-
tableaux requirement in condition (1) of Definition 3.2.

(2) The nestable relation is transitive: if mi ⇒ mj and mj ⇒ mk

then mi ⇒ mk. This again follows from condition (1) of Defini-
tion 3.2 and, further, from conditions (2) and (3).
Because of (1) and (2) above, G is necessarily acyclic. If there is a

path mi ! mj in G, then no path mj ! mi exists in G. Condition

(2) tells us that a naive algorithm for creating G might add too many
edges and hence form unnecessary nestings. Indeed, suppose that
mi ⇒ mj and mj ⇒ mk, which also implies that mi ⇒ mk.
Then mi can be nested under mj which can be nested under mk. At
the same time, mi can be nested directly under mk. However, we
prefer the former, deeper, nesting strategy because that interpretation
preserves all source data together with its structure.

To illustrate this point, consider the mapping in Figure 1. There,
we have that m3 ⇒ m2 ⇒ m1, and also m3 ⇒ m1. We prefer the
deepest nesting which results in a nested mapping with the follow-
ing pattern: first map dept tuples, then map the emps tuples under
the current dept tuple, and then map the dependents tuples of
the current emps tuple. The other interpretation, obtained by nesting
m3 directly inside m1, is not semantically equivalent to the first one.
Indeed, this second interpretation maps all dept tuples but then, for
each dept tuple, it maps the join of emps and dependents tuples
(thus, emps tuples with no dependents are not mapped). In order not
to lose data, we can “fix” this second interpretation by nesting both
m2 and m3 directly inside m1 (using the fact that m2 ⇒ m1 and
m3 ⇒ m1). This would have the effect of mapping all tuples of
emps. However, this choice still does not model any correlation be-
tween the two submappings m2 and m3. Hence, there is no merging
of employee tuples and no grouping of dependents within employees.
The first interpretation solves the issue by utilizing, intuitively, all the
available nesting.

To implement the above nesting strategy, which performs the “deep-
est” nesting possible, our algorithm for constructing G makes sure not
to include any transitively implied edges. More formally, the DAG
G = (M, E) of mappings is constructed so that its set of edges satis-
fies the following:

E = {(mi → mj) | mi ⇒ mj ∧ ( ) ∃mk)(mi ! mk∧mk ⇒ mj)}

The creation of G proceeds in two steps. First, for all pairs (mi, mj)
of mappings in M , we add an edge to G if mi ⇒ mj . Then, for every
edge mi → mj in E, we try finding a longer path mi ! mj . If such
a path exists, we remove mi → mj from E. This is implemented
using a variation of the all-pairs shortest-path algorithm (except that
we are looking for the longest path) and its complexity is O(|M |3).

The next step is to extract trees of mappings from G. Each such
tree becomes a nested mapping expression. These trees are computed
in two simple steps. First, all root mappings R in G are identified:
R = {mr | mr ∈ M ∧ ( ) ∃m′)(m′ ∈ M ∧ (mr → m′) ∈ E)}.
Then, for each mapping root mr ∈ R, we do a depth-first traversal of
G (following the reverse direction of the edges). Mappings collected
during this visit become part of the tree rooted at mr .

Constructing nested mappings from a tree of mappings raises sev-
eral issues. First, in Definition 3.3 we explained the meaning of nest-
ing two basic mappings, one under the other. But, in a tree, one map-
ping can have multiple children that each can be nested inside the
parent. And also, we must apply the definition recursively. We omit
the extensions to Definition 3.3 that are needed to define the result of
nesting a tree of mappings as they are straightforward.

The second, more important issue is that, since these trees are ex-
tracted from a DAG, it is possible that they share mappings. In other
words, a mapping can be nested under more than one mapping.

Consider, for example, a mapping scenario that involves three sets:
employees, worksOn, and projects. The worksOn set con-
tains references to employees and projects tuples, capturing an
N:M relationship. Assume that me is a basic mapping for emplo-
yees, mp is a basic mapping for projects, and mw is a basic
mapping that maps employees and projects by joining them via
worksOn. The resulting graph G of mappings contains two mapping
trees (i.e., two nested mappings), which both yield valid interpreta-
tions: T1 = {me ⇐ mw} and T2 = {mp ⇐ mw}. Both trees share



mw as a leaf. If we arbitrarily use only one tree and ignore the other,
then source data can be lost: the nested mapping based on T1 maps
all the employees; however, it only maps projects that are associated
with an employee via worksOn (the situation is reversed for T2).

However, the inclusion of the shared subtrees in all their “parent”
trees will create nested mappings that lead to redundancy in execu-
tion as well as in the generated data. To avoid this, we adopt a simple
strategy to keep a shared subtree only in one of the parent trees and
prune it from all the other. For our example, we can keep T1 intact
and cut the common subtree from T2, yielding T ′

2 = {mp}. In gen-
eral, however, the algorithm should not make a choice of which trees
to prune and which to keep intact. This is a semantic and application-
dependent decision. The various choices lead to inequivalent map-
pings that do not lose data but give preference to certain correlations
in the data (e.g., group projects by employees as opposed to grouping
employees by projects). Furthermore, there can be differences in the
performance of the subsequent execution of the data transformation.

Ideally, a human user could suggest which mapping to generate, if
exposed to all the possible choices of mappings with shared submap-
pings. We have implemented a strategy that selects one of the pruning
choices whenever there is such choice, but in future versions of our
prototype we will allow users to explore the space of such choices.

4. QUERY GENERATION
One of the main reasons for creating mappings is to be able to au-

tomatically create a query or program that transforms an instance of
the source schema into an instance of the target schema. In [24, 11]
we described how to generate queries from basic mapping specifica-
tions. Here we extend that work to cover nested mappings. Because
they start from the more expressive nested mapping specification, the
queries that we now generate often perform better, have more func-
tionality in terms of grouping and restructuring, and at the same time
are closer to the mapping specification (thus, easier to understand).

We first present in Section 4.1 a general query generation algorithm
that works for nested mappings with arbitrary Skolem functions for
the set elements (and hence for arbitrary regrouping and restructuring
of the source data). In Section 4.2 we present an optimization that
simplifies the query and can significantly improve performance in the
case of nested mappings with default Skolemization, which are the
mappings that we produce with our mapping generation algorithm.
In particular, this optimization greatly impacts the scenarios where
no complex restructuring of the source is needed (many schema evo-
lution scenarios follow this pattern).

4.1 Two-Phase Query
The general algorithm for query generation produces queries that

process source data in two phases. The first-phase query “shreds”
source data into flat (or relational) views of the target schema. The
definition of this query is based on the target schema and on the in-
formation encoded in the mappings. The second-phase query is a
wrapping query that is independent of the actual mappings and uses
the shape of the target schema to nest the data from the flat views in
the actual target format.
First-phase query We now describe the construction of the flat views
and of the first-phase query. For each target set type for which there is
some mapping that asserts some tuple for it, there will be a view, with
an associated schema and a query defining it. To illustrate, we will
use the earlier schemas of Figure 3 and the earlier nested mapping n.
The view schema for our example includes the following definitions:

dept(dname, budget, empsID, projectsID)
emps(setID, ename, salary, projects1ID)
projects1(setID, pid)
projects(setID, pid, pname)

As it can be seen, the view for each set type includes the atomic type
elements that are directly under the set type. Additionally, it also in-
cludes setID columns for each of the set types that are directly nested
under the given set type. Finally, for each set type that is not top-
level (dept is the only top-level set type in this example), there is
an additional column setID. The explanation for this column is the
following (we use emps to illustrate). While in the target schema
there is only one set type emps, in an actual instance there may be
many sets of employee tuples, nested under the various dept tuples.
However, the tuples of these nested sets will all be mapped into one
single table (emps). In order to remember the association between
employee tuples and the sets they belong to, we use the setID col-
umn to record the identity of the set for each employee tuple. This
column will then later be used to join with the empsID column un-
der the “parent” table dept, to construct the correct nesting.

We next describe the queries defining the views and how they are
generated. The algorithm starts by Skolemizing each nested mapping
and decoupling it into a set of single-headed constraints, each con-
sisting of one implication and one atom in the right-hand side of the
implication. For our example, the nested mapping n generates the
following four constraints (one for each target atom in n):

r1 : proj(d, p, E0) → dept(d, null, E[d, p, E0], P [d, p, E0])
r2 : proj(d, p, E0) → P [d, p, E0] (X[d, p, E0], p)
r3 : proj(d, p, E0) ∧ E0(e, s) → E[d, p, E0] (e, s, P ′[d, p, E0, e, s])
r4 : proj(d, p, E0) ∧ E0(e, s) → P ′[d, p, E0, e, s] (X[d, p, E0])

Skolemization replaces every existentially-quantified variable by a
Skolem function that depends on all the universally-quantified vari-
ables that appear before the existential variable (in the original map-
ping). For example, the atomic variable ?x (along with all of its
occurences) is replaced by X[d, p,E0], where X is a new Skolem
function name. 6 Atomic variables that do not play an important role
(e.g., not a key or a foreign key) can be replaced by null (see ?b
above). Finally, all existential set variables are replaced by Skolem
terms (if they are not already given by the mapping). Each of the
above constraints can be seen as an assertion of “facts” that relate tu-
ples and set ids. For example, r3 above asserts a fact relating the tuple
(e, s, P ′[d, p,E0, e, s]) and the set id E[d, p, E0].

Next, the queries defining the contents of the flat views have the
role of “storing” the facts asserted by the above constraints into the
corresponding flat views. For example, all the facts asserted by r3

will be stored into emps, where the setID column is used to store
the set ID (as explained earlier). The following is the set of query
definitions for our four views:

let dept :=  for p in proj
return [  dname = p.dname, 

budget = null,
empsID = E[p.dname, p.pname, p.emps],
projectsID = P[p.dname, p.pname, p.emps]]

emps := for p in proj,  e in p.emps
return [ setID = E[p.dname.p.pname,p.emps],

ename = e.ename, 
salary = e.salary,
projects1ID = P [p.dname, p.pname, p.emps,

e.ename, e.salary]]
projects1 := for p in proj,  e in p.emps

return [ setID = P [p.dname, p.pname, p.emps,
e.ename, e.salary]],

pid = X[p.dname, p.pname, p.emps]],
projects :=  for p in proj 

return [ setID = P[p.dname,p.pname,p.emps],
pid = X[p.dname, p.pname, p.emps]],
pname = p.pname]

We note that if multiple mappings contribute tuples to a target set
type, then each such mapping will contribute with a query expression
6We really mean here that E0 is the set id and not the contents. Thus,
the Skolem function does not depend on the actual values under E0.



and the corresponding view is defined by the union of all these query
expressions. In the case when the same Skolem function is used from
multiple mappings to define the same set instance (as discussed in
Section 2.3), then the union of queries defining the view will effec-
tively accumulate all the tuples of this set instance within the view
(moreover, all these tuples will have the same set id).
Second-phase query Finally, the previously defined views are used
within a query that combines and nests the data according to the shape
of the target schema. Notice that the nesting of data on the target
is controlled by the Skolem function values computed for the set id
columns in the views.

(q) dept = for d in dept
return [

dname = d.dname, 
budget = d.budget,
emps = for e in emps

where e.setID = d.empsID
return [

ename = e.ename, 
salary = e.salary,
projects = for p in projects1

where p.setID = e.projects1ID
return [ pid = p.pid ]],

projects = for p in projects
where p.setID = d.projectsID
return [ pid = p.pid,

pname = p.pname ] ]

4.2 Query Inlining for Default Skolemization
The two-phase algorithm is general in the sense that it can work

for arbitrary restructuring of the data. However, it does require the
data to be flattened before being re-nested in the target format. In
cases where the source and target schemas have similar nesting shape
and the grouping behavior given by the default Skolem functions is
sufficient, the two-phase strategy can be inefficient.

For example, the nested mapping n used in Section 4.1 falls in
this category of nested mappings with default Skolemization. Under
default Skolemization, all the set ids that are created (by the first-
phase query) depend on entire source tuples rather than individual
pieces of these tuples. To illustrate, the default Skolem function E for
emps depends on p.dname, p.pname and p.emps, which is equiv-
alent to say that E is a function of the source tuple p. Similarly,
the Skolem function P for projects under departments depends on p.
Also, the Skolem function P

′ for projects under employees depends
on p.dname, p.pname, p.emps and e.ename and e.salary, which
means that it is a function of the source tuples p and e. Under such
scenario, we inline the views defined by the first-phase query into the
places where they occur in the second-phase query. For our example
(while taking care of renaming conflicting variable names), we obtain
the following rewrite of q:

(q’) dept = for p in proj
return [

dname = p.dname, budget = null,
emps = for p’ in proj,  e in p’.emps

where E[p] = E[p’ ] 
return [

ename = e.ename, salary = e.salary,
projects = for p’’ in proj,  e’ in p’’.emps

where P [p’,e] = P [p’’,e’ ]
return [

pid = X[p’’.dname, p’’.pname, p’’.emps] ] ],
projects = for p’ in proj

where P[p] = P[p’ ]
return [ pid = X[p’.dname, p’.pname, p’.emps],

pname = p’.pname ] ]

Since the Skolem functions are one-to-one id generators, we can
now replace the equalities of the function terms with the equalities of
the arguments. Thus we can replace E[p] = E[p′] with p = p′. We

can also replace P
′[p′, e] = P

′[p′′, e′] with the conjunction of p′ =
p′′ and e = e′, and also P[p] = P[p′] with p = p′. Hence, we obtain
a rewriting where some of the inner loops are unnecessary. The boxes
in q′ above highlight the “redundant” parts. We can then rewrite q′

by removing the declaration of p′ and the self-join condition p = p′.
If we do this at all levels where setID equalities are used, then all
the highlighted parts of the query can be redacted. (In some cases,
the loops are completely replaced by singleton set expressions; this
happens for both projects sets in our example.) The final query is
shown below. It tightly follows the expressions (and optimizations)
encoded in the nested mapping n.

(q’’) dept = for p in proj
return [

dname = p.dname, budget = null,
emps = for e in p.emps

return [
ename = e.ename, salary = e.salary,
projects = { [ pid = X[p.dname, p.pname, p.emps] ] } ],

projects = { [
pid = X[p.dname, p.pname, p.emps],
pname = p.pname ] } ]

5. EXPERIMENTS
We conducted a number of experiments to understand the perfor-

mance of (a) the nested mapping queries described in Section 4 and
(b) the nested mapping creation algorithm of Section 3. Our nested
mapping prototype is implemented in Java, on top of Clio [11]. The
experiments were performed on a PC-compatible machine, with a sin-
gle 2.0GHz P4 CPU and 1GB RAM, running Windows XP (SP1) and
JRE 1.4.2. Each experiment was repeated three times, and the average
of the three trials is reported.

5.1 Query Evaluation
We first compare the performance of queries generated using nested

mappings with queries generated from basic mappings. We focus
on a schema evolution scenario where nested mappings with default
Skolemization suffice to express the desired transformation and inlin-
ing is applied to optimize the nested mapping query (as described in
Section 4.2). We created a nested schema authorDB, based on the
DBLP7 structure, but with four levels of nesting. The first level con-
tais an author set. Each author tuple has an attribute name and a
nested set of confJournal tuples. Each confJournal tuple has an at-
tribute name and a set of year tuples. Each year tuple contains a yr
attribute and a set of pub elements, each with five attributes: pubId,
title, pages, cdrom, url.

We ran the basic and nested mapping algorithms on four different
settings to create four pairs of mappings (one basic and one nested).
We used authorDB as the source and target schema and added dif-
ferent sets of correspondences to create the four different settings. In
the first, m1, we only mapped the top-level author set (this means
we used only one correspondence between the name attributes of au-
thor). In the second mapping, we mapped the first and the second
level of authorDB (i.e, author and confJournal). Since we mapped
levels 1 and 2, we will refer to this mapping as m12. We proceeded
in the same fashion adding correspondences for the third and fourth
levels authorDB, creating mappings m123 and m1234, respectively.

For each mapping, we created two XQuery scripts: one generated
using the basic mappings (using the original Clio query generation
algorithm [24, 11]), and another generated from the nested mappings
(as described in Sections 4.1 and 4.2). Figure 9 compares the gen-
erated queries for m12. To simplify the experiment, we considered
input instances where each author has at least one confJournal ele-
ment under it, and similarly, each confJournal contains at least one
7http://www.informatik.uni-trier.de/ ley/db/



let $doc0 := fn:doc("instance.xml") return
<authorDB>
{ for $x0 in $doc0/authorDB/author, 

$x1 in $x0/confJournal
return
<author>
<name> { $x0/name/text() } </name>
{ for $x0L1 in $doc0/authorDB/author, 

$x1L1 in $x0L1/confJournal
where $x0/name/text()=$x0L1/name/text()
return
<confJournal>
<name> { $x1L1/name/text() } </name>
</confJournal> } 

</author> } 
</authorDB>

let $doc0 := fn:doc("instance.xml") return
<authorDB>
{ for $x0 in $doc0/authorDB/author
return
<author>
<name> { $x0/name/text() } </name>
{ for $x1 in $x0/confJournal
return
<confJournal>
<name>{ $x1/name/text() }</name>

</confJournal> }
</author> }

</authorDB>

Figure 9: Basic (left) and nested (right) query for m12.
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Figure 10: Execution time (upper) and output file size factors.

year subelement and each year contains at least one pub subelement.
As a consequence, only one basic mapping is enough to map all the
source data. Otherwise we would have to consider additional basic
mappings (e.g., map author elements independently of the existence
of confJournal subelements). This would only make the basic map-
ping query become more complex and have worse performance. On
the other hand, even in the favorable case where one basic mapping is
enough, we show that the nested mapping query is still much better.

We ran the queries using the Saxon XQuery processor8 with in-
creasingly larger input files. Figure 10 shows that the nested mapping
queries consistently outperformed the basic mapping queries, both in
time and in the size of the output instance generated.9 The upper
part of Figure 10 plots the execution speed-up for the nested mapping
queries (i.e., the ratio of the execution time for the basic mapping
query over the execution time for the query generated with the nested
mapping). The lower chart shows the ratio of the output file size for
the basic mapping over the output file size for the nested mapping.
Both charts use a logarithmic scale in the y-axis.

A cursory inspection of the queries in Figure 9 reveals the reason
for the better execution time of the nested mapping queries. Our basic
mapping query generation strategy repeats the source tableau expres-
sion for each target set type. In the case of m12, the basic query in-

8saxon.sourceforge.net
9Larger output files for the same mapping indicate more duplicate
tuples in the result.
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Figure 11: The chain (left) and authority (right) scenarios.

terates over every source author and confJournal once to create target
author elements (variables x0 and x1 in the query). A second loop
is used to compute the nested confJournal elements (variables x0L1
and x1L1). Further, since we only want to nest the confJournal el-
ements for the current author tuple, the second loop is correlated to
the outer one (the where clause in the query). That is, this query
requires two passes over the input data plus a correlated nested sub-
query to correctly nest data. In contrast, the nested mapping query
only does one pass over the source author and confJournal data and
does not need any correlation condition since it takes advantage of
existing nesting of the source data.

The basic mapping query strategy can also create a large number
of duplicates in the output instance. To illustrate this problem, we
create a mapping m14 that maps the author and pub levels of the
schema. We ran the queries for m14 and m1234 using an input in-
stance that contains 4173 author elements and a total of 6468 pub
elements nested within those authors. The count of resulting author
and pub elements in the output instance is shown in this table:

Mapping B author B pub NM author NM pub
m14 6468 18826 4173 6468
m1234 6468 157254 4173 6468

The nested mapping queries do not create duplicates for any of the
two mappings and produce a copy of the input instance (which is the
expected output instance in all these mappings). The basic mapping
queries, on the other hand, create 2295 duplicate author elements. In-
tuitively, a duplicate is created whenever an author has more than one
publication. Each author duplicate then carries the same set of du-
plicate publications causing an explosion of duplicate pub elements.
The nested mapping query we automatically generate does not suffer
from this common problem.

5.2 Algorithm Evaluation
We now study the performance and scalability of the nested map-

ping creation algorithm. We designed two synthetic scenarios (de-
picted in Figure 11), chain and authority [27]. The chain scenario
simulates mappings between multiple inter-linked relational tables
and an XML target with large number of nesting levels. The authority
scenario simulates mappings between multiple relational tables refer-
encing a central table and a shallow XML target with a large branch-
ing factor (large number of child tables). For each scenario, we used
a schema generator to create schema definitions with variable degrees
of complexity (e.g., number of elements, referential constraints, num-
ber of nesting levels). In addition, we also replicated each generated
source schema a number of times in order to simulate the cases of
multiple data sources mapping into one target.

For the chain scenario we increased the number of different sources
(m) and the number of inter-linked relational tables (depth) ( 1 ≤
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m ≤ 20 and 1 ≤ depth ≤ 3). In the worst case, our prototype
took 0.2 seconds to compute the nested mapping. For the authority
scenario, we simultaneously increased the number of sources (m) and
the branching factor (n) (the number of child tables) such that m=n
for each trial. Figure 12 shows the results for authority. For schemas
of small to medium size (when m and n are less than 12), the nesting
algorithm (Step 4 described in Section 3.4) finishes in a few seconds
after the computation of the basic mappings (Steps 1, 2 and 3). But
the time degrades exponentially as the mapping complexity increases.
Note, however, that in the largest case we tried (m = n = 20), the
nesting algorithm (Step 4) took only about 20 seconds.

Finally, we evaluated the algorithm performance with a mapping
that uses the Mondial schema [17], a database of geographical data.
Mondial has a relational representation with 28 relations and a maxi-
mum branching factor of 9. Its XML Schema counterpart has a max-
imum depth of 5 and a maximum branching factor of 9. We mapped
from the relational into the XML representation and created 26 basic
mappings in 1.2 seconds. The nesting algorithm then extracted 10
nested mappings in 2.8 seconds.

6. CONCLUSION
We have introduced a new, structured mapping formalism called

nested mappings that provides a natural way to express correlations
between schema mappings. We demonstrated benefits of this for-
malism including increased specification accuracy, and the ability to
specify (and customize) grouping semantics declaratively. We pro-
vided an algorithm to generate nested mappings from standard schema
matchings. We showed how to compile these mappings into transfor-
mation queries that can be much more efficient than their counterparts
obtained from the earlier basic mappings. The new transformation
queries also generate much cleaner data. Certainly nested mappings
have important applications in schema evolution where the mapping
must be able to ensure that the grouping of much of the data is not
changed. Indeed our work here was largely inspired by the inability
of existing mapping formalisms to faithfully represent the “identity
mapping” for many schemas. We are currently evaluating the use
of nested mappings in other tasks including (virtual) data integration
over large schemas and large collections of schemas.
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APPENDIX
A. DEFINITION OF NESTED MAPPINGS

We can now give a precise definition of nested mapping in terms
of the query-like notation. An expression is defined by the grammar
e ::= S|x|e.l, where S is a schema root, x is a variable, l is a label,
and e.l is record projection. A nested mapping has the following form

M ::= for x1 in g1, . . . , xn in gn ⇒

where C1

exists y1 in g′
1

, . . . , yn in g′n
where (C2 ∧ M1 ∧ · · · ∧ Mn)

We say that M1, . . . , Mn are submappings of M . Each submap-
ping is itself a nested mapping. We will say that M is an ancestor of
M1, . . . , Mn and (recursively) of the submappings of M1, . . . , Mn.

Each xi in gi is a source generator. In a source generator, the
head of expression gi must be a source schema root; or it must be a
variable defined in a source generator of M (in which case it must be
some xj with j < i) or in a source generator of an ancestor of M .
Each yi in g′

i is a target generator. In a target generator, the head of
expression g′

i must be a target schema root; or it must be a variable
defined in a target generator of M (in which case it must be some yj

with j < i), or in a target generator of an ancestor of M .
A source expression is an expression over a variable defined in a

source generator of M or in a source generator of an ancestor of
M . A target expression is an expression over a variable defined in
a target generator of M or in a target generator of an ancestor of
M . The expression C1 consists of a conjunction of equalities be-
tween source expressions of atomic type. The expression C2 has
three kinds of equalities. First, it has target conditions: equalities
between target expressions of atomic type. Second, it has source-to-
target conditions: equalities between source and target expressions
of atomic type. Finally, it has grouping conditions: equalities of the
form e = F [e1, ..., em] where F is a Skolem function, e is a target
expression of set type, and e1, ..., em are source expressions.


