Exploiting Procedural Domain Control Knowledge in State-of-the-Art Planners
(extended version)

Jorge A. Baier

Christian Fritz

Sheila A. Mcllraith

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, CANADA
{jabaierfritz,sheild@cs.toronto.edu

Abstract

Domain control knowledge (DCK) has proven effective in
improving the efficiency of plan generation by reducing the
search space for a plarProcedural DCK is a compelling
type of DCK that supports a natural specification of the skele-
ton of a plan. Unfortunately, most state-of-the-art planners do
not have the machinery necessary to exploit procedural DCK.
To resolve this deficiency, we propose to compile procedural
DCK directly into PDDL2.1, thus enabling any PDDL2.1-
compatible planner to exploit it. The contribution of this pa-
per is threefold. First, we propose a PDDL-based seman-
tics for an Algol-like, procedural language that can be used
to specify DCK in planning. Second, we provide a polyno-
mial algorithm that translates an ADL planning instance and
a DCK program, into an equivalent, program-free PDDL2.1
instance whose plans are only those that adhere to the pro-
gram. Third, we argue that the resulting planning instance
is well-suited to being solved by domain-independent heuris-
tic planners. To this end, we propose three approaches to
computing domain-independent heuristics for our translated
instances, sometimes leveraging properties of our translation
to guide search. In our experiments on familiar PDDL plan-
ning benchmarks we show that the proposed compilation of
procedural DCK can significantly speed up the performance
of a heuristic search planner. Our translators are implemented
and available on the web.

Introduction

better search techniques. In this paper we explore ways in
which SOA planning techniques and existing SOA planners
can be used in conjunction with DCK, with particular focus
on proceduralDCK.

As a simple example of DCK, consider theucks do-
main of the 5th International Planning Competition, where
the goal is to deliver packages between certain locations us
ing a limited capacity truck. When a package reaches its
destination it must be delivered to the customer. We can
write simple and natural procedural DCK that significantly
improves the efficiency of plan generation for instanRe:
peat the following until all packages have been delivered:
Unload everything from the truck, and, if there is any pack-
age in the current location whose destination is the current
location, deliver it. After that, if any of the local package
have destinations elsewhere, load them on the truck while
there is space. Drive to the destination of any of the loaded
packages. If there are no packages loaded on the truck, but
there remain packages at locations other than their destina
tions, drive to one of these locations.

Procedural DCK (as used in HTN (Naat al. 1999) or
Golog (Levesquet al. 1997)) is action-centric. It is much
like a programming language, and often times like a plan
skeleton or template. It can (conditionally) constrain dine
der in which domain actions should appear in a plan. In or-
der to exploit it for planning, we require a procedural DCK
specification language. To this end, we propose a language

Domain control knowledge (DCK) imposes domain-specific based on @LoG that includes typical programming lan-
constraints on the definition of a valid plan. As such, it can guages constructs such as conditionals and iteration as wel
be used to impose restrictions on the course of action that as nondeterministic choice of actions in places where obntr
achieves the goal. While DCK sometimes reflects a user’s IS notgermane. We argue that these action-centric cottstruc
desire to achieve the goal a particular way, it is most often provide a natural language for specifying DCK for planning.
constructed to aid in plan generation by reducing the plan We contrast them with DCK specifications based on linear
search space. Moreover, if well-crafted, DCK can elimi- temporal logic (LTL) which are state-centric and though sti
nate those parts of the search space that necessitate backof tremendous value, arguably provide a less natural way to
tracking. In such cases, DCK together with blind search specify DCK. We specify the syntax for our language as well
can yield valid plans significantly faster than state-af-th ~ as a PDDL-based semantics following Fox & Long (2003).
art (SOA) planners that do not exploit DCK. Indeed most With a well-defined procedural DCK language in hand,
planners that exploit DCK, such as TLIN (Bacchus & we examine how to use SOA planning techniques together
Kabanza 1998) or TALPANNER (Kvarnstidbm & Doherty with DCK. Of course, most SOA planners are unable to
2000), do little more than blind depth-first search with eycl exploit DCK. As such, we present an algorithm that trans-
checking in a DCK-pruned search space. Since most DCK lates a PDDL2.1-specified ADL planning instance and as-
reduces the search space but still requires a planner te back sociated procedural DCK into an equivalent, program-free
track to find a valid plan, it should prove beneficial to exploi PDDL2.1 instance whose plans provably adhere to the DCK.

Any PDDL2.1-compliant planner can take such a planning
instance as input to their planner, generating a plan that ad
heres to the DCK.

Since they were not designed for this purpose, existing
SOA planners may not exploit techniques that optimally
leverage the DCK embedded in the planning instance. As
such, we investigate how SOA planning techniques, rather
than planners, can be used in conjunction with our compiled
DCK planning instances. In particular, we propose domain-

tifiers for the goal, andDbjs» and 7p are defined analo-
gously as for domains.

Semantics:Fox & Long (2003) have given a formal seman-
tics for PDDL 2.1. In particular, they define when a sen-
tence istrue in a state and whattate tracelis the result of
performing a set ofimed actions A state trace intuitively
corresponds to an execution trace, and the sets of timed ac-
tions are ultimately used to refer to plans. In the ADL sub-
set of PDDL2.1, since there are no concurrent or durative

independent search heuristics for planning with our newly- 4ctions, time does not play any role. Hence, state traces re-

generated planning instances. We examine three different qce to sequences of states and sets of timed actions reduce
approaches to generating heuristics, and evaluate them onyq sequences of actions.

three domains of the 5th International Planning Competi-
tion. Our results show that procedural DCK improves the
performance of SOA planners, and that our heuristics are
sometimes key to achieving good performance.

Background
A Subset of PDDL 2.1

A planning instancas a pair/ = (D, P), whereD is a
domain definition and is a problem. To simplify notation,
we assume thab and P are described in an ADL subset of
PDDL. The difference between this ADL subset and PDDL
2.1is that no concurrent or durative actions are allowed.
Following convention, domains are tuples of finite sets
(PF, Ops, Objspp, T, mp), wherePF defines domain predi-
cates and functions)ps defines operatorg)bjs , contains
domain objects]' is a set of types, antp, C Objsp x T'is
a type relation associating objects to types. An operator (0
action schema) is also a tupl®(7), t, Prec(%), Eff (%)),
where O(Z) is the unique operator name and =
T1,...,x,) iS a vector of variables. Furthermorg,=
t1,...,1,) is a vector of types. Each variable ranges
over objects associated with type Moreover, Prec(Z) is
a boolean formula with quantifiers (BQF) that specifies the
operator’s preconditions. BFQs are defined inductively as
follows. Atomic BFQs are either of the form = ¢, or
R(ty,...,tn), wheret; (: € {1,...,n})is aterm (i.e. ei-
ther a variable, a function literal, or an object), aRids a
predicate symbol. Ifp is a BFQ, then so i§)z-t ¢, for a
variablez, a type symbot, andQ € {3,V}. BFQs are also
formed by applying standard boolean operators over other
BFQs. FinallyEff (Z) is a list of conditional effects, each of
which can be in one of the following forms:

Vyi-ts - Vyn-tn. (7, 9) = R(Z,7), (€]
vyl'tl e vyn'trb SD(ZE, g) = _‘R(fv g)? (2)
Vyl_tl e Vyn_tn SD(ZE, 17) = f(fa g) = 0bj7 (3)

wherey is a BFQ whose only free variables are amang
andy, R is a predicatef is a function, andbj is an object
After performing a ground operator — action— O(¢) in a
certain state, for all tuples of objects that may instantiate
such thatp(¢,) holds ins, effect (1) (resp. (2)) expresses
that R(¢, y) becomes true (resp. false), and effect (3) ex-
presses thaf (¢, i) takes the valuebj. As usual, states are
represented as finite sets of atoms (ground formulae of the
form R(¢) or of the formf(¢) = obj).

Planning problems are tuplednit, Goal, Objsp, 7p),
wherelnit is the initial state(zoal is a sentence with quan-

Building on Fox and Long’s semantics, we assume that
E is defined such that = ¢ holds when sentence is
true in states. Moreover, for a planning instande we as-
sume there exists a relatidiucc such thatSucc(s, a, s') iff
s’ results from performing an executable actiom s. Fi-
nally, a sequence of actions - - - a,, is a plan for/ if there
exists a sequence of states- - - s, such thatsy, = Init,
Succ(si, aiv1, 8i41)fori € {0,...,n—1},ands, = Goal.

Domain-Independent Heuristics for Planning

In sections to follow, we investigate how procedural DCK
integrates into SOA domain-independent planners. Domain-
independent heuristics are key to the performance of these
planners. Among the best known heuristic-search planners
are those that compute their heuristic by solving a relaxed
STRIPS planning instance (e.g., as done in HSP (Bonet &
Geffner 2001) and FF (Hoffmann & Nebel 2001) planners).
Such a relaxation corresponds to solving the same planning
problem but on an instance that ignores deletes (i.e. ignore
negative effects of actions).

For example, the FF heuristics for a states computed
by expanding aelaxed planning grapliHoffmann & Nebel
2001) froms. We can view this graph as composedref
laxed statesA relaxed state at depth+ 1 is generated by
addingall the effects of actions that can be performed in the
relaxed state of depth, and then by copying all facts that
appear in layen. The graph is expanded until the goal or a
fixed point is reached. The heuristic value farorresponds
to the number of actions inralaxed plarfor the goal, which
can be extracted in polynomial time.

Both FF-like heuristics and HSP-like heuristics can be
computed for (more expressive) ADL planning problems.

A Language for Procedural Control

In contrast to state-centric languages, that often use LTL-
like logical formulae to specify properties of the states tr
versed during plan execution, procedural DCK specification
languages are predominantly action-centric, defining a pla
template or skeleton that dictatastionsto be used at vari-
ous stages of the plan.

Procedural control is specified vigogramsrather than
logical expressions. The specification language for these
programs incorporates desirable elements from imperative
programming languages such as iteration and conditional
constructs. However, to make the language more suitable to
planning applications, it also incorporates nondeterstimi

constructs. These elements are key to writing flexible con-
trol since they allow programs to contain missing or open
program segments, which are filled in by a planner at the
time of plan generation. Finally, our language also incor-
porates property testing, achieved through so-ca#stac-

tions These actions are not real actions, in the sense that

they do not change the state of the world, rather they can

be used to specify properties of the states traversed while

executing the plan. By using test actions, our programs
can also specify properties of executions similarly toestat
centric specification languages.

The rest of this section describes the syntax and semantics

of the procedural DCK specification language we propose to
use. We conclude this section by formally defining what it
means to plan under the control of such programs.

Syntax

The language we propose is based anLGG (Levesquest

al. 1997), a robot programming language developed by the
cognitive robotics community. In contrast tooGoG, our
language supports specification of types for program vari-
ables, but does not support procedures.

Programs are constructed using the implicit language for
actions and boolean formulae defined by a particular plan-
ning instancel. Additionally, a program may refer to vari-
ables drawn from a set of program variablés This set
V' will contain variables that are used for nondeterministic
choices of arguments. In what follows, we assuthele-
notes the set of operator names fréms, fully instantiated
with objects defined id or elements of/.

The set of programs over a planning instarficnd a set
of program variable¥” can be defined by induction. In what
follows, assume is a boolean formula with quantifiers on
the language of, possibly including terms in the set of pro-
gram variabled’. Atomic programs are as follows.

1. nil: Represents the empty program.

2. o: Is a single operator instance, where O.
3. any: A keyword denoting “any action”.

4. ¢7: A test action

If o1, 02 ando are programs, so are the following:

. (01;02): A sequence of programs.

if ¢ then oy else o2: A conditional sentence.

. while ¢ do o: A while-loop.

o*: A nondeterministic iteration.

. (o1]|o2): Nondeterministic choice between two programs.
m(x-t) o1 Nondeterministic choice of variable € V' of
typet € T

OUTAWNE

Before we formally define the semantics of the language,

we show some examples that give a sense of the language’s

expressiveness and semantics.

e while —clear(B) do m(b-block) putOnTable(b): while
B is not clear choose ariyof type block and put it on the
table.

e any™;loaded(A, Truck)?: Perform any sequence of ac-
tions until A is loaded inl'ruck. Plans under this control
are such thaloaded(A, Truck) holds in the final state.

e (load(C,P); fly(P,LA)|load(C,T);drive(T, LA)):
Either loadC on the planeP or on the truck?, and
perform the right action to move the vehicleia!.

Semantics

The problem of planning for an instané¢einder the control

of programo corresponds to finding a plan férthat is also

an execution of from the initial state. In the rest of this sec-
tion we define what those legal executions are. Intuitively,
we define a formal device to check whether a sequence of
actionsa corresponds to the execution of a programrhe
device we use is a nondeterministic finite state automaton
with e-transitions £-NFA).

For the sake of readability, we remind the reader that
NFAs are like standard nondeterministic automata except
that they can transition without reading any input symbol,
through the so-calleg-transitions.e-transitions are usually
defined over a state of the automaton and a special symbol
¢, denoting the empty symbol.

An ¢-NFA A, ; is defined for each program and each
planning instancé. Its alphabet is the set of operator names,
instantiated by objects df. Its states ar@rogram configu-
rations which have the forno, s|, whereo is a program
ands is a planning state. Intuitively, as it reads a word of ac-
tions, it keeps track, within its stafe, s], of the part of the
program that remains to be executedas well as the cur-
rent planning state after performing the actions it has read
already,s.

Formally, A, 1 = (@, A, J,q., F'), whereq is the set of
program configurations, the alphahétis a set of domain
actions, the transition function &: Q x (AU {e}) — 2¢,
qo = [o, Init], andF is the set of final states. The transition
function is defined as follows for atomic programs.

§([a, 5], @) = {[nil, s']} iff Succ(s,a,s’), st.a € A, 4)
§([any, s],a) = {[nil, s"} iff Succ(s,a,s’), st.a€ A, (5)
0([¢7, s],e) = {[nil, s]} iff s = o. (6)

Equations 4 and 5 dictate that actions in programs change
the state according to thgucc relation. Finally, Eq. 6 de-
fines transitions fop? wheng is a sentence (i.e., a formula
with no program variables). It expresses that a transitaon c
only be carried out if the plan state so far satisties

Now we define) for non-atomic programs. In the defini-
tions below, assume thate A U {c}, and that; ando, are
subprograms aof, where occurring elements in may have
been instantiated by any object in the planning instance

6([(o1;02), 5], a) = U {[(o1;02), 8]} if o1 # mil, 7
[01,8'1€8([o1,5],a)
5([(?’”1;0’2),8],&) :5([0’2,817(1), (8)

0([o1, 8], a)
5([02,5] a)

s, a),

if s = ¢,

O([if p then o else oy, s],a) = { i s b &

§5([(o1]o2), 5], a) =
§([while¢pdo oy, s {[mil, s]} if s £ ¢anda =e¢,

Jl,whlleqﬁdoal,s},a) if s = ¢,

(o1, 5],a) = 6([(01501),5],a) fase 9)

5([o1, 8],e) = 6([(o15071), s],&) U {[nil, s]}, (10) testt)

§([r(x-t) o1, 58],a) = U §([o1]a/0s8],a). (1) t(zb) Gr—() 4,:\0/0‘,:6)\@90
27 Yo

(o,t)eTpUTp
if

whereo |/, denotes the program resulting from replacing
any occurrence af in oy by o. For space reasons we only .
explain two of them. First, a transition on a sequence cor- while Sequente
responds to transitioning on its first component first (Eq. 7)
unless the first component is already the empty program, in
which case we transition on the second component (Eq. 8). ple program shown as finite state automatanintuitively,

On the other hand, a transition @f represents two alterna- the operators we generate in the compilation define the tran-
tives: executingr, at least once, or stopping the execution sitions of this automaton. Their preconditions and effects

noop

Figure 1: Automaton foivhile ¢ do (if 4 then a else b); c.

of o7, with the remaining programil (Eq. 9, 10). condition on and change the automaton’s state.

To end the definition o, ;,) corresponds precisely to The translation is defined inductively by a function
the program configurationg”’, s] whereo’ is eithernil or C(o,n,E) which takes as input a program, an inte-
a subprogram ot such that program variables may have gern, and a list of program variables with typds =
been replaced by objects i) ands is any possible plan- [e1-t1, ..., ex-tx], and outputs a tupléL, L', n’) with L a

ning state. Moreovet is assumed empty for elements of its list of domain-independent operator definitiors,a list of
domain not explicitly mentioned above. Finally, the set of domain-dependent operator definitions, aridanother in-

accepting states i8' = {[nil, s] | s is any state ovef}, i.e., teger. Intuitively, £ contains the program variables whose
those where no program remains in execution. We can now scope includes (sub-)prograsm Moreover,L’ contains re-
formally define an execution of a program. strictions on the applicability of operators definedinand
Definition 1 (Execution of a program)A sequence of ac- L contains additional control operators needed to enforce
tionsay - - - a, is an execution ofr in I if ay - - -a,, is ac- the search control defined in Integers: andn’ abstractly
cepted byA,. ;. denote the program state before and after execution of

: . We use two auxiliary functions”’noop(n, n2) produces
_The following remark illustrates how the automaton tran- an operator definition that allows a transition from state
sitions in order to accept executions of a program. to ny. Similarly Ctest(¢,n1,n2, E) defines the same tran-
Remark 1. Let o = (if pthenaelseb;c), and suppose sition, but conditioned o. They are defined ds:
that Init is the initial state of planning instande Assume
furthermore that, b, andc are always possible. Thef, ;
acceptsic if Init = .

Cnoop(ny, n2) = (noopni_na(), [], state= s, , [state= sp,])
Ctest(p,n1,nz2, E) = (test_ny_na(E), t, Prec(Z), Eff (£)) with

Proof. Suppose; +, ¢’ denotes thatd,, ; can transition (e-t, &) = mentions(¢, E), et = e1-t1,. .., em-tm,
from g to ¢’ by reading symbak. Then if Init |= ¢ observe Prec(i) = (state= sn, A ¢lei/xi]ity A
that [0, Init] -, [nil;c, s3] . [nil, s3], for some planning m
statess, andss. /\izlbouno(ei) — map(e;, 7)),
Now that we have defined those sequences of actions cor- Eff (%) = [state= sn,| - [bounde;), map(e;,)] .

responding to the execution of our program, we are ready to Functionmentions

define the notion of planning under procedural control. (¢, I7) retumns a vectoe-# of program

variables and types that occur ¢n and a vectotr of new

Definition 2 (Planning under procedural controlp se- variables of the same length. Bookkeeping predicates serve
guence of actio@ is aplan for instancel under the control the following purposesstatedenotes the state of the au-
of programg if @ is a plan in/ and is an execution ef in I. tomaton; bounde) expresses that the program variable
has been bound to an object of the domamaj(e, o) states
Compiling Control into the Action Theory that this object iso. Thus, the implicatiorbounde;) —

This section describes a translation function that, given a Mape;, z;) forces parametet; to take the value to which
programy in the DCK language defined above together with € iS bound, but has no effectdf is not bound. .
a PDDL2.1 domain specificatiaf, outputs a new PDDL2.1 Consider the inner box of Figure 1, depicting the compi-
domain specificatio,, and problem specificatioR,. The lation of the if statement. It is defined as:
two resulting specifications can then be combined with any C(if ¢then o, elseos,n, E) = (L1 - Lo - X, L’ - L}, n3)
problemP defined oveD, greating anew planning instance with (L1, L}, m) = C(o1,n+ 1, E),
tha_t embeds the control given byl._e. thatis such_ that on_Iy (La, Ly, n2) = C(oa,m1 + 1, E), ng = ns + 1,
action sequences that are executions afe possible. This
enables any PDDL2.1-compliant planner to exploit search X = [Ctest(¢,n,n + 1, B), Ctest(=¢,n,m +1, E),
control specified by any program. Cnoop(ny,n3), CNoop(na, ns) |

To account for the state 01_‘ execution of progrmnd and in the example we have= ¢, n = 2,n, = 4,15 =
to describe legal transitions in that program, we introduce g nz = 7,01 = a, andoy = b.
a few bookkeeping predicates and a few additional actions. __~ '~ '
Figure 1 graphically illustrates the translation of an exam "We useA - B to denote the concatenation of listsand B.

The inductive definitions for other programsare:
C’(nil,n, E) = (Hv H,TL)
C(O(7),n, E) = ([], (O(@), T, Prec'(Z), Bf'(2))],n +
(O(&),, Prec(@), Eff () € Ops,
Prec' (%) = (state= s, A

/\ boundr;) — map(r;, z;) A

istr;elR

1) with

=
=71,y Tm,

/\ Zq :Ti)7

istr;¢E
Eff' (%) = [state= s,, = state= s,,41] -
[state= s,, = boundr;) A map(rs, zi)]i st.r;cE

C(¢?,n,E) = ([Ctest(p,n,n+1,E)], [], n+1)
C((Gno’z),ﬂ,E) = (Ll - Lo, Lll . L/Q, TLQ) with
(Ll,Lll,nl):C(O'1,7’L,E),(L2,L/2,n2) :C(Gg,n1,E)
C((Uﬂdz),n,E) = (Ll - Lo - X, L,l . L,Q,nQ —+ 1) with
(Ll,L/l,nl):C(al,n+1,E),
(LQ,L/Q,TLQ) :C(Ug,n1+1,E),

X = [Cnoop(n,n + 1), Cnoof(n,n; + 1),
Cnoop(ny, nz + 1), Cnoop(nz,nz + 1) |
C(whilegpdoo,n, E) = (L - X, L' ,n1 + 1) with
(L,L',n1) = C(o,n+1,E), X = [Ctest(p,n,n+ 1, E),
Ctest(—=¢,n,n1 + 1, E),Cnoop(ni, n)]
C(c*,n,E) = (L - [Cnoop(n, nz2), Cnoop(ni, n)], L', na)

with (L,L'7n1) =C(o,n,E),n2 =n1 +1
C(n(z-t,0),n, B) = (L- X, L', n1 + 1) with
(L,L',n1) = C(o,n, E - [x-1]),

X = [(free-ni(x),t, state= s,

[state= sn,+1, “boundz), Vy.—mapz,y)]) |

The atomic programny is handled by macro expansion to
above defined constructs.

As mentioned above, given program the return value
(L, L', ninat) 0of C(0, 0, []) is such that contains new oper-
ators for encoding transitions in the automaton, wheiéas
contains restrictions on the applicability of the originpkr-
ators of the domain. Now we are ready to integrate these new
operators and restrictions with the original domain specifi
cation D to produce the new domain specificatiby.

D, contains a constrained version of the operatofs)
of the original domainD also mentioned in’. Let
[(O(Z),t, Prec;(%), Eff ;(Z))]’-, be the sublist ofl’ that
contains additional conditions for operato(z). The op-
erator replacing (%) in D, is defined as:

YA \/ Prec Z)uU U:;lEﬂl(f»

Additionally, D, contains all operator definitions in Ob-
jects inD, are the same as thoselin plus a few new ones
to represent the program variables and the automatonésstat
$; (0 < i < nfinay). Finally D, inherits all predicates i
plusboundz), mapx,y), and functionstate.

The translation, up to this point, is problem-independent;
the problem specificatio®, is defined as follows. Given
any predefined probler® over D, P, is like P except that
its initial state contains conditiostate = s,, and its goal
containsstate = s,,,,. Those conditions ensure that the
program must be executed to completion.

(0'(2), t, Prec(Z

As is shown below, planning in the generated instance
1, (D, P,) is equivalent to planning for the original
instancel = (D, P) under the control of program, ex-
cept that plans or,, contain actions that were not part of
the original domain definitiontést noop andfree).

Theorem 1 (Correctness) Let Filter(a, D) denote the se-
guence that remains when removing franany action not
defined inD. If @ is a plan for instancé, = (D,, P,) then
Filter(a, D) is a plan forl = (D, P) under the control of.
Conversely, ifd is a plan forl under the control of, there
exists a plar’ for I,,, such that = Filter(a’, D).

Proof. See the appendix.

Now we turn our attention to analyzing the succinctness
of the output planning instance relative to the original in-
stance and control program. Assume we define the size of a
program as the number of programming constructs and ac-
tions it contains. Then we obtain the following result.

Theorem 2(Succinctness)If ¢ is a program of sizen, and
k is the maximal nesting depth af(x-t) statements i,
then|I,| (the overall size of,,) is O(km).

Proof. See the appendix.

The encoding of programs in PDDL2.1 is, hence, in worst
caseO(k) times bigger than the program itself. It is also
easy to show that the translation is done in time linear in the
size of the program, since, by definition, every occurrence
of a program construct is only dealt with once.

Exploiting DCK in SOA Heuristic Planners

Our objective in translating procedural DCK to PDDL2.1
was to enableany PDDL2.1-compliant SOA planner to
seamlessly exploit our DCK. In this section, we investigate
ways to best leverage our translated domains using domain-
independent heuristic search planners.

There are several compelling reasons for wanting to ap-
ply domain-independent heuristic search to these problems
Procedural DCK can take many forms. Often, it will pro-
vide explicit actions for some parts of a sequential plam, bu
not for others. In such cases, it will contain unconstrained
fragments (i.e., fragments with nondeterministic choicks
actions) where the designer expects the planner to figure
out the best choice of actions to realize a sub-task. In
the absence of domain-specific guidance for these uncon-
strained fragments, it is natural to consider using a domain
independent heuristic to guide the search.

In many domains it is very hard to write deterministic
procedural DCK, i.e. DCK that restricts the search space
in such a way that solutions can be obtained very effi-
ciently, even using blind search. An example of such a
domain is one where plans involve solving an optimization
sub-problem. In such cases, procedural DCK will contain
open parts (fragments of nondeterministc choice within the
DCK), where the designer expects the planner to figure out
the best way of completing a sub-task. However, in the ab-
sence of domain-specific guidance for these open parts, it is
natural to consider using a domain-independent heuristic t
guide the search.

test@ot ¢)

i C
e @—/W»J\/\» test(fp > 5)

In other cases, it is the choice of action arguments, rather
than the choice of actions that must be optimized. In partic-
ular, fragments of DCK may collectively impose global con-
straints on action argument choices that need to be enforced
by the planner. As such, the planner needs t@aware of
the procedural control in order to avoid backtracking. By
way of illustration, consider a travel planning domain com-
prising two tasks “buy air ticket” followed by “book hotel”.
Each DCK fragment restricts the actions that can be used,
but leaves the choice of arguments to the planner. Further
suppose that budget is limited. We would like our plannerto usual way, and its length is reported as the heuristic value.

test(fp <5)

Figure 2:H-opstranslation ofwhile loops. While comput-

ing the heuristics, pseudo-fluefit is increased each time
no new effect is added into the relaxed state, and it is set
to O otherwise. The loop can be exited if the last five (7-2)
actions performed didn’t add any new effect.

realize that actions used to complete the first part showkl sa
enough money to complete the second task. The ability to

do such lookahead can be achieved via domain-independent

heuristic search.
In the rest of the section we propose three ways in which

one can leverage our translated domains using a domain-

independent heuristic planner. These three techniquies dif
predominantly in the operands they consider in computing
heuristics.

Direct Use of Translation (Simple) As the name suggests,
a simple way to provide heuristic guidance while enforcing

program awareness is to use our translated domain directly

with a domain-independent heuristic planner. In shorte tak
the original domain instancé and controlo, and use the
resulting instancé, with any heuristic planner.
Unfortunately, when exploiting a relaxed graph to com-
pute heuristics, two issues arise. First, since both the
map and bound predicates are relaxed, whatever value
is already assigned to a variable, will remain assigned
to that variable. This can cause a problem with it-

. def
erative control. For example, assume program =

while ¢ do 7 (c-crate) unload(c,T), is intended for a do-

In the computation of the length, auxiliary actions such as
tests and noops are ignored.

The un-relaxing ofstate, bound andmap addresses the
problem of reflecting the reduced branching factor pro-
vided by the control program while computing the heuris-
tics. However, it introduces other problems. Returnindpeo t
o, program defined above, singéate is now un-relaxed,
the relaxed graph expansion cannot escape from the loop,
because under the relaxed planning semantics, as soon as
¢ is true, it remains true forever. A similar issue occurs
with the nondeterministic iteration. Furthermore, we want
to avoid state duplication, i.e. havirgute equal to two dif-
ferent values at the same time in the same relaxed state. This
could happen for example while reaching #nconstruct
whose condition is both true and false at the same time (this
can happen becaug@ndnot-p can both be true in a relaxed
state).

This issue is addressed by th&)ps operators. To avoid
staying in the loop forever, the loop will be exited when ac-
tions in it are no longer adding effects. Figure 2 provides a
graphical representation. An important detail to note & th
the loop is not entered whefis not found true in the re-
laxed state. (The expressiant ¢ should be understood as

main where crates can be only unloaded sequentially from a negation as failure.) Moreover, the pseudo-flugntis an
truck. While expanding the relaxed plan, as soon as variable jnemal variable of the planner that acts as a real fluent for

c is bound to some value, actiamload can only take that

the HOps. A similar approach is adopted for nodeterminis-

value as argument. This leads the heuristic to regard most - jterations. whose description we omit here.

instances as unsolvable, returning misleading estimates.
The second issue is one of efficiency. Since flugnte

Since loops are guaranteed to be exited, the computation
of H-opsis guaranteed to finish because at some relaxed

is also relaxed, the benefits of the reduced branching factor giate the final state of the automaton will be reached. At this

induced by the programs is lost. This could slow down the
computation of the heuristic significantly.

Modified Program Structure (H-ops) TheH-opsapproach
addresses the two issues potentially affecting the computa
tion of the Simpleheuristic. It is designed to be used with
planners that employ relaxed planning graphs for heuris-
tic computation. The input to the planner in this case is a
pair (I,, HOps), wherel, = (D,, P,) is the translated in-
stance, and{Ops is an additional set of planning operators.
The planner uses the operatorsiify to generate succes-
sor states while searching. However, when computing the
heuristic for a state it uses the operators iHOps.
Additionally, function state and predicatesdound and
maparenot relaxed. This means that when computing the
relaxed graph we actually delete their instances from the re
laxed states. As usuatieletesare processed befoaads
The expansion of the graph is stopped if the goal or a fixed
point is reached. Finally, a relaxed plan is extracted in the

point, if the goal is not true, no operators will be possible
and a fixed point will be produced immediately.

Forif 's, if the condition is both true and false at the same
time, thethen partis processed first, followed by tlgse
part. The objective of this is avoidance of state duplicatio
However, this new interpretation of th# introduces a new
problem. This problem occurs when, while performing the
actions of one of the parts, no action is possible anymore.
Intuitively, this could happen because the heuristics has ¢
sen the wrong subprogram to execute actions from. Indeed,
if there exists an execution of the program from stathat
executes the “then” part of th€, it can happen that, during
the computation of the heuristic fer the “else” part forces
some actions to occur that are not possible. Under normal
circumstances, the non existence of any possible actien pro
duces a fixed point. Because the goal is not reached on such
a fixed point, the heuristic regards the goal as unreachable,
which could be a wrong estimation.

g1

testesc(¢) @J\/\, exitif
—
test(not ¢ noop
,/\/\»@
02
escape.e

Figure 3: H-ops translation forif -then-else. Action
testesc(¢) is possible if condition is true. If condition
—¢ is also true in the relaxed state, thestesc(¢) dds a fact
escape_active that will enable the execution @ontinue
and escape_t and escape_e. Actions escape_t and
escape_e are possible only when no other actions are pos-
sible. This is checked using the pseudo-fluéntdescribed
in Figure 2. Actionexitif is only possible ilescape_active

is true. Both thenoop and theescape_e actions delete the
factescape_active. Nestedif constructs are handled using
a parameterized version of thecape_active predicate.

To solve this problemH Ops considers new “escape” ac-
tions, that are executable only when no more actions are pos-
sible. Escapes can be performed only inside “then” or “else”
bodies. After executing an escape, the simulation of the pro
gram’s execution jumps to the else part if the escape occurs
in the “then” part, or to the end of thé€, if the escape occurs
in the then part. Figure shows a graphical representation of
the HOps generated for théf .

A Program-Unaware Approach (Basic) Our program-
unaware approactBésig completely ignores the program
when computing heuristics. Here, the input to the planner
is a pair(I,, Ops), wherel,, is the translated instance, and
Ops are theoriginal domain operators. Théps operators
are used exclusively to compute the heuristic. Hefl3ze,
sic's output is not at all influenced by the control program.

Although Basic is program unaware, it can sometimes
provide good estimates, as we see in the following section.
This is especially true when the DCK characterizes a solu-
tion that would be naturally found by the planner if no con-
trol were used. It is also relatively fast to compute.

Implementation and Experiments

Our implementatiohtakes a PDDL planning instance and
a DCK program and generates a new PDDL planning in-
stance. It will also generate appropriate output forBasic
andH-opsheuristics, which require a different set of oper-
ators. Thus, the resulting PDDL instance may contain def-
initions for operators that are used only for heuristic com-
putation using the h- act i on keyword, whose syntax is
analogous to the PDDL keywordact i on.

Our planner is a modified version of TLRN, which
does a best-first search using an FF-style heuristic. It-is ca
pable of reading the PDDL with extended operators.

We performed our experiments on tinecks storageand
rovers domains (30 instances each). We wrote DCK for
these domains. For lack of space, we do not show the DCK
in detail, however for trucks we used the control shown as

2pAvailable atvwwy. ¢s. t or ont 0. edu/ kr/ syst ens

original Simple Basic H-ops blind
#n 1 0.31 0.41 0.26 19.85
L #s 9 9 15 14 3
S Lmin 1 1 1 1 1
F Lavg 11 1.03 1.02 1.04 1.04
max 1.2 1.2 1.07 1.2 1.07
» 1 0.74 1.06 1.06 1.62
5 #s 10 19 28 22 30
3 min 1 1 1 1 1
X layg 2.13 1.03 1.05 121 1.53
Lrmax 4.59 1.2 1.3 1.7 2.14
o #n 1 12 113 0.76 1.45
2 #s 18 18 20 21 20
B [min 1 1 1 l 1
n Lavg 4.4 1.05 1.01 1.07 1.62
max 2111 1.29 1.16 1.48 211

Table 1: Comparison between different approaches to planning
(with DCK). #n is the average factor of expanded nodes to the
number of nodes expanded byiginal (i.e., #n=0.26 means the
approach expanded 0.26 times the number of nodes expanded by
original). #s is the number of problems solved by each approach.
Lavg denotes the average ratio of the plan length to the shortest plan
found by any of the approaches (i.é.g=1.50 means that on av-
erage, on each instance, plans where 50% longer than the shortest
plan found for that instancemin and/max are defined analogously.

an example in the Introduction. We ran our three heuris-
tic approachesBasic H-ops and Simplg and cycle-free,
depth-first search on the translated instariimg). Addi-
tionally, we ran the original instance of the program (DCK-
free) using the domain-independent heuristics provided by
the planner driginal). Table 1 shows various statistics on
the performance of the approaches. Furthermore, Fig. 4
shows times for the different heuristic approaches.

Not surprisingly, our data confirms that DCK helps to
improve the performance of the planner, solving more in-
stances across all domains. In some domains (i.e. storage
and rovers) blind depth-first cycle-free search is sufficien
for solving most of the instances. However, quality of so-
lutions (plan length) is poor compared to the heuristic ap-
proaches. In trucks, DCK is only effective in conjunction
with heuristics; blind search can solve very few instances.

We observe that-opsis the most informative (expands
fewer nodes). This fact does not pay off in time in the ex-
periments shown in the table. Nevertheless, it is easy te con
struct instances where tieopsperforms better thaBasic
This happens when the DCK control restricts the space of
valid plans (i.e., prunes out valid plans). We have experi-
mented with various instances of the storage domain, where
we restrict the plan to use only one hoist. In some of these
casedH-opsoutperformsBasicby orders of magnitude.

Summary and Related Work

DCK can be used to constrain the set of valid plans and
has proven an effective tool in reducing the time required
to generate a plan. Nevertheless, many of the planners that
exploit it use arguably less natural state-centric DCK spec
ification languages, and their planners use blind search. In
this paper we examined the problem of exploiting procedu-
ral DCK with SOA planners. Our goal was to specify rich
DCK naturally in the form of a program template and to

T T T T T = O X
1000 | Pox 7 . 1000 [* 1000 .~ B
oK % X « X
g8 {x X “ s
n} 2N * Xy
= i a 100 F 100
“a
A o ¥
2 = %] x ¥ * 2 10+ § 2 10+
= 3 %A - = . P = P
S AR original —— 2 original —— 2 original ——
: * 2 o
g)| X e X X g 2
Basic_- Sl Basic 1t Basic ¢
X+ X
X H-ops % H-ops % H-ops %
Simple & 0.1 Simple & 0.1¢ Simple &
blind blind blind
10 15 20 25 30 0'010 = 5 10 15 20 25 30 0'010 5 15 20 25
problem problem problem
(@rovers (b) st or age (c) trucks

Figure 4:Running times of the three heuristics and the original instance; logarithmilie; san on an Intel Xeon, 3.6GHz, 2GB RAM

exploit SOA planning techniques to actively plan towards A focus of our work was to exploit SOA planners and
the achievement of this DCK. To this end we made three planning techniques with our procedural DCK. In contrast,
contributions: provision of a procedural DCK language syn- well-known DCK-enabled planners such as TlaR and

tax and semantics; a polynomial-time algorithm to compile TALPLANNER use DCK to prune the search space at each
DCK and a planning instance into a PDDL2.1 planning in- step of the plan and then employ blind depth-first cycle-free
stance that could be input to any PDDL2.1-compliant plan- search to try to reach the goal. Unfortunately, pruning is
ner; and finally a set of techniques for exploiting domain- only possible for maintenance-style DCK and there is no
independent heuristic search with our translated DCK plan- way to plan towards achieving other types of DCK as there
ning instances. Each contribution is of value in and offtsel is with the heuristic search techniques proposed here.

The language can be used without the compilation, and the Similarly, GoLoG interpreters, while exploiting procedu-
compiled PDDL2.1 instance can be input to any PDDL2.1- gl DCK, have traditionally employed blind search to in-
compliant SOA planner, not just the domain-independent stantiate nondeterministic fragments of @ ®G program.
heuristic search planner that we propose. Our experiments Most recently, ClaReet al. (2007) have proposed to inte-
show that procedural DCK improves the performance of grate an incremental @.0G interpreter with a SOA plan-
SOA planners, and that our heuristics are sometimes key to ner. Their motivation is similar to ours, but there is a sub-
achieving good performance. tle difference: they are interested in combiniagent pro-

Much of the previous work on DCK in planning has ex- grammin_g and efficient planning. The integr_ation works
ploited state-centric specification languages. In padicu Py @llowing a ®LoG program to make explicit calls to a
TLPLAN (Bacchus & Kabanza 1998) and TALRNNER SOA planner to achieve particular conditions identified by
(Kvarnstom & Doherty 2000) employ declarative, state- the user. The actL_JaI planning, hc_Jwever, is not controlled in
centric, temporal languages based on LTL to specify DCK. any way. Also, since the GLOG interpreter executes the
Such languages define necessary properties of states overeturned plan immediately without further lookahead, back

fragments of a valid plan. We argue that they could be less tracking does not extend over the boundary betweend
natural than our procedural specification language. and the planner. As such, each fragment of nondeterminism

) o within a program is treated independently, so that actions
Though not described as DCK specification languages selected locally are not informed by the constraints ofrlate
there are a number of languages from the agent program- fragments as they are with the approach that we propose.
ming and/or model-based programming communities that Thejr work, which focuses on the semantics of ADL in the

are related to procedural control. Among these axGE:, situation calculus, is hence orthogonal to ours.
a goal language designed t0 also express intentionality (da a1y there is related work that compiles DCK into stan-

Lago, Pistore, & Traverso 2002). Moreovero@Gis a garq planning domains. Baier & Mcllraith (2006), Cress-
procedural Ie_u_ﬂguage p_roposed as an alternative lo plannlngwe" & Coddington (2004), Edelkamp (2006), and Rinta-
by t'he cognitive robotics community. It essentially con- nen (2000), propose to compile different versions of LTL-
strains the possible space of actions that could be perfbrme based DCK’ into PDDL/ADL planning domains. The main
by the programmed agent allowing non-determinism. Our drawback of these approaches is that translating full LTL

ECE Ianlguage can beh wev:gd SS at'ver’?/llog ?fDBL@G.d P into ADL/PDDL is worst-case exponential in the size of the
urther, languages such as the eactive Model-based Fr0-qqqtrq| formula whereas our compilation produces an addi-

gramming Language (RMPL) (Kim, WiIIiams_, & Abram- tion to the original PDDL instance that is linear in the size
son 2001) —a procedural language that combines ideas from ¢ yho pcK program. Somet al. (2006) further show how
constraint-based modeling with reactive programming con- HTN, LTL, and GoLoG-like DCK can be encoded into plan-
Etruﬁtgaslslzo. si?larzgxpreislv?_lpovle'\rl atnd gko?_ﬁ\&”th proce—ning instances that can be solved using answer set solvers.
_f_urat_ o inaily, |er;511rc I(t:f? as g 'WOSrH(OP)zﬁlec' Nevertheless, they do not provide translations that can-be i
thication languages such as those used in @t tegrated with PDDL-compliant SOA planners, nor do they

1999) provide domain-dependent hierarchical task decom- - : :
positions together with partial order constraints, notlgas propose any heuristic approaches to planning with them.

describable in our language. Acknowledgments We are grateful to Yves Le&pance

and the ICAPS anonymous reviewers for their feedback.

Son, T. C.; Baral, C.; Nam, T. H.; and Mcllraith,

This research was funded by Natural Sciences and Engineer- S. A. 2006. Domain-dependent knowledge in answer

ing Research Council of Canada (NSERC) and the Ontario
Ministry of Research and Innovation (MRI).

References

Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goalsAnnals of Mathematics and Atrtificial
Intelligence22(1-2):5-27.

Baier, J. A., and Mcllraith, S. A. 2006. Planning with first-
order temporally extended goals using heuristic search. In
Proc. of the 21st National Conference on Artificial Intelli-
gence (AAAI-06)788-795.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search Artificial Intelligence129(1-2):5-33.

ClaRen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007.
Towards an integration of Golog and planning. Rroc.

of the 20th Int’l Joint Conference on Artificial Intelligeac
(IJCAI-07), 1846-1851.

Cresswell, S., and Coddington, A. M. 2004. Compilation
of LTL goal formulas into PDDL. InProc. of the 16th
European Conference on Artificial Intelligence (ECAI-04)
985-986.

dal Lago, U.; Pistore, M.; and Traverso, P. 2002. Planning
with a language for extended goals.Rroc. of AAAI/IAA]
447-454,

Edelkamp, S. 2006. On the compilation of plan con-
straints and preferences. Rroc. of the 16th Int'l Confer-
ence on Automated Planning and Scheduling (ICAP$-06)
374-377.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domaidsurnal
of Artificial Intelligence Research0:61-124.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic seafobirnal
of Artificial Intelligence Research4:253—-302.

Kim, P.; Williams, B. C.; and Abramson, M. 2001. Execut-
ing reactive, model-based programs through graph-based
temporal planning. IfProc. of the 17th Int’l Joint Confer-
ence on Artificial Intelligence (IJCAI-01%87-493.

Kvarnstbm, J., and Doherty, P. 2000. TALPlanner: A
temporal logic based forward chaining plannénnals of
Mathematics and Artificial Intelligencg0(1-4):119-169.

Levesque, H.; Reiter, R.; Lesmnce, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domainsJournal of Logic Program-
ming31(1-3):59-83.

Nau, D. S.; Cao, Y.; Lotem, A.; and Nioz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. Aroc. of
the 16th Int’l Joint Conference on Artificial Intelligence
(IICAI-99), 968-975.

Rintanen, J. 2000. Incorporation of temporal logic control
into plan operators. In Horn, W., ed?roc. of the 14th
European Conference on Artificial Intelligence (ECAI-00)
526-530. Berlin, Germany: 10S Press.

set planning.ACM Transactions on Computational Logic
7(4):613-657.

Proofs

We here provide the proofs of the two theorems, that is, we
prove the correctness (sound and completeness) of our trans
lations, and we prove the succinctness of the resulting PDDL
planning instance.

Correctness (Theorem 1)

We divide our proof into two parts: a soundness and a
completeness result. Throughout the proof, we denote by
1, the planning instance that results by first invok-
ing C(o,n,[]) and then following the remaining steps of
the compilation, if such a call t¢' returns(L, L', n’) for
someL and someL’. Moreover,I, ,, ,,'s initial state re-
quiresstate = s, in the initial state, and the goal requires
state= s,,-. Note that/,, as it is defined in the compilation
section, corresponds Q¢ r. -

We start by proving a few intermediate results.

Lemma 1. Let o be a program, lef be a planning in-
stance with initial state/nit, and let I, , ,, be the in-
stance generated by the compilation with the usual op-
erator listsL and L. Assumeo; is a subprogram of
o, such thatC(o1,n1, E1) was invoked during the top-
level compilation, returnindL, L}, n}). Finally, leta =
apay - - - ap be aplan for, ,, .- If a; is an action such that
Succ(Init,ag---aj,s") ands’ |= state = sy, for somes’
and some: such thaty; < k < nf, thenq; is an instance of
an operator in_; - L.

Proof. Assume that:; is an instance of an operatorin L'

but notinZ; - L}. Since all operators that where generated
by C while compiling a subprogram ef are also in_; - L},
there must be another subprogramrofays”, that is not a
subprogram oé’ such that the compilation ef” generated
an operator not iri,; - L) that is possible whestate = s;,.
The recursive definition of thé€' operator does not admit
this. If ¢/ ando” are two non-overlapping subprograms, the
new preconditions that restrict tkéute variable are defined

in such a way that they can never overlap for the same value
of state. |

The following lemma intuitively states that a plan for a
program contains sub-plans for all executed sub-programs.

Lemma 2. Let o be a program with no program variables.
Let I be a planning instance with initial stale.it, and let
I, n be the instance generated by the compilation. As-
sumeo; is a subprogram of, such thatC(oy,ny, []) was
invoked during the compilation ef, returning(Ly, L}, n}).
Furthermore, leti = aga, - - - a,, be a plan forl, , ,» such
that, when executed ifnit, generates the sequence of states
5152 - - sp. Finally, assume there exist two integersnd,
such0 < ¢ < j < p and such that; = state = s,,,
sj [state = s, and for allr such thati < r < j,
sy | state = s, with ny < u < nj.

Then, for any planning instandé, which is just likel ex-
cept that the initial is; and the goal is empty, we have that

@ = aa;41---a; is a plan forI(’f1 I which is the in-
stance that results from compiling by callingC (o1, n1, [])
onl'.

Proof. By Lemma 1, actions im;a;41 - - - a; are instances
of operators inl, , n,- Moreover, since the initial state

of I’, , 1S s, the sequence’ is also executable on

o’ sy nl
! /
15y my> @S while executing’’ on I’, , the planning

o’ ni, ny
states traversed are identical to those states traverséel wh
performing the subsequenaéof a in I, ,,-. Finally, af-
ter performing&” we reach a state whesgate = s,,,, and
henced’ is a plan forl’, O

o’ Nl ’ﬂl

We are now ready to prove the soundness part of the the-
orem.

Proof of Theorem 1:
= (Soundness):
Given a plana for instancel, = (D,,P,), show that
Filter(a, D) is a plan forI = (D, P) under the control of
g.

We prove this in several steps.

Lemma 3. Let o be a program/ = (D, P) a planning in-
stance, and a plan for planning instancg, = (D,, P,).
ThenFilter(a, D) is a plan forl.

Proof: Note that the preconditions of actions in, are
strictly more restrictive than their counterpartsiin as the
original preconditions are conjoined with additional anes
Thus, whenever an actionof D, is executable in a state

s anda is a domain action as opposed to any of the newly
introduces bookkeeping actions, then the corresponding ac
tiona’ in D is executable iz as well. Further, note that the
additional effects ofi in D, compared ta:’ in D only af-

fect the new bookkeeping predicates and functions (bound,
map, and state). Therefore, since the initial and goal sfate
1, differ from their counterparts i only in terms of these
bookkeeping predicates and functioRater (a, D) achieves

the goal ofP and thugilter (a, D) is a plan forl = (D, P).

U

To prove that the action sequenEgter(d, D) is also a
plan under the control of, we have to show that the au-
tomatonA, ; accepts it. We do this by induction over the
structure of the program.

Lemma 4. Leto be a program without the(z-t) construct,
I = (D, P) a planning instance, anitla plan for planning
instancel,, ,, ,» = (D,, P,). ThenFilter(&, D) is an execu-
tionofoin I.
Proof: Throughout this proof we will refer to the com-
pilation resultC(o,n, E) = (L,L',n") used to construct
I, . Since there are no(z-t) constructs, we can assume
that theE’ argument of”' is always empty and can ignore any
boundandmappreconditions and effects upon these predi-
cates for now. The program does not contain any program
variables.

The proof proceeds by induction over the structurer of
as follows:

o = nil: By definition of C, both L and L’ are empty, and
therefore no operators are includedidy. Thus the plan

must be empty. The empty sequence is accepted by,
becausénil, s] is a final state.

o =a,a € A: By definition of the translation, the only op-
erator inD,, is actiona. Thus, the only potentially pos-
sible action in any state whestate= s,, is a. Since the
goal, by construction, requiregate = s,1, @ must be
[a], anda must be possible in the initial state. From Eq. 4
we know thata] is accepted by, ;.

o = ¢7: By definition of the translation, the only operator
in D, is test_n_ny, which is potentially possible in any
state wherestate = s,,. Since the goal, by construction,
requiresstate = s,y1, @ = [test_-n_nq], and since this
is a plan, we know that its preconditions are satisfied in
the initial state, hencénit = ¢ and thusA, ; accepts
[] = Filter(test_-n_n4], D) by Eq. 6.

These are the base cases. Now for the induction steps:

o = (01;02): Assume thatC(o1,n, E) andC(o2,n1, F)
where invoked while compiling, for somen .

By construction ofl, any pland = agay - --a, for I,
can be partitioned into two par@& anda, such thati =
@, dsy, and such thattate = s,,, in the states’ that results
after performingi, over /.

Let us definel’ = I, then, by Lemma 243 is a plan for
I, ., Moreover, let us definé” as a planning instance
whose initial state is’ but with no information about the
state. By Lemma 23, is a plan forI}] .

By induction hypothesis We know that the automaton
A, 1 accepts any plan fof;, , , for I’. Analogously,
Ag, 1 accepts any plan faf?

It now follows from the definition 05 (Eq. 7) and a simi-

lar argument as in the proof for Lemma 2 thati, is also
accepted by, ;.

o = (o1|o2): From the definition ofC we know that any
plan forI, ,, »,+1 must start with eithenoop.n_(n+1) or
noopn_(ni+1). After that, by induction hypothesis and
Lemma 2, the only possible action sequences are those
that are plans fot,, 41,0, OF Loy ni+1,n,- ThESE se-
guences are accepted by their respective autorhata
and A,, ;. By its definition, the language accepted by
A, is the union of the two languages of these automata,
and the additionahoopactions are filtered out.

= if pthen o, else oo: From the definition of” for this
case we know that any plan fdy, , ,, must start with
either test_n_n’ or test_n_n’’, with n’” = n + 1 and
n' = n; + 1, depending on whether holds in the initial
state. After that, by induction hypothesis and Lemma 2,
the only possible action sequences are those that are plans
for I, n/m, OF Isnrn,. These sequences are accepted
by their respective automalza,,h, andA,, ;, by induc-
tion hypothesis. By its definition, the language accepted
by A, 1 is the one accepted by the formepiholds in the
initial state, and otherwise the language of the latter. The
noopandtest actions are filtered out.

o = while ¢ do o’: From the definition of”' for this case
we know that any plan fot, ,, ,,», with n’ ny + 1,
must start with eithetest_ n_n”, with n” = n + 1, if
¢ holds in the initial state, otest_n_n’, otherwise. In

the former case, by Lemma 2, the only action sequence the respective operator ify. |, /,. Now let’s focus on action

possible will start with a plan fof, ,, », which, by in-
duction hypothesis, is accepted by the automatgn;,
followed bynoopn;_n which, inductively, implies that it
is followed by a plan fot, ,, ,,». By definition of A, 7, in
the case where |= ¢, it accepts sequences which begin
with sequences accepted By, ,,, followed by any
other sequence acceptedy ;. Otherwise, i does not
hold initially, test_n_n’, which is possible whea doesn’t
hold, leads to a final state df, ,, ,,» and the filtered plan
is empty. Analogousiyd,, ; accepts the empty language
if ¢ doesn't hold. Thus4, ; accepts any plan faf; ,, ..

o = o’*: From the definition of” for this case and Lemma
1 we know that any plan faf, ,, ,,,, must either consist of
noop(n, ns), which after filtering results in the empty plan
which is trivially accepted byl, 7, or a plan forl, ,, ,,
followed bynoopn,n) and, recursively, any other plan
for I, » . Inthe latter case, by induction hypothesis, any
such plan is accepted by the sequence of autométon
and A, r, which precisely meets the definition 4f, ;.

O
Now for the case with program variables.

Lemma 5. Let o be a program, possibly with(z-t) con-
structs,] = (D, P) a planning instance, anda plan for
planning instancd, = (D,, P,). ThenFilter(a, D) is an
execution ofr in 1.
Proof: The proof proceeds by induction over the number of
m(x-t) constructs irv.

If o is program variable freer(z-t) does not occur), then,
trivially by Lemma 4 the proposition holds.

Assumeor = 7(z-t)o’, and letd’ = aga; - - - a,, Such that
a - [free,, (x)] is a plan forl,. First, we prove that there
exists ar € Objs such thatpay - - - a,, is aplan forl, |, /,.

a;j—1. This actionaddsbound(xz) andmap(x,v). By the
construction ofC this means that the precondition evalu-
atedbound(x) — map(z,x;) to be true in the state were
a;—1 was performed (this happens becadsand(x) is
false). Because after performiag_,, map(z, v) is added,

it means that the parametey of the operator took value,
while satisfying all additional preconditions. On the athe
hand, inl,, ., the condition to be checked by the respec-
tive operator is instead; = v, which we know can be made
true while satisfying additional preconditions of the aper
tor, because;_; was executable id,. For the remaining
part of the sequence,a;+1 - - - a, the proof is analogous.
When performed in/,,, some of these actions will evalu-
atebound(x) — map(z, x;) to true, with the side effect of
making the parameter; equal tov. On the other hand, in
I,/./, the same effect is achieved but by the expligit= v

in the precondition. Hence, the precondition/ip,,, /,, will
also be satisfied.

The proof for (b) is straightforward. Since the goal does
not mention any bookkeeping predicates, the sequéhce
produces the same statelin|,/, asa’ - [free,, (z)]in I,.

The proof now follows from Lemma 4.

Proof of Theorem 1 (continued):

< (Completeness):

Given a plang for I under the control o&, show that there
exists a plari’ for I,;, such thati = Filter(a’, D).

The proof again proceeds by induction over the structure
of the programr, and again we first show the case for pro-
grams withoutr (z-t) constructs, i.e. without program vari-
ables.

Let us assume that the state trajectory generated when| emma 6. Leto be a program without the(x-t) construct,

performing apay - - - a, in Init is sgsy---s,. Observe
the actions in the plan cannot deleteap(z) or delete
bound(z, o). Furthermore, ibound(x, o) is true in a certain
state, no action will addound(z,o") for any o’ different
from o. Hence, there existsa(0 < j < n) such that

e s; £ map(x) ands; [~ bound(x, o), for anyo € Objs
and any; < j, and

e s; = bound(xz) ands; = map(z,v)forallis.t.j <i<
n and some € Objs.

We claim thataga; - - - a,, is a plan forl,, /,,. The proof
for the claim is split in two parts: (a) we prove that the se-
quenceaqa; - - - a,, is legally executable id, |, /,,, then (b)
we prove that it reaches the goal.

For proving (a), note that the only difference betwdgn
and ./, are the preconditions of some of its operators.
For each occurrence ébund(z) — map(z,z;) (for some
x;) In an operator in/, there is an occurrence of = v
in I/, Itis easy to see that the preconditions of the
first j — 1 actions of the sequencega, - - - a;_2, are sat-
isfied in,/,,,,. Indeed, note that becauseund(x) is not
added by these actions ip, by the definition of”, it means
that the subformula of the precondition of the operator of
1, that evaluated to true at that point is identical to that of

I = (D, P) aplanning instance, aratia plan forl under the
control of g, then there exists a plati for I ,, ,,» such that
a = Filter(a’, D).
Proof: We will again refer to the compilation result
C(o,n,E) = (L,L',n") used to construck, , ./, and oc-
casionally also to variables occurring in the particulameo
pilation case considered in the induction proof. Againgsin
there are nar(z-t) constructs, we can assume that thie
argument ofC' is always empty and can ignore abhgund
andmappreconditions and effects upon these predicates for
now. The program does not contain any program variables.
By assumption we know that,, ; accepts the plai. The
induction over the structure ofis as follows:

o = nil: A, 1 only accepts the empty language, since there
are no transitions defined for thel program, bufnil, s]
is an accepting state for any statever /. Thusd =
[]. Since both initial an goal state & ., ,,» only require
state= s,, on top of the original initial and goal state of
I,andn’ =n,d =[] = dis also a plan fot,, , and
a = Filter(a’, D).

o =a,a € A: Inthis casel = [a]. Since in the compilation
E'is empty, the preconditions of the operator correspond-
ingtoa in I, ., are the same as those toin 1, except

thatstate= s,, has to hold. This condition is easily ful-
filled by the fact that the initial state df; ,, ,,» states just
this. Also, a goal state af, ,, ,,» is reached after execut-
ingain I, , ., since the new operator, by definition@f
hasstate= s, as an effect, which, by construction, is
the only additional requirement in the goal state of, ./
compared td. Thusa is a plan forl, ,, ,,, and trivially

a = Filter(a, D).

o = ¢7. Again, the plan has to be the empty sequence,
since this is the only one accepted By, ;. Also, by
definition of A, ;, the initial statelnit of I satisfiese.
Let @ = [test.nn/]. This is a plan forl,,, ., be-
cause by its construction in the definition 6%est its
precondition isstate = s,, A ¢. This is satisfied since
the initial state ofl,, , is like that of I plus the as-
sertion thatstate = s,,. Since ¢ cannot mention the
new special fluenstateits truth value does not differ
between the initial state of, ,, ,,» and that of/ itself.
Further,test_n_n’ setsstate = s, as its only effect
is empty), thus satisfying the goal df,, ,-. Finally,
a =[] = Filter([test_n_n'], D).

These are the base cases. Now for the induction steps:

o = (01;02): We start this case by stating an intermediate
result where we us&(o, @) to denote the repeated transi-
tion of 0 over the actions of the sequente
Claim: If @ is accepted by, ;, thena can be decom-
posed into two partg; andds, such thati = @,d,, and
such thainil; oa, s'| € §([o1; 02, Init],d,), for somes’
and such thatnil, s”] € 6([oz, s'],d2). Intuitively, this
means that the automaton’s stat€l; oo, s’ is part of an
accepting path of states far Proof. Straightforward (but
lengthy) by induction on the structure of .

Let us assume that = d,d», for @; andd, as defined
above. Furthermore let us defidé as an instance just
like I except that its goal is to get to state(as defined
above). Moreover, we defing to be just likel but such
that its initial state iss’. Observe now thafi; andd,
are clearly accepted by, » and 4,, ;». Indeed, this
follows straightforwardly from the claim and the fact that
the transition function ford,, ;» and A,, ;= are subsets
of the transition function for, ;.

By induction hypothesis, there are plama§,al, for
It , andI22 ; for any two integersuy, no, such

0’1,711,77,1 02,M2,MN
thata, = Filter(a;, D) anday = Filter(a’, D). Choos-
ing no = n} as defined by the compilation ef; with
parameten = n;, we get that the initial state di,nz,ng

is a goal state oféhm’n,1 and thusi’ = @, - @, is a plan
for I, . Since the concatenation does not introduce
any new actions we geét= Filter(a’, D).

o = (o1|o2): By definition, A, ; accepts the union of the
sets of plans for; andos, i.e. d is accepted by either
Aol,f OI'AUQJ.

Assume it is a plan under the control of (i.e., it is
accepted byA,, ;). By induction hypothesis there is
a pland, for I, ,, »; for any integern;, such that

da = Filter(d}, D). Thenad’ = [noopn_(n+1)]-aj -

[noopn; _(n2+1)] is a plan forl, ,, n,11, Wherens is de-
fined in the compilation, and since tm@op actions are
filtered againd = Filter(a’, D). The case whe@ is a
plan under the control of, is analogous with the plan
d = [noopn_(n1+1)]-aj - [noopng_(ne+1)], ny, ne are
defined by the compilation.

o = if ¢ then o, else o5: Depending on whether or not

Init = ¢, a is a plan under the control of; or s, i.e. it
is either accepted by, ; or A,, ;. Assumelnit |= ¢.
Then,d, is accepted by, ;, and by induction hypoth-
esis, there is a plaa; for I,, ,,, », for any integern,
s.t. @ = Filter(a}, D). Thend' = [test.n_(n+1)] -
@, - [noopn;_ng] is a plan forl, , .~ and by definition
of Filter we haved = Filter(a’, D). Analogously when
Init £ ¢, d' = [test_n_(n1+1)] - @ - [nooOpng-ng| is a
plan forI, ,, ,,» and agairi = Filter(a’, D).

o = while ¢ do ¢’: The induction step for this case is itself

by induction. We refer to this induction as “inner induc-
tion”, and to the other as “outer induction”. The inner
induction is on the length of the action sequefice

As our inner base case, assume that [~ ¢, thena = ||

(ld@] = 0). Then[test.n_n'] is a plan forl, ,, - for any
integern, because by construction the precondition for
this test action is ¢ A state= s, and its effect asserts
state= s,. Also [] = Filter([test_n_n'], D). This con-
cludes the proof for the inner base case.

Now, as our inner induction hypothesis, we assume the
theorem holds for all sequences of action whose length
is strictly less thatt. Now assuméd| = k. In this
case, we have thawit = ¢, and thend = @, - @’ is

a plan forl, ,, ., Wwhered, is a sequence accepted by
A, andd”’ is accepted byA, ;/, wherel’ is like I
except that the initial state is the state reached after ex-
ecutingad,- in Init. Then, by outer induction hypothesis
there is a plarw/,, for T - for any integerng, S.t.

i, = Filter(a.,, D), and by inner induction hypothe-
sis there is a plaa’’ for I’ , for any integems s.t.

o,n2,Ny
a’ = Filter(@"’, D). Choosingny = n andnz =n+ 1
we getthati’ = [test_n_(n+1)]-a@,, - [noopn,-n]-a" is
aplan forl, ,, »/, wheren, is defined by the compilation
for 0. Finally, againg = Filter(a’, D).

o = ¢’*: We again require an inner induction on the length

of @. Assume thati = [], then[noopn_n'] is a plan

for I, ,, s and trivially @ = Filter([noopn_n'], D). This
concludes the proof for the base case of the inner induc-
tion. Assume now for the inner induction case that the
theorem holds for all sequences of length less than
where|d@| = k. In this cased = d; - d» wherea; is
accepted byd,. ; anda, is accepted by, ;; wherel’

is like I except that the initial state is the state reached
after executingi,- in Init. Then, by outer induction hy-
pothesis there is a plati for It g my, for any integemg

s.t. @, = Filter(a}, D), and by inner induction hypoth-
esis there is a plad, for I’ for any integems s.t.

o,na,nh
d, = Filter(a@,, D). Choosing boti; = n andny, = n
we get thati’ = @ - [noopn,_n| - aj is a plan forl, ,, ,,/,
wheren; is defined by the compilation. Again, by the

two induction hypotheses and the fact thabpn, _n is
filtered out,a = Filter(a’, D).

O
Now for the case with program variables.

Lemma 7. Leto be a program over a planning instarce:

(D, P) (possibly containingr(z-t) constructs), and a plan

for I under the control ofr, then there exists a plaii for

I, nn such tha@ = Filter(a’, D).

Proof: The proof proceeds by induction over the number of
m(z-t) constructs occurring i The base case, where this
number is zero, is given by Lemma 6.

Otherwise, assume m(z-t,o’) for some arbitrary
other programs’ over I. By the definition ofA, , @ is
accepted by some automatehy| ; where ino all oc-
currences of: are replaced by some (but in all occurrences
the same) such that(o,t) € 7p U 7p. We show that (i)

a d - [free-nq(z)] is a plan forl,,, . for any inte-
ger n, wheren; is defined in the compilation of using

n as the integer parameter. We further need to show that
(i) in a states’ reached after performing in any states

that satisfies-boundx) A —(Jy).mapz,y), we again get

s’ = —boundz) A =(Jy).mapz, y). Obviously, the initial
statelnit has this property for all program variables occur-
ringino.

(i) By assumptiona is accepted bwlm/ml for some
o, i.e. after replacing all occurrences ofin o with o,
and is a plan forl. By induction hypothesis and Lemma
6 there exists a plaa’ for I, , ., for any integern

such thata = Filter(@}, D). We show that this is also a
plan for I, ,, ,» after minor modifications to the occurring
test actions, and which in particular do not result in a dif-
ferent result when applyingilter. Compile s as defined
usingC(o,n,[]) = (L,L',n’). For any test action oc-
curring in@) whose corresponding operator definitionZin
hasx as a formal parameter, addas an additional argu-
ment at the position where appears in the operator defi-
nition, creating a new sequenag. We show that this se-
quence is a plan fof, , ,-: Let a; be the first action in
d, whose corresponding operator definitionZinhasz as

a formal parameter. The corresponding actual parameter is
o. Then, since in the initial stateof 1, ,, ,» we have that

s = —boundz) A =(3Jy).mapx, y), s satisfies the precon-
ditions ofa, because the only preconditions on top of those
defined inl,|,,, »n areboundz) — mapx,o). The ac-
tion will further have as an effedtoundz) andmagz, o).
Hence, all following actions, in @, whose corresponding
operator inL. hasx as a formal parameter, will also be possi-
ble and have the same effects adjn Jormn (by construc-
tion of o, /,), because also they haveas actual param-
eter, and since’, cannot mention any actiofiree_n;(x),

for any i, we have for all states” visited later on dur-
ing the execution ofi}, thats” = boundz) A mapz,o)
which entails the preconditions ef, in I, ,, . Since fur-
ther only the truth value oboundand map are changed
compared to the effects ify,| .., the goal, which by
construction doesn’t mention either of these predicates, i
reached at the end. Henc#, is a plan forl, , .. Also

a = Filter(a} - [free_ni(x)], D).

(i) Clearly, since for any.;, free_n;(x) has—boundx)A
(Vy).-map(z, y) as an effect, any staté reached after exe-
cutingd), - [free_n;(x)] in any other state satisfies thislJ

Theorem 1 then follows directly from Lemmata 5 and 7
for n = 0 and ny;e as defined by the compilation
C(O’,O, H) = (LaL/7nf1lnal>-

Succinctness (Theorem 2)

Proof of Theorem 2:

The compilation of each programming construct, as defined
by C, introduces a constant number of new operators into
1, or extends the definition of one of the operatorg fith

a constant number of additional preconditions and effects.
In all cases, the size of the new preconditions and effects is
bounded by a constant factor in the number of elements of
E. From the definition of” for r it follows that the maximal
length of E occurring during the compilation of is exactly

the number of nested constructsk. Hence, if the program
has sizen, then there are no more tharprogramming con-
structs. Since also each construct is considered exaatly on
by C, there can be no more thanoperators in/,,, each of
sizeO(k). Hence, overall,, has size)(k - n). O

