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Abstract

We present a robust framework for generating curvature-aligned meshes directly from oriented point clouds. We
first present a novel approach to denoising the input point cloud using robust statistical estimates of surface normal
and curvature to automatically reject outliers and correct points by energy minimization. We then generate lines
of curvature on the corrected point cloud with controllable density. Finally, an anisotropic quad-dominant mesh
is directly constructed from the corrected point cloud by detecting the intersections of these lines of curvature,
without user interaction. Our approach is applicable to surfaces of arbitrary genus and is statistically robust to
noise and outliers, while preserving sharp surface features. We show our approach to be effective over a range of
synthetic and real-world input datasets with varying amounts of noise and outliers.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Gen-
eration I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations I.3.5 [Computer Graphics]:
Geometric algorithms, languages, and systems

1. Introduction

Incorporating physical objects, scanned into a digital form,
is an integral part of many engineering and entertainment ap-
plications. The raw output of most shape acquisition meth-
ods is a point cloud sampling of the scanned surface. Given
the popularity of polygon meshes for representing shape, the
construction of meshes from point clouds is an active area
of research. Different shape acquisition processes produce
a wide range of characteristic point-clouds that commonly
exhibit artifacts of irregular sampling, noise and outliers,
and make automatic and general purpose mesh construc-
tion a challenging problem [JWB∗06]. To further complicate
the matter, several important applications, including physical
simulation, geometry processing and character animation,
make demands on mesh structure that are not met by existing
surface reconstruction algorithms [ACSD∗03]. Curvature-
aligned meshes provide an optimal piecewise linear ap-
proximation of a smooth surface [Sim94, D’A00] and fur-
ther mimic the flow-lines along which artists and animators
place geometric elements to create 3D models [ACSD∗03]
or hatch strokes for model illustration [HZ00].

In this paper, we present a new approach to automati-
cally construct curvature-aligned quad-dominant anisotropic
meshes with user-controllable density, directly from oriented

Figure 1: Results of applying our method to a point cloud of
Einstein’s head. We produce a quad-dominant, anisotropic,
curvature aligned mesh directly from the point cloud.

point clouds. While a number of quad-meshing techniques
exist [ACSD∗03,MK04,DKG05,DBG∗06a,LPW∗06], they
operate on an input mesh and are thus likely to inherit any
artifacts introduced during the construction of the intermedi-
ate mesh from the point cloud. Our approach, in contrast, is
statistically robust to irregular sampling and noise, preserves
sharp features and operates directly on the input point cloud.
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Figure 2: Overview of the stages of our method. (a) Initial point cloud and normal estimates. (b) M-estimation of principal
curvature directions. (c) De-noising of normal estimates and point locations using M-estimation weights. (d) Quad-dominant,
anisotropic, curvature aligned mesh obtained by following curvature lines over the surface implied by the point cloud and
tracking intersections. (e) Mesh close-up.

A schematic overview of our method is shown in Figure
2. The input to our technique is a point cloud with oriented
normals. Oriented normal vectors can often be acquired as
part of the scanning process or can be estimated with exist-
ing algorithms [HDD∗92, ACSTD07]. The first three steps
of the algorithm generates a corrected point cloud. Here we
extend the robust statistical curvature estimation approach of
Kalogerakis et al. [KSNS07] to reject outlier points and cor-
rect point positions and normals based on the statistical con-
tributions of points while estimating surface curvature (see
Figure 2c). We then trace lines of principal curvature with
a specified density directly over the surface implied by the
corrected point cloud. Finally, we use a Voronoi space par-
tition to efficiently detect intersecting lines of curvature and
construct a quad-dominant mesh as the output of our method
(see Figure 2d).

We show the results of our approach on synthetic analytic
examples with varying noise and sampling quality, models
with sharp features, large umbilic regions, as well as com-
mercially scanned real-world examples (Figures 1, 3, 5 and
7) and even highly noisy scans of reflective objects (Figure
8) acquired using scatter-trace photography [MK07].

2. Related Work

The method proposed in this paper is related to surface re-
construction from point clouds, quad remeshing and robust
estimation of surface curvature. We discuss the main works
in each area and our differences in the following subsections.

2.1. Surface reconstruction from point clouds

A considerable number of techniques for surface reconstruc-
tion from point clouds have been proposed in the computer
graphics and vision literature. Our approach, however, fol-
lows a different methodology from the existing techniques.
Our goal is to construct a curvature-aligned quad-dominant
mesh directly from oriented point clouds by tracing lines of
curvature on the input surface. We use a robust statistical
framework in order to increase tolerance to noise, reject sur-
face outliers and preserve sharp features. This framework is

based on maximum likelihood estimates of curvature and ro-
bust normal correction which also guide the entire meshing
procedure.

In the following, we present a brief categorization of the
most recent methods. A survey of surface reconstruction
methods can be also found in [JWB∗06].

Implicit functions: Methods for surface reconstructions
based on implicit functions attempt to construct a scalar
field of which a level set represents the desired surface.
Once such a field is obtained, a marching cubes algorithm
[LC87] reconstructs the surface by extracting said level set
and producing a tessellation. The methods differ in the way
the scalar field is built. One approach is to consider the
signed distance to the oriented tangent plane of the clos-
est point [HDD∗92]. Signed distance can also be accumu-
lated into a volumetric grid [CL96]. In these approaches,
an issue to address is the preservation of sharp features
[HDD∗94]. Another approach to constructing the scalar field
is to use radial basis functions (RBFs) which are fit to the
data points [TO99]. Here, issues to consider are fitting RBFs
efficiently to large datasets [CBC∗01], preserving sharp fea-
tures [DTS01] and adapting well to local shape complex-
ity [OBA∗05, OBS05].

Alternatively, by considering a density function centered
at each data point, it is possible to extract the surface as the
ridges of the implied scalar field [SG07]. Unsigned distance
functions can be used instead with the advantage that no
normal information is needed. In such a case, the surface
is extracted by computing the minimum cut of a weighted
spatial graph structure [HK06]. The reconstruction prob-
lem can also be formulated as a spatial Poisson equation
where a hierarchy of locally supported functions are ad-
mitted [KBH06]. Such a Poisson-based reconstruction can
also be performed efficiently with limited memory using a
streaming framework [BKBH07].

In all of these methods, while a locally smooth surface is
guaranteed by the set of functions used, the resulting mesh
is a product of the marching cubes or alternative tessella-
tion algorithm. These algorithms often produce meshes with
badly shaped highly irregular faces (see Figures 5d and 7d).
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Figure 3: Results of applying our approach to some sampled analytic surface. From left to right: regularly sampled non-noisy
sphere, randomly sampled noisy sphere, regularly sampled non-noisy torus, randomly sampled noisy torus, randomly sampled
cube. Note how in the case of the sphere and cube where umbilics predominate, the meshing is aligned with the principal
component axes. Noise is 1% of the bounding-box diagonal.

Moreover, there is the often underlying assumption that one
is dealing with a closed surface, which may not necessarily
be the case. In contrast, our approach makes no such assump-
tion and the faces produced by our tessellation are predom-
inantly nicely shaped, naturally anisotropic quads oriented
with the surface curvature.

Moving Least Squares: In MLS, the surface is defined
as an invariant set of a projection operator [Lev98]. The
MLS method employs locally weighted least-squares poly-
nomial approximations using fast decaying weight functions
[ABCO∗03]. Here too it is possible to work without normal
information or a local parameterization [LCOLTE07].

Issues to address in this approach include choice of
the support size of the weighting function [LCOL06], ex-
cluding outliers [FCOS05] and preserving sharp features
[RJT∗05, LCOL07]. Our approach deals holistically with
these issues by using M-estimation to obtain a maximum
likelihood estimate of local curvature. This process (as we
will show) can integratively remove outliers, determine lo-
cal sample weighting, and correct point normals and posi-
tions while preserving sharp surface features. Moreover, all
information yielded by this analysis will be leveraged during
the meshing process, rather than being discarded and treat-
ing this next step as completely independent.

Computational geometry methods: Several methods ap-
proach the reconstruction problem from a computational ge-
ometry point of view by using combinatorial structures such
as Delaunay triangulations [Boi84, KSO04], alpha shapes
[EM94, BBX95, BMR∗99] or Voronoi diagrams as in the
case of the power crust method [ABK98, ACK01]. Modi-
fications to the power crust method producing more accu-
rate output in the presence of noise have also been pro-
posed [MAVdF05]. Here too it is possible to produce recon-
structions from unoriented point sets, with the added guar-
antee of yielding watertight surfaces [ACSTD07]. A geo-
metric convection technique also makes it possible to recon-
struct closed surfaces from very large streaming sets of non-
uniformly distributed point [ACA07].

As with RBF approaches, there are underlying assump-
tions as to the nature of the sampled surface. Namely, these
approaches often assume a watertight surface. In contrast,
as mentioned above, our approach makes no assumptions on

the genus of the sampled surface, making it applicable to a
wider range of inputs. In addition, the vertex locations on
meshes resulting from computational geometry approaches
are largely determined by input point locations in one-to-one
correspondence, while our approach naturally resamples the
surface as necessary.

Statistical techniques: Machine learning techniques have
also been employed for surface reconstruction. These in-
clude neural networks [IJS03], support vector machines
[SSB05], as well as energy minimizing techniques for sur-
face fitting and registration [YHW06]. A novel surface re-
construction using Bayesian statistics is also presented in
[JWB∗06,DTB06] using a prior probability distribution over
the set of all possible original scenes. A Bayesian method is
also employed in [HAW07] for joint surface reconstruction
and registration. Finally, another interesting approach is to
reconstruct an object via partial matching with shapes in a
database [GSH∗07].

Our method is most in line with these techniques in that it
is based on robust statistics. However, most of these methods
correct surface points and sometimes resample them, but still
result in a point cloud representation. Our method also re-
moves outliers and corrects surface point positions and nor-
mals, in our case using the obtained maximum likelihood es-
timates of differential properties. However, it then also uses
these same estimates on the processed data to obtain a mesh
representation of the entailed surface.

2.2. Quad remeshing

Alliez et al. [ACSD∗03] propose remeshing an existing
polygonal object representation so that lines of minimum
and maximum curvatures are used to determine the edges
for the remeshed version in anisotropic regions. In order
to track the lines of curvature, the initial mesh is globally
parametrized, while the curvature tensor field also needs
to be pre-smoothed. Marinov and Kobbelt [MK04] instead
provide a more efficient framework that does not rely on
a global parametrization for anisotropic remeshing. Other
quad remeshing techniques have also been proposed using
smooth harmonic scalar fields [DKG05] or Laplacian eigen-
functions [DBG∗06b].

In our case, we aim at directly constructing a curvature-

Copyright November 2007.



4 E. Kalogerakis & D. Nowrouzezahrai & P. Simari & K. Singh / Construction of curvature-aligned meshes from point clouds

Figure 4: Point cloud data used as direct input to our
method.

aligned mesh from an oriented point cloud with controllable
density, even in the presence of noise or outliers. The in-
formation yielded from the robust statistical estimation of
surface curvature is used to subsequently remove outliers,
correct normals and point positions, and extract the lines
of curvature from the initial point cloud to directly yield an
anisotropic, quad-dominant, curvature aligned mesh. There
is no need to pre-mesh, globally parameterize, or make any
topological assumptions regarding the underlying surface.

2.3. Robust curvature estimation in point clouds

There are few curvature estimation techniques applicable to
noisy point clouds with outliers [TT05]. Kalogerakis et al.
presented a method to estimate principal curvature values
and directions over polygon meshes and point clouds using
a robust statistical framework [KSNS07]. We will rely on
this method in order to extract the maximum likelihood es-
timates of curvature from point clouds and correct the sur-
face normals. We also extend the approach to remove outlier
points and denoise point positions in a principled fashion.
Based on these estimates, we will extract the lines of curva-
ture directly from the point cloud in order to proceed with
the quad-dominant mesh reconstruction.

3. Surface correction

3.1. Statistical estimation of curvature

In [KSNS07], it was shown that an Iterative Reweighted
Least Squares (IRLS) process can be used to achieve a robust
estimation of curvature, minimizing the effects of noise. We
briefly overview this method here. In subsections 3.2 and 3.3
we introduce the extensions that allow us to (respectively)
remove surface outliers from the input point set and denoise
point positions using the results from the M-estimation pro-
cess.

The first step of the algorithm is to determine a minimum

Figure 5: Comparison of results. (a) Results of our method
on the cow data set using dense meshing. (b) Results of ap-
plying Poisson surface reconstruction [KBH06] to the same
dataset using a depth setting of 8 (chosen so as to use ap-
proximately the same number of triangles that our results
would have if we were to triangulate them.) (c) Close-up
of our approach and (d) close-up of Poisson surface recon-
struction. (e) and (f) Two progressively coarser meshes pro-
duced by our method by decreasing the density parameter.

neighborhood for each point pi in the initial dataset (see fig-
ure 6a). As in [JWB∗06], this minimum neighborhood is de-
termined by finding the closest points after projecting them
into the local tangent plane of pi, considering one closest
point for each of six 60◦slices around pi on this plane. If
there are no nearest points in two or more contiguous slices
around pi within a given threshold, the point is marked as
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Figure 6: (a) Boundary point definition and conditions. (b)
Normal variation sample for curvature estimation.

boundary point. If pi is not a boundary point, we consider
all pairs of points and their associated normals inside their
minimum neighborhood. Each such pair yields a positional
variation ~∆p and normal variation ~∆n which constrain the
curvature tensor as follows: ∇~u~N ·~u ∇~v~N ·~u

∇~u~N ·~v ∇~v~N ·~v
∇~u~N ·~w ∇~v~N ·~w


︸ ︷︷ ︸

unknowns

·
[

~∆p ·~u
~∆p ·~v

]
=

 ~∆n ·~u
~∆n ·~v
~∆n ·~w



where ~N is the normal vector field, and~u,~v and ~w form a lo-
cal orthonormal coordinate frame obtained from the tangent
plane (see figure 6b).

Given enough variation pairs, we obtain an over-
constrained system, which lets us solve for the curvature ten-
sor values in a least squares fashion. This estimation serves
as an initial guess to the IRLS process. Then, all normal vari-
ations inside an initial operating region are sampled and as-
signed with geometric weighting scheme according to the
inverse of their average squared Euclidean distance to the
center point pi. The initial operating region is heuristically
defined as the Euclidean ball centered at pi with radius 3.0
multiplied by the average distance of pi from its closest
neighbors in its minimum neighborhood. According to the
M-estimation literature, the IRLS approach assigns statisti-
cal weights to the normal variation samples for each iteration
given their observed residual ri,x from the currently fitted lin-
ear model x

w(ri,x/σ) =
2

(1+(ri,x/σ)2)2

where σ = 1.4826 ·median(ri,x). At each iteration, the op-
erating region is refined by considering the normal varia-
tion samples whose residuals are less than 2σ. The samples
which have larger residuals are considered outliers for the
curvature estimation of pi and are ignored, as in [SAG95].
These statistical weights are chosen so that a cost function
of the residuals of the samples is minimized and this corre-
sponds to the maximum likelihood estimates of the curvature
tensor [FP02].

As shown in [KSNS07], the initial normals can be cor-
rected using the computed curvature tensors and the final M-
estimation weights per each normal variation sample. Firstly,

the normal differences between pi and every point in its final
operating region are computed using the values for the un-
knowns as estimated from the IRLS process. Then, the new
normal at pi is computed as the normalized weighted sum
of the normals of its neighbor points in the operating region
plus the derived normal differences. These weights are the fi-
nal weights of the IRLS process assigned to each sample. Let
us denote with wi

j,k the final weight associated to the varia-
tion pair (p j, pk) for the estimation of curvature at point pi
(see figure 6b).

3.2. Surface outlier rejection

For each point pi we can define a sparse weight vector wi as
follows:

wi[p j] = ∑
k

wi
j,k

which intuitively represents how much p j contributes to de-
termining curvature at pi. If the weight is close to 1, then
its associated normal variation is strongly related to the cur-
vature of the point (pi considers it an inlier). If it is 0, its
associated normal variation is unrelated (pi considers it an
outlier).

Consider two points in the dataset p1 with weight vec-
tor w1 and p2 with weight vector w2. In the case where
w1[p2] > 0 and w2[p1] = 0, the point p2 considers p1 as an
outlier in its curvature estimation, while the same does not
hold for p1 (this is a vote from p2 for p1 for being an out-
lier). On the other hand, if w1[p2] = 0 and w2[p1] = 0, the
points are mutually irrelevant to each other’s curvature esti-
mation (no vote). If w1[p2] > 0 and w2[p1] > 0, both points
contribute to each others curvature (this is a vote from p2 for
p1 for being an outlier).

If over half of a point’s votes are in favor of consider-
ing it an outlier, we mark it as such and ignore it during the
next steps of our method (if a more conservative rejection is
desired, this threshold may be reduced). Isolated boundary
points are also ignored. We show this in the case of the heli-
coid (figure 2) and fish (figure 8) datasets. After the outliers
are rejected, the minimum neighborhood for each point is
reselected.

3.3. Point cloud denoising

The recomputed normals from the M-estimation process can
be used to correct the position of the rest of the surface
points. This is based on a global cost-minimization process
where goal is to move the position of the points in such a
way so that the local first-order approximation of the normal
in the minimum neighborhood of each point pi matches its
robustly corrected normal ~ni. The cost function is defined as
follows

E =
N

∑
i=1

K−1

∑
j=1

K

∑
k= j+1

√
||~ni− s · n̂(pi,qi

j,q
i
k)||
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Figure 7: (a),(b),(c) Results of applying our method to the
hand dataset. Note the preservation of features. (d) Close-
up of results produced by the Poisson surface reconstruction
method [KBH06] to the same dataset using a depth setting
of 12. While this setting produces approximately twice the
number of triangles that our results would have if we were
to triangulate them, the level of detail is comparable. Note
the difference in mesh quality.

where qi
j and qi

k denote the j-th and k-th nearest neighbors
of pi respectively, n̂(p,q,r) = unit((q− p)× (r− p)), and
s = 1 if ~ni · n̂(p,q,r)≥ 0 and s =−1 otherwise. Intuitively,
s · n̂(p,q,r) represents the oriented normal of the plane de-
fined by p and its neighbors q and r. N is the number of
points in the dataset, and K = 6 is the number of nearest
neighbors we consider.

The goal of the minimization process is to correct the
point positions so that the local normals of the planes match
the corrected normals as given by the M-estimation pro-

cess. We take the square root of the norm difference to
the local corrected normals as we noticed this better pre-
serves features, similarly to the square-root potentials used
in [DTB06].

Such an optimization requires an analytic gradient in or-
der to be performed efficiently. We employ the Polak-Ribiere
conjugate gradient method [Noc91]. In figure 2 we show an
example for a noisy helicoid. Figures 3, 7 and 8 also illus-
trate this technique. The reduction of noise can reach ap-
proximately 65% in the noisy cases of the torus and sphere.
The optimization takes a few minutes for a 100K point
dataset on a P4 3.0 GHz.

Notice that we do not explicitly place a penalty in our
energy term for point movement and they are only locally
moved based on their corrected normals. The minimization
process does not result in global translation of points, as in
such a case, this would not result in lower global energy.
Given our choice of the optimization algorithm, the fact that
we use the original point positions as the initial guess, and
the use of an analytic gradient, it is ensured that we find a
minimum for locally optimal point placement which is close
to the original point positions.

4. Tracing lines of curvature and their intersections

After rejecting surface outliers and denoising the point
dataset, our method starts to create the flow lines of prin-
cipal curvature. As there is no prior mesh representation in
our case, there is a need for special treatment of this pro-
cess in order to make sure that the flow lines are extracted
properly and no intersections are lost.

4.1. Tracing flow lines

A flow line is a piecewise linear curve created by sequen-
tially sampling the surface in adaptive step sizes follow-
ing the robust curvature estimates. Let us call such a curve
C = {c0,c1, ...,cn}, where ci is the i-th sample point.

The sampling algorithm starts by building a priority queue
of seed points selected from the corrected dataset, as well as
creating a Voronoi structure over said set which will be used
for efficiently implementing intersections. The points with
highest priority are those that exhibit the highest confidence
during the M-estimation process, i.e. those p j with highest
∑i wi[p j], meaning that they contribute the most to the esti-
mation of curvature of the other points in the dataset.

The first point in a given curve, c0, is initialized by pop-
ping a point from the queue. From this point, we will start to
trace flow lines in each of the principle curvature directions
~d ∈ {~k1, ~k2,−~k1,−~k2}.

Each new sampling point is generated firstly as
ci← ci−1 + s∗ ~d, thus moving towards the current signed
principal direction. As we will see, the step size s will be
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adaptively chosen and is initialized to half the distance of
c0 to its nearest neighboring point. Of course, ci currently
lies on the tangent plane of ci−1 and possibly not on the un-
derlying surface. Therefore, we proceed with a process that
corrects this by performing the following steps:

1. Retrieve all points neighboring ci that have non-zero sta-
tistical weights for the curvature estimation of ci (as
stored upon completion of the IRLS process). Let us call
these points q1,q2, . . . ,qk.

2. Define a new point q̂ = ∑w jq j as their weighted average.
As in the curvature estimation process, the weights are
a combination of geometric and statistical weights. The
statistical weights are the curvature M-estimation weights
and the geometric weights are the inverse of the squared
Euclidean distance of ci to each q j .

3. Define the normal of q̂ to be the normalized weighted av-
erage of the normals of q j using the same weights. We
also define its principal curvatures in the same way. Up-
date ~d and ci according to this interpolated principal cur-
vature direction.

4. Check if the current flow line is crossing into a new
dataset Voronoi cell by intersecting one of the separat-
ing hyperplanes of the current cell. If so, limit the step
size s and update ci (see below as to why.)

5. Update the sampling point ci by projecting it onto the
tangent plane defined by q̂ and its normal.

6. The statistical weights for ci are set to the weights of the
closest point in the dataset. Therefore, find this closest
point and update it if necessary.

We continue this process, by repeating steps 1 through 6
for the updated flow point ci. As noted in step 4, we also keep
track of the flow points that belong to each of the Voronoi
cells of the dataset and register them accordingly. This will
be very important for the tracking of flow line intersections.
For each Voronoi site in the dataset, we only need to check
for intersections of the corresponding registered flow seg-
ments. This is efficient and guarantees no intersections will
be lost.

The interpolation we use allows for the efficient tracing of
flow lines with satisfactory stability. Alternatively, a global
parametrization of the point cloud and a higher-order Runge-
Kutta method could be used but this would be prohibitively
slow.

Preserving features: Notice that the statistical weights
serve to preserve features during the tracing of the flow lines.
For example, in the case of a cube (see Figure 3), for points
near the cube edges, the weights of the points past the corre-
sponding feature boundaries are zero. Thus, the flow line in-
terpolates correctly along the cube faces and preserves hard
edges.

Stopping conditions: Each current flow line stops if one
of the following conditions is met: a) if the current flow
point has a distance less than d(κ) to a point of a dif-
ferent flow line (of the same principal curvature), where

d(κ) = 2
√

ε(2/|κ|− ε). This density threshold is adapted
to the corresponding curvature κ of the flow point as in
[ACSD∗03]. b) If the current flow point is closer than a small
multiple of the current step size to the starting point of the
line, then there is a self intersection. c) If a flow line reaches
an umbilical point (the current flow point has distance less
than the step size to an umbillic).

The proximity queries are performed by running a
breadth-first search (BFS) based on the six nearest points of
each point in the dataset. The BFS stops when there are no
more points in the dataset within a distance equal to the den-
sity threshold and the current step size. For each retrieved
point, we access its Voronoi cell structure and retrieve its
registered flow points. Then, we check the above conditions
based on the distance of the current flow point to the re-
trieved flow points of the nearby cells, as given by the BFS.
Of course, this is done for efficiency reasons, as a KD-tree
query for each flow point would be prohibitively slow, as
also noticed in [MK04].

In the umbilical regions, the principal directions are not
well defined. These regions are found by gathering all the
umbilical points in the dataset. A point is set to be umbilic if
the ratio of its principal curvatures is larger than 0.95. If an
umbilical region contains more than 3 points (like the points
that lie on a face of the cube), we perform principal compo-
nent analysis and set the principal directions to be the pro-
jections of the eigenvectors which correspond to the highest
eigenvalues. This amounts to setting the principal directions
to the local planar symmetry axes of each patch (see Figure
3 of the cube). If a flow line starting from an umbilical re-
gion reaches its boundary, then it stops. If a flow line reaches
a point where its normal is perpendicular to the given PCA
directions, it also stops (see Figure 3 of the sphere). As PCA
can be sensitive to noise, an IRLS process can be followed
with an appropriate weighting of the points in order to opti-
mize for the local symmetry axes as done in the framework
given in [SKS06].

The result of executing the above process for each point
in the priority queue is a network of principal curvature lines
(see Figure 3 of the torus) where each Voronoi cell data
structure has the registered flow points. We can now track
the intersections of the flow lines very efficiently.

4.2. Checking for intersections

For each Voronoi site in the dataset, we search for intersec-
tions of the flow segments incident on said site. As the flow
segments may not intersect exactly in 3D, we project them
onto the tangent plane of the associated point. A sweep-line
algorithm [dBvKOS00] is employed to quickly find the in-
tersections. If there is an intersection between two flow seg-
ments on the tangent plane, we find their intersecting points
and we reproject them. The new intersection (a new vertex)
is set to be the midpoint of these reprojected points. We also
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Figure 8: (a),(c) Results of applying our method to highly
noisy and outlier rich data acquired using scatter-trace pho-
tography [MK07] (see Figure 4). (b),(d) The same dataset
meshed using the method of Ohtake et al. [OBS05].

check if the flow segments of other lines of curvature meet
at an existing intersection. In this case, we update the ver-
tex structure with all the meeting flow lines. Moreover, we
set the normal of the vertex to be the average of the normals
of the flow points of the intersecting segments in order to
remain consistent with the original surface orientation.

5. Meshing process

After tracking the new vertices of the intersecting segments,
it is easy to proceed with the construction of the half-edge
structure. In the vertex structure, we keep indices to the flow
points of the intersecting flow lines. Each flow point has
pointers to its previous and next flow points in the line. We
traverse the flow lines to find the neighboring intersections
of each vertex. In this way, we create all the edges between
the vertices.

Half-edge structure creation: The meshing process is sim-
ilar to the one described in [MK04]. For every vertex, we
project all its edges onto its tangent plane, as given by its
precomputed normal. Having one of the projected edges as
a reference, we find the angles of all the other edges to it and
we sort them according to this angle in a counter-clockwise
direction. This results in the correct cyclic half-edge order.
Based on this process, we build all the half-edges for each
vertex.

Face generation: We select a half-edge from the list of all
retrieved half-edges and traverse the next half-edge until the
starting vertex is met. We mark these half-edges as visited
and we create a face. Then we continue this process, until
all half-edges are visited. Any concave faces can be further
partitioned, as done in [MK04].

6. Results

We show the results of our approach on analytic examples
with varying noise and sampling quality (see Figures 2 and
3), models with sharp features, large umbilic regions, as well
as synthetic and commercially scanned real-world examples
(Figures 1, 2, 3, 5 and 7) and even highly noisy, reflective
objects (Figure 8), acquired using scatter-trace photography
[MK07].

We also show our algorithm to compare favorably against
state of the art approaches. Figures 5 and 7 compare our re-
sults to Poisson surface reconstruction [KBH06]. In the case
of the cow, we used a depth level setting of 8 so that the num-
ber of triangular faces produced was the same as our method
would produce if it were triangulated. Notice the difference
in the meshing quality. In the case of the hand model, we
use a setting of 12 which produces approximately twice the
number of triangles that our results would have if we were
to triangulate them. Still, the level of detail is comparable to
our result. Note the difference in mesh quality.

Figure 8 compares our results to those of Ohtake et al.
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[OBS05]. Note that in this case, the fish point cloud (see Fig-
ure 4), obtained using scatter-trace photography [MK07], is
highly noisy and outlier rich. In order to provide a fair com-
parison, we firstly eliminate outliers and re-estimate normals
using our approach before applying the approach of Ohtake
et al. We tuned the method so that it produces a triangle mesh
with minimum holes and comparable resolution to our result
(using parameters Ter = 1e− 6 and Tq = 1; increasing the
smoothing parameter Tq increased the number of holes in
the resulting mesh.)

Our implementation uses CGAL for its data structures and
the QHULL algorithm for the Voronoi cell computation.

Indicative total running times for a 300K point cloud such
as the hand model are approximately 1.5 hrs, divided into 45
min. for robust curvature estimation, normal correction and
outlier rejection, 15 min for positional denoising and 15-30
(depending on the target resolution) for flow line extraction
and meshing on a P4 3.0GHz. Memory requirements are ap-
proximately 1GB for 100K points (such as the fish model)
or up to 2GB for higher resolution models such as the hand.

7. Conclusion and future work

We presented a method that allows the creation of quad-
dominant meshes for manifold surfaces of arbitrary genus
directly from oriented point clouds. The entire technique is
well grounded on a robust statistical estimate of curvature
and normals used in the denoising of the point cloud, exclud-
ing outliers and smoothly extracting the lines of curvature in
a feature-preserving manner.

We acknowledge the increased computational cost and
memory requirements of the current implementation of our
method. There are many extensions to our work that we
are currently exploring, which could further enhance this
novel type of surface reconstruction. A statistical technique
to automatically improve the sampling density over an arbi-
trary genus surface, in the lines of the method presented in
[JWB*06], could improve the reconstruction quality. A ro-
bust statistical detection of boundaries and crest lines from
the point clouds could also be helpful. An interesting exten-
sion of our work could be to generate isotropic flow lines
on the point cloud given a locally smooth harmonic vector
field. Finally, our technique could potentially be used for au-
tomatic hole filling and repairing of incomplete meshes.
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