
Department of Computer Science
University of Toronto

Technical Report CSRG-566

Mappings, maps, atlases and tables: a formal
semantics for associations in UML 2 ?

Zinovy Diskin1 and Juergen Dingel2

1 Department of Computer Science, University of Toronto
Ontario, Canada

zdiskin@cs.toronto.edu
2 School of Computing, Queen’s University

Kingston, Ontario, Canada
dingel@cs.queensu.ca

Abstract. In fact, UML2 offers two related yet different definitions of
associations. One is implicit in several explanatory sections of the Stan-
dard and belongs to UML folklore. It basically says that an association
is a set of navigation paths/mappings between the participating classes.
The other – official and formal – definition is explicitly fixed by the UML
metamodel and shows that there is much more to associations than just
mapping. Particularly, association ends can be owned by either partici-
pating classes or by the very association, be navigable or not, be unique
or not, and may be optionally qualified.
The paper presents a formal framework, based on sets and mappings, in
which all notions involved in the both definitions can be accurately ex-
plained and formally expounded. Our formal model allows us to reconcile
the two views of associations, to present the construct in a remarkably
symmetric and unified way and, finally, to detect a few flaws in the as-
sociation part of the UML2 metamodel.

? Research supported by IBM Eclipse Innovation Grant



Associations are the glue that ties a system together. Without associ-
ations, there are nothing but isolated classes that don’t work together.

James Rumbaugh, Ivar Jacobson and Grady Booch, “The
UML Reference Manual”, [16]

1 Introduction

As the epigraph states, associations are amongst the most important modeling
constructs. A clear and accurate formal semantics for them would provide guid-
ance for a convenient and precise syntax, and greatly facilitate their adequate
usage. Moreover, in the context of model-driven software development, seman-
tics must be crystal clear and syntax has to specify it in an unambiguous and
suggestive way. An additional demand for clarifying the meaning of associations
comes from UML2 metamodel that is based on binary associations.

Unfortunately, the UML2 specification [14], further referred to as the Stan-
dard, does not satisfy these requirements. While complaints about informality of
semantics are common for many parts of UML, for associations even their (ab-
stract) syntax fixed in the metamodel seems to be complicated and in some parts
really obscure. For example, the meaning of the (meta)associations ownedEnd
and navigableOwnedEnd of the Association (meta)class in the metamodel, and
the relationships between ownership and navigability in general, are not clear. In
the newest version of the Standard [14], navigability and ownership are declared
to be orthogonal concepts (which is explicitly stated as to be in contrast with the
previous version of UML2 [12]) while the metamodel is kept unchanged. Surpris-
ingly, it shows that the metamodel is not even intended to follow the conceptual
framework and precisely specify it.

The Standard also states that the relationship between ownership and navi-
gability for binary associations is principally different from the case of multiary
(n ≥ 3) associations. In fact, it means that the very definition of Association
splits into the binary and multiary cases. The infamous multiplicity problem for
multiary associations [7] is another point where the cases of binary and multiary
associations are qualitatively different in UML. Also, in the family of constructs
related to Association, the qualified association appears to be something dis-
tinct and treated separately from the binary and multiary cases, which makes
the fragmentation even worse. Last but not least, if an Association is a collection
of Properties (ends, mappings), i.e., something having a direction, how can it be
the classifier for the corresponding set of links, i.e., something symmetric and
non-directional?

Many important aspects of Association (uniqueness, multiplicities, navigabil-
ity) are still debated in the community (e.g., [?], [11],[1]), and the corresponding
part of the Standard is not stable (e.g., the recent revision mentioned above).
A sign of a general distortion of the association part of the metamodel is that
many modeling tools do not implement multiary associations, not to mention
qualified associations - a rarity among the implemented modeling elements.

We will show in the paper that all these problems grow from the same root,
and can be fixed as soon as the root problem is recognized and fixed. Roughly

2



speaking, UML mixes up three different sides of the association construct and for
three related yet different sets containing in total n+n+2n modeling constructs,
offers one n-element set of terms and formal notions defined in the metamodel. It
implies that the same basic term/notion of memberEnd in different parts of the
standard implicitly refers to different modeling constructs. As a rough analogy,
let us consider using the same term “cylinder” for the following three constructs:
a 3D-solid, its net surface and its cylindric surface. Perhaps such an ambiguity
may be acceptable in a general discussion (think of the conceptual modeling
stage of software design), but technical questions like computing the area of the
“cylinder” or its weight (design and implementation) need a precise definition
of what is meant by “cylinder”. (To make the picture more dramatic, the reader
may think of a negotiation process between three parties, each one with its own
understanding of the term).

Of course, in real life such ambiguities would hardly be a serious problem.
As soon as the first signs of different understandings of the notion by the par-
ties would appear, ambiguities could be easily resolved by presenting a physical
model or drawing of a cylinder and pointing out what each party means. It
would at once result in precise definitions of the three different notions of the
“cylinder”, say, Cylinder 1, Cylinder 2, Cylinder 3, and the relationships between
them (see Fig. 1). For further references, we call this phenomenon the Cylinder
Syndrome1

 

  

Cylinder 1 (3D-solid) Cylinder 2 (Net surface) Cylinder 3 (Side surface) 
 

Fig. 1. The Cylinder Syndrome: Three meanings of the same term.

1 Perhaps such a detailed exposition of our cylinder analogy would not be worth the
efforts, but in the paper we will encounter this sort of problem several times, and
having a brief term for referencing would be convenient. Moreover, the issue appears
in other parts of UML and other modeling languages too, and thus acquires the
status of a general phenomenon in the modeling world. Therefore we have made an
attempt to coin a general term for it: naming means recognition and it is the first,
and often crucial, step to solution.
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Unfortunately, the simple and reliable method of bringing or drawing a phys-
ical cylinder does not work for conceptual constructs (“conceptual Cylinders”)
like Association. However, we can try to build a formal model of the concept ex-
plicating its different understandings in formal terms. Then, if our formal model
is well designed and rich enough, each party could recognize and show in the
model that party’s view of the concept. It appears to be a reasonable (if not the
only) way to manage the problem, and this is what we are going to do in the
paper. Although the construct of Association is simple enough conceptually, its
technical version described by the Standard is not a trivial subject to model and,
as far as we know, has not been adequately formalized yet. Hence, our goal is to
build a formal model for Association that would be rich enough to explain the
construct as defined by the Standard yet comprehensible and mathematically
sound.

A word of caution is in order. Formalities as such can be either boring or
interesting to play with. When they are intended to model engineering artifacts,
the first and crucial requirement for them is to be an adequate and careful
formalization of the intuitions behind the artifacts to be modeled. We have paid
close attention to deducing our formalization from the Standard rather than from
our own perception of what the association should be. To achieve this goal, we
have scrutinized the metamodel and read the accompanying explanatory sections
of the Standard as carefully as possible. That is why there are many quotations
in the paper (they are typed with an indentation and supplied with numbers
(Q1),(Q2).. on the left; our own explanatory words within the quotes are placed
in square brackets). In addition to reading the Standard, we have discussed
possible interpretations with the experts [17, 11] and tried to listen to what
might be called the UML spirit. The latter is presented in the explanatory parts
of the Standards (collected mainly in the Semantics, Description and Notation
Sections) and in the UML folklore too. Finally, in cases of essential discrepancies
between our formal model and the UML metamodel, we have tried to find out
their possible causes. Finding a reasonable semantic explanation of why the
Standard deviates from a formal model does serve as another justification for
adequacy of the latter.2

Our plan for the paper is as follows. In the next section we consider in detail
an example illustrating the origin of the UML2 association problems and how
we are going to fix them. Sections 3 and 4 present the results of our reading
and interpreting the Standard, and making it precise in formal terms. Section
3 deals with purely structural aspects without implementation concerns, which
are, in turn, are considered in Section 4. In both section, we follow basically
the same pattern: analyze the UML metamodel and the respective explanatory
parts of the Standard, build a corresponding mathematical model, express it

2 We recognize that for such an organizationally non-trivial enterprize as standard-
ization of the software industry and UML, there are many factors influencing and
shaping the result (political, cultural, personal), which are entirely beyond our inves-
tigation. We work with and only with the mathematical substance and engineering
intuition underlying the subject.
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diagrammatically as a metamodel, render the latter in the UML metamodeling
style, and finally, compare the result with the UML metamodel. These compar-
isons are instructive and their results are presented in sections 3.4,4.4, 4.7. Note
also our new consistent and unambiguous notation for associations proposed in
Table 3.

Nevertheless, models built in sections 3 and 4 are not quite satisfactory for-
mally and mathematically in that they follow two unfortunate features of the
UML metamodeling. The first is that syntax and semantics are not strictly sep-
arated. The second is that working with labeled structures goes through labeled
bags, and this is not a quite adequate and accurate notion. These two deficien-
cies are fixed in section 5, where we built a formal model of UML Association
according to mathematical standards, and then apply our analysis pattern once
again. The result is our metamodel of the association construct in Fig. 8: it is
mathematically justified, endowed with a formal semantics and arranged in the
UML metamodeling style.

There are a few other aspects of our metamodel to be mentioned. It is built
on base of the explanatory sections of the Standards and, in fact, is nothing
but an accurate formal explication of the underlying intuitions. Nevertheless,
the metamodel is surprisingly compact and observable. It shows enough simi-
larity with the UML metamodel to make the comparison possible, and on the
other hand, it shows enough differences with the UML metamodel to make the
comparison interesting and productive for UML.

The results of our comparative analysis are remarkable: while informal def-
initions in the explanatory sections of the Standard are more or less consistent
and can be mathematically interpreted and formalized, their specification in the
UML metamodel is inaccurate, incomplete and, in fact, inconsistent. This dis-
covery is somewhat astonishing since it is the metamodel that should cast the
intuition, or at least a part of it, into a precise specification to be used by tool
vendors when they implement UML. The comparative analysis line of the paper
is summarized in section 6. We not only demonstrate what is distorted in the
UML metamodel of Association but also try to figure out general problems of
UML metamodeling that could cause this distortion, and suggest a correspond-
ing treatment.

The reader looking for a shortcut to the final results could look briefly through
section 2 and then jump over sections 3 and 4 to section 5 and the final discussion.
The reader aiming at detailed motivation of our formalities and understanding
the UML style of metamodeling is encouraged to follow its bends and twists and
read the intermediate sections too. A reward for this journey is the possibility
to feel a special charm of UML modeling and metamodeling. After all, UML is a
language and understanding UML is a linguistic activity beyond formal patterns.
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Relation to other work: What is in and not in the paper. Semantics
for the concepts of association/relationship and particularly, of aggregation and
role is a well-known research issue that can be traced back to the pioneering
works on data semantics by Abrial, Brodie, Chen, Tsichritzis and Lochovsky in
seventies-early eighties (see [9] for a survey). Since then a vast body of work on
the subject was done and reported in the literature but this angle of viewing as-
sociations is far beyond the goals of the present paper. In UML2, modeling these
aspects of associations is expressed by the corresponding value of the attribute
“aggregation”: whether it is aggregation (the white diamond), or composition
(the black diamond) or neither of them (an ordinary association end). We leave
building formal semantics for white-black diamonds for our next paper on the
issue. A suitable mathematical framework is already developed in [3].

We also do not consider the dynamic aspects of the association construct
[18],[] [?]. In UML2 they are attributed to collaboration diagrams and structured
classifiers, and do not influence the Association part of the metamodel. The
focus of the present paper is thus on Association as it is defined in the Standard,
and covers all its technical aspects apart from the “diamonds”. Clarification
of technical issues is not a too aspiring research topic, and just a few works
focused on them for UML 1.* were published, e.g., [7][6]. Unfortunately, they
all became outdated when UML2 essentially reworked the technical aspects of
Association. As for Association in UML2, the only published work we know about
is [10], which is focused mainly on semantics of the attribute isUnique assigned
to association ends. We incorporated Milicev’s semantics of this attribute and
developed it further (section 4.6).
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2 Symptoms of the Cylinder Syndrome for UML2
associations: an example

The following example shows the essence of the problems with UML associations.

2.1 Getting started

Suppose a set of Tasks dealing with model development so that each task is
assigned a model, which we will denote by m1,m2.... Also, each task is conducted
by a leader and a few team-members whom we call helpers. We thus have a
ternary association Task with three components:

(1) {lead:Person, help:Person, mod:Model},

where Person and Model are classes participating in the association and lead,help
and mod are their roles in the association.

The Standard begins its Semantics section devoted to Association [?, sect.7.3.3,
p.42] with the following description:

(Q1)

An association declares that there can be links between
instances of the associated types. A link is a tuple with
one value for each end of the association, where each value
is an instance of the type of the end.[a]

a In the UML jargon, classes are often called types.

A set of possible links for our association Task can be recorded in a three-column
table as shown in cell (a0) in the leftmost column of Table 1. We will call it an
extension of Task. Each row in table (a0) is a link and columns/roles are thus
association ends.

Formally, an instantiated table can be specified by a set Task of its rows/links
together with three projection mappings lead,help,mod into the corresponding
classes as shown in cell (a1) of Table 1. The configuration of nodes and arrows
in (a1) serves as a classifier for the links of the form shown in (a0) (note that
Association is a Classifier according to the UML2 metamodel, see Fig. 2 below).
In addition, if duplication of links in the table is not allowed, the triple of projec-
tion mappings must be declared jointly one-one or a key : for any two different
links, at least one of the projections gives two different values. We will denote
this predicate by symbol {key}. Importantly, this predicate/constraint may be
declared for an association but is not a must: UML does admit extensions with
duplicate links. Whether duplication is allowed or not is regulated by setting the
attribute isUnique of association’s ends to be True or False; we will return to
this question later in section 4.6.

Thus, cell (a1) models association Task as a ternary table, that is, a triple
of mappings

(2) lead : Task → Person,help : Task → Person,mod : Task → Model,

8



with a common source type Task. We will write such table definitions by ex-
pressions T = (R, p1, p2, p3) with R the (name of the) collection of rows or
links, which we call the head of the table, and pi are (names of the) the projec-
tion mappings. Note that the tabular/extensional view of Association is entirely
symmetric (non-directional) in that neither of the roles/ends has a preference.

2.2 Navigating associations, I: structural mappings

While the tabular view is usually sufficient for database applications, in the area
of programming languages associations are normally understood in a naviga-
tional manner as mappings. The Standard says [?, sect.7.3.3, p.42]:

(Q2)

For an association with N ends, choose any N-1 ends and
associate specific instances with those ends. Then the col-
lection of links of the association that refer to these specific
instances will identify a collection of instances at the other
end. The multiplicity of the association end constrains the
size of this collection.

This description brings onto the stage the procedure of looking-up the extension
table in one or another direction, see sample (pieces of) tables in cells (b0) in
Table 1. Formally speaking, such a procedure amounts to a binary mapping
(in the mathematical sense), and a three column table generates three such
mappings as shown in cell (b1). Each mapping is denoted by a bold circle (of
a different color with a color display), and its target is shown by an arrow.
The two arguments are shown by edges/ends incoming into the circle. These
argument ends must be named to distinguish between the different arguments of
the same type (consider, for example, mapping mod∗ whose two arguments have
the same type Person). Since our mappings have only one output, we can use
the mapping’s name for it and write, for example, mod∗(lead :Bob,help :John)
to denote the collection of values assigned by the mapping mod∗ to the pair
of arguments, Bob in the role of leader and John in the role of helper. Note
that our association does not prohibit for the same Person to be a leader in
one Task and helper in the other, and hence the same person can play different
roles in different tasks (though our particular instantiation in cell (a0) does not
show this possibility). Note that mappings specified in cell (a2) are different
from the projection mappings in cell (a1), they have different sources and they
have different multiplicities. Therefore, we name them differently using scripting
the role names with stars: help∗, lead∗ and mod∗. Quote (Q2) also says that
multiplicity of an end is the multiplicity of the corresponding *-mapping.

We will call such *-mappings structural as they seem to be particular cases of
what is called StructuralFeature in UML2. Unfortunately, the Standard does not
employ a well-known and reliable notion of mathematical mapping between sets.
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Instead, UML uses a vaguely defined notion of Property [?, sect.7.3.44,p.125]

(Q3)

A property is a structural feature. ... Property represents
a declared state of one or more instances in terms of a
named relationship to a value or values.a When a property
is an attribute of a classifier, the value or values are related
to the instance of the classifier by being held in slots of
the instance. When a property is an association end, the
value or values are related to the instance or instances
at the other end(s) of the association (see semantics of
Association [our quote (Q2)]).

a Italic is ours.

Fortunately, the notion of attribute is well understood: an attribute of a class
is a mapping, which assigns a value or a collection of values to each instance of
the class. It also appears that our *-mapping interpretation of the ends (lead∗,
help∗, mod∗) well matches the second half of the description above. Then it
looks reasonable to interpret the general definition cyphered by the italicized
phrase in (Q3) by considering the notion of Property as UML’s counterpart of
the notion of mapping (unless new facts of our investigation will force us to
revise the parallel, we will continue our quest below in section 3).

Thus, navigationally, our association is viewed as a triple

(3) MS = (lead∗,help∗,mod∗)

of binary mappings

lead∗ : (help :Person)× (mod :Model) � Person,
help∗ : (lead :Person)× (mod :Model) � Person,
mod∗ : (lead :Person)× (help :Person) � Model.

whose sources are labeled Cartesian products3. Note the double-heads of the
arrows: they mean that the mappings are (in general) multi-valued rather than
single-valued. The latter case is depicted with single-arrow heads and the map-
pings are called functional, e.g., projections mappings in (2) are functional. Note
also that each of the structural mappings is asymmetric and has a designated
target/goal class. However, the set MS of all three mappings (3) retains the sym-
metry of the tabular view. We will call such sets structural maps of associations.

2.3 Navigating associations, II: qualified mappings

When we think about implementation of structural maps, we need to decide (i)
which of the possible navigation directions should be implemented efficiently and
3 which are sets of labeled records and are often denoted by expressions like
{[help :Person, mod :Model ]}
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(ii), in the OO world where the UML constructs live, which of the classes will
implement it. Irrespectively to (i), let us consider the purely structural aspects
of realizing an n-ary structural mapping by unary (one-argument) mappings.
For example, the binary mapping help∗ can be implemented as either a retrieval
operation in class Model with a formal parameter lead of type Person,

help∗
1
(lead :Person) : Model � Person,

or as a retrieval operation in class Person with a formal parameter mod of type
Model,

help∗
2
(mod :Model) : Person � Person,

see cell (c1) where both possible implementations help∗
1

and help∗
2

are shown.4

We will call such mappings qualified, since UML calls formal parameters quali-
fiers. We will call qualified mappings also qualified ends of the association. Thus,
the same association can be viewed as a six-tuple

(4) MQ = (help∗
1,2

, lead∗1,2, mod∗1,2)

of qualified mappings

help∗
1
(lead :Person) : Model � Person, help∗

2
(mod :Model) : Person � Person

lead∗1(help :Person) : Model � Person, . . .
. . .

as shown in cell (c1). Note that each of the qualified mappings brings even more
asymmetry/navigational details to its structural counterpart yet their full set,
MQ, retains the symmetry of the entire association; we will call such sets qualified
maps of associations. A bit more accurately, the righthand side of (4) specifies
an atlas MQMQMQ consisting of three maps, each in turn consisting of two mappings.
The map MQ is the flattened version of MQMQMQ, MQ =

⋃
MQMQMQ.

A care should be taken for using the UML’s term “qualifier”. Unfortu-
nately, UML again mixes two different notions here. The Standard says [?,

4 in the functional programming style, these mappings would be written as
help∗

2
: Person → [Model � Person], and help∗

1
: Model → [Person � Person], where

the square brackets denote the space of all possible mappings between the operands.
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Sect.7.3.44,p.129]:

(Q4)

Given a qualified object and a qualifier instance, the num-
ber of objects at the other end of the association is con-
strained by the declared multiplicity. In the common case
in which the multiplicity is 0..1, the qualifier value is
unique with respect to the qualified object, and designates
at most one associated object. In the general case of mul-
tiplicity 0..*, the set of associated instances is partitioned
into subsets, each selected by a given qualifier instance. In
the case of multiplicity 1 or 0..1, the qualifier has both se-
mantic and implementation consequences. In the case of
multiplicity 0..*, it has no real semantic consequences but
suggests an implementation that facilitates easy access of
sets of associated instances linked by a given qualifier value.
a

a We have used italic and sans serif fonts to separate the two cases.

What is called above the general case is a technical construct of replacing a
multi-ary mapping (like our help∗) with a unary but parameterized mapping
with the same extension (our help∗

1,2
). This construction is well known in type

theory and functional programming by name of Currying. This is how we will
understand qualification in the paper.

What is called above the common case of using qualifiers, actually refers
to a quite different concern of how to build proper models involving associa-
tions. The issue is well known in database theory as normalization of relational
schemas w.r.t. functional dependencies. We present some details and explanation
in Appendix.

To summarize, in general an association is a triple AAA = (T,MS ,MQMQMQ) of mu-
tually derivable components: its extension table T (with projection mappings),
its structural map MS and its qualified atlas MQMQMQ. Each of these components in
its turn consists of multiple member mappings like those specified in (2), (3),
(4); to unify terminology, we could also call a table a tabular map.

Unfortunately, for specifying this rich instrumentary of extensional and nav-
igational objects, the UML metamodel offers just one concept of the associ-
ation memberEnd. For example, a ternary association consists of the total of
3+3+6=12 mappings while the UML metamodel states only the existence of its
three end Properties. Not surprisingly, that in different parts of the Standard
the same notion of memberEnd is interpreted as either a projection mapping,
e.g., in description (Q1), or a structural mapping, e.g., in (Q2), or a qualified
mapping (operation), as we will see below.

Note also that all the three components of an association: tabular, structural
and operational, are structurally similar as is well seen from the middle column
of Table 1; especially similar are the two navigational maps. In contrast, the
UML notation for them (the rightmost column of Table 1) is strikingly dissim-
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ilar. Moreover, there is no notation for the tabular component at all despite its
basic role for the entire construct. Inevitably, all this leads to ambiguities and
misconceptions, especially when the Standard tries to cast the intuition into the
precise forms of the metamodel.5

3 Geography of Association: The structures
accompanying the association construct.

In this section we begin our analysis of the UML metamodel. The parts of the
latter specifying the metaclass Association and related constructs are summa-
rized in Fig. 2, whose caption explains how the parts/packages were merged.
From now on, the term UML metamodel will refer to that part of the UML
metamodel, which is presented in Fig. 2.

3.1 What is a Property? A quest for a proper definition through
the Standard

The notion of Property is central for UML modeling and is the cornerstone of
the construct of Association as seen from the Fig. 2. Indeed, according to the
metamodel, an association A is an n-tuple of Properties (f1, ..., fn). n ≥ 2, called
A’s memberEnds.

(Q5)

A property related to an Association by memberEnd rep-
resents an end of the association. The type of the property
is the type of the end of the association.a

a The Standard, [?, sect.7.3.44,p.125]

Thus, each of the memberEnd Properties has its type and we thus come to a
tuple of types/classifiers

A.endType
def= (f1.type, . . . , fn.type).

To shorten wording and formulas, we will often call memberEnds just ends, and
denote classifiers fi.type by Xi.

Unfortunately, despite the central role of Property construct, its specification
in the metamodel is non-accurate and non-complete. Below we will carefully
inspect the metamodel and try to make it into a consistent specification.

5 It seems that even the much more formally precise OCL did not avoid confusion
between the components when it borrowed UML’s notation (abstract syntax) for
association classes.
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Labeled bags vs. lists. In the metamodel, both collections A.memberEnd
and A.endType are considered as tuples/lists (note the attribute ordered near
the metaassociations ends), which is not justified. Consider, for example, our
association Task from the previous section: the collection of ends is a set {lead∗,
help∗, mod∗} and correspondingly the collection of classes is a set of pairs

(8) A.endType = {lead∗ :Person,help∗ :Person,mod∗ :Model}.

If we omit the labels, the set above would become a bag {[Person,Person,Model ]}.
Such collections of pairs (label:element) are often called labeled records, thus,
A.endType is a labeled record of classes (class names). Adjusting this termi-
nology to the UML/OCL jargon, we will consider labeled records as bags with
additional distinct labels for the elements, and call them labeled bags. Thus, we
will say that the collection (8) is a labeled bag.

Ordering such collections would be irrelevant and, most likely, it has mis-
takenly appeared in the metamodel because of the following. In formal consid-
erations, it is convenient to use natural numbers as labels/role names and, say,
instead of names lead,help,mod write f1, f2, f3. (Note that instead of 1, 2, 3, we
could well use labels a, b, c or, say, x, ρ,< as well). Unfortunately, using natural
numbers as labels makes the set of labeled elements ordered thus bringing an ac-
cidental construct onto the stage. A proper formulation is to say that A.endType
is a labeled bag and write

(9) A.endType
def= {f1 :X1, .., fn :Xn}

where, we remind, all fi are distinct and {f1..fn} = A.memberEnd, Xi de-
notes fi.type. Often, within the “bag philosophy”, the collection above is written
shortly as {[X1 ..Xn ]} assuming that the labels are known from the context.

So far we have said nothing about the source types of the end mappings,
which are their crucial parameters. A striking observation is the metamodel
indeed says nothing about this component of the construct, and we need to look
for a help in the explanatory sections of the Standard.
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Looking for Property’s source. The Semantics section 7.3.44 in [?, p.128]
says:

(Q6)

[(i)] When a Property is owned by a classifier other than
an association via ownedAttribute, then it represents an
attribute of the class or data type. [(ii)] When related to
an association via memberEnd, it represents an end of the
association. In either case, when instantiated, a Property
represents a value or collection of values associated with an
instance of one (or, in the case of a ternary or higher-order
association, more than one) type. This set of classifiers
is called the context for the Property; in the case of an
attribute the context is the owning classifier, and in the
case of an association end the context is the set of types
at the other end or ends of the association.a

a in this piece, the terms “type” and “classifier” are used interchange-
ably and, hopefully, can be considered synonyms here.

As we do not have a formal model of ownership so far, let us consider the case
(ii) of the description (later we will see that (i) is also nothing but its particular
case). The description sounds a bit wordy but is actually informative. It says that
we can consider a Property as a mapping from some source set, whose elements
are labeled tuples (“instances of a collection of types”), to a target set called the
type of the Property and whose elements play the role of values that the Property
takes. The collection of labeled types forming the source is called the context of
the Property. For instance, the binary mappings help∗ from our main example is
a Property with context {[mod : Model, lead : Person ]} and type Person. Thus,
according to the description (Q6), there should be a meta-association context
from metaclass Property to metaclass Class but, surprisingly, the metamodel
does not specify it. This problem can be partially fixed in the following way.

First of all, we collect those Properties that are ends of Associations in a
special subclass EndProperty (see the shaded part of Fig. 3). A principal dis-
tinction of this subclass is that the meta-end asson has the precise multiplicity
1 rather than 0..1 for general Properties. This multiplicity allows us to derive
the missing metaassociation context from other elements specified by the meta-
model as follows. We first define a derived metaassociation coEnd as specified
by expression (10) in Fig. 3 (also correcting the loop metaassociation opposite of
the metamodel). Then we define a derived metaassociation context as specified
by expression (11). In our main Task example, this procedure would produce
for, say, a property help∗, the context (lead∗:Person, mod∗:Model).

Invertibility of association ends: A key constraint missing from the
metamodel. The shaded part of Fig. 3 presents a plausible view of the struc-
tural aspects of the Association construct but it is still essentially incomplete
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and lacks a crucial condition. Namely, we need to require that all ends of the as-
sociation do have the same extension. We will formulate this condition by saying
that the ends are mutually inverse, meaning that they are mutually derivable
from each other by inverting/permuting sources and targets (this condition is
well known for the binary case).

Formally, this can be captured in the following way. To simplify presentation,
we will take natural numbers to be the labels and then, say, a general ternary
association appears as a set of three binary mappings, or end Properties, or just
ends,

(18) f1 : X2 ×X3 � X1, f2 : X1 ×X3 � X2, and f3 : X1 ×X2 � X3.

where the Cartesian products are the contexts. Further, in section 5, we will
formalize the general case of arbitrary names as labels.

The double-heads of the arrows mean that the actual target of the mapping is
a collection collfi

(Xi) of some type (a set, a bag or a list) specified along with fi

and built from elements of Xi. In more detail, if the pair (a1, a2) is an argument
of mapping fi, then fi(a1, a2) is a collection built from elements of Xi rather
than a single element. Whether this collection is a set or a bag is regulated by
an attribute/flag isUnique assigned to fi. The collection is a set if fi.isUnique
is set to True and is a bag otherwise. We will also shortly phrase these two
cases by saying “fi is Unique or nonUnique”. It is also convenient to distinguish
between the two cases by using a special arrow for set-valued mappings, we will
superscript the double-arrow head with ! for that purpose.
3.1 Definition: mappings, contexts, extensions. Let X = {[X1 ...Xn ]} be a
family of classes, that is a labeled bag with natural numbers being the labels.
Let f : X1 × ..×Xn � Y be a procedure (or a rule or prescription), which for
a given tuple/labeled bag of arguments (x1, ..., xn), xi ∈ Xi, returns (specifies)
either a collection of elements of class Y or a special value “undefined”. Then
we say that f is a (structural) mapping of arity n, of type Y and of (source)
context X. Following UML, we will also call (structural) mappings (structural)
properties.

A special case, when the value is a singleton (that is, in fact, an element in
Xi) will be denoted by a single-arrow head, and such mappings will be called
functional or functions.

The extension of mapping f , ext(f), is the collection of tuples

((ext)) [(x1, . . . , xn, y) : x1 ∈ X1, ..., xn ∈ Xn, y ∈ f(x1...xn) ∈ collf (Y )] ,

which is a bag or set iff f is bag-valued or set-valued respectively.6

A natural way of presenting collection (ext) is to store it in a table. In fact,
we have a mapping ext : Mapping → Table sending any n-ary mapping/property
to a (n+1)-column table recording its extension. To avoid terminological clashes,

6 If f is list-valued, we can either disregard the ordering information by considering
the underlying bag, or consider the extensional set to be partially-ordered.
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we will call such mappings between collections of mappings functors. Thus, ext
is a functor.

Conversely, having a table, we can select one of its columns as a target/goal
and look up the table in the direction from the other columns to the target col-
umn. This procedure will give us a multi-valued functor lookUp : Table � Mapping
since we can look-up an n-column table in n diffrent directions. Evidently, for
any table T ∈ Table, the T.lookUp.ext is the singleton {T}.
3.2 Definition: Mutual invertibility of mappings and Structural maps. Let
again X = {[X1 ...Xn ]} be a family of classes. We say that an (n-1)-ary mapping
f is a mapping over X if the source context of f and its type are complementary
in X, that is,

type(f) = X \ context(f).

The family X is then called the full context of f .
Two or more structural mappings f1...fk over X are called mutually inverse

if they have the same extension:

((inverse)) ext(f1) = ext(f2) = ... = ext(fk).

An n-element set MS = {f1...fn} of mutually inverse structural mappings over X
is called a structural map over X. In other words, a structural map is a maximal
set of mutually-inverse structural mappings. The family X is called the (full)
context of MS .

Now we can (and must) add the constraint ((inverse)) to our metamodel
of Association, see constraint (13) in Fig. 3. No doubts that this constraint is
implicitly assumed by the Standard. Thus, at the current state of our investiga-
tion, we may say that the Standard defines associations as nothing but structural
maps. Following UML’s terminology, we also call the members of structural maps
(structural) ends.

Our metamodel still misses one more essential component of the notion,
namely, realization of structural mappings/properties by qualified mapping/properties
(recall our main example in section 2).

3.2 Qualifiers and qualified properties.

Let g : X1..Xn � Y be an n-ary mapping. It can be presented as an unary (one-
argument) mapping gi with (n − 1)-parameters x1..xn−1 in n different ways,
gi(x1, .., xn−1) : Xi � Y , i = 1..n. (This process of moving from an n-ary map-
pings to mappings of lesser arity with parameters is well known and usually
called Currying (see, e.g., [8]), we will write gi = Curryi(g). The corresponding
functor structMapping � qualifiedMapping, sending an n-ary mapping g to the
set of its unary parameterized realizations, {Curryi(g) | i = 1..n}, will be denoted
by Curry.

To form a Curried version of g, we need to pick up a source class Xi and
consider the rest of arguments as parameters. Importantly, the source Xi is a
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pair (label : className) rather than just a className as is well illustrated by
Currying of mapping mod∗ from our main example. It has two Curried versions,
mod∗1(lead :Person) : Person � Model and mod∗2(help :Person) : Person � Model,
with the same source class but with different roles this class is playing: as the
class of help(ers) for mod∗1 and as the class of lead(ers) for mod∗2. Correspond-
ingly, they have different qualifiers too. In the general case, if X1..Xn is the
context and Xi is the source of gi, the qualifier is nothing but the difference
(context \ holder). The inverse operation of converting a qualified mapping into
a multi-ary mapping without parameters is also possible, we call it unCurrying
and write g = unCurry(gi); the corresponding functor is denoted unCurry. Thus,
for a qualified end g, equality f = unCurry(g) mean nothing but g ∈ Curry(f),
and vice versa. Note that unCurry is a single-valued operation while Curry is
set-vlaued.
3.3 Definition: Curried friends and Curried maps. We will say that two or more
qualified mappings g1..gk are Curried friends or mutually coCurry if they are
qualified versions of the same multi-ary mapping:

((coCurry)) unCurry(g1) = unCurry(g2) = ... = unCurry(gk).

A full n-element set MC of mutually coCurry (n−1)-parameterized mappings
is called a Curry map. Each Curry map generates the only (n− 1)-ary mapping
(because all its members are mutually coCurry)

All the components are mutually derivable/inverse as shown by the following
functorial diagram (nodes are sets of mappings and arrows are functors):

(19) Table
lookUp--
{inv}�

ext

structMapping
Curry--
{inv}�
unCurry

qualifiedMapping

.
3.4 Construction: Adding navigation to tables. We can enrich tables with “nav-
igational” lookUp information if the corresponding column name will be marked
(say, by a star). Similarly, if a table stores the extension of a qualified mapping,
we can keep this information by marking the two corresponding columns. In this
way we come to the notions of (i) star-table, a table with one column specially
designated and called the goal, and (ii) double-star table, a star-table with one
more column designated/marked as the source.

Now we can formulate the main definition of this section.

3.3 Associations structurally: Main definition and discussion

3.5 Definition: Full structural view of association. An n-ary association, struc-
turally, is a triple AAA = (T,MS ,MQMQMQ) with the following components:

– T = (R, p1..pn) is a table called the extension of the association, R denotes
the set of rows/links and pi are projection mappings or projection ends (pEnds
for short). The span configuration (R is the head and pi are legs) classifies the
links of the association.
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– MS = {f1..fn} is an n-element set of mutually-inverse (n − 1)-ary map-
pings (Properties). Mappings fi are called the structural ends (sEnds) of the
association and the set MS is its structural map. Following UML, we will call
structural ends just ends.

– MQMQMQ = {MC1..MCn} is an n-element atlas of Curried maps MCi = {gi1..gi(n−1)},
i = 1..n [compare with (4)], each one consisting of mutually coCurry qualified
mappings/Properties or qualified ends (qEnds).

Moreover, it is supposed that the three components are mutually derivable
or mutually inverse, that is,

((inverse)*) unCurry(MCi) = fi and ext(fi) = T for all i = 1..n.

Further we will also work with the flattened set MQ = MC1 ∪ ... ∪ MCn of all
qualified ends.

Thus, thinking semantically, an association comprises three sets of mappings:
a table, a structural map and a qualified map. Because of condition (inverse)*,
within each of the maps its member mappings are also mutually derivable and
the entire three complex components are mutually derivable by collecting the
values of functors in diagram (19).

The metamodel of this definition is presented in Fig. 4. Note that metaclasses
are parameterized by the arities of the constructs involved, which makes many
structural aspects explicit and allows us to avoid writing down size-related con-
straints. With the UML style of metamodeling (Fig. 2), these constraints must
be added to the metamodel and, in fact, many of them are missing from the
Standard. Another advantage of our metamodel Fig. 4 is its clear exposition
of structural symmetries of the notion: the central part of the metamodel is
built, in fact, from repeated patterns-blocks. Indeed, there are four real op-
erations between the components: to look-up a table and to record extension
of a mapping/end, to Curry a mapping and to unCurry a qualified mapping,
they all are in the top part of the diagram. All other metaassociations (Curry-
unCurry) and (lookUp-ext) are derived from these using grouping of elements
by (member-host) metaassociations. Some of the latter could be also derived
through the common association source, say, for a structural map M , we have
M.member

def= M.asson.T.lookUp but we prefer to keep symmetry and consider
all such metaassociations basic. Of course, we then need to add many commuta-
tivity constraints to the metamodel. We may consider that all these constraints
are embodied into the global constraint mutually inverse, whose scope is then
the entire metamodel. Note also that the basic notion of association’s full context
(Definition (3.2)) is made explicit.

UML prefers to work with associations asymmetrically: the metaassociation
sEnd is considered basic while all the rest is assumed to be derived. To ease the
comparison of our formal metamodel with the UML’s one, we have arranged the
former in a way similar to UML: the result is presented in Fig. 3, whose shaded
part was already used above.
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3.4 UML metamodel of associations in the light of formalization
(A)

The metamodel shown in Fig. 3 accurately describes semantics of the associa-
tion construct as we have discovered it so far, and presents it in a way similar
to the UML metamodel. It is possible and instructive to compare it with the
UML metamodel in Fig. 2 (disregarding there, for a while, the navigational and
ownership aspects). An immediate comparison reveals a few essential omissions
in the UML metamodel. We briefly list them below.
1. The extensional/tabular part of the construct (the right-upper unshaded

fragment of our metamodel) is missing from the UML metamodel, which
does not allow us to specify Association as a classifier. Another consequence
is that metaassociation ext is implicit and hence a major constraint (inverse)
in Definition 3.2 cannot be formally specified.

2. The metaassociation context of metaclass Property is missing too. If even
we introduce the subclass EndProperty for which context can be derived, its
explicit presence in the metamodel makes the latter much more transparent
and less error-prone.

3. The (loop) metaassociation opposite is formulated only for the binary case
while it makes sense for the general N-ary case as well (our association
coEnd).

4. The metaassociation qualifier is mistakenly targeted to metaclass Property
while its proper target is metaclass Class. Moreover, the entire “qualified”
part of the construct (the lower fragment of our metamodel) is missing.

5. A few less crucial omissions are described in the footnotes to Fig. 3.

4 The operational view of associations

In this section we consider that part of the UML association metamodel, which
specifies navigability and other operational concerns and relationships between
Classes, Properties and Associations; we will also consider the two possible mean-
ings of isUnique attribute.

4.1 Navigability: holdership vs. ownership

In the previous version of the Standard and the UML folklore, some correla-
tion between navigability and ownership was implicitly assumed. The situation
changed in the current version [14, sect.7.3.3,p.45]:

(Q7)

Navigability notation was often used in the past accord-
ing to an informal convention, whereby non-navigable ends
were assumed to be owned by the association whereas nav-
igable ends were assumed to be owned by the classifier
at the opposite end. This convention is now deprecated.
...navigability and end ownership are orthogonal concepts,
each with their own explicit notation.
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Note that according to the new version, the metamodel should have two inde-
pendent meta-associations from meta-class Association to Property, ownedEnd
and navigableEnd. However, the current version of metamodel is not adjusted to
the new semantics and keeps the meta-association navigableOwnedEnd subset-
ting ownedEnd. We could guess that there is some cause for this inconsistency.
And indeed, separation of ownership and navigability is a right idea but it is
done in the Standard in a messy way. We are going to show that the Standard
mistakenly mixes two different concepts: (i) ownership of a model element (say, a
mapping/end by an association), and (ii) an implementation of a model element,
say, a multiary mapping by one of its context classes; in the latter case we call
the class a holder of the element. The concept (i) is structural and belongs to
the general modeling arsenal whatever sort of models we consider. The concept
(ii) is more particular and aimed at specifying a particular concern of how to
implement an association end. Actually the notion of a holder class is crucial for
associations as soon as we think of them in a more operational/implementation-
oriented way yet it is missing from the Standard. The result is that the role of
being the holder of a navigable mapping/end is mistakenly confused with the
ownership of the end and then ownership becomes indeed related to navigability.
It is this second sense of ownership that is often considered in the folklore and
was assumed in the older versions of UML2. We again have a Cylinder Syndrome
case.

4.2 Navigable vs. non-navigable = Basic vs. derived.

We begin our analysis with the concept of navigability. The Standard says [14,
Sect. 7.3.3,p.42]:

(Q8)

Navigability [of an end] means [that] instances participat-
ing in links at runtime (instances of an association) can
be accessed efficiently from instances participating in links
at the other ends of the association. The precise mecha-
nism by which such access is achieved is implementation
specific. If an end is not navigable, access from the other
ends may or may not be possible, and if it is, it might not
be efficient.

This definition says that for a given association, the set of its association ends
is partitioned into navigable and non-navigable ends. The former are navigated
efficiently while the latter are non-efficient or not navigable at all. Suppose, for
instance, that the end help∗ in our main example is declared to be navigable
while the ends lead∗ and mod∗ are not. A natural way to implement this would
be to index the extension table (a0) in a way providing an efficient navigability
from the columns lead and mod to the column help, see table Task-to-mod in
cell (b0) of Table 1. The next question is where to store this table, and which
of the classes, Model or Person, or both, would use this indexed (prepared for
navigation) table and host/store the method help∗.
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/endType 
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Class

Type

Classifier

SrtructuralFeature

Association

Classifier

0..1

- assonEnd

*

- qualifaer

0..1

- class

*

- ownedAttribute

0..1

- Asson

2..*

- memberEnd

0..1

- owingAsson

*

- ownedEnd

1

- navigOwingAsson

*

- navigOwnedEnd

1

- ...

1

- type

1..* 

{ordered}

{ordered}{ordered}

 

-qualifier

- owningAsson 

isDerived: Boolean 

- /opposite0..10..1

name: String     [0..1]
isOrdered: Boolean 
isUnique: Boolean

Constraints for Association context in OCL
(to shorten expressions we write end for memberEnd):

self.end->includesAll(self.ownedEnd) ->includesAll(navigOwnedEnd)(5)

def: self.endType = self.end->collect(type)(6)

self.end->size() >2 implies self.ownedEnd = self.enda(7)

a this is the Constraint (5) in [14, sect.7.3.3, p.42],

Fig. 2. A piece of UML metamodel extracted from [14, Fig.7.12] with additions from
Figures 7.5, 7.10 and 7.17. In more detail, according to the piece of the metamodel in
Fig.7.10, metaclass StructuralFeature is a subclass of both TypedElement and Mul-
tiplicityElement metaclasses. From the former, it inherits meta-association type (Fig.
7.5), and from the latter, it inherits Boolean attributes isOrdered and isUnique (again
Fig. 7.5). Meta-association qualifier is provided by Fig. 7.17. The constraints are writ-
ten in OCL [13]
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Association
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1..*
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qualifier 
{labeled bag} 

source 
{labeled bag} 

1 0..* 1..*

unCurry 

/coCurry 
1..*

1..*

EndProperty 
Class 

1

Table
 

Attribute
Property

table
extension intention

/ext 

1

2..*
qEnd 

1 

column 

1 1

Definitions for EndProperty
def: self.coEnd = self.asson.end − {self}(10)

def: self.context = self.coEnd->collect(pair(name,type))a(11)

def: self.ext = self.extension (just rename)(12)

Constraints for Association
self.end->forAll(f1,f2| f1.ext = f2.ext)b(13)

Definitions for Association
def: self.endType = self.end->collect(pair(name,type))c(14)

def: self.ext = self.end->any().extd(15)

Constraints for QualifiedProperty
union(self.qualfier, {self.source}) = self.context(16)

Definitions for QualifiedPropertye

def: self.coCurry = self.unCurry.Curry−{self}(17)

a this definition is missing from the metamodel but described in Semantics section of
the Standard

b This is condition ((inverse)) in Definition 3.2. It is missing from the UML metamodel
c we correct definition (6) of the metamodel, see Fig. 2
d definition is correct owing to constraint (13).
e we add it to show similarity with coEnd

Fig. 3. Metamodel of the three structural aspects of Association (ends, qual-
ified ends and extension) aligned (as far as possible) with UML metamodel
(see Fig. 2). Derived meta-associations are dashed
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Fig. 4. Metamodel of Definition 3.5: Semantics of Association as a triple
A = (T, MS ,MQMQMQ). Derived meta-associations are dashed. Label unC. is a
shorthand for unCurry.
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This consideration appears to be close to a well-known distinction between
basic and derived data in databases. The former are stored in the database and
hence are directly accessible while getting the latter requires asking queries.
Some types of queries could be executed efficiently while others are not, yet
data to be queried are not specified in the database schema and conceptually
are quite distinct from basic data. On the other hand, basic data immediately
stored in the database are also accessible by queries, but the latter are fairly
trivial (and automatically efficient). Thus, the distinction between navigable
and non-navigable ends in UML is exactly similar to the distinction between
basic and derived data in SQL.

Examples presented in Table 2 illustrate the idea. In the left cell of the top
row, we have a ternary association with two navigable ends. However, the model
does not specify which of the classes should be responsible for implementation,
that is, in our terminology, be the holder. The issue is fixed in the model on
the right with qualified associations, and a precise sets-and-mappings formal
specification is shown in the rightmost cell; note the constraint {mutually in-
verse} there. The example in the second row is clear. Particularly, the constraint
{mutually inverse} says that the items worksFor, employs and (Job,employee,employer)
are mutually derivable. Hence, since the mapping worksFor is assumed to be ba-
sic, the rest of the configuration can be derived from worksFor if needed.

Consider the third example. In the left model, both ends are declared non-
navigable and hence the basic component of the association is its extension
table (from which the ends/mappings can be derived). Here we assume that
if an association appears in the model, then it should have at least one way
of implementation prescribed. However, the model provides names for neither
the table nor for its columns: a precise specification in the rightmost column
demonstrates the problem. A reasonable question is whether it is possible to
build a better UML model for the case. Our solution is proposed in the middle
column, where, contrary to its use in UML, the diamond is intended to show that
the data table (the set of links) is a basic component while the corresponding
mappings are derived. We will return to this idea below in section 4.5.

The metamodel for the notion of navigability as discussed above is fairly
simple and is presented in Fig. 5 (disregard the fragment related to Uniqueness
for a while, it is brown with a color display). All that we need to do is to select
a number of qualified ends as basic or navigable, and hence to be implemented
as retrieval operations in their source classes. If a qualified end g is navigable,
its unCurried version gives us a navigable association end f = unCurry(g), and
we call the source class of g a holder of f . Of course, there may be other holders
as well: f.holder

def= {g.source| g ∈ f.Curry}; we remind that g.source is a labeled
class name and hence f.holder is a labeled bag. Thus, a class g.source will im-
plement the navigable association end g.unCurry but it does not mean that this
class owns the end. The same end may have a bag of holders but only one owner
– its association. In fact, ownership of elements occurring into the metamodel of
Association is not anyhow related to navigability nor to implementation. In the
next section we will consider the issue in more detail.
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n {labeled bag}

stored T 
{subsets T}0..n(n-1) 
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Mapping 

0..1

Association,
A 

Table 

arity = n

arity = n-1

qualified 
Mapping 

qualifier 
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{constr.(27)}

n-1 

/implem.uniqQEnd 
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navigQEnd}

0..n/uniqEnd 
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navigEnd}
(!) 

{labeled bag} 

Definitions for endMapping
self.holder = self.Curry->collect(source)a(20)

a the Standard mistakenly attributes this metaassociation to ownership

Fig. 5. Metamodel of the operational view of Association (see Definition
(4.1) below). Derived meta-associations are dashed. See Fig. 4 for the su-
persetting metaassociations.
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4.3 Navigability and ownership again

An association A owns all its ends because as soon as A is deleted from the
model, all its ends must be also deleted even though they are implemented as
retrieval operation in some classes. Conversely, if an association A with an end
f is added to the model, it does not mean that the corresponding operation will
appear in one of the classes. The latter is a question of (i) declaring the end
navigable and (ii) selecting this class to be a holder for the end. For arity n ≥ 3,
it precisely corresponds to what is said in the Standard, [14, Constraint (5) in
Sect.7.3.3,p.42]. However, the Standard entirely changes the treatment for the
case n = 2. We can guess that the reasons for this are as follows.

When the arity of association is n = 2, we have a degenerate situation, for
which two structural mappings/ends/Properties coincide with the corresponding
qualified mappings. Then, if a (structural) end is declared navigable, its auto-
matically becomes an attribute of the corresponding uniquely determined holder
class. UML mistakenly qualifies this situation as ownership, invoking for imple-
mentation/operational concerns a constructs from the entirely different struc-
tural view. Thus, a proper treatment is to consider all ends of an association to
be owned by the association irrespectively of its arity. Navigable ends come from
an entirely different concern of implementation, and are correspondingly related
to one or more holder classes, again irrespectively of the arity. The only special
feature of arity 2 is that a navigable end has one and only one holder.

4.4 UML metamodel in the light of formalization (B)

The metamodel in Fig. 6 presents the same semantics as metamodel in Fig. 5 but
in a way aligned with the UML-style of metamodeling, and can be immediately
compared with the UML metamodel.

First of all, we note that in our metamodel, metaassociation navig-qEnd
is basic while navigableEnd is derived contrary to the UML metamodel. The
point is that while the latter can be indeed derived from the former by applying
unCurry operation, derivation in the reverse direction does not work: operation
Curry is multivalued and declaring an end navigable leaves unspecified the holder
class or classes to implement it (see example in the top row of Table 2).

Metaassociation class–ownedAttribute in the UML metamodel (actually means
and) must be replaced by metaassociation holder–implem. On the other hand,
the Asson end of memberEnd metaassociation must be black-diamond while
metaassociation ownedEnd–owingAsson must be removed.

Finally, if none of the ends is navigable, then the only way of representing
the association in the software system is to store the corresponding data table in
some class (preferably not occurring into the bag of the context classes to avoid
name clashes between projections of the table and the structural and qualified
mapping). This requirement is captured by an important constraint (26), which
says that an association must be somehow implemented: either navigationally
as a mapping (retrieval get method) or extensionally as a data table.
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Definitions for Association:
self.navigEnd = self.navigQEnd.unCurry(21)

Definitions for EndProperty
self.navigCurry = intersect (self.Curry,self.asson.navigQEnd)(22)

self.navigCurry->collect(source)(23)

Constraints for Association:
self.navigEnd.isDerived = False(24)

self.storedTab.isDerived = False(25)

self.navigEnd->size() + self.storedTab->size() ≥ 1(26)

Fig. 6. Metamodel for the operational view of associations aligned (as far as possible)
with UML metamodel (see Fig. 2). Derived meta-associations are dashed. See Fig. 3
for the supersetting metaassociations.
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4.5 Notation for the operational aspects: diamonds vs. lines

We return to the problem of the UML notation for associations exposed by our
example in the third row in Table 2. The Standard states that the diamond
and line-segment notations for binary associations are synonyms [14, Sect.7.3.3,
Notation, p.43]:

(Q9)

Any association may be drawn as a diamond [...] with a
solid line for each association end connecting the diamond
to the classifier that is the ends type. An association with
more than two ends can only be drawn this way.
A binary association is normally drawn as a solid line con-
necting two classifiers, or a solid line connecting a single
classifier to itself (the two ends are distinct).

Contrary to this convention, we suggest to reserve the diamond notation for
the case when the extension table is considered to be a basic item in the model.
This notation would make a perfect match with the use of diamond in famous
ER-diagrams still extremely popular in the database world. However, if we use
diamonds for tables, we need to invent another, non-diamond, notation for the
case of navigable, i.e., basic, association ends. Since for the binary associations
this case is denoted by a line segment, it is reasonable to extend the line-based
notation for multi-ary associations too. A possible realization of this idea is
presented in Table 3 in hopefully self-explained way.

Note that the meaning of association ends in the left and the right columns
are different. In the former they denote structural mappings while in the latter
they mean projection mappings. Note also that the models in the left columns
are underspecified: they show navigable ends but say nothing about the classes
which should implement them. A complete in this sense notation is shown in
the middle column. In the case of binary associations both notations, the left
and the middle, coincide. Finally, pay attention to the blank diamond notation
that may be useful during early phases of design. Semantics for it is given by
our structural notion of association, see Definition (3.5).

4.6 Uniqueness: a constraint or design decision?

Boolean attribute isUnique of an association end is intended to regulate the
possibility of having duplicates in the collection retrieved by the end. The cor-
responding Semantics section says [14, Sect 7.3.3, p.42]

(Q10)
When one or more ends of the association have
isUnique=false, it is possible to have several links asso-
ciating the same set of instances. In such a case, links
carry an additional identifier apart from their end values.
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X1 X2 

X3 No decision about possible 
implementation is made so far

Navigation 
directions are 
chosen but the 
classes to implement 
them (holders) are 
still uncertain 

Table 3. Consistent notation for associations (a proposal)
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At first glance, this is just a particular constraint saying whether duplicates
in the association are allowed or not (it well corresponds to the second phrase
of the description above). However, this evident interpretation turns out to be
problematic under a more careful inspection. Consider again our main example
in cell (a1), Table 1. If the constraint {key} is satisfied, then there are no
duplicate links/rown in the extension table [cell (a0)] and hence there are no
duplicates in any of the collections lead∗, help∗,mod∗ retrieved by the ends. If
the constraint {key} is not declared, then duplicate links/rows in table (a0) are
possible and hence, each of the ends will retrieve a bag rather than a set. It
follows then that all ends must have either isUnique=True or isUnique=False
simultaneously; the situation when some of them have true and some false is
inconsistent. However, the Standard never says about this requirement and it
seems that the folklore well admits the case when only some of the ends are
Unique. The problem generated a special discussion during preparation of UML
2 [?].

A reasonable way to treat the issue was proposed by Dragan Milicev. [10].
Suppose that the extension table of the association in question has duplicates
and hence the ends/structural mappings (Definition 3.1) retrieve bags rather
than sets. In this case, for each of the mappings fi (i = 1..n), there is its version
f !i with the same extension but with duplicates eliminated. Thus, together with
a structural map MS = (f1..fn) we have its duplicates-eliminated version M !S =
(f !1..f !n). Now a navigable end of an association is an element of the set MS ∪
MS ! rather than MS and, hence, some of the navigable ends can be Unique
while others are not. (Evidently, though playing with the Unique-nonUnique-
attributes for non-navigable ends is formally possible, it really makes sense for
navigable ends). This interpretation is considered by Milicev in detail in [10].

Note, however, that as soon as we consider Uniqueness as a design decision
rather than a constraint, to be consistent we need to go further and admit the
situation when some of the Curried realization of a navigable end are Unique
while others are not. For instance, in our main example of Task association, sup-
pose that the end help∗ is navigable (see the top row in Table 2), duplicates are
allowed and the qualified mapping help∗

1
(lead :Person) : Model � Person is cho-

sen to be bag-valued while its counterpart help∗
2
(mod :Model) : Person � Person

is chosen to be set-valued. In this case, the end help∗ has neither isUnique=True
nor isUnique=False. It follows then that the consistent realization of Milicev’s
idea leads to assignment of Unique or nonUnique attributes to qualified ends of
associations rather than to (structural) ends.

Moreover, it may well happen for a navigable qualified end g that we need
both its versions (with and without duplicates) to be efficiently implemented. It
means that rather than declaring the end g to be unique or non-unique, we need
to say which of the ends, g or g!, or both, occur into the set of navigable ends
(that is, those ends that must be efficiently implemented).

4.1 Definition: Operational view of association. Let A = (T,MS ,MQMQMQ) be
an association as defined in 3.5. Let further duplicates are allowed and M !S =
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{f !1..f !n} and M !Q = M !C1∪...∪M !Cn with M !Ci = Curry(f !i) = {f !i1...f !i(n−1)}
denote, respectively, maps of duplicate-eliminated ends and qualified ends.

A possible implementation of A is merely a non-empty subset B ⊂ (MQ ∪
M !Q ∪ {T}) of basic elements. The set of navigable qualified ends is given by

Nq
def= B ∩MQ and the set of navigable (structural) ends is N

def= {unCurry(g) :
g ∈ Nq}.

The qualified ends in the set B ∩ M !Q can be considered as those with
isUnique=True and those in B ∩ MQ are with isUnique=False, not excluding
the possibility of having both.

4.7 UML in the light of formalization (C)

If we want to be logically consistent with use of isUnique attribute/flag, then
we have to choose from one of the disciplines (1) or (2) below.

1. If the flag is considered as a constraint to association, then either all ends
are Unique or all ends are nonUnique simultaneously. In the former case
duplicate links are *not* allowed, in the latter they are allowed.

2. If isUnique is considered as a design decision, then (2a) setting the flag for a
non-navigable end is senseless, (2b) different navigable ends may have differ-
ent values and moreover, (2c) some of them can have both values, isUnique
and nonUnique, as well. In addition, (2d) we need a special notation for the
case when duplicate links are not allowed. Indeed, if some of the ends are
nonUnique, then duplicate links are certainly allowed. However, if all ends
are declared Unique, it may mean either that there are no duplicate links
at all or that duplicate links are allowed but we have chosen the duplicate-
eliminated versions of the ends. To distinguish between these two cases, we
may agree to declare the absence of duplicates by an explicit declaration like
that one shown in cell (a1) Table 1.

In either of the disciplines, managing duplicate elimination/Uniqueness through
a Boolean-valued attribute assigned to association ends is misleading.

Operationally, an association is a pair (A,B) with A a full collection (an
atlas) of mappings as defined in 3.5 and 4.1, and B its non-empty subset. The
Standard has chosen to represent A by its structural map MS and hence, in
UML, an association is a pair (MS , B). As we have seen, such a definition leads to
models underspecified in two directions: because the map MQ is disregarded, we
do not know which classes are to be the holders of the navigable ends, and which
of the qualified versions are chosen to be duplicate eliminated. To summarize,
the qualified ends are more fine-grained units of the association construct than
usual (structural) ends and hence the operational view of Association should be
based on the former rather than the latter. Only for the binary case n=2, the
issue disappears because in this case MQ = MS . Yet even for the binary case,
the possibility (2c) is missing from the Standard.
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5 An accurate formal model for associations: Names,
names, names....

Our goal in this section is to specify all the constructs we need, finishing at
a precise definition of association, in an accurate way with explicit separation
between syntax and semantics. The first step is to set a proper framework for
working with names/labels in labeling bags and similar constructs.

5.1 Basic definitions and conventions.

5.1 Definition: Roles and contexts. Let L = {`1...`n} be a base set of n different
labels/symbols called role names and X a disjoint set of symbols called class
names.

(i) A role is a pair `:X with ` ∈ L a role name and X ∈ X a class name. A
context is a finite set of roles XL = {`1:X1, . . . , `n:Xn} such that all role names
are distinct (while the same class name may appear with different roles). We
will also write X for XL. In fact, a context is a mapping X : L → X from a set
of role names to a set of class names, and we will also write X(`) or X` for the
class name X in the pair (`:X). Cardinality of the base set is denoted by |L| and
called the arity of the context. For example, the sets {lead:Person, help:Person,
mod:Model} and {course:Subject, student:Person, professor:Person} are ternary
contexts.

(ii) Our definitions will be parameterized by some context X. We will say
that the notions are defined over the context X. Given X, any subset K ⊂ L of
role names uniquely determines a context XK = {`:X` | ` ∈ K}. We will often
say that a construct is over K meaning that it is over XK.
5.2 Construction: classes and their states. (i) For our goals in this section,
classes are named sets of elements (called objects). Given a time moment t, each
class name X is assigned with a set of its elements [[X ]]t; we may also consider
t as a reference to the state of the system at moment t and call [[X ]]t the state
of class X at the system state t.

We are not going to consider dynamics of associations and participating
classes, and all our semantic notions will be related to some arbitrary but fixed
moment/state t. Hence, the superscript t can be omitted but it is useful to keep
in mind that all our semantic notions are in fact synchronized. For example,
when we write [[X1 ]] and [[X2 ]] we actually mean [[X1 ]]t and [[X2 ]]t for the
same common t.

Below, by an abuse of terminology we will call class names just classes.
(ii) Given a subset K of L, we write

⋃
KX for

⋃
{[[X` ]] | ` ∈ K ⊂ L}. We also

write
⋃

X for
⋃
LX. We also remind the reader our convention about distin-

guishing general and functional mappings described in Definition (3.1).

5.2 Schemas, their instances and states.

In what follows, some context XL or just X is assumed to be given.
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5.3 Definition: Table schemas, links and tables. A table schema is a pair
T = (X, R) with X a context and R a name disjoint from L.

An instance of schema T , or else a link over T , is a functional mapping
r : L →

⋃
X s.t. r(`) ∈ X` for all ` ∈ L. The set of all possible links over X

is a labeled Cartesian product and will be denoted by
∏
LX or just

∏
X. If

{(` : X) | ` ∈ K} is a sub-context of X for some K ⊂ L, we will write
∏
KX for

the set of the corresponding sub-links.
A state of T is a set of instances over T , that is, a set [[R ]] of links or rows.

Evidently, a state is nothing but a table with columns named by role names,
in fact, roles because each column also has its domain X` specified. Given a
state [[R ]], each role label ` determines a projection function p` : [[R ]] → [[ X` ]]
by setting p`(r) def= r(`). Taken together, these functions generate a function
pL

def=
∏

`∈L p` : [[R ]] →
∏
LX, which makes the set [[R ]] a multi-relation over X.

When we consider the duplicate-eliminated version, we first form a new name
R!, and then set the state [[R! ]] to be the set [[R ]] with duplicates eliminated,
[[R! ]] ⊂

∏
X.

5.4 Definition: Mapping schemas, directed links and mappings. A mapping
schema over XL is a triple F = (S,Q, `) with S, Q ⊂ L and ` ∈ L such that
the triple (S,Q, {`}) is a partition of L. The set Q, but not S, is allowed to be
empty.

An instance of schema F , or a directed (qualified) link over F , is a triple
r = (rS , rQ, r`) with rS : S →

⋃
S X a link over S, rQ : Q →

⋃
QX a link over

Q, r` is an element (object, value) of [[X` ]].
A state of F is a set LF of directed links over F , and it is easy to see that

any state generates a mapping
−→
LF :

∏
S X → [

∏
QX � [[X` ]]]7,

which we will call a mapping over schema F . Correspondingly, we call the sub-
contexts XS and XQ the source and the qualifier of F respectively, and the class
X` the type of F .8

Of course, there can be different states/mappings over the same schema.
However, for a fixed given state of a given association A, each mapping schema
uniquely identified a mapping and hence can be considered as a name of this
mapping. That is, if t denotes a time moment or the state of A at this moment,
then given a schema F , the mapping

−→
LF is uniquely determined. Hence, our

notation for it is [[F ]]t. For another moment u, we may have another mapping
[[F ]]u but we consider these two mappings as two different states of the same
mapping name/schema F .

In concrete syntax, using a triple (S,Q, `) as a name is not convenient and we
can employ various naming tips: sub- and super-indexes or/and underlying and
7 we remind that expression [A � B] denotes the set of all mappings from set A to

collections built from elements of B, see Definition 3.1
8 If Q = ∅, then

Q
QX = 1 (a canonic singleton set) and hence [

Q
QX � [[X` ]]] ∼=

coll([[X` ]])]
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the like. For instance, the mapping name help∗ in our Task example from section
2 is a shorthand for the mapping schema ({lead,mod}, ∅, help) (see Table 1.
Similarly, the name help∗1 is a shorthand for the schema ({mod}, {lead}, help)
and the name help∗2 is a shorthand for ({lead}, {mod}, help). When the source
contexts are singletons, it is customary in concrete syntax to omit the role names
near the source classes and write, for example,
help∗2(mod : Model) : Person � Person. Given the mapping name and the pa-
rameter name, the source role name can be figured out if needed. All these
stars,underlines and conventions live in the world of concrete syntax while in
the abstract syntax we have mapping schemas.
5.5 Construction: Currying. Let F = (S,Q, `) be a mapping schema and [[F ]]
its state. If S ′ ⊂ S, then we can apply Currying to [[F ]] w.r.t. the arguments in
S ′ and obtain a mapping

CurryS′ [[F ]] :
∏
S\S′ X → [

∏
Q∪S′ X � [[X` ]]]

with the same extension, ext(CurryS′ [[F ]]) = ext([[F ]]). The schema of this map-
ping is

CurryS′(F ) def= (S \ S ′,Q∪ S ′, `),

where Curry denotes the syntactical side of Curry operation. We thus have
[[CurryS′(F ) ]] = CurryS′ [[F ]]. Correspondingly, we have the inverse operations,
unCurryS′ for schemas and unCurryS′ for mappings, and [[ unCurryS′(F ) ]] =
unCurryS′ [[F ]]. An algebraically minded reader can notice that it means that
the semantics functor [[− ]] is a homomorphism w.r.t. Curry operations.
5.6 Construction: Duplicate elimination. If [[F ]] is a mapping as defined in 5.4,
we can apply to its target collections the procedure of duplicate elimination and
obtain another mapping

[[F ]]!!! :
∏
S X → [

∏
QX �! [[X` ]]],

whose target collections are necessarily sets, not bags (note the !-superindex
near the arrow head). We consider such a mapping as a state of a new mapping
schema F ! def= (F, !) = [(S,Q, `), !], where ! is some new symbol disjoint to any
of the labels we used. The source, qualifier and type of schema F ! are the same
as for schema F , the only difference is in the new symbol “!” attached to the
schema. We may consider “!” as a two-valued flag/attribute for schemas so that
F ! means that the value of the flag ! for F is set to True.

Now we define a state of !-valued schema F ! as a mapping

[[F ! ]] def= [[F ]]!!! :
∏
S X → [

∏
QX �! [[X` ]]],

and we again have semantic functor [[− ]] being a homomorphism w.r.t. the !-
operation. (Note the difference in notation: in syntax we use a normal font for !
while the corresponding semantic operation is denoted by bold !).

Following UML, we could also treat formation of schema F ! in a slightly dif-
ferent way as introducing a Boolean-valued flag/attribute for the role names/labels

36



rather than for schemas. Then each role name appears in two versions: ` and `!.
However, !-valued names are allowed to appear only in the type contexts and
are disallowed in the sources and qualifiers. To avoid keeping this restriction,
we prefer to consider ! as a flag for schemas (rather than role names) as it was
defined above.

Our previous definitions of structural, Curried and qualified maps in sections
3,4 can be reformulated for the general X-context situation in a quite straitfor-
ward way. Here is some details.
5.7 Definition: Maps over a context. What we called earlier a structural map-
ping over X is a mapping as above with the empty qualifier, Q = ∅. What we
called earlier a qualified mapping is a mapping as above with a source context
being a singleton, S = {`′} for some `′ ∈ L, `′ 6= `. We will sometimes refer to
general schemas with “more than singleton” sources and non-empty qualifiers
as mixed. Our earlier Curry operation is a particular case of 5.5 when S \ S ′
is a singleton. We will sometimes call it full Currying and the result a fully
Curried/qualified schema/mapping.

A given context X of arity n = |L| generates n structural mapping schemas

F` = (L \ {`}, ∅, `), ` ∈ L,

each one exists in the two variants, F` and F !`, and we call the sets MS(X) =
{F` | ` ∈ L} and M !S(X) = {F !` | ` ∈ L} the structural maps of X.

The context X also generates n(n-1) fully Curried/qualified mapping schemas

F``′ = ({`′}, L \ {`, `′}, `), `, `′ ∈ L, `′ 6= `,

again in the two variants, and we call the sets

MQ(X) =
{
F``′ | `, `′ ∈ L, `′ 6= `

}
and M !Q(X) = {F !``′} the (fully) qualified maps of X.

Also, for a given `, the set MC` = {F``′}, `′ 6= ` is a (fully) Curried map,
MQMQMQ = {MC` | ` ∈ L} and similarly MMM !QQQ are the (fully) qualified atlases of X.
Note that MQ, M !Q are the flattened version of MQMQMQ,MMM !QQQ resp., MQ =

⋃
MQMQMQ

and M !Q =
⋃

MMM !QQQ.

5.3 What is Association: an informal discussion and a formal
definition.

Let X be a context, which we assume to be thought of as the context of some
association. As we discussed above, mapping schemas over X can simultaneously
serve as names for the corresponding mappings (states) over X, and hence the
context X generates a pool of unique names for all the mapping involved. Be-
cause all these mappings are assumed to have the same extension table (for a
given state of the association), each one of them generates all the other (mutual
invertibility) and we indeed have a single state of the association. Particularly,
this single state possesses
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• an extension (data table) [[T ]],
• n structural mappings/ends [[F ]] for each schema F ∈ MS(X) plus n duplicate-

eliminated versions [[F ! ]],
• n(n-1) fully qualified mappings/ends [[G ]] for each schema G ∈ MQ plus

their duplicate-eliminated versions [[G ! ]] and, finally,
• a pool of non-fully qualified mappings of mixed schemas in-between the

structural and fully qualified schemas.

Fortunately, the Standard does not consider the latter as an interesting compo-
nent of associations, but even the first three components provide a rich arsenal
of objects, which includes a set of rows/links and a set of (sets of) mappings
(projections, structural and qualified ends, the latter two in the two versions).
When arity n ≥ 3, the total number of mappings is n+2[n+n(n−1)] = 2n2 +n;
for n=2, because MS and MQ coincide, we have only n + 2n = 3n mappings.

Since all these objects are mutually derivable from each other, for their imple-
mentation we do not need to implement/store each of them immediately. Rather,
we may choose to directly implement some of the objects, which we need to have
really efficient, and leave all the rest for retrieval (perhaps, non-efficient) only
if needed. Following the database jargon, we can call the former objects basic
and the latter derived. Moreover, operations lookUp, ext, Curry, unCurry and !!!
(duplicate elimination) can be considered as possible queries against the basic
elements to retrieve the derived ones.

A standard database way of implementing an association is to store the table
and implement the mappings by the corresponding queries. If we need some of
these queries executed efficiently, we can index the table in the corresponding di-
rections. An indexed table is then can be considered as an implementation of the
corresponding navigable end. A standard OO-programming way of implementing
an association is to define efficient retrieval/get methods in the corresponding
classes for navigational ends, and create a special table-object if we need to get
the extension efficiently. In either case, a reasonable association schema should
specify those objects that we need to implement efficiently (basic objects) and
leave the rest unspecified for “general ad hoc querying” by means of operations
lookUp, ext, Curry, unCurry and !!! if needed. In the OO-world, where mapping
procedures have to be assigned to classes (the holders of the methods), a natural
unit of specification is a (fully) qualified rather than a structural or mixed map-
ping schema. Thus, all that we need to do is to specify a subset of all possible
such schemas to be implemented efficiently. Here is a precise definition.
5.8 Definition. Associations operationally, I: Syntax.

An association schema is a triple A = (X, R, B) with the following compo-
nents.

1. X = {(`:X`) | ` ∈ L} is a context. It determines two sets (maps) of schemas,
MQ(X) and M !Q(X), as defined in 5.7.

2. R /∈ L is a name to be thought of both the association name and the exten-
sion table name. It determines a table schema T = T (A) = (R,X).

3. B ⊂ (MQ(X) ∪M !Q(X) ∪ {T}) is a subset of basic schemas.
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Schemas occurring in the set

Nq = B ∩ [MQ(X) ∪M !Q(X)]

are called navigable qualified ends. In addition, those from the set N0
q = B ∩

MQ(X) are called non-unique and those from N !
q = B ∩M !Q(X) are unique.

The set B ∩ {T} is a singleton, and if it is not empty, i.e., T ∈ B, we
say that the association’s extension is to be stored in a table with schema T .
Thus, the set of basic elements consists of the following disjoint components:
B = N0

q ∪ N !
q ∪ {T}, which are all optional but at least one of them must be

included into a valid association schema.
Note that although the sets N0

q and N !
q are disjoint, the situation when

F ∈ N0
q and F ! ∈ N !

q is not excluded (and then we may say that the end F is
both unique and non-unique). It merely means that we need both versions of
the end, with and without duplicates, to be implemented efficiently.

The set of navigable (structural) ends considered in UML is given by

N
def= {unCurry(g) : g ∈ Nq} ⊂ MS(X) ∪M !S(X).

We will generically refer to the elements of constructs from which an asso-
ciation schema A is built as to A’s elements. Thus, roles, names, schemas are
(modeling) elements.
5.9 Definition. Associations operationally, II: Semantics Let A = (X, R, B)
be an association schema as defined above. A state of A is a set of objects

[[A ]] def= {[[ e ]] | e ∈ B }

such that

1. if e = T ∈ B is the A’s table schema, then [[ e ]] is a table [[T ]] over this
schema as defined in Definition 5.3,

2. if e = F ∈ N0
q is a navigable non-unique qualified end/schema, then [[ e ]] is

a qualified mapping [[F ]] of schema F as defined in 5.4,
3. if e = F ! ∈ N !

q is a navigable unique qualified end/schema,then [[ e ]] is [[F ]]!!!,
that is, a mapping of schema F but with duplicates eliminated.

4. Moreover, all objects [[ e ]] are mutually invertible. In this sense the entire
collection [[A ]] is indeed a single state of the association.

We may call the total collection of association’s ingredients,

{[[ e ]] | e ∈ MS(X) ∪M !S(X) ∪MQ(X) ∪M !Q(X) ∪ {T}}

the virtual state of A. The state defined above is just a subcollection of this
virtual state to be implemented. In our geographical terms, an association is an
atlas of maps of the same territory (the extension of the association), with each
map presenting a net of all possible roads (mappings) of a specified sort. What
an association schema does is selecting a few roads in the atlas to make them
effective transportation routes (to be efficiently implemented).
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A diagrammatic representation of the syntactical half of the definition above,
that is, the metamodel, is given in Fig. 7. Nodes denote sets of syntactical ob-
jects and edges are meta-mappings between them. The constraints {def} hung
on tuples of arrows with a common source mean that any object in the source is
a tuple of elements, say, a Role object is a pair (name, className). Particularly,
the label {def} hung on edge “content” says that a Context object consists of
n Role-objects. Dashed nodes and edges denote derived sets of elements. For
example, having a Context, we derive the corresponding map MQ(X) of qual-
ified mapping schemas, the map MS(X) of structural mapping schemas and
the table schema (X, R). Note that the presence of derived metaclasses Qual-
ifiedMappingSchema and TableSchema is necessary in the metamodel in order
to show basic metaassociations navig-qEnd and storedTab. In contrast, meta-
class StructMappingSchema is only shown for illustrative purposes and better
comprehensibility.
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Fig. 7. Metamodel of Definition 5.8, mathematically

5.10 Discussion: Is association schema a classifier? Suppose that an associa-
tion schema A consists of a table schema T and two mapping schemas F1, F2. A
table schema is a classifier and its instances are links (Definition 5.3). A mapping
schema is also a classifier and its instances are directed (qualified) links (Defi-
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nition 5.4). Could we say that A is also a classifier whose instances are triples
of links r = (r0, r1, r2) with r0 ∈ [[T ]] and ri ∈ [[Fi ]], i = 1, 2? It would be a
nice picture but, unfortunately, it is not correct. The point is that all three links
in question are not independent: r1,2 are nothing but the same link r0, which
is navigated in two different directions. In fact, A’s instances are A’s extension
table instances (irrespectively to whether T is included into the schema or not),
and these instances are navigated in a few directions prescribed by A. Strictly
speaking, an association schema is not a classifier but a typical classifier (schema
T (A)) can be derived from it.

6 Discussion: UML’s associations in the light of formal
semantics and formal modeling

In this section, we arrange the metamodel of our formal definition in UML meta-
modeling style and compare it with the UML metamodel. This analysis summa-
rizes and clarifies our previous comparative sections 3.4, 4.4, 4.7 and answers to
some of the earlier questions but still reveals a few new flaws/deformations in
the UML metamodel. Then we will try to figure out a plausible explanation for
why the UML metamodel is deformed.

6.1 What is distorted in the UML metamodel

The metamodel in Fig. 7 is a diagrammatic specification of our definition 5.8.
The metamodel in Fig. 8 is its arrangement in the UML metamodeling style with
the arities of the constructs implicit; results of Discussion 5.10 are also added.
This metamodel is immediately comparable with the UML metamodel in Fig. 2,
and this comparison reveals the following results.

The Ubiquitous Property. The most striking observation is that UML meta-
model glues together three different metaclasses specifying three different
notions: Role, QualfiedMapping Schema and StructuralMapping Schema,
into one metaclass Property (a typical case of the Cylinder Syndrome). Es-
pecially distorting is merging class Role with Mapping classes. Particularly,
the metaassociation “qualifier” becomes a loop with incomprehensible mean-
ing, and a principal (for the association construct) notion of qualified map-
ping is left unspecified. It seriously deforms the entire metamodel and, in
fact, makes it hardly suitable to fulfill its primary function: to specify the
concepts in a precise and unambiguous way.

Holdership vs. ownership. The metaassociation “holder” specifying the source
class of a qualified mapping is mistakenly considered as ownership. In the
previous version of the Standard, it resulted in a entirely artificial interfer-
ence between ownership and navigability. This interference is deprecated in
the newest version but the metamodel still keeps the metaassociation owne-
dEnd subsetting memberEnd (constraint (5) in Fig. 2). However, we have
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Definitions for QualifiedMapping:
self.type = self.target.type(27)

self.holder = self.source.type(28)

self.context = union(self.source, self.qualifier)(29)

Constraints for QualifiedMapping:
disjoint(self.target, self.source, self.qualifier)(30)

Definitions for Association:
self.navigEnd = self.navig-qEnd.unCurry(31)

Constraints for Association:
union(self.navig-qEnd.target, self.navig-qEnd.context) = self.end(32)

self.navig-qEnd->size()=0 implies extensionStored=True(33)

self.navig-qEnd ->forAll(g1,g2| g1.unCurry.ext = g2.unCurry.ext)(34)

Definitions for Role:
self.coRole = self.asson.end - {self}(35)

Fig. 8. Metamodel of Definition 5.8 rendered in the UML metamodeling style. Partic-
ularly, metaclasses are named “semantically” (compare with metamodel in Fig. 7) and
arity size constraints are omitted
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seen that all the ends of an association are owned by the association (sec-
tion 4.3) and hence metaassociation ownedEnd is entirely redundant and
misleading, and must be removed from the metamodel.

Constraints. Two principal semantic constraints (33), (34) are missing from
the UML metamodel. A number of size constraints are missing too. Indeed,
in the arity-parameterized form of the metamodel Fig. 7, essential size infor-
mation is captured with metaassociations multiplicities also parameterized
by the arity. In the UML-style metamodeling Fig. 8, this information is lost
and must be specified with additional constraints. For example, in the Qual-
ifiedMapping Context, we have

self.qualfier->size() = self.asson.end->size() - 2

In fact, many arity-parameterized multiplicities in Fig. 7 give rise to size
constraint like above and must be added to Fig. 8.

Classification. As it was discussed in 5.10, considering Association as a clas-
sifier is not justified (or at least, needs special reservations) and the UML
metamodel is not quite correct here. Should Property be declared a classi-
fier? Since Mapping schemas are classifiers while Roles are not, and UML’s
Property subsumes both, this question could not be answered at all. Thus,
a fundamental for OO-modeling concept of Classifier is inconsistent with
UML’s notion of Property.

6.2 Why is the UML metamodel so distorted?

We see a few general issues, the importance of which for proper modeling (in
general and associations in particular) is essentially underestimated in UML.

Separating syntax and semantics. Care and accuracy in treating this issue
are a must for any modeling language pretending to be precise. In contrast,
UML carelessly employs the same terms for similar syntactical and semantic
notions, for example, the terms AssociationEnd and Property, or the very
term Association, are used in both senses. As is usual in such cases, UML
actually tends to understand them semantically, thus leaving many syntacti-
cal constructs nameless. We have fixed this problem by introducing a set of
syntactical constructs called schemas and their semantic counterparts called
states.
Of course, naming a schema and its state by the same term is a common
engineering practice. For example, in the database world, the term Relation
is often used to refer to both a relational schema and a relation populating
it. Such practices are acceptable and need not be necessarily confusing if
a precise formal model of the subject is developed and can be invoked in
case of ambiguities (recall our Cylinder analogy). The situation with UML’s
associations has been essentially different, and systematic use of two-meaning
terms could be quite ambiguous.9

9 We hope that now, after we have built a formal model of UML associations, the
situation changes and the two-meanings jargon can be used safely.
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Setting a metadata operation (query) language explicitly. As we have seen,
the very definition of association essentially involves operations (queries) and
derived (meta)data. Thus, a proper language for specifying the metamodel
has to combine metadata definition and metadata operation functionalities.
This is a well-known classical idea in the database world. In the latter, a data
definition language without querying mechanisms is considered to be useless,
and the standard notion is a data definition and manipulation language. In
contrast, the UML metamodeling toolbox has fairly weak operation func-
tionalities: there are just few primitive operations like derived union and
intersection, but even the metamodel of Association alone needs much more.

Working with labeled structures. UML inconsistently mixes two techniques
of working with record-like structures: the labeled style and the (widespread
though often irrelevant and confusing) “ordered” style where labels are re-
placed by natural numbers. In fact, an accurate syntactical mechanism for
working with labels and labeled structures is missing from the Standard.

Lessons of data modeling. Metadata is (although specific yet) data and hence
metamodeling, as a discipline of modeling metadata, could learn much from
data modeling. Particularly, the three issues mentioned above are well known
in the data modeling world, and could be adapted for OO metamodeling.

6.3 What we suggest.

Basically, our list of causes of disorder provides the basis for a possible set of
corresponding solutions. We will make a few additional remarks.

Syntax vs. semantics: separated yet similar. Generally speaking, what is
normally called a metamodel is a precise specification of syntax irrespec-
tively of semantics. However, if semantics is structurally similar to syntax,
then the metamodel is also semantically meaningful. This is in itself an
important reason to build syntax and semantics in a coherent way as we
did above for associations. In addition, there are other essential theoreti-
cal as well as practical reasons for having semantics structurally similar to
syntax so that semantics of a syntactical construct can be considered as a
homomorphism to the respective semantic universe. This idea is well known
in algebraic, particularly, categorical logic [15], and in computer science as
well, where it is usually termed as compositional semantics. We believe that
accurately separating syntax and semantics yet keeping them structurally
similar is a fundamental pattern that a reasonable modeling language should
follow. However, following this pattern in the case of diagrammatic modeling
and metamodeling is technically non-trivial and special mathematical means
need to be developed. An essential step in this direction is presented in [5].

Algebra of (meta)data manipulation. The UML metamodel is specified in
some core subset of UML consisting mainly of classes and associations. Our
analysis of Association shows that even for this small part of the metamodel
some data operation language should be added to the core. Moreover, it was
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shown in [4] that derived (meta)data and their operation is an essential com-
ponent of general metamodeling and model management. UML’s companion
responsible for the task is OCL, and hence UML metamodeling has to be
based on some core fragment of UML plus some subset of OCL. The primary
question is what this subset should be, and whether even the entire OCL
is expressive enough to support the UML metamodel’s needs. For example,
it may turn out that the Currying operation, which is evidently of higher-
order, is not expressible in OCL. Much research is needed here, and its value
should not be underestimated.

Ubiquitous Mappings. A mathematical universe consists of sets and map-
pings between them. As soon as we try to understand semantics of UML
constructs in mathematical terms, mappings inevitably appear on the scene
(perhaps hidden in logical formulas of usual string-based formalisms). In a
sense, this is nothing but a mathematical realization of the epigraph to the
paper. An adequate and accurate specification of semantics leads to graph-
based structures (sets are nodes and mappings are arrows), which are nat-
urally represented by diagrams. Thus, there is much more to the graphical
nature of UML diagrams than just concrete syntax: it is the graph-based se-
mantics that makes UML diagrams an effective modeling tool (if, of course,
their syntax follows and reveals the semantics). Thus, making mappings the
first-class citizens of UML modeling and metamodeling would help to draw
precise semantic foundations under UML.

7 Conclusion

We have found that semantics of the association construct can be uncovered in
the explanatory sections of the Standard, where it is described in a piecemeal
and informal yet sufficiently consistent way. We have built a mathematical frame-
work, in which these multiple intuitive descriptions can be formally explicated,
analyzed, and coherently integrated. The formal model allowed us to explain
accurately many delicate aspects of the construct and build a new consistent
metamodel for it.

We then compared this metamodel with the UML2 metamodel of association.
Our comparative analysis revealed a few essential omissions and distortions in
the UML2 metamodel, explained a number of the known problems with associa-
tions and detected a few new ones. It showed that the current UML2 metamodel
of association is inaccurate, incomplete and inconsistent. We also demonstrated
that the current UML notation for associations may lead to essentially incom-
plete specifications, and proposed a new consistent and unambiguous notation.
Finally, we sketched a few general problems inherent to the UML metamodeling
style, and suggested some measures to improve it.
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A Appendix. Qualified associations and normalization

In this section we analyze that use of qualified associations that the Standard
considers “common” and “having semantic consequences”, see quote (Q4) on
page 12. Note, first of all, that multiplicity of a qualified mapping (say, lead∗1) is
nothing but the multiplicity of the corresponding unCurried structural mapping
(lead∗), and hence the multiplicity 0..1 means that the structural mapping in
questions is single-valued (functional). It implies that each link/tuple in the
extension table is uniquely determined by its components from the domain of the
*-mapping, that is, in our case, by the pair (help,mod). As a rule, it means that
the subtable consisting of these components has a clear semantic meaning and
it makes sense to model it by an association class. For instance, in our example
we can introduce a new association class Task, whose objects are binary links
(help:Person, mod:Model), and the mapping lead∗ becomes an attribute of this
class of type Person.

Note that the multiplicity of the attribute is 1 rather than 0..1 that the orig-
inal mapping has. The point is that the source of mapping lead∗ is a (labeled)
Cartesian product, (help:Person)×(mod:Person), and normally a *-mapping (par-
ticularly, lead∗) is not defined for all tuples from this set, hence the lower bound
0. However, class Task is a subset of the Cartesian product above consisting of
all pairs appearing in the table, and for such pairs mapping lead∗ is defined.
Thus, we come to modeling our ternary association Task by a binary association
class Task endowed with a single-valued attribute lead∗ of type Person as shown
in the top row of Table 4. The marker {1-1} says that objects of class Task are,
in fact, pairs (help:Person,mod:Model), and for each such a pair one and only
one lead(er) is defined. The second row in the table shows how this treatment
works for an example of qualified association from the Standard.

The issue is well-known and well-elaborated for database modeling: in the
relational language, a qualified association with multiplicity 1 means a func-
tional dependency, say, (help,mod) → lead, and our remodeling procedure shown
in Table 4 is nothing but the well-known procedure of normalizing relational
schemas according to functional dependencies. Thus, here we have a variation
of the Cylinder Syndrome, in which UML describes a known construct in its
own terms. It would be just an interesting observation but, unfortunately, this
“common version” of the construct actually encourages to model associations in
a non-normalized way. In other words, “common” qualified association offered
by UML is a design pattern the modeler should avoid rather than to follow. An-
other evidence for this can be found in the analysis of constraints for qualified
associations [2].
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Table 4. “Semantic consequences” of UML’s qualifiers

 UML diagram for 
qualified association   

Its intended meaning  
(formally specified by sets and mappings) 

  

  

 

owner 

1 

11

help 

No 

owner

bank
Bank 

Person 

account No 

* 

0..1 

Integer Bank 

Account 

Person  

{1-1}

1

The Standard [12, sect.7.3.44, 
Examples,  p.131] 

Model 

Person 

help:Person 

0..1 lead 
lead

mod

Model 

Task 

Person  

1 {1-1}

1

Person  

Our example from section 2 
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