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Abstract

Domain control knowledge (DCK) has proven effective in
improving the efficiency of plan generation by reducing the
search space for a plan.ProceduralDCK is a compelling
type of DCK that supports a natural specification of the skele-
ton of a plan. Unfortunately, most state-of-the-art planners do
not have the machinery necessary to exploit procedural DCK.
To resolve this deficiency, we propose to compile procedural
DCK directly into PDDL2.1, thus enabling any PDDL2.1-
compatible planner to exploit it. The contribution of this pa-
per is threefold. First, we propose a PDDL-based seman-
tics for an Algol-like, procedural language that can be used
to specify DCK in planning. Second, we provide a polyno-
mial algorithm that translates an ADL planning instance and
a DCK program, into an equivalent, program-free PDDL2.1
instance whose plans are only those that adhere to the pro-
gram. Third, we argue that the resulting planning instance
is well-suited to being solved by domain-independent heuris-
tic planners. To this end, we propose three approaches to
computing domain-independent heuristics for our translated
instances, sometimes leveraging properties of our translation
to guide search. In our experiments on familiar PDDL plan-
ning benchmarks we show that the proposed compilation of
procedural DCK can significantly speed up the performance
of a heuristic search planner. Our translators are implemented
and available on the web.

Introduction
Domain control knowledge (DCK) imposes domain-specific
constraints on the definition of a valid plan. As such, it can
be used to impose restrictions on the course of action that
achieves the goal. While DCK sometimes reflects a user’s
desire to achieve the goal a particular way, it is most often
constructed to aid in plan generation by reducing the plan
search space. Moreover, if well-crafted, DCK can elimi-
nate those parts of the search space that necessitate back-
tracking. In such cases, DCK together with blind search
can yield valid plans significantly faster than state-of-the-
art (SOA) planners that do not exploit DCK. Indeed most
planners that exploit DCK, such as TLPLAN (Bacchus &
Kabanza 1998) or TALPLANNER (Kvarnstr̈om & Doherty
2000), do little more than blind depth-first search with cycle
checking in a DCK-pruned search space. Since most DCK
reduces the search space but still requires a planner to back-
track to find a valid plan, it should prove beneficial to exploit

better search techniques. In this paper we explore ways in
which SOA planning techniques and existing SOA planners
can be used in conjunction with DCK, with particular focus
onproceduralDCK.

As a simple example of DCK, consider thetrucks do-
main of the 5th International Planning Competition, where
the goal is to deliver packages between certain locations us-
ing a limited capacity truck. When a package reaches its
destination it must be delivered to the customer. We can
write simple and natural procedural DCK that significantly
improves the efficiency of plan generation for instance:Re-
peat the following until all packages have been delivered:
Unload everything from the truck, and, if there is any pack-
age in the current location whose destination is the current
location, deliver it. After that, if any of the local packages
have destinations elsewhere, load them on the truck while
there is space. Drive to the destination of any of the loaded
packages. If there are no packages loaded on the truck, but
there remain packages at locations other than their destina-
tions, drive to one of these locations.

Procedural DCK (as used in HTN (Nauet al. 1999) or
Golog (Levesqueet al. 1997)) is action-centric. It is much
like a programming language, and often times like a plan
skeleton or template. It can (conditionally) constrain theor-
der in which domain actions should appear in a plan. In or-
der to exploit it for planning, we require a procedural DCK
specification language. To this end, we propose a language
based on GOLOG that includes typical programming lan-
guages constructs such as conditionals and iteration as well
as nondeterministic choice of actions in places where control
is not germane. We argue that these action-centric constructs
provide a natural language for specifying DCK for planning.
We contrast them with DCK specifications based on linear
temporal logic (LTL) which are state-centric and though still
of tremendous value, arguably provide a less natural way to
specify DCK. We specify the syntax for our language as well
as a PDDL-based semantics following Fox & Long (2003).

With a well-defined procedural DCK language in hand,
we examine how to use SOA planning techniques together
with DCK. Of course, most SOA planners are unable to
exploit DCK. As such, we present an algorithm that trans-
lates a PDDL2.1-specified ADL planning instance and as-
sociated procedural DCK into an equivalent, program-free
PDDL2.1 instance whose plans provably adhere to the DCK.



Any PDDL2.1-compliant planner can take such a planning
instance as input to their planner, generating a plan that ad-
heres to the DCK.

Since they were not designed for this purpose, existing
SOA planners may not exploit techniques that optimally
leverage the DCK embedded in the planning instance. As
such, we investigate how SOA planning techniques, rather
than planners, can be used in conjunction with our compiled
DCK planning instances. In particular, we propose domain-
independent search heuristics for planning with our newly-
generated planning instances. We examine three different
approaches to generating heuristics, and evaluate them on
three domains of the 5th International Planning Competi-
tion. Our results show that procedural DCK improves the
performance of SOA planners, and that our heuristics are
sometimes key to achieving good performance.

Background
A Subset of PDDL 2.1
A planning instanceis a pairI = (D,P ), whereD is a
domain definition andP is a problem. To simplify notation,
we assume thatD andP are described in an ADL subset of
PDDL. The difference between this ADL subset and PDDL
2.1 is that no concurrent or durative actions are allowed.

Following convention, domains are tuples of finite sets
(PF ,Ops,ObjsD, T, τD), wherePF defines domain predi-
cates and functions,Ops defines operators,ObjsD contains
domain objects,T is a set of types, andτD ⊆ ObjsD × T is
a type relation associating objects to types. An operator (or
action schema) is also a tuple〈O(~x),~t,Prec(~x),Eff (~x)〉,
where O(~x) is the unique operator name and~x =
(x1, . . . , xn) is a vector of variables. Furthermore,~t =
(t1, . . . , tn) is a vector of types. Each variablexi ranges
over objects associated with typeti. Moreover,Prec(~x) is
a boolean formula with quantifiers (BQF) that specifies the
operator’s preconditions. BFQs are defined inductively as
follows. Atomic BFQs are either of the formt1 = t2 or
R(t1, . . . , tn), whereti (i ∈ {1, . . . , n}) is a term (i.e. ei-
ther a variable, a function literal, or an object), andR is a
predicate symbol. Ifϕ is a BFQ, then so isQx-t ϕ, for a
variablex, a type symbolt, andQ ∈ {∃,∀}. BFQs are also
formed by applying standard boolean operators over other
BFQs. FinallyEff (~x) is a list of conditional effects, each of
which can be in one of the following forms:

∀y1-t1 · · · ∀yn-tn. ϕ(~x, ~y) ⇒ R(~x, ~y), (1)

∀y1-t1 · · · ∀yn-tn. ϕ(~x, ~y) ⇒ ¬R(~x, ~y), (2)

∀y1-t1 · · · ∀yn-tn. ϕ(~x, ~y) ⇒ f(~x, ~y) = obj, (3)

whereϕ is a BFQ whose only free variables are among~x
and~y, R is a predicate,f is a function, andobj is an object
After performing a ground operator – oraction– O(~c) in a
certain states, for all tuples of objects that may instantiate~y
such thatϕ(~c, ~y) holds ins, effect (1) (resp. (2)) expresses
thatR(~c, ~y) becomes true (resp. false), and effect (3) ex-
presses thatf(~c, ~y) takes the valueobj. As usual, states are
represented as finite sets of atoms (ground formulae of the
formR(~c) or of the formf(~c) = obj).

Planning problems are tuples(Init ,Goal ,ObjsP , τP ),
whereInit is the initial state,Goal is a sentence with quan-

tifiers for the goal, andObjsP and τP are defined analo-
gously as for domains.

Semantics:Fox & Long (2003) have given a formal seman-
tics for PDDL 2.1. In particular, they define when a sen-
tence istrue in a state and whatstate traceis the result of
performing a set oftimed actions. A state trace intuitively
corresponds to an execution trace, and the sets of timed ac-
tions are ultimately used to refer to plans. In the ADL sub-
set of PDDL2.1, since there are no concurrent or durative
actions, time does not play any role. Hence, state traces re-
duce to sequences of states and sets of timed actions reduce
to sequences of actions.

Building on Fox and Long’s semantics, we assume that
|= is defined such thats |= ϕ holds when sentenceϕ is
true in states. Moreover, for a planning instanceI, we as-
sume there exists a relationSucc such thatSucc(s, a, s′) iff
s′ results from performing an executable actiona in s. Fi-
nally, a sequence of actionsa1 · · · an is a plan forI if there
exists a sequence of statess0 · · · sn such thats0 = Init,
Succ(si, ai+1, si+1) for i ∈ {0, . . . , n−1}, andsn |= Goal .

Domain-Independent Heuristics for Planning
In sections to follow, we investigate how procedural DCK
integrates into SOA domain-independent planners. Domain-
independent heuristics are key to the performance of these
planners. Among the best known heuristic-search planners
are those that compute their heuristic by solving a relaxed
STRIPS planning instance (e.g., as done in HSP (Bonet &
Geffner 2001) and FF (Hoffmann & Nebel 2001) planners).
Such a relaxation corresponds to solving the same planning
problem but on an instance that ignores deletes (i.e. ignores
negative effects of actions).

For example, the FF heuristics for a states is computed
by expanding arelaxed planning graph(Hoffmann & Nebel
2001) froms. We can view this graph as composed ofre-
laxed states. A relaxed state at depthn + 1 is generated by
addingall the effects of actions that can be performed in the
relaxed state of depthn, and then by copying all facts that
appear in layern. The graph is expanded until the goal or a
fixed point is reached. The heuristic value fors corresponds
to the number of actions in arelaxed planfor the goal, which
can be extracted in polynomial time.

Both FF-like heuristics and HSP-like heuristics can be
computed for (more expressive) ADL planning problems.

A Language for Procedural Control
In contrast to state-centric languages, that often use LTL-
like logical formulae to specify properties of the states tra-
versed during plan execution, procedural DCK specification
languages are predominantly action-centric, defining a plan
template or skeleton that dictatesactionsto be used at vari-
ous stages of the plan.

Procedural control is specified viaprogramsrather than
logical expressions. The specification language for these
programs incorporates desirable elements from imperative
programming languages such as iteration and conditional
constructs. However, to make the language more suitable to
planning applications, it also incorporates nondeterministic



constructs. These elements are key to writing flexible con-
trol since they allow programs to contain missing or open
program segments, which are filled in by a planner at the
time of plan generation. Finally, our language also incor-
porates property testing, achieved through so-calledtest ac-
tions. These actions are not real actions, in the sense that
they do not change the state of the world, rather they can
be used to specify properties of the states traversed while
executing the plan. By using test actions, our programs
can also specify properties of executions similarly to state-
centric specification languages.

The rest of this section describes the syntax and semantics
of the procedural DCK specification language we propose to
use. We conclude this section by formally defining what it
means to plan under the control of such programs.

Syntax

The language we propose is based on GOLOG (Levesqueet
al. 1997), a robot programming language developed by the
cognitive robotics community. In contrast to GOLOG, our
language supports specification of types for program vari-
ables, but does not support procedures.

Programs are constructed using the implicit language for
actions and boolean formulae defined by a particular plan-
ning instanceI. Additionally, a program may refer to vari-
ables drawn from a set of program variablesV . This set
V will contain variables that are used for nondeterministic
choices of arguments. In what follows, we assumeO de-
notes the set of operator names fromOps, fully instantiated
with objects defined inI or elements ofV .

The set of programs over a planning instanceI and a set
of program variablesV can be defined by induction. In what
follows, assumeφ is a boolean formula with quantifiers on
the language ofI, possibly including terms in the set of pro-
gram variablesV . Atomic programs are as follows.

1. nil : Represents the empty program.
2. o: Is a single operator instance, whereo ∈ O.
3. any: A keyword denoting “any action”.
4. φ?: A test action.

If σ1, σ2 andσ are programs, so are the following:

1. (σ1;σ2): A sequence of programs.
2. if φ thenσ1 elseσ2: A conditional sentence.
3. whileφdoσ: A while-loop.
4. σ∗: A nondeterministic iteration.
5. (σ1|σ2): Nondeterministic choice between two programs.
6. π(x-t)σ: Nondeterministic choice of variablex ∈ V of

typet ∈ T .

Before we formally define the semantics of the language,
we show some examples that give a sense of the language’s
expressiveness and semantics.

• while¬clear(B)doπ(b-block) putOnTable(b): while
B is not clear choose anyb of type block and put it on the
table.

• any∗; loaded(A, Truck)?: Perform any sequence of ac-
tions untilA is loaded inTruck. Plans under this control
are such thatloaded(A, Truck) holds in the final state.

• ( load(C,P ); fly(P,LA) | load(C, T ); drive(T,LA) ):
Either loadC on the planeP or on the truckT , and
perform the right action to move the vehicle toLA.

Semantics
The problem of planning for an instanceI under the control
of programσ corresponds to finding a plan forI that is also
an execution ofσ from the initial state. In the rest of this sec-
tion we define what those legal executions are. Intuitively,
we define a formal device to check whether a sequence of
actions~a corresponds to the execution of a programσ. The
device we use is a nondeterministic finite state automaton
with ε-transitions (ε-NFA).

For the sake of readability, we remind the reader thatε-
NFAs are like standard nondeterministic automata except
that they can transition without reading any input symbol,
through the so-calledε-transitions.ε-transitions are usually
defined over a state of the automaton and a special symbol
ε, denoting the empty symbol.

An ε-NFA Aσ,I is defined for each programσ and each
planning instanceI. Its alphabet is the set of operator names,
instantiated by objects ofI. Its states areprogram configu-
rations which have the form[σ, s], whereσ is a program
ands is a planning state. Intuitively, as it reads a word of ac-
tions, it keeps track, within its state[σ, s], of the part of the
program that remains to be executed,σ, as well as the cur-
rent planning state after performing the actions it has read
already,s.

Formally,Aσ,I = (Q,A, δ, qo, F ), whereQ is the set of
program configurations, the alphabetA is a set of domain
actions, the transition function isδ : Q× (A ∪ {ε}) → 2Q,
q0 = [σ, Init ], andF is the set of final states. The transition
functionδ is defined as follows for atomic programs.

δ([a, s], a) = {[nil , s′]} iff Succ(s, a, s′), s.t.a ∈ A, (4)

δ([any, s], a) = {[nil, s′]} iff Succ(s, a, s′), s.t.a ∈ A, (5)

δ([φ?, s], ε) = {[nil , s]} iff s |= φ. (6)

Equations 4 and 5 dictate that actions in programs change
the state according to theSucc relation. Finally, Eq. 6 de-
fines transitions forφ? whenφ is a sentence (i.e., a formula
with no program variables). It expresses that a transition can
only be carried out if the plan state so far satisfiesφ.

Now we defineδ for non-atomic programs. In the defini-
tions below, assume thata ∈ A ∪ {ε}, and thatσ1 andσ2 are
subprograms ofσ, where occurring elements inV may have
been instantiated by any object in the planning instanceI.

δ([(σ1;σ2), s], a) =
[

[σ′

1
,s′]∈δ([σ1,s],a)

{[(σ′
1;σ2), s

′]} if σ1 6= nil , (7)

δ([(nil ;σ2), s], a) = δ([σ2, s], a), (8)

δ([if φ thenσ1 elseσ2, s], a) =

(

δ([σ1, s], a) if s |= φ,

δ([σ2, s], a) if s 6|= φ,

δ([(σ1|σ2), s], a) = δ([σ1, s], a) ∪ δ([σ2, s], a),

δ([whileφdoσ1, s], a) =

(

{[nil , s]} if s 6|= φ anda = ε,

δ([σ1;whileφdoσ1, s], a) if s |= φ,

δ([σ∗
1 , s], a) = δ([(σ1;σ

∗
1), s], a) if a 6= ε (9)



δ([σ∗
1 , s], ε) = δ([(σ1;σ

∗
1), s], ε) ∪ {[nil , s]}, (10)

δ([π(x-t)σ1, s], a) =
[

(o,t)∈τD∪τP

δ([σ1|x/o, s], a). (11)

whereσ1|x/o denotes the program resulting from replacing
any occurrence ofx in σ1 by o. For space reasons we only
explain two of them. First, a transition on a sequence cor-
responds to transitioning on its first component first (Eq. 7),
unless the first component is already the empty program, in
which case we transition on the second component (Eq. 8).
On the other hand, a transition ofσ∗

1 represents two alterna-
tives: executingσ1 at least once, or stopping the execution
of σ∗

1 , with the remaining programnil (Eq. 9, 10).
To end the definition ofAσ,I , Q corresponds precisely to

the program configurations[σ′, s] whereσ′ is eithernil or
a subprogram ofσ such that program variables may have
been replaced by objects inI, ands is any possible plan-
ning state. Moreover,δ is assumed empty for elements of its
domain not explicitly mentioned above. Finally, the set of
accepting states isF = {[nil , s] | s is any state overI}, i.e.,
those where no program remains in execution. We can now
formally define an execution of a program.

Definition 1 (Execution of a program). A sequence of ac-
tions a1 · · · an is an execution ofσ in I if a1 · · · an is ac-
cepted byAσ,I .

The following remark illustrates how the automaton tran-
sitions in order to accept executions of a program.

Remark 1. Let σ = (if ϕ then a else b; c), and suppose
that Init is the initial state of planning instanceI. Assume
furthermore thata, b, andc are always possible. ThenAσ,I

acceptsac if Init |= ϕ.
Proof. Supposeq ⊢a q′ denotes thatAσ,I can transition
from q to q′ by reading symbola. Then ifInit |= ϕ observe
that [σ, Init ] ⊢a [nil ; c, s2] ⊢c [nil , s3], for some planning
statess2 ands3.

Now that we have defined those sequences of actions cor-
responding to the execution of our program, we are ready to
define the notion of planning under procedural control.

Definition 2 (Planning under procedural control). A se-
quence of action~a is aplan for instanceI under the control
of programσ if ~a is a plan inI and is an execution ofσ in I.

Compiling Control into the Action Theory
This section describes a translation function that, given a
programσ in the DCK language defined above together with
a PDDL2.1 domain specificationD, outputs a new PDDL2.1
domain specificationDσ and problem specificationPσ. The
two resulting specifications can then be combined with any
problemP defined overD, creating a new planning instance
that embeds the control given byσ, i.e. that is such that only
action sequences that are executions ofσ are possible. This
enables any PDDL2.1-compliant planner to exploit search
control specified by any program.

To account for the state of execution of programσ and
to describe legal transitions in that program, we introduce
a few bookkeeping predicates and a few additional actions.
Figure 1 graphically illustrates the translation of an exam-
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Figure 1: Automaton forwhileφdo (if ψ then a else b); c.

ple program shown as afinite state automaton. Intuitively,
the operators we generate in the compilation define the tran-
sitions of this automaton. Their preconditions and effects
condition on and change the automaton’s state.

The translation is defined inductively by a function
C(σ, n,E) which takes as input a programσ, an inte-
ger n, and a list of program variables with typesE =
[e1-t1, . . . , ek-tk], and outputs a tuple(L,L′, n′) with L a
list of domain-independent operator definitions,L′ a list of
domain-dependent operator definitions, andn′ another in-
teger. Intuitively,E contains the program variables whose
scope includes (sub-)programσ. Moreover,L′ contains re-
strictions on the applicability of operators defined inD, and
L contains additional control operators needed to enforce
the search control defined inσ. Integersn andn′ abstractly
denote the program state before and after execution ofσ.

We use two auxiliary functions.Cnoop(n1, n2) produces
an operator definition that allows a transition from staten1
to n2. SimilarlyCtest(φ, n1, n2, E) defines the same tran-
sition, but conditioned onφ. They are defined as:1

Cnoop(n1, n2) = 〈noopn1 n2(), [ ], state= sn1
, [state= sn2

]〉

Ctest(φ, n1, n2, E) = 〈test n1 n2(~x),~t,Prec(~x),Eff (~x)〉 with

( ~e-t, ~x) = mentions(φ,E), ~e-t = e1-t1, . . . , em-tm,

Prec(~x) =
`

state= sn1
∧ φ[ei/xi]

m
i=1 ∧

^m

i=1
bound(ei) → map(ei, xi)

´

,

Eff (~x) = [state= sn2
] · [bound(ei),map(ei, xi)]

m
i=1.

Functionmentions(φ,E) returns a vector~e-t of program
variables and types that occur inφ, and a vector~x of new
variables of the same length. Bookkeeping predicates serve
the following purposes:statedenotes the state of the au-
tomaton; bound(e) expresses that the program variablee
has been bound to an object of the domain;map(e, o) states
that this object iso. Thus, the implicationbound(ei) →
map(ei, xi) forces parameterxi to take the value to which
ei is bound, but has no effect ifei is not bound.

Consider the inner box of Figure 1, depicting the compi-
lation of the if statement. It is defined as:

C(if φ thenσ1 elseσ2, n, E) = (L1 · L2 ·X,L
′
1 · L

′
2, n3)

with (L1, L
′
1, n1) = C(σ1, n+ 1, E),

(L2, L
′
2, n2) = C(σ2, n1 + 1, E), n3 = n2 + 1,

X = [ Ctest(φ, n, n+ 1, E), Ctest(¬φ, n, n1 + 1, E),

Cnoop(n1, n3), Cnoop(n2, n3) ]

and in the example we haveφ = ψ, n = 2, n1 = 4, n2 =
6, n3 = 7, σ1 = a, andσ2 = b.

1We useA ·B to denote the concatenation of listsA andB.



The inductive definitions for other programsσ are:

C(nil , n, E) = ([ ], [ ], n)

C(O(~r), n, E) = ([ ], [〈O(~x),~t,Prec
′(~x),Eff

′(~x)〉], n+ 1) with

〈O(~x),~t,Prec(~x),Eff (~x)〉 ∈ Ops, ~r = r1, . . . , rm,

Prec
′(~x) = (state= sn ∧
^

i s.t. ri∈E

bound(ri) → map(ri, xi) ∧
^

i s.t. ri 6∈E

xi = ri),

Eff
′(~x) = [ state= sn ⇒ state= sn+1] ·

[state= sn ⇒ bound(ri) ∧ map(ri, xi)]i s.t. ri∈E

C(φ?, n, E) = ( [Ctest(φ, n, n+ 1, E)], [ ], n+ 1)

C((σ1;σ2), n, E) = (L1 · L2, L
′
1 · L

′
2, n2) with

(L1, L
′
1, n1) = C(σ1, n, E), (L2, L

′
2, n2) = C(σ2, n1, E)

C((σ1|σ2), n, E) = (L1 · L2 ·X,L
′
1 · L

′
2, n2 + 1) with

(L1, L
′
1, n1) = C(σ1, n+ 1, E),

(L2, L
′
2, n2) = C(σ2, n1 + 1, E),

X = [ Cnoop(n, n+ 1), Cnoop(n, n1 + 1),

Cnoop(n1, n2 + 1), Cnoop(n2, n2 + 1) ]

C(whileφdoσ, n,E) = (L ·X,L′, n1 + 1) with

(L,L′, n1) = C(σ, n+ 1, E), X = [Ctest(φ, n, n+ 1, E),

Ctest(¬φ, n, n1 + 1, E), Cnoop(n1, n)]

C(σ∗, n, E) = (L · [Cnoop(n, n2), Cnoop(n1, n)], L′, n2)

with (L,L′, n1) = C(σ, n,E), n2 = n1 + 1

C(π(x-t, σ), n, E) = (L ·X,L′, n1 + 1) with

(L,L′, n1) = C(σ, n,E · [x-t]),

X = [〈free n1(x), t, state= sn1
,

[state= sn1+1,¬bound(x), ∀y.¬map(x, y)]〉 ]

The atomic programany is handled by macro expansion to
above defined constructs.

As mentioned above, given programσ, the return value
(L,L′, nfinal) ofC(σ, 0, [ ]) is such thatL contains new oper-
ators for encoding transitions in the automaton, whereasL′

contains restrictions on the applicability of the originaloper-
ators of the domain. Now we are ready to integrate these new
operators and restrictions with the original domain specifi-
cationD to produce the new domain specificationDσ.
Dσ contains a constrained version of the operatorsO(~x)

of the original domainD also mentioned inL′. Let
[〈O(~x),~t,Preci(~x),Eff i(~x)〉]

n
i=1 be the sublist ofL′ that

contains additional conditions for operatorO(~x). The op-
erator replacingO(~x) in Dσ is defined as:

〈O′(~x), ~t, Prec(~x) ∧
_n

i=1
Preci(~x), Eff (~x) ∪

[n

i=1
Eff i(~x)〉

Additionally,Dσ contains all operator definitions inL. Ob-
jects inDσ are the same as those inD, plus a few new ones
to represent the program variables and the automaton’s states
si ( 0 ≤ i ≤ nfinal). FinallyDσ inherits all predicates inD
plusbound(x), map(x, y), and functionstate.

The translation, up to this point, is problem-independent;
the problem specificationPσ is defined as follows. Given
any predefined problemP overD, Pσ is like P except that
its initial state contains conditionstate = s0, and its goal
containsstate = snfinal. Those conditions ensure that the
program must be executed to completion.

As is shown below, planning in the generated instance
Iσ = (Dσ, Pσ) is equivalent to planning for the original
instanceI = (D,P ) under the control of programσ, ex-
cept that plans onIσ contain actions that were not part of
the original domain definition (test, noop, andfree).

Theorem 1 (Correctness). Let Filter(~a,D) denote the se-
quence that remains when removing from~a any action not
defined inD. If ~a is a plan for instanceIσ = (Dσ, Pσ) then
Filter(~a,D) is a plan forI = (D,P ) under the control ofσ.
Conversely, if~a is a plan forI under the control ofσ, there
exists a plan~a′ for Iσ, such that~a = Filter(~a′,D).
Proof. See the appendix.

Now we turn our attention to analyzing the succinctness
of the output planning instance relative to the original in-
stance and control program. Assume we define the size of a
program as the number of programming constructs and ac-
tions it contains. Then we obtain the following result.

Theorem 2(Succinctness). If σ is a program of sizem, and
k is the maximal nesting depth ofπ(x-t) statements inσ,
then|Iσ| (the overall size ofIσ) isO(km).
Proof. See the appendix.

The encoding of programs in PDDL2.1 is, hence, in worst
caseO(k) times bigger than the program itself. It is also
easy to show that the translation is done in time linear in the
size of the program, since, by definition, every occurrence
of a program construct is only dealt with once.

Exploiting DCK in SOA Heuristic Planners
Our objective in translating procedural DCK to PDDL2.1
was to enableany PDDL2.1-compliant SOA planner to
seamlessly exploit our DCK. In this section, we investigate
ways to best leverage our translated domains using domain-
independent heuristic search planners.

There are several compelling reasons for wanting to ap-
ply domain-independent heuristic search to these problems.
Procedural DCK can take many forms. Often, it will pro-
vide explicit actions for some parts of a sequential plan, but
not for others. In such cases, it will contain unconstrained
fragments (i.e., fragments with nondeterministic choicesof
actions) where the designer expects the planner to figure
out the best choice of actions to realize a sub-task. In
the absence of domain-specific guidance for these uncon-
strained fragments, it is natural to consider using a domain-
independent heuristic to guide the search.

In many domains it is very hard to write deterministic
procedural DCK, i.e. DCK that restricts the search space
in such a way that solutions can be obtained very effi-
ciently, even using blind search. An example of such a
domain is one where plans involve solving an optimization
sub-problem. In such cases, procedural DCK will contain
open parts (fragments of nondeterministc choice within the
DCK), where the designer expects the planner to figure out
the best way of completing a sub-task. However, in the ab-
sence of domain-specific guidance for these open parts, it is
natural to consider using a domain-independent heuristic to
guide the search.



In other cases, it is the choice of action arguments, rather
than the choice of actions that must be optimized. In partic-
ular, fragments of DCK may collectively impose global con-
straints on action argument choices that need to be enforced
by the planner. As such, the planner needs to beawareof
the procedural control in order to avoid backtracking. By
way of illustration, consider a travel planning domain com-
prising two tasks “buy air ticket” followed by “book hotel”.
Each DCK fragment restricts the actions that can be used,
but leaves the choice of arguments to the planner. Further
suppose that budget is limited. We would like our planner to
realize that actions used to complete the first part should save
enough money to complete the second task. The ability to
do such lookahead can be achieved via domain-independent
heuristic search.

In the rest of the section we propose three ways in which
one can leverage our translated domains using a domain-
independent heuristic planner. These three techniques differ
predominantly in the operands they consider in computing
heuristics.

Direct Use of Translation (Simple) As the name suggests,
a simple way to provide heuristic guidance while enforcing
program awareness is to use our translated domain directly
with a domain-independent heuristic planner. In short, take
the original domain instanceI and controlσ, and use the
resulting instanceIσ with any heuristic planner.

Unfortunately, when exploiting a relaxed graph to com-
pute heuristics, two issues arise. First, since both the
map and bound predicates are relaxed, whatever value
is already assigned to a variable, will remain assigned
to that variable. This can cause a problem with it-

erative control. For example, assume programσL
def
=

whileφdoπ(c-crate)unload(c, T ), is intended for a do-
main where crates can be only unloaded sequentially from a
truck. While expanding the relaxed plan, as soon as variable
c is bound to some value, actionunload can only take that
value as argument. This leads the heuristic to regard most
instances as unsolvable, returning misleading estimates.

The second issue is one of efficiency. Since fluentstate
is also relaxed, the benefits of the reduced branching factor
induced by the programs is lost. This could slow down the
computation of the heuristic significantly.

Modified Program Structure (H-ops) TheH-opsapproach
addresses the two issues potentially affecting the computa-
tion of theSimpleheuristic. It is designed to be used with
planners that employ relaxed planning graphs for heuris-
tic computation. The input to the planner in this case is a
pair (Iσ,HOps), whereIσ = (Dσ, Pσ) is the translated in-
stance, andHOps is an additional set of planning operators.
The planner uses the operators inDσ to generate succes-
sor states while searching. However, when computing the
heuristic for a states it uses the operators inHOps.

Additionally, function state and predicatesbound and
maparenot relaxed. This means that when computing the
relaxed graph we actually delete their instances from the re-
laxed states. As usual,deletesare processed beforeadds.
The expansion of the graph is stopped if the goal or a fixed
point is reached. Finally, a relaxed plan is extracted in the

1 2 7 8
test(φ)

test(not φ)

test(fp ≤ 5) test(fp > 5)

Figure 2:H-opstranslation ofwhile loops. While comput-
ing the heuristics, pseudo-fluentfp is increased each time
no new effect is added into the relaxed state, and it is set
to 0 otherwise. The loop can be exited if the last five (7-2)
actions performed didn’t add any new effect.

usual way, and its length is reported as the heuristic value.
In the computation of the length, auxiliary actions such as
tests and noops are ignored.

The un-relaxing ofstate, bound andmap addresses the
problem of reflecting the reduced branching factor pro-
vided by the control program while computing the heuris-
tics. However, it introduces other problems. Returning to the
σL program defined above, sincestate is now un-relaxed,
the relaxed graph expansion cannot escape from the loop,
because under the relaxed planning semantics, as soon as
φ is true, it remains true forever. A similar issue occurs
with the nondeterministic iteration. Furthermore, we want
to avoid state duplication, i.e. havingstate equal to two dif-
ferent values at the same time in the same relaxed state. This
could happen for example while reaching anif construct
whose condition is both true and false at the same time (this
can happen becausep andnot-p can both be true in a relaxed
state).

This issue is addressed by theHOps operators. To avoid
staying in the loop forever, the loop will be exited when ac-
tions in it are no longer adding effects. Figure 2 provides a
graphical representation. An important detail to note is that
the loop is not entered whenφ is not found true in the re-
laxed state. (The expressionnot φ should be understood as
negation as failure.) Moreover, the pseudo-fluentfp is an
internal variable of the planner that acts as a real fluent for
theHOps. A similar approach is adopted for nodeterminis-
tic iterations, whose description we omit here.

Since loops are guaranteed to be exited, the computation
of H-ops is guaranteed to finish because at some relaxed
state the final state of the automaton will be reached. At this
point, if the goal is not true, no operators will be possible
and a fixed point will be produced immediately.

For if ’s, if the condition is both true and false at the same
time, thethen part is processed first, followed by theelse
part. The objective of this is avoidance of state duplication.
However, this new interpretation of theif introduces a new
problem. This problem occurs when, while performing the
actions of one of the parts, no action is possible anymore.
Intuitively, this could happen because the heuristics has cho-
sen the wrong subprogram to execute actions from. Indeed,
if there exists an execution of the program from states that
executes the “then” part of theif , it can happen that, during
the computation of the heuristic fors, the “else” part forces
some actions to occur that are not possible. Under normal
circumstances, the non existence of any possible action pro-
duces a fixed point. Because the goal is not reached on such
a fixed point, the heuristic regards the goal as unreachable,
which could be a wrong estimation.



test(not φ) noop
s2

0

s1

0
s1

f

s2
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σ1

σ2

continue

exitif

escape t

escape e

testesc(φ)

Figure 3: H-ops translation forif - then - else . Action
testesc(φ) is possible if conditionφ is true. If condition
¬φ is also true in the relaxed state, thetestesc(φ) dds a fact
escape active that will enable the execution ofcontinue
and escape t and escape e. Actions escape t and
escape e are possible only when no other actions are pos-
sible. This is checked using the pseudo-fluentfp described
in Figure 2. Actionexitif is only possible ifescape active
is true. Both thenoop and theescape e actions delete the
fact escape active. Nestedif constructs are handled using
a parameterized version of theescape active predicate.

To solve this problem,HOps considers new “escape” ac-
tions, that are executable only when no more actions are pos-
sible. Escapes can be performed only inside “then” or “else”
bodies. After executing an escape, the simulation of the pro-
gram’s execution jumps to the else part if the escape occurs
in the “then” part, or to the end of theif , if the escape occurs
in the then part. Figure shows a graphical representation of
theHOps generated for theif .

A Program-Unaware Approach (Basic) Our program-
unaware approach (Basic) completely ignores the program
when computing heuristics. Here, the input to the planner
is a pair(Iσ,Ops), whereIσ is the translated instance, and
Ops are theoriginal domain operators. TheOps operators
are used exclusively to compute the heuristic. Hence,Ba-
sic’s output is not at all influenced by the control program.

Although Basic is program unaware, it can sometimes
provide good estimates, as we see in the following section.
This is especially true when the DCK characterizes a solu-
tion that would be naturally found by the planner if no con-
trol were used. It is also relatively fast to compute.

Implementation and Experiments
Our implementation2 takes a PDDL planning instance and
a DCK program and generates a new PDDL planning in-
stance. It will also generate appropriate output for theBasic
andH-opsheuristics, which require a different set of oper-
ators. Thus, the resulting PDDL instance may contain def-
initions for operators that are used only for heuristic com-
putation using the:h-action keyword, whose syntax is
analogous to the PDDL keyword:action.

Our planner is a modified version of TLPLAN , which
does a best-first search using an FF-style heuristic. It is ca-
pable of reading the PDDL with extended operators.

We performed our experiments on thetrucks, storageand
rovers domains (30 instances each). We wrote DCK for
these domains. For lack of space, we do not show the DCK
in detail, however for trucks we used the control shown as

2Available atwww.cs.toronto.edu/kr/systems

original Simple Basic H-ops blind

T
ru

ck
s #n 1 0.31 0.41 0.26 19.85

#s 9 9 15 14 3
ℓmin 1 1 1 1 1
ℓavg 1.1 1.03 1.02 1.04 1.04
ℓmax 1.2 1.2 1.07 1.2 1.07

R
ov

er
s #n 1 0.74 1.06 1.06 1.62

#s 10 19 28 22 30
ℓmin 1 1 1 1 1
ℓavg 2.13 1.03 1.05 1.21 1.53
ℓmax 4.59 1.2 1.3 1.7 2.14

S
to

ra
ge

#n 1 1.2 1.13 0.76 1.45
#s 18 18 20 21 20
ℓmin 1 1 1 1 1
ℓavg 4.4 1.05 1.01 1.07 1.62
ℓmax 21.11 1.29 1.16 1.48 2.11

Table 1: Comparison between different approaches to planning
(with DCK). #n is the average factor of expanded nodes to the
number of nodes expanded byoriginal (i.e., #n=0.26 means the
approach expanded 0.26 times the number of nodes expanded by
original). #s is the number of problems solved by each approach.
ℓavg denotes the average ratio of the plan length to the shortest plan
found by any of the approaches (i.e.,ℓavg=1.50 means that on av-
erage, on each instance, plans where 50% longer than the shortest
plan found for that instance).ℓmin andℓmax are defined analogously.

an example in the Introduction. We ran our three heuris-
tic approaches (Basic, H-ops, andSimple) and cycle-free,
depth-first search on the translated instance (blind). Addi-
tionally, we ran the original instance of the program (DCK-
free) using the domain-independent heuristics provided by
the planner (original). Table 1 shows various statistics on
the performance of the approaches. Furthermore, Fig. 4
shows times for the different heuristic approaches.

Not surprisingly, our data confirms that DCK helps to
improve the performance of the planner, solving more in-
stances across all domains. In some domains (i.e. storage
and rovers) blind depth-first cycle-free search is sufficient
for solving most of the instances. However, quality of so-
lutions (plan length) is poor compared to the heuristic ap-
proaches. In trucks, DCK is only effective in conjunction
with heuristics; blind search can solve very few instances.

We observe thatH-ops is the most informative (expands
fewer nodes). This fact does not pay off in time in the ex-
periments shown in the table. Nevertheless, it is easy to con-
struct instances where theH-opsperforms better thanBasic.
This happens when the DCK control restricts the space of
valid plans (i.e., prunes out valid plans). We have experi-
mented with various instances of the storage domain, where
we restrict the plan to use only one hoist. In some of these
casesH-opsoutperformsBasicby orders of magnitude.

Summary and Related Work
DCK can be used to constrain the set of valid plans and
has proven an effective tool in reducing the time required
to generate a plan. Nevertheless, many of the planners that
exploit it use arguably less natural state-centric DCK spec-
ification languages, and their planners use blind search. In
this paper we examined the problem of exploiting procedu-
ral DCK with SOA planners. Our goal was to specify rich
DCK naturally in the form of a program template and to
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Figure 4:Running times of the three heuristics and the original instance; logarithmic scale; run on an Intel Xeon, 3.6GHz, 2GB RAM

exploit SOA planning techniques to actively plan towards
the achievement of this DCK. To this end we made three
contributions: provision of a procedural DCK language syn-
tax and semantics; a polynomial-time algorithm to compile
DCK and a planning instance into a PDDL2.1 planning in-
stance that could be input to any PDDL2.1-compliant plan-
ner; and finally a set of techniques for exploiting domain-
independent heuristic search with our translated DCK plan-
ning instances. Each contribution is of value in and of itself.
The language can be used without the compilation, and the
compiled PDDL2.1 instance can be input to any PDDL2.1-
compliant SOA planner, not just the domain-independent
heuristic search planner that we propose. Our experiments
show that procedural DCK improves the performance of
SOA planners, and that our heuristics are sometimes key to
achieving good performance.

Much of the previous work on DCK in planning has ex-
ploited state-centric specification languages. In particular,
TLPLAN (Bacchus & Kabanza 1998) and TALPLANNER
(Kvarnstr̈om & Doherty 2000) employ declarative, state-
centric, temporal languages based on LTL to specify DCK.
Such languages define necessary properties of states over
fragments of a valid plan. We argue that they could be less
natural than our procedural specification language.

Though not described as DCK specification languages
there are a number of languages from the agent program-
ming and/or model-based programming communities that
are related to procedural control. Among these are EAGLE,
a goal language designed to also express intentionality (dal
Lago, Pistore, & Traverso 2002). Moreover, GOLOG is a
procedural language proposed as an alternative to planning
by the cognitive robotics community. It essentially con-
strains the possible space of actions that could be performed
by the programmed agent allowing non-determinism. Our
DCK language can be viewed as a version of GOLOG.
Further, languages such as the Reactive Model-Based Pro-
gramming Language (RMPL) (Kim, Williams, & Abram-
son 2001) – a procedural language that combines ideas from
constraint-based modeling with reactive programming con-
structs – also share expressive power and goals with proce-
dural DCK. Finally, Hierarchical Task Network (HTN) spec-
ification languages such as those used in SHOP (Nauet al.
1999) provide domain-dependent hierarchical task decom-
positions together with partial order constraints, not easily
describable in our language.

A focus of our work was to exploit SOA planners and
planning techniques with our procedural DCK. In contrast,
well-known DCK-enabled planners such as TLPLAN and
TALPLANNER use DCK to prune the search space at each
step of the plan and then employ blind depth-first cycle-free
search to try to reach the goal. Unfortunately, pruning is
only possible for maintenance-style DCK and there is no
way to plan towards achieving other types of DCK as there
is with the heuristic search techniques proposed here.

Similarly, GOLOG interpreters, while exploiting procedu-
ral DCK, have traditionally employed blind search to in-
stantiate nondeterministic fragments of a GOLOG program.
Most recently, Claßenet al. (2007) have proposed to inte-
grate an incremental GOLOG interpreter with a SOA plan-
ner. Their motivation is similar to ours, but there is a sub-
tle difference: they are interested in combiningagent pro-
grammingand efficient planning. The integration works
by allowing a GOLOG program to make explicit calls to a
SOA planner to achieve particular conditions identified by
the user. The actual planning, however, is not controlled in
any way. Also, since the GOLOG interpreter executes the
returned plan immediately without further lookahead, back-
tracking does not extend over the boundary between GOLOG
and the planner. As such, each fragment of nondeterminism
within a program is treated independently, so that actions
selected locally are not informed by the constraints of later
fragments as they are with the approach that we propose.
Their work, which focuses on the semantics of ADL in the
situation calculus, is hence orthogonal to ours.

Finally, there is related work that compiles DCK into stan-
dard planning domains. Baier & McIlraith (2006), Cress-
well & Coddington (2004), Edelkamp (2006), and Rinta-
nen (2000), propose to compile different versions of LTL-
based DCK into PDDL/ADL planning domains. The main
drawback of these approaches is that translating full LTL
into ADL/PDDL is worst-case exponential in the size of the
control formula whereas our compilation produces an addi-
tion to the original PDDL instance that is linear in the size
of the DCK program. Sonet al. (2006) further show how
HTN, LTL, and GOLOG-like DCK can be encoded into plan-
ning instances that can be solved using answer set solvers.
Nevertheless, they do not provide translations that can be in-
tegrated with PDDL-compliant SOA planners, nor do they
propose any heuristic approaches to planning with them.
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Proofs
We here provide the proofs of the two theorems, that is, we
prove the correctness (sound and completeness) of our trans-
lations, and we prove the succinctness of the resulting PDDL
planning instance.

Correctness (Theorem 1)
We divide our proof into two parts: a soundness and a
completeness result. Throughout the proof, we denote by
Iσ,n,n′ the planning instance that results by first invok-
ing C(σ, n, [ ]) and then following the remaining steps of
the compilation, if such a call toC returns(L,L′, n′) for
someL and someL′. Moreover,Iσ,n,n′ ’s initial state re-
quiresstate= sn in the initial state, and the goal requires
state= sn′ . Note thatIσ, as it is defined in the compilation
section, corresponds toIσ,0,nfinal.

We start by proving a few intermediate results.
Lemma 1. Let σ be a program, letI be a planning in-
stance with initial stateInit, and let Iσ,n,n′ be the in-
stance generated by the compilation with the usual op-
erator listsL and L′. Assumeσ1 is a subprogram of
σ, such thatC(σ1, n1, E1) was invoked during the top-
level compilation, returning(L1, L

′
1, n

′
1). Finally, let~a =

a0a1 · · · ap be a plan forIσ,n,n′ . If aj is an action such that
Succ(Init, a0 · · · aj , s

′) ands′ |= state = sk, for somes′

and somek such thatn1 ≤ k < n′1, thenaj is an instance of
an operator inL1 · L

′
1.

Proof. Assume thataj is an instance of an operator inL ·L′

but not inL1 · L
′
1. Since all operators that where generated

byC while compiling a subprogram ofσ′ are also inL1 ·L
′
1,

there must be another subprogram ofσ, sayσ′′, that is not a
subprogram ofσ′ such that the compilation ofσ′′ generated
an operator not inL1 · L

′
1 that is possible whenstate = sk.

The recursive definition of theC operator does not admit
this. If σ′ andσ′′ are two non-overlapping subprograms, the
new preconditions that restrict thestate variable are defined
in such a way that they can never overlap for the same value
of state. �

The following lemma intuitively states that a plan for a
program contains sub-plans for all executed sub-programs.
Lemma 2. Let σ be a program with no program variables.
Let I be a planning instance with initial stateInit, and let
Iσ,n,n′ be the instance generated by the compilation. As-
sumeσ1 is a subprogram ofσ, such thatC(σ1, n1, []) was
invoked during the compilation ofσ, returning(L1, L

′
1, n

′
1).

Furthermore, let~a = a0a1 · · · ap be a plan forIσ,n,n′ such
that, when executed inInit, generates the sequence of states
s1s2 · · · sp. Finally, assume there exist two integersi andj,
such0 ≤ i ≤ j ≤ p and such thatsi |= state = sn1

,
sj |= state = sn′

1
and for all r such thati < r < j,

sr |= state = su with n1 ≤ u < n′1.
Then, for any planning instanceI ′, which is just likeI ex-

cept that the initial issi and the goal is empty, we have that



~a′ = aiai+1 · · · aj is a plan forI ′σ1,n1,n′

1

, which is the in-
stance that results from compilingσ′ by callingC(σ1, n1, [])
on I ′.
Proof. By Lemma 1, actions inaiai+1 · · · aj are instances
of operators inI ′σ′,n1,n′

1

. Moreover, since the initial state
of I ′σ′,n1,n′

1

is si, the sequence~a′ is also executable on
I ′σ′,n1,n′

1

, as while executing~a′ on I ′σ′,n1,n′

1

the planning
states traversed are identical to those states traversed while
performing the subsequence~a′ of ~a in Iσ,n,n′ . Finally, af-
ter performing~a′, we reach a state wherestate = sn′

1
, and

hence~a′ is a plan forI ′σ′,n1,n′

1

. �

We are now ready to prove the soundness part of the the-
orem.

Proof of Theorem 1:
⇒ (Soundness):
Given a plan~a for instanceIσ = (Dσ, Pσ), show that
Filter(~a,D) is a plan forI = (D,P ) under the control of
σ.

We prove this in several steps.

Lemma 3. Let σ be a program,I = (D,P ) a planning in-
stance, and~a a plan for planning instanceIσ = (Dσ, Pσ).
ThenFilter(~a,D) is a plan forI.
Proof: Note that the preconditions of actions inDσ are
strictly more restrictive than their counterparts inD, as the
original preconditions are conjoined with additional ones.
Thus, whenever an actiona of Dσ is executable in a state
s anda is a domain action as opposed to any of the newly
introduces bookkeeping actions, then the corresponding ac-
tion a′ in D is executable ins as well. Further, note that the
additional effects ofa in Dσ compared toa′ in D only af-
fect the new bookkeeping predicates and functions (bound,
map, and state). Therefore, since the initial and goal stateof
Iσ differ from their counterparts inI only in terms of these
bookkeeping predicates and functions,Filter(~a,D) achieves
the goal ofP and thusFilter(~a,D) is a plan forI = (D,P ).
�

To prove that the action sequenceFilter(~a,D) is also a
plan under the control ofσ, we have to show that the au-
tomatonAσ,I accepts it. We do this by induction over the
structure of the programσ.

Lemma 4. Letσ be a program without theπ(x-t) construct,
I = (D,P ) a planning instance, and~a a plan for planning
instanceIσ,n,n′ = (Dσ, Pσ). ThenFilter(~a,D) is an execu-
tion of σ in I.
Proof: Throughout this proof we will refer to the com-
pilation resultC(σ, n,E) = (L,L′, n′) used to construct
Iσ,n,n′ . Since there are noπ(x-t) constructs, we can assume
that theE argument ofC is always empty and can ignore any
boundandmappreconditions and effects upon these predi-
cates for now. The program does not contain any program
variables.

The proof proceeds by induction over the structure ofσ
as follows:

σ = nil : By definition ofC, bothL andL′ are empty, and
therefore no operators are included inDσ. Thus the plan

must be empty. The empty sequence is accepted byAσ,I ,
because[nil , s] is a final state.

σ = a, a ∈ A: By definition of the translation, the only op-
erator inDσ is actiona. Thus, the only potentially pos-
sible action in any state wherestate= sn is a. Since the
goal, by construction, requiresstate = sn+1, ~a must be
[a], anda must be possible in the initial state. From Eq. 4
we know that[a] is accepted byAσ,I .

σ = φ?: By definition of the translation, the only operator
in Dσ is test n n1, which is potentially possible in any
state wherestate= sn. Since the goal, by construction,
requiresstate = sn+1, ~a = [test n n1], and since this
is a plan, we know that its preconditions are satisfied in
the initial state, henceInit |= φ and thusAσ,I accepts
[ ] = Filter([test n n1],D) by Eq. 6.

These are the base cases. Now for the induction steps:

σ = (σ1;σ2): Assume thatC(σ1, n, E) andC(σ2, n1, E)
where invoked while compilingσ, for somen1.
By construction ofI, any plan~a = a0a1 · · · an for Iσ
can be partitioned into two parts~a1 and~a2 such that~a =
~a1~a2, and such thatstate = sn1

in the states′ that results
after performing~a1 overIσ.
Let us defineI ′ = I, then, by Lemma 2,~a1 is a plan for
I ′n,n1

. Moreover, let us defineI ′′ as a planning instance
whose initial state iss′ but with no information about the
state. By Lemma 2,~a2 is a plan forI ′′n1,n2

.
By induction hypothesis we know that the automaton
Aσ1,I′ accepts any plan forI ′σ1,n,n1

for I ′. Analogously,
Aσ2,I′′ accepts any plan forI ′′σ2,n1,n2

.
It now follows from the definition ofδ (Eq. 7) and a simi-
lar argument as in the proof for Lemma 2 that~a1~a2 is also
accepted byAσ,I .

σ = (σ1|σ2): From the definition ofC we know that any
plan forIσ,n,n2+1 must start with eithernoopn (n+1) or
noopn (n1+1). After that, by induction hypothesis and
Lemma 2, the only possible action sequences are those
that are plans forIσ1,n+1,n1

or Iσ2,n1+1,n2
. These se-

quences are accepted by their respective automataAσ1,I

andAσ2,I . By its definition, the language accepted by
Aσ,I is the union of the two languages of these automata,
and the additionalnoopactions are filtered out.

σ = if φ thenσ1 elseσ2: From the definition ofC for this
case we know that any plan forIσ,n,n3

must start with
either test n n′ or test n n′′, with n′ = n + 1 and
n′′ = n1 + 1, depending on whetherφ holds in the initial
state. After that, by induction hypothesis and Lemma 2,
the only possible action sequences are those that are plans
for Iσ1,n′,n1

or Iσ,n′′,n2
. These sequences are accepted

by their respective automataAσ1,I andAσ2,I , by induc-
tion hypothesis. By its definition, the language accepted
byAσ,I is the one accepted by the former ifφ holds in the
initial state, and otherwise the language of the latter. The
noopandtest actions are filtered out.

σ = whileφdoσ′: From the definition ofC for this case
we know that any plan forIσ,n,n′ , with n′ = n1 + 1,
must start with eithertest n n′′, with n′′ = n + 1, if
φ holds in the initial state, ortest n n′, otherwise. In



the former case, by Lemma 2, the only action sequence
possible will start with a plan forIσ′,n′′,n1

which, by in-
duction hypothesis, is accepted by the automatonAσ′,I ,
followed bynoopn1 n which, inductively, implies that it
is followed by a plan forIσ,n,n′ . By definition ofAσ,I , in
the case wheres |= φ, it accepts sequences which begin
with sequences accepted byIσ′,n′′,n1

, followed by any
other sequence accepted byAσ,I . Otherwise, ifφ does not
hold initially, test n n′, which is possible whenφ doesn’t
hold, leads to a final state ofIσ,n,n′ and the filtered plan
is empty. AnalogouslyAσ,I accepts the empty language
if φ doesn’t hold. Thus,Aσ,I accepts any plan forIσ,n,n′ .

σ = σ′∗: From the definition ofC for this case and Lemma
1 we know that any plan forIσ,n,n2

, must either consist of
noop(n, n2), which after filtering results in the empty plan
which is trivially accepted byAσ,I , or a plan forIσ′,n,n1

followed bynoop(n1, n) and, recursively, any other plan
for Iσ,n,n′ . In the latter case, by induction hypothesis, any
such plan is accepted by the sequence of automatonAσ′,I

andAσ,I , which precisely meets the definition ofAσ,I .

�

Now for the case with program variables.

Lemma 5. Let σ be a program, possibly withπ(x-t) con-
structs,I = (D,P ) a planning instance, and~a a plan for
planning instanceIσ = (Dσ, Pσ). ThenFilter(~a,D) is an
execution ofσ in I.
Proof: The proof proceeds by induction over the number of
π(x-t) constructs inσ.

If σ is program variable free (π(x-t) does not occur), then,
trivially by Lemma 4 the proposition holds.

Assumeσ = π(x-t)σ′, and let~a′ = a0a1 · · · an such that
~a′ · [freen1

(x)] is a plan forIσ. First, we prove that there
exists ano ∈ Objs such thata0a1 · · · an is a plan forIσ′|x/o.

Let us assume that the state trajectory generated when
performing a0a1 · · · an in Init is s0s1 · · · sn. Observe
the actions in the plan cannot deletemap(x) or delete
bound(x, o). Furthermore, ifbound(x, o) is true in a certain
state, no action will addbound(x, o′) for any o′ different
from o. Hence, there exists aj (0 ≤ j ≤ n) such that

• si 6|= map(x) andsi 6|= bound(x, o), for anyo ∈ Objs
and anyi < j, and

• si |= bound(x) andsi |= map(x, v) for all i s.t. j ≤ i ≤
n and somev ∈ Objs.

We claim thata0a1 · · · an is a plan forIσ′|x/v. The proof
for the claim is split in two parts: (a) we prove that the se-
quencea0a1 · · · an is legally executable inIσ′|x/v, then (b)
we prove that it reaches the goal.

For proving (a), note that the only difference betweenIσ
andIσ′|x/v are the preconditions of some of its operators.
For each occurrence ofbound(x) → map(x, xi) (for some
xi) in an operator inIσ there is an occurrence ofxi = v
in Iσ′|x/v. It is easy to see that the preconditions of the
first j − 1 actions of the sequence,a0a1 · · · aj−2, are sat-
isfied inIσ′|x/v. Indeed, note that becausebound(x) is not
added by these actions inIσ, by the definition ofC, it means
that the subformula of the precondition of the operator of
Iσ that evaluated to true at that point is identical to that of

the respective operator inIσ′|x/v. Now let’s focus on action
aj−1. This actionaddsbound(x) andmap(x, v). By the
construction ofC this means that the precondition evalu-
atedbound(x) → map(x, xi) to be true in the state were
aj−1 was performed (this happens becausebound(x) is
false). Because after performingaj−1, map(x, v) is added,
it means that the parameterxi of the operator took valuev,
while satisfying all additional preconditions. On the other
hand, inIσ′|x/v, the condition to be checked by the respec-
tive operator is insteadxi = v, which we know can be made
true while satisfying additional preconditions of the opera-
tor, becauseaj−1 was executable inIσ. For the remaining
part of the sequence,ajaj+1 · · · an the proof is analogous.
When performed inIσ, some of these actions will evalu-
atebound(x) → map(x, xi) to true, with the side effect of
making the parameterxi equal tov. On the other hand, in
Iσ′|x/v, the same effect is achieved but by the explicitxi = v
in the precondition. Hence, the precondition inIσ′|x/v will
also be satisfied.

The proof for (b) is straightforward. Since the goal does
not mention any bookkeeping predicates, the sequence~a′

produces the same state inIσ′|x/v as~a′ · [freen1
(x)] in Iσ.

The proof now follows from Lemma 4. �

Proof of Theorem 1 (continued):
⇐ (Completeness):
Given a plan~a for I under the control ofσ, show that there
exists a plan~a′ for Iσ, such that~a = Filter(~a′,D).

The proof again proceeds by induction over the structure
of the programσ, and again we first show the case for pro-
grams withoutπ(x-t) constructs, i.e. without program vari-
ables.

Lemma 6. Letσ be a program without theπ(x-t) construct,
I = (D,P ) a planning instance, and~a a plan forI under the
control ofσ, then there exists a plan~a′ for Iσ,n,n′ such that
~a = Filter(~a′,D).
Proof: We will again refer to the compilation result
C(σ, n,E) = (L,L′, n′) used to constructIσ,n,n′ , and oc-
casionally also to variables occurring in the particular com-
pilation case considered in the induction proof. Again, since
there are noπ(x-t) constructs, we can assume that theE
argument ofC is always empty and can ignore anybound
andmappreconditions and effects upon these predicates for
now. The program does not contain any program variables.

By assumption we know thatAσ,I accepts the plan~a. The
induction over the structure ofσ is as follows:

σ = nil : Aσ,I only accepts the empty language, since there
are no transitions defined for thenil program, but[nil , s]
is an accepting state for any states over I. Thus~a =
[ ]. Since both initial an goal state ofIσ,n,n′ only require
state= sn on top of the original initial and goal state of
I, andn′ = n, ~a′ = [ ] = ~a is also a plan forIσ,n,n′ and
~a = Filter(~a′,D).

σ = a, a ∈ A: In this case~a = [a]. Since in the compilation
E is empty, the preconditions of the operator correspond-
ing toa in Iσ,n,n′ are the same as those fora in I, except



thatstate= sn has to hold. This condition is easily ful-
filled by the fact that the initial state ofIσ,n,n′ states just
this. Also, a goal state ofIσ,n,n′ is reached after execut-
ing a in Iσ,n,n′ , since the new operator, by definition ofC
hasstate= sn+1 as an effect, which, by construction, is
the only additional requirement in the goal state ofIσ,n,n′

compared toI. Thus~a is a plan forIσ,n,n′ , and trivially
~a = Filter(~a,D).

σ = φ?: Again, the plan has to be the empty sequence,
since this is the only one accepted byAσ,I . Also, by
definition ofAσ,I , the initial stateInit of I satisfiesφ.
Let ~a′ = [test n n′]. This is a plan forIσ,n,n′ , be-
cause by its construction in the definition ofCtest its
precondition isstate = sn ∧ φ. This is satisfied since
the initial state ofIσ,n,n′ is like that of I plus the as-
sertion thatstate = sn. Sinceφ cannot mention the
new special fluentstate its truth value does not differ
between the initial state ofIσ,n,n′ and that ofI itself.
Further,test n n′ setsstate= sn′ as its only effect (E
is empty), thus satisfying the goal ofIσ,n,n′ . Finally,
~a = [ ] = Filter([test n n′],D).

These are the base cases. Now for the induction steps:

σ = (σ1;σ2): We start this case by stating an intermediate
result where we useδ(σ,~a) to denote the repeated transi-
tion of δ over the actions of the sequence~a.
Claim: If ~a is accepted byAσ,I , then~a can be decom-
posed into two parts~a1 and~a2, such that~a = ~a1~a2, and
such that[nil;σ2, s

′] ∈ δ([σ1;σ2, Init],~a1), for somes′

and such that[nil, s′′] ∈ δ([σ2, s
′],~a2). Intuitively, this

means that the automaton’s state[nil;σ2, s
′] is part of an

accepting path of states for~a. Proof. Straightforward (but
lengthy) by induction on the structure ofσ1.
Let us assume that~a = ~a1~a2, for ~a1 and~a2 as defined
above. Furthermore let us defineI1 as an instance just
like I except that its goal is to get to states′ (as defined
above). Moreover, we defineI2 to be just likeI but such
that its initial state iss′. Observe now that~a1 and~a2

are clearly accepted byAσ1,I1 andAσ2,I2 . Indeed, this
follows straightforwardly from the claim and the fact that
the transition function forAσ1,I1 andAσ2,I2 are subsets
of the transition function forAσ,I .
By induction hypothesis, there are plans~a′1,~a

′
2 for

I1
σ1,n1,n′

1

andI2
σ2,n2,n′

2

for any two integersn1, n2, such
that~a1 = Filter(~a′1,D) and~a2 = Filter(~a′2,D). Choos-
ing n2 = n′1 as defined by the compilation ofσ1 with
parametern = n1, we get that the initial state ofI2

σ2,n2,n′

2

is a goal state ofI1
σ1,n1,n′

1

and thus~a′ = ~a′1 · ~a
′
2 is a plan

for Iσ,n,n′ . Since the concatenation does not introduce
any new actions we get~a = Filter(~a′,D).

σ = (σ1|σ2): By definition,Aσ,I accepts the union of the
sets of plans forσ1 andσ2, i.e. ~a is accepted by either
Aσ1,I orAσ2,I .
Assume it is a plan under the control ofσ1 (i.e., it is
accepted byAσ1,I ). By induction hypothesis there is
a plan ~a1 for Iσ1,n1,n′

1
for any integern1, such that

~a = Filter(~a′1,D). Then~a′ = [noopn (n+1)] · ~a′1 ·

[noopn1 (n2+1)] is a plan forIσ,n,n2+1, wheren2 is de-
fined in the compilation, and since thenoopactions are
filtered again~a = Filter(~a′,D). The case when~a is a
plan under the control ofσ2 is analogous with the plan
~a′ = [noopn (n1+1)] ·~a′2 · [noopn2 (n2+1)], n1, n2 are
defined by the compilation.

σ = if φ thenσ1 elseσ2: Depending on whether or not
Init |= φ, ~a is a plan under the control ofσ1 or σ2, i.e. it
is either accepted byAσ1,I or Aσ2,I . AssumeInit |= φ.
Then,~a1 is accepted byAσ1,I , and by induction hypoth-
esis, there is a plan~a′1 for Iσ1,n1,n′

1
for any integern1

s.t. ~a = Filter(~a′1,D). Then~a′ = [test n (n+ 1)] ·
~a′1 · [noopn1 n3] is a plan forIσ,n,n′ and by definition
of Filter we have~a = Filter(~a′,D). Analogously when
Init 6|= φ, ~a′ = [test n (n1+1)] · ~a′2 · [noopn2 n3] is a
plan forIσ,n,n′ and again~a = Filter(~a′,D).

σ = whileφdoσ′: The induction step for this case is itself
by induction. We refer to this induction as “inner induc-
tion”, and to the other as “outer induction”. The inner
induction is on the length of the action sequence~a.
As our inner base case, assume thatInit 6|= φ, then~a = [ ]
(|~a| = 0). Then[test n n′] is a plan forIσ,n,n′ for any
integern, because by construction the precondition for
this test action is¬φ ∧ state= sn, and its effect asserts
state= sn′ . Also [ ] = Filter([test n n′],D). This con-
cludes the proof for the inner base case.
Now, as our inner induction hypothesis, we assume the
theorem holds for all sequences of action whose length
is strictly less thatk. Now assume|~a| = k. In this
case, we have thatInit |= φ, and then~a = ~aσ′ · ~a′′ is
a plan forIσ,n,n′ , where~aσ′ is a sequence accepted by
Aσ′,I , and~a′′ is accepted byAσ,I′ , whereI ′ is like I
except that the initial state is the state reached after ex-
ecuting~aσ′ in Init . Then, by outer induction hypothesis
there is a plan~a′σ′ for Iσ′,n3,n′

3
for any integern3, s.t.

~aσ′ = Filter(~a′σ′ ,D), and by inner induction hypothe-
sis there is a plan~a′′′ for I ′σ,n2,n′

2

for any integern2 s.t.
~a′′ = Filter(~a′′′,D). Choosingn2 = n andn3 = n + 1
we get that~a′ = [test n (n+1)] ·~a′σ′ · [noopn1 n] ·~a′′′ is
a plan forIσ,n,n′ , wheren1 is defined by the compilation
for σ. Finally, again,~a = Filter(~a′,D).

σ = σ′∗: We again require an inner induction on the length
of ~a. Assume that~a = [ ], then [noopn n′] is a plan
for Iσ,n,n′ and trivially~a = Filter([noopn n′],D). This
concludes the proof for the base case of the inner induc-
tion. Assume now for the inner induction case that the
theorem holds for all sequences of length less thank,
where |~a| = k. In this case,~a = ~a1 · ~a2 where~a1 is
accepted byAσ′,I and~a2 is accepted byAσ,I′ whereI ′

is like I except that the initial state is the state reached
after executing~aσ′ in Init . Then, by outer induction hy-
pothesis there is a plan~a′1 for Iσ′,n3,n′

3
for any integern3

s.t. ~a1 = Filter(~a′1,D), and by inner induction hypoth-
esis there is a plan~a′2 for I ′σ,n2,n′

2

for any integern2 s.t.
~a2 = Filter(~a′2,D). Choosing bothn3 = n andn2 = n
we get that~a′ = ~a′1 · [noopn1 n] ·~a′2 is a plan forIσ,n,n′ ,
wheren1 is defined by the compilation. Again, by the



two induction hypotheses and the fact thatnoopn1 n is
filtered out,~a = Filter(~a′,D).

�

Now for the case with program variables.

Lemma 7. Letσ be a program over a planning instanceI =
(D,P ) (possibly containingπ(x-t) constructs), and~a a plan
for I under the control ofσ, then there exists a plan~a′ for
Iσ,n,n′ such that~a = Filter(~a′,D).
Proof: The proof proceeds by induction over the number of
π(x-t) constructs occurring inσ. The base case, where this
number is zero, is given by Lemma 6.

Otherwise, assumeσ = π(x-t, σ′) for some arbitrary
other programσ′ over I. By the definition ofAσ,I , ~a is
accepted by some automatonAσ|x/o,I where inσ all oc-
currences ofx are replaced by some (but in all occurrences
the same)o such that(o, t) ∈ τD ∪ τP . We show that (i)
~a′ = ~a · [free n1(x)] is a plan forIσ,n,n′ for any inte-
ger n, wheren1 is defined in the compilation ofσ using
n as the integer parameter. We further need to show that
(ii) in a states′ reached after performing~a in any states
that satisfies¬bound(x) ∧ ¬(∃y).map(x, y), we again get
s′ |= ¬bound(x) ∧ ¬(∃y).map(x, y). Obviously, the initial
stateInit has this property for all program variables occur-
ring in σ.

(i) By assumption~a is accepted byAσ|x/o,I for some
o, i.e. after replacing all occurrences ofx in σ with o,
and is a plan forI. By induction hypothesis and Lemma
6 there exists a plan~a′1 for Iσ|x/o,n,n′ for any integern
such that~a = Filter(~a′1,D). We show that this is also a
plan for Iσ,n,n′ after minor modifications to the occurring
test actions, and which in particular do not result in a dif-
ferent result when applyingFilter. Compileσ as defined
usingC(σ, n, [ ]) = (L,L′, n′). For any test action oc-
curring in~a′1 whose corresponding operator definition inL
hasx as a formal parameter, addo as an additional argu-
ment at the position wherex appears in the operator defi-
nition, creating a new sequence~a′2. We show that this se-
quence is a plan forIσ,n,n′ : Let a1 be the first action in
~a′2 whose corresponding operator definition inL hasx as
a formal parameter. The corresponding actual parameter is
o. Then, since in the initial states of Iσ,n,n′ we have that
s |= ¬bound(x) ∧ ¬(∃y).map(x, y), s satisfies the precon-
ditions ofa1, because the only preconditions on top of those
defined inIσ|x/o,n,n′ arebound(x) → map(x, o). The ac-
tion will further have as an effectbound(x) andmap(x, o).
Hence, all following actionsak in ~a′2 whose corresponding
operator inL hasx as a formal parameter, will also be possi-
ble and have the same effects as inIσ|x/o,n,n′ (by construc-
tion of σ|x/o), because also they haveo as actual param-
eter, and since~a′2 cannot mention any actionfree ni(x),
for any i, we have for all statess′′ visited later on dur-
ing the execution of~a′2 that s′′ |= bound(x) ∧ map(x, o)
which entails the preconditions ofak in Iσ,n,n′ . Since fur-
ther only the truth value ofbound and map are changed
compared to the effects inIσ|x/o,n,n′ , the goal, which by
construction doesn’t mention either of these predicates, is
reached at the end. Hence,~a′2 is a plan forIσ,n,n′ . Also

~a = Filter(~a′2 · [free n1(x)],D).
(ii) Clearly, since for anyni, free ni(x) has¬bound(x)∧

(∀y).¬map(x, y) as an effect, any states′ reached after exe-
cuting~a′2 · [free n1(x)] in any other state satisfies this.�

Theorem 1 then follows directly from Lemmata 5 and 7
for n = 0 and nfinal as defined by the compilation
C(σ, 0, [ ]) = (L,L′, nfinal).

Succinctness (Theorem 2)
Proof of Theorem 2:
The compilation of each programming construct, as defined
by C, introduces a constant number of new operators into
Iσ or extends the definition of one of the operators ofI with
a constant number of additional preconditions and effects.
In all cases, the size of the new preconditions and effects is
bounded by a constant factor in the number of elements of
E. From the definition ofC for π it follows that the maximal
length ofE occurring during the compilation ofσ is exactly
the number of nestedπ constructs,k. Hence, if the program
has sizen, then there are no more thann programming con-
structs. Since also each construct is considered exactly once
by C, there can be no more thann operators inIσ, each of
sizeO(k). Hence, overallIσ has sizeO(k · n). �


