
Designing Private Data-Publishing Settings

Chul Lee Hyun
University of Toronto

Toronto, Canada
leehyun@cs.toronto.edu

Yaron Kanza
Technion

Haifa, Israel
kanza@cs.technion.ac.il

Renée J. Miller
University of Toronto

Toronto, Canada
miller@cs.toronto.edu

Zheng Zhang
University of Toronto

Toronto, Canada
zhzhang@cs.toronto.edu

ABSTRACT
When data are published or exchanged, we may want to ensure that
certain information is kept private. We consider data-publishing
settings (including views, or more generally, data-exchange set-
tings) where the private information is specified by a secret query
on the proprietary schema. For such settings, we formulate a pri-
vacy notion that ensures those accessing published information can-
not learn, with certainty, any answer to the secret query, no matter
what data is contained in the private database. We provide algo-
rithms to test the privacy of such data-publishing settings. We con-
sider settings based on a closed-world assumption (for example,
settings defined by exact view definitions) as well as setting based
on an open-world assumption (for example, settings defined using
tuple-generating dependencies). We also propose a method for de-
signing private settings. We experimentally validate the usability
of our design solution on large settings.

1. INTRODUCTION
When databases are published or exchanged, we may want to

ensure that some portion of the data is kept private and not released.
In general, we may want to provide privacy guarantees that do not
unnecessarily restrict the data that is published.

To define the published data, we may use a set of views, or more
generally, the published data may be described by an independent
schema and a set of constraints that define the relationship between
the published schema and the proprietary schema. Note that the lat-
ter is a form of data-exchange setting [?], and has previously been
used for describing published data in other studies of privacy [?, ?].
The secret data is also defined declaratively using a secret query.
That is, the data we wish not to disclose are the answers to a secret
query. In our work, we will refer to a setting (defining the relation-
ship between the published schema and the underlying proprietary
schema) and a secret query (defining the data to be concealed) as
a data-publishing setting. A data-publishing setting provides pri-
vacy (or is private) if no tuple in the answer to the secret query can
be inferred with certainty from published data. We will make this
notion precise in Section 2.

Our primary goal in this paper is to provide a privacy test that de-
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

termines whether a data-publishing setting is private. When a given
data-publishing setting is not private, it is often desirable to modify
the given setting so that it becomes private. It is also desirable that
the proposed modification will preserve, as much as possible, the
original semantics of the setting. Our second goal is to provide a
method that will, with a minimal number of modifications, convert
a given setting that is not private into a private setting.

Many different definitions of privacy have been considered in
the literature. These approaches can be broadly classified as data-
dependent privacy [?, ?, ?, ?] and data-independent privacy [?, ?,
?]. As pointed out in the latter work, data-dependent privacy may
not be sufficient in dynamic environments (that is, in environments
where the database may change over time).

EXAMPLE 1.1. Consider a company database as shown in Fig-
ure 1 containing the relations Employee, Department and Partici-
pates. It may be important for a business to protect certain sensi-
tive information. For example, the company might want to conceal
the relationship between employees, the projects they work on, and
their department manager. Such information may reveal private
company strategies, for example, by potentially indicating that a
highly valued employee is working on a certain project whose man-
ager is the company CEO. However, it may be in the best interest
of the business to reveal other information, such as who works for
them, and what projects they have. In designing a data publishing
setting, we want to have tests for determining whether the setting
reveals any private information.

For this example, consider the three relations presented in Fig-
ure 1, and the following secret query Qs to specify the information
that should be kept secret.

Qs SELECT S.Name, S.ProjName, D.MgrName
FROM Participates S, Department D
WHERE S.DeptName = D.DeptName

The company, however, does want to disclose general informa-
tion on its employees, departments, and projects. A system ad-
ministrator decides to publish information about employees and
all related projects. A project is related to an employee if there is
someone else in the same department participating on the project.

CREATE VIEW V1 as
SELECT DISTINCT S1.Name, S1.DeptName,

S2.ProjName
FROM Participates S1, Participates S2,
WHERE S1.DeptName = S2.DeptName and

S1.Name <> S2.Name

Suppose that the company also publishes information on employ-
ees, their department, and their manager using the following view.

1

Figure 1: Proprietary instances and view instances.

CREATE VIEW V2 as
SELECT DISTINCT S.Name, S.DeptName, D.MgrName
FROM Participates S, Department D
WHERE S.DeptName = D.DeptName

Let us consider whether these views effectively conceal the in-
formation of the secret query Qs. If we publish an instance of the
views, say I, users would learn some information about the propri-
etary instance. For example, a user, Alice, would learn some of the
employee names, some project names, and some manager names
in the proprietary instance. However, can Alice learn, for certain,
whether the answer to Qs over the proprietary instance contains a
tuple with a specific employee name, a specific project name, and a
specific manager name? To answer this question, consider that for
a given instance of the views I, there are many possible proprietary
instances that could produce I; we say that Alice can learn a secret
tuple, for example a tuple such as (“John”, “Privacy”, “Amy”), if
this tuple is in the answer to Qs over every possible proprietary
instance that produces the view instance I. That is, if the tuple
(“John”, “Privacy”, “Amy”) is in the certain answers of Qs with
respect to the published instance I [?].

Suppose that the view instance I contains the relation I1, an
instance of the view V1 with exactly two tuples (“John”, “DB”,
“SQL”) and (“Amy”, “DB”, “Privacy”). Instance I also contains
the relation I2, an instance of V2 with two tuples (“John”, “DB”,
“Amy”) and (“Amy”, “DB”, “Amy”). These tuples are depicted in
gray in Figure 1. Then, from the tuple (“John”, “DB”, “SQL”) in
I1, Alice can infer that there exist, in the relation Participates
of the underlying proprietary database D, two tuples of the form
(“John”,“DB”,p) and (e,“DB”, “SQL”) for some e and p where
e 6= “John”. She can also deduce that a tuple of the form Partici-
pates (e, “DB”, p) must appear in I1. If the instance I1 consists of
only these two tuples (“John”, “DB”, “SQL”) and (“Amy”, “DB”,
“Privacy”), then she can conclude that e = “Amy” and p = “Pri-
vacy”. Hence, the tuple (“John”, “DB”, “Privacy”) and the tuple
(“Amy”, “DB”, “SQL”) must appear in the Participates re-
lation of any possible proprietary instance. From the tuple (“John”,
“DB”, “Amy”) in I2, Alice can infer that there exists, in the rela-
tion Department of the proprietary instance D, a tuple of the
form (“DB”, “Amy”). Hence, she can conclude that the tuple
(“John”, “Privacy”, “Amy”) is an answer to Qs over any propri-
etary instance that produces I, and therefore is in Qs(D). Notice
that the reasoning we used here was very specific to the instance
I. For (many) other instances of the views, Alice is not able to

deduce secret answers. For example, consider a view instance I′

comprises of the instances I ′1 and I ′2 that are depicted in Figure 1.
Let D1 and D2 be the two proprietary databases that are shown in
Figure 1 (for each relation it is written in parenthesis whether it be-
longs to D1, to D2 or to both.) The two proprietary databases D1

and D2 both produce I′ whereas Qs(D1) ∩Qs(D2) = ∅. Hence,
from I′ Alice cannot conclude, with certainty, any secret answer.

As shown in the previous example, a data-publishing setting may
conceal secret data for one published instance while revealing it for
another instance. Our goal is, however, to guarantee that the secret
data is concealed for any possible instance.

A possible attempt to avoid disclosure of private information is
to require that all the published data will satisfy k-anonymity [?].
In order to provide k-anonymity, data may be altered to ensure any
answer is indistinguishable (in a precise sense) from k other an-
swers. In many data-publishing applications, we may not want to
mutate data values. Furthermore, k-anonymity was originally de-
signed for static data and the issues of using it with dynamic data
are just emerging [?].

Another approach to avoid disclosure of private information is to
check each time the data is updated, using a data-dependent test,
whether the data-publishing setting is private. However, this ap-
proach does not guarantee privacy [?]. Moreover, this solution is
costly for an instance that has frequent updates, and when a setting
is determined to not be private for an instance, we would have to
change the setting to permit any data to be published. Hence, in
this work, we focus on data-independent privacy.

There are several data-independent privacy notions that have been
proposed. One notion is Multi-level Security Databases (MLSD)
which was proposed by Brodsky et al. [?]. Their work only con-
siders select-project type queries over a single table. Nash and
Deutsch [?] have investigated the privacy problem in GLAV data-
integration systems. In a data-integration system, user queries are
answered by certain answers (i.e., the published data is not materi-
alized as in data exchange). A number of different privacy notions
are proposed in their work, and a breach of privacy is defined as
completely revealing a source or completely revealing the secret.
Note that our notion of privacy is stricter than the privacy notion of
Nash and Deutsch [?]. We consider as a breach of privacy the abil-
ity to infer at least one tuple from the secret whereas they consider
it as the ability to infer the whole secret. This difference leads to
an apparent disparity in complexity results. Nash and Deutsch [?]
show that, in general, it is undecidable to test whether a GLAV data-
integration system provides data-independent privacy. In contrast

2

to their work, we will show that in data-publishing settings, test-
ing data-independent privacy, is decidable and in some cases even
polynomial.

A setting that is not private can be converted into a private one. In
some cases privacy can be achieved by using an open setting rather
than a close setting. In an open data-publishing setting, the pub-
lished data is not required to contain all the data in the proprietary
instance. Hence, if the proprietary instance would reveal a secret,
we simply elect not to publish all the data. An open data-publishing
setting is defined in terms of tuple-generating dependencies (tdgs),
which are often referred to as open dependencies [?] defined from
the published view or schema to the proprietary database. In a
closed data-publishing setting, the views are completely revealed.
It is defined in terms of exact or closed dependencies [?, ?].

EXAMPLE 1.2. In Example 1.1, we argued that the setting is
not private because there are instances for which Alice could re-
veal tuples of the secret. We showed that for an instance I1 that
consists of only the two tuples (“John”, “DB”, “Privacy”) and
(“Amy”, “DB”, “Privacy”), and I2 that only consists of the two tu-
ples (“John”, “DB”, “Amy”) and (“Amy”, “DB”, “Amy”). How-
ever, we also showed that adding tuples to I1 and I2 can generate
the instances I ′1 and I ′2 for which Alice cannot infer any tuple of
the secret with certainty.

Now, suppose that the instances I1 and I2 are published in an
open setting. Alice does not know what the company elected not
to publish. The underline proprietary database can be D (the
database that contains only the tuples depicted in gray in Fig-
ure 1), D1, D2 or any other database that contains the tuples of
D. Hence, there are no certain answers to Qs for the published
instance {I1, I2}, and Alice cannot infer with certainty any tuple
of the secret. Furthermore, if Alice does not have any information
about the number of employees, projects or project managers in the
company, she would not even be able to estimate the likelihood of
some tuple to be in the secret.

Not every open data-publishing setting is private. As an example,
consider adding Qs as a view V3 to the setting of Example 1.1 (i.e.,
the case when Qs is both the secret query and a view). Obviously,
in such case, any answer to V3 is a certain answer to Qs. Hence, we
need not only a privacy test for closed settings, but also a privacy
test for open settings.

When a setting cannot be made private by publishing it as an
open setting, or when there are reasons not to publish only part
of the data, a user may use the approach of modifying the setting
for making it private. For example, we can remove data from the
published database by removing an attribute from a view. We can
also hide information by removing a join condition from the view.

EXAMPLE 1.3. A possible modification to the setting of Ex-
ample 1.1 is to remove the attribute MgrName in the definition of
the view V2, i.e., V2 will consist of only the attributes Name and
DeptName from the Participates relation. Another possible
change is to delete the join condition S.DeptName = D.DeptName

in the definition of the view V2. In both cases, after the modification
Alice will not be able to infer from the view instances any certain
answer to Qs. Hence, the modified settings are private.

Modifying the setting to provide privacy also changes the orig-
inal view semantics. In general, it may be very hard for a human
user to design a data-publishing setting that is private. Our ex-
amples illustrate the intricate reasoning needed to verify privacy.
Hence, we propose a solution where the user can design a data-
publishing setting based on her application requirements, use our

tests to determine if it is private, and then, for settings that are not
private, invoke our design algorithm to generate a modified setting
that is private. Our algorithm tries to minimize the change to the
semantics of the data publishing setting.

Example 1.2 and Example 1.3 illustrate the degree of privacy
provided in our approach. In these examples, for every given em-
ployee e and every given manager m, Alice cannot learn from any
published instance whether e works in some project managed by
m. In k-anonymity, for comparison, it is required that there will be
at least k possible managers for e, where, typically, k is a number
around 5. In practical scenarios where the number of managers is
greater than the k used in k-anonymity, our approach will provide,
at least, the anonymity provided by k-anonymity, for every instance
of the proprietary database.

Our main contributions are the following.

• We propose a new data-independent notion of privacy that
provides finer-grained privacy guarantees than previous pro-
posals. Specifically, we guarantee that a user will not be able
to determine, with certainty, any answer to a secret query.

• We provide algorithms for testing whether a setting is private.
• We evaluate our algorithms over a large number of syntheti-

cally generated settings and show that they are efficient.
• We develop a design algorithm that can convert a setting that

is not private into a private setting. Our approach is based on
searching for edits that minimally change the original setting.

• We implement and evaluate our design algorithm, and show
that it is indeed effective in finding modified (private) set-
tings containing only small changes from the original (non-
private) setting. To the best of our knowledge, this is the first
work in automatic design of private data publishing settings.

The paper is organized as follows. In Section 2, we will formally
present a new notion of data-independent privacy. In Section 3,
we present algorithms for testing whether a data-publishing setting
is private. We will describe the application of our approach and
how to implement our approach in Section 4. We experimentally
validate the efficiency and applicability of our proposed approach
in Section 5. Related work is reviewed in Section 6. Finally, we
present future work and conclude in Section 7.

2. FRAMEWORK
We now define data-publishing settings, and a new data-indepen-

dent privacy notion.
Schemas and Instances Let P be a proprietary schema P, com-
posed of a set of relations {P1, . . . , Pn}, modelling the proprietary
data. Let V = {V1, . . . , Vm} be a public schema modelling the
structure of the data to be published where V and P are disjoint.
Instances over the public schema V are called view instances for
consistency with the privacy literature where data is typically pub-
lished through views. We use I (possibly with a subscript) to rep-
resent instances of V. Instances over P, denoted by D, are called
proprietary instances (or possible instances).

EXAMPLE 2.1. In Example 1.1, the proprietary schema con-
sists of the relations Department (in some examples we will re-
fer to it as Dept), Employee, and Participates while the view
schema consists of V1 and V2.

Queries In our paper, we will consider select-project-join queries.
To make the notation for our algorithms concise, we will represent
queries using standard conjunctive query notation.

EXAMPLE 2.2. Consider the secret query Qs in Example 1.1

3

which specifies that the relationship between employees, their de-
partment manager, and their projects should be concealed.

Qs(n, p, m) ` ∃ d . Participates(n, d, p), Dept(d, m)

Data-Publishing Setting Let Γ = (V,P, Σvp) where V is a pub-
lic schema, P is a proprietary schema and Σvp is a constraint over
P and V. Then, a data-publishing setting is (Γ, Qs) where Qs is
a secret query over P. In this work, we assume Qs is a project-
select-join query.

We define two different types of data-publishing settings distin-
guished by the type of constraint Σvp they permit.

In an open data-publishing setting, Σvp is a set of source-to-
target (view-to-proprietary) tuple generating dependencies (st-tgds)
[?]. Such assertions are the most common forms of schema map-
pings used in the literature [?, ?, ?]. Specifically, in an open setting
Σvp contains a set of constraints of the following form.

∀x̄ QV (x̄) → ∃y QP (x̄, ȳ)

where QV and QP are project-select-join queries over the view
schema V and the proprietary scheme P, respectively.

In an open setting, the constraints assert that data in the (pub-
lished) view instance, must be justified data in the proprietary in-
stance conforming to Σvp. Note that in such a setting, the view
instance may contain a subset of the data satisfying Σvp.

Open settings do not include the most common form of data-
publishing settings, those defined by views. If Σvp is a standard
view definition, then the published view instance is fully defined.
To model such settings, we use exact constraints [?, ?]. In a closed
data-publishing setting, for each tgd from the view to the propri-
etary schema of the following form:

∀x̄ QV (x̄) → ∃ȳ QP (x̄, ȳ)

we have a corresponding tgd from the proprietary to the view schema
of the form:

∀w̄ QP (w̄) → ∃z̄ QV (w̄, z̄)

Let Σpv be the set of all proprietary-to-view tgds that are added
to make the setting closed.

EXAMPLE 2.3. Consider the view V2 of Example 1.1. In an
open setting, V2 is represented by the following tgd (universal quan-
tifiers are suppressed):

V2(n, d, m) → ∃ p, b. Participates(n,d,p),Dept(d,m)

In a closed setting, Σvp includes the constraint above and the fol-
lowing proprietary-to-view dependency.

Participates(n’, d’, p’), Dept(d’, m’) → V2(n
′, d′, m′)

Certain Answers Let (Γ, Qs) be a data-publishing setting, where
Γ = (V,P, Σvp) and Qs is a query over the proprietary schema
P. Let I be a view instance. Given an instance I of V, we can
define solution to Γ as a proprietary instance D such that all the
dependencies of Γ are satisfied [?]. A solution represents a pos-
sible propriety instance according to the constraints in the setting,
that could have produced the published view instance I . Given I ,
universal solution to Γ is defined in the usual way [?]. Intuitively,
a universal solution is a representation of all the possible solutions
to (Γ, I).

Given two instances D1 and D2 containing constants and labeled
nulls, a homomorphism h : D1 → D2 is a mapping from the con-
stants and labeled nulls in D1 to those in D2 such that (1) h(c) = c
for every constant c, (2) for every tuple t̄ of relation R in D1, h(t̄)
is a tuple of relation R in D2. For every solution, there is a ho-
momorphism from the universal solution to it. Given an instance
I of V, the certain answers of Qs, denoted by certain(Qs, I), are
the set of all tuples t̄ of constants such that for any possible solu-
tion D, t̄ is in Qs(D), i.e., for all D such that D is a solution to
(Γ, I). The certain answers of Qs with respect to a setting Γ, de-
noted by certain(Qs, Γ), are the union of all certain answers of Qs

for all possible view instances I of the view schema V. That is,
certain(Qs, Γ) = ∪

I is an instance of V
(certain(Qs, I)).

Given a published instance I , a possible solution D to Γ may
contain labelled nulls. We assume that a proprietary instance con-
tains constants only (hence, the published instance contains con-
stants only). Let certainc(Qs, I) denote the set of certain answers
of Qs given I when the possible solutions D contain no labelled
nulls. Similarly, let certainc(Qs, Γ) denote the set of certain an-
swers of Qs when the possible solutions D contain no labelled
nulls. Since a labeled null represents an arbitrary constant, it is easy
to see that certainc(Qs, Γ) ⊆ certain(Qs, Γ). Since labelled nulls
can be considered as distinct unique constants, certain(Qs, Γ) ⊆
certainc(Qs, Γ).

PROPOSITION 2.4. Given a data-publishing setting (Γ, Qs),
certainc(Qs, Γ) = ∅ if and only if certain(Qs, Γ) = ∅.

Privacy We now give the formal definition of privacy in a data-
publishing setting.

DEFINITION 2.5. A data-publishing setting (Γ, Qs) provides
privacy (or is private) if Qs has no certain answer for any instance
I of V. That is, certain(Qs, Γ) = ∅.

Given an open setting that is private, the corresponding closed
setting may not be private. The following proposition claims that
privacy in closed settings is at least as strict as that in open settings.

PROPOSITION 2.6. Given a data-publishing setting (Γ, Qs), if
(Γ, Qs) is private as a closed setting, then (Γ, Qs) is private as an
open setting as well.

Complexity Since our notion of privacy is data-independent, we
focus on the query complexity [?] when we present the complexity
results of the algorithms presented in this paper. We refer to the
number of relations in the schema as the size of a schema. We refer
to the number of subgoals in the dependency (query) as the size of a
dependency (query). For a set of dependencies, Σvp, we refer to the
sum of the dependencies’ sizes as the size of a set of dependencies.

3. TESTING PRIVACY
In this section, we present a set of algorithms for testing privacy

of data-publishing settings. We first discuss settings where both
the secret query and the queries used in the Σvp dependencies are
project-join queries (specifically, the queries do not contain con-
stants) in Section 3.1. We next discuss settings where both the se-
cret query and dependencies may also contain equality selections
(Section 3.2). We finally discuss settings where either the secret
query or views contain inequalities in Section 3.3

3.1 Project-Join Queries
We present algorithms for testing privacy for data-publishing

settings where the queries and dependencies use only project-join
queries.

4

3.1.1 Open Settings
As we briefly mentioned in Section 1, an open data-publishing

setting is similar to a data-exchange setting [?] in the sense that its
view and proprietary schemas can be viewed as source and target
schemas in a data-exchange setting (respectively). Following Fagin
et al. [?], given an instance of the view schema, we can use a finite
chase to compute a universal solution to the given data-exchange
setting. Fagin et al. [?] also showed that given a source instance I ,
the certain answers to a query Q over the target schema are exactly
the answers to Q executed over the universal solution, which con-
sist of merely constants (i.e., those answers that do not contain any
of the labeled nulls created by the chase).

Our notion of privacy in data-publishing settings has some dif-
ferences from that of query answering in data exchange settings. In
the context of data-exchange, it is sufficient to compute the certain
answers for a single source (in this case, view) instance, whereas in
the context of private data-publishing, we must check that there is
no certain answer for any possible view instance. Since there may
be an infinite number of possible view instances, it is practically
impossible to separately test privacy with respect to each view in-
stance. Therefore, our approach to testing privacy is to construct an
instance Ic such that there is a certain answer to Qs for some pos-
sible published view instance iff there is a certain answer to Qs for
Ic. Hence, we can restrict our privacy test to the checking of cer-
tain answers with respect to Ic. We further describe our intuition
through the following example.

EXAMPLE 3.1. Consider the secret query and data-publishing
setting from Example 1.1 where we have simplified the setting by
omitting the final inequality selection and defined the setting as an
open setting.

Qs(n, p, m) ` ∃ d . Participates(n, d, p), Dept(d, m)

Σvp :V1(n, d, p) → Participates(n,d,p’),
Participates(n’,d,p)

V2(n, d, m) →Participates(n,d,p),
Dept(d,m)

Let us consider what properties view instances should satisfy so
that a certain answer exists for Qs (a necessary condition for our
privacy test). One can see that some Name and DeptName value
in V1 should be equal to a Name and DeptName value in Qs. In
fact, since we only have project-join type queries in our view defi-
nitions, we can set each attribute value of the views to be the same
such that the join conditions in Qs are properly satisfied. There
will be a certain answer to Qs for some possible view instances
iff there is a certain answer to Qs for a specially defined instance
Ic. Note that this occurs when each constant in the view instance
is continuously replaced by the same constant c. The constant c
can be chosen arbitrarily. The constraint satisfaction in Γ does not
depend on the choice of constant c.

ALGORITHM 3.2. Algorithm for testing privacy of an open data-
publishing settings containing only project-join queries, in the de-
pendencies and in the secret query.

1. Let c be some arbitrary constant. Create a view instance Ic

as follows. For each relation V in the schema V, the relation
Ic(V) contains a k-tuple (c, . . . , c) where k is the arity of V .
There are no other tuples in Ic.

2. Compute a universal solution Dc to Γ for Ic. If Dc does not
exist, then (Γ, Qs) is private.

3. If Qs(Dc) contains the tuple (c, . . . , c) of all constants, then
the setting is not private. Otherwise, (Γ, Qs) is private.

Next, we illustrate this algorithm on a concrete example.

EXAMPLE 3.3. Consider the data-publishing setting in Exam-
ple 3.1 (representing the setting of Example 1.1 without the inequal-
ity constraints.) The algorithm first generates an instance Ic where
Ic(V1) consists of a single tuple (c, c, c) and Ic(V2) consists of a
single tuple (c, c, c). A universal solution Dc is computed by apply-
ing the tgds that represent these (open) views. We refer to the i-th
labeled null as ⊥i. The solution Dc is given as follows. The rela-
tion Participates contains tuples (c, c,⊥1), (⊥2, c, c) (from
the dependency for V1), and (c, c,⊥3) (from V2). The relation
Department contains a tuple (c, c). The evaluation of Qs over
Dc produces the tuples (c,⊥1, c), (⊥2, c, c) and (c,⊥3, c). Since
there is no tuple in the result consisting of merely constants, there
is no certain answer to Qs for any view instance, hence, the given
data-publishing setting is private.

The correctness of Algorithm 3.2 is stated by the following the-
orem.

THEOREM 3.4. Algorithm 3.2 tests correctly whether an open
setting (Γ, Qs) which uses only queries with projects and joins is
private.

We now discuss the complexity of Algorithm 3.2. This complex-
ity is mostly influenced by the number of chase steps when com-
puting the universal solution, and by the complexity of evaluating
Qs over the proprietary instance.

PROPOSITION 3.5. Consider an open data-publishing setting
(Γ, Qs) which uses only project-join queries. Algorithm 3.2 has
O(|Σvp||Qs|) time complexity, where |Σvp| and |Qs| are the sizes
of Σvp and Qs, respectively.

3.1.2 Closed Case
Testing privacy in a closed setting requires additional work. A

closed setting imposes additional constraints that will decrease the
set of possible proprietary instances for some view instances. Be-
fore presenting our algorithm for closed settings, we first introduce
some notation to simplify the discussion. Recall that in Section 2,
we defined implicit propriety-to-view dependencies Σpv which are
added to make a given open data-publishing setting closed. For a
closed setting, let us make these additional dependencies explicit,
that is Γ = (V,P, Σvp, Σpv). Furthermore, let Γb = (P,V, Σpv)
be the inverse setting of Γ. Let Ib

D denote the instance created by
chasing a proprietary instance D using Γb.

ALGORITHM 3.6. Algorithm for privacy testing of closed data-
publishing settings containing only project-join queries in the de-
pendencies and secret query.

1. Apply Steps 1–2 of the Algorithm 3.2 and compute a solution
Dc for Γ as in the open setting case. If a universal solution
Dc does not exist, then (Γ, Qs) is private.

2. Compute, over the instance Dc, a universal solution Ib
Dc

us-
ing the inverse setting (P,V, Σpv).

3. For each labeled null ⊥i from Dc that appears in Ib
Dc

, re-
place in Dc all the occurrences of ⊥i by c.

5

4. If Qs(Dc) contains the tuple (c, . . . , c) merely consisting of
constants, then a breach of privacy occurs in (Γ, Qs). Oth-
erwise, (Γ, Qs) is private.

Next, we illustrate how Algorithm 3.6 works through an example.

EXAMPLE 3.7. Consider the data-publishing setting in Exam-
ple 3.1. When considering this setting as a close setting, in addition
to Σvp we have the following two ts-tgds.

Σpv : Participates(n,d,p’),
Participates(n’,d,p) → V1(n, d, p)

Participates(n,d,p),
Dept(d,m)→ V2(n, d, m)

The run of Algorithm 3.6 over this setting is as follows. First, a
universal solution Dc is computed by applying Σvp on the instance
Ic that has a single tuple (c, c, c) in V1 and a single tuple (c, c, c)
in V2. The relation Participates contains tuples (c, c,⊥1),
(⊥2, c, c) (generated by applying the st-dependency for V1) and
(c, c,⊥3) (generated by applying the st-dependency for V2). The
relation Department contains a tuple (c, c).

Next, the algorithm applies the tgds backwards to generate Ib
Dc

.
In Ib

Dc
, the relation V1 contains tuples (c, c, c), (c, c,⊥1), (c, c,⊥3),

(⊥2, c, c), (⊥2, c,⊥1), and (⊥2, c,⊥3); the relation V2 contains
tuples (c, c, c) and (⊥2, c, c). According to Step 3, the labeled nulls
⊥1,⊥2, and ⊥3 that appear in Ib

Dc
should be replaced by c in

Dc. As a result, in Dc there exists Participates (c, c, c) and
Department(c, c). Evaluating Qs over Dc, after replacing the
null values by c, produces a tuple (c, c, c) made of constants. The
tuple (c, c, c) is a certain answer to Qs over the instances Ic. Thus,
Algorithm 3.6 completes the run indicating that the given setting is
not private.

THEOREM 3.8. Algorithm 3.6 tests correctly if a closed setting
(Γ, Qs) containing only project-join queries is private.

We now discuss the complexity of Algorithm 3.6. The complex-
ity is dominated by the generation step for Ib

Dc
. This is due to

Step 2 where it applies tgds in a form QP(x̄) → QV(x̄). Since the
execution of this step requires the evaluation of conjunctive query
QP over Dc, the complexity of Algorithm 3.6 is related to the com-
plexity of conjunctive-query evaluation. Not that for open settings,
we are evaluating queries over an instance of fixed size, but for
closed settings, our evaluation is over an instance whose size de-
pends on the size of the setting. This leads to a higher query com-
plexity for privacy testing of closed settings.

PROPOSITION 3.9. For any closed setting containing only project-
join queries, the following two statements hold.

• For a fixed data exchange setting Γ, it is coNP-hard in the size
of the given secret query Qs to decide whether Γ is private for
Qs.

• For a fixed secret query Qs, it is coNP-hard in the size of Σvp

to decide whether a given data exchange setting Γ (with fixed
V, P) is private for Qs.

Although the best complexity of our Algorithm 3.6 for closed
settings without constants is not polynomial, we will experimen-
tally show in Section 5 that our algorithm is relatively efficient in
practice since it is independent of any data instance.

3.2 Select-Project-Join Queries
In this section, we present how to extend the previous algorithms

for settings in which the secret query and dependencies may be
select-project-join (SPJ) queries. We start our discussion with the
open setting case.

3.2.1 Open Case
Settings containing selections may refer to specific constants (in

the dependencies or secret query). We again want to construct a sin-
gle instance, say IC , such that there is a certain answer to Qs given
a possible view instance if and only if there is a certain answer to
Qs given IC . However, we cannot have the same construction as
that for settings without constants, since in settings with constants
there might exist selection constraints that cannot be satisfied by
an instance IC formed using a single arbitrary constant c. So, we
show how to construct a more general IC that is sufficient and that
uses the constants that appear in the setting (that is, in Qs or Σvp).

ALGORITHM 3.10. Algorithm for testing the privacy of open
data-publishing settings with SPJ queries.

1. Let C denote the set of all constants in Γ and Qs. We create a
view instance IC as follows. For each V in the view schema
V, IC(V) = {(c1, . . . , ck) | ci ∈ C, for 1 ≤ i ≤ k},
where k denotes the arity of V .

2. Apply Step 2 and Step 3 of Algorithm 3.2 using this IC .

THEOREM 3.11. Algorithm 3.10 correctly tests whether an open
setting (Γ, Qs) with SPJ queries is private.

It is easy to see that the size of IC is exponential in the size of
Γ, where the maximal arity of V is in the exponent and the size of
C is in the base. In many practical cases, though, it is reasonable
to assume that both the maximal arity of V and the size of C are
bounded and relatively small. So, our algorithms has the following
time complexity.

PROPOSITION 3.12. The time-complexity of Algorithm 3.10 is
O((|Σvp| · |C||V|)|Qs|), where |V|, |Σvp|, |C| and |Qs| denote
the sizes of V, Σvp, C and Qs, respectively.

Note that this complexity is similar to the O(|D||Q|) time complex-
ity of evaluating a conjunctive query Q over a database D.

3.2.2 Closed Case
Closed settings with constants require a more intricate approach

than open settings. The privacy test should handle constants (as in
Algorithm 3.10) and satisfaction of the target-to-source constraints
(as in Algorithm 3.6). On one hand, we need to increase the view
instance with tuples comprising different constants. On the other
hand, inferring equality between a labeled null and a constant is
due to a unique value in some attribute, which is more frequent
in small instances than in large ones. Our solution to this is to
construct an instance IC similar to IC that was constructed above
for open settings, but apply the test to every subset of IC . (We
use the standard definition of subset for relational instances, that is
I ⊆ I ′, if I(V) ⊆ I ′(V) for every relation V in V.)

EXAMPLE 3.13. Suppose that a company wants to conceal par-
ticipation of employees in projects. This is specified by the follow-
ing query.

Qs SELECT Name, Project
FROM Participates

Now suppose that the company wants to publish the following
two views. A view of all the names of employees living in San Diego

V1 CREATE VIEW V1 AS
SELECT DISTINCT Name
FROM Employee
WHERE City = ‘‘San Diego’’

6

and a view showing the relationships between cities and projects

V2 CREATE VIEW V2 AS
SELECT DISTINCT ProjName, City
FROM Employee E, Participates P
WHERE E.Name = P.Name

Also, suppose that there are two views showing in which de-
partment John works and in which department Amy works. Now
if we consider an instance I1 of V1 that contains the two tuples
(“John”) and (“Amy”), then even if Alice sees a tuple (“Privacy”,
“San Diego”) in the instance I2 of V2, she cannot conclude, for
certain, that John participates in the “Privacy” project. Yet, if the
instance I1 contains only the tuple (“John”), then Alice can in-
fer that John is the only employee living in San Diego and, hence,
(“John”, “Privacy”) is a certain answer of Qs.

ALGORITHM 3.14. Algorithm for privacy testing of closed data-
publishing settings containing select-project-join queries in the de-
pendencies and secret query.

1. Let C = C0 ∪ C1, where C0 is the set of all constants in Γ
and Qs, C1 is a set of k fresh constants, and k is the number
of relational atoms in the body of Qs.

2. Create a view instance IC from the constants of C, as in
Step 1 of Algorithm 3.10.

3. If there exists I ⊆ IC such that CertainAnswers(Γ, Qs, I) is
not empty, then a breach of privacy occurs in (Γ, Qs). Oth-
erwise, (Γ, Qs) is private.

When constructing IC , we use C that contains the constants of
the setting and additional new constants. Intuitively, the new con-
stants help decreasing repetitions of values in different tuples. The
number of new constants in C1 is k because every answer to Qs

can be produced from k tuples of the database; and k tuples can be
generated by applying st-tgds on k tuples of the view.

Since the tgds in Σpv limit the possible solutions (IC , DC) to
Γ, we cannot guarantee IC is a solution for any DC . We must
make sure that every tuple t generated by applying some ts-tgd on
DC represents at least one tuple of IC , that is, there must be a
homomorphism from t to some tuple of IC . For example, if a tuple
t = (c1,⊥1) is generated by applying a dependency R(x, y) →
V (x, y) on DC , then either IC(V) must include a tuple of the form
(c1, c2) or (IC , DC) is not a solution to Γ. Furthermore, if (c1, c2)
is the only tuple in V having c1 in the first position, then we can
infer ⊥1 = c2.

PROCEDURE 3.15 (CertainAnswers(Γ, Qs, I)). A procedure
for computing the certain answers of Qs, for an instance I and a
closed settings Γ containing select-project-join queries.

1. Compute a universal solution D for Γ and I .

2. Compute over D a universal solution Ib
D , using the inverse

setting (P,V, Σpv).

3. For each tuple t in Ib
D , let Ht be the set of tuples t′ in I

such that there is a homomorphism ht,t′ from t to t′. If Ht

is empty, then return an empty set (since there are no certain
answers to Qs for the instance I).

4. For each tuple t in Ib
D and each labeled null ⊥i in t, check

the following. If there exists a constant c such that for each
t′ in Ht there is a homomorphism from tc to t′, where tc

is the result of replacing ⊥i by c in t, then replace all the
occurrences of ⊥i in D by c.

5. If in Step 4 some labeled null was replaced by a constant,
return to Step 2.

6. Return all tuples of Qs(D) consisting of merely constants.

THEOREM 3.16. Algorithm 3.14 tests correctly whether a close
setting (Γ, Qs) with SPJ queries is private.

3.3 Further Extensions
In this section, we consider a few extensions to data-publishing

settings.

3.3.1 Inequalities
First we consider setting that include SPJ queries with inequal-

ities. We illustrate an approach for extending Algorithm 3.14 in
which we include in IC new constants (not equal to any constants
that are added to IC in Step 1 of Algorithm 3.14.) The number of
such constants is determined by the setting (and hence is bounded
by the size of Γ).

To illustrate our approach, suppose that the secret query Qs has
a subgoal of the form x 6= y, where x and y are two variables (the
case of inequalities of the form x 6= c where x is a variable and c
is a constant is similar, hence, we will not discuss it specifically.)
In our algorithms, we evaluate Qs over a universal solution and we
check if the result consists of a tuple with no labeled nulls. Hence,
we need to determine when the subgoal x 6= y is satisfied during
the evaluation of Qs over a universal solution.

It is easy to see that there are three cases in which x 6= y is sat-
isfied during the evaluation of Qs. First, when x and y are mapped
to two constants c and c′ such that c 6= c′. Second, when x and y
are mapped to two labeled nulls ⊥1 and ⊥2, and it is possible to
infer that ⊥1 6= ⊥2. Third, when one variable is mapped to some
labeled null ⊥, the other variable is mapped to some constant c and
it is possible to infer that ⊥ 6= c. Inference that ⊥1 6= ⊥2 can
be done when during the chase we apply a dependency that has a
subgoal z 6= w in the target query, ⊥1 is mapped to z and ⊥2 is
mapped to w. Inferring that ⊥ 6= c is similar.

For satisfying a subgoal x 6= y by mapping x and y to two dif-
ferent constants, we need to use at least two constants in our test.
In general, we do not want our test to fail due to not using enough
constants. Thus, we add fresh constants to C before applying the
privacy test. How many new constants do we need to add? Note
that any inequality can be satisfied by mapping one of the variables
to a new constant. Also note that each time a dependency is being
applied in a chase step, it is being done independently of inequali-
ties in other dependencies. Therefore, it is sufficient to add m new
constants to C, where m is the maximal number of inequalities in
a single dependency of Γ, or in Qs.

The following example illustrates our approach.

EXAMPLE 3.17. Suppose that a company wants to conceal the
names of employees that work in two different departments. The
secret data is defined by the following query.

Qs SELECT P.Name
FROM Participates P, Participates Q
WHERE P.Name = Q.Name and

P.DeptName<>Q.DeptName

Now, suppose that in an open setting we have the view

V1 CREATE VIEW V1 AS
SELECT DISTINCT Name, DeptName
FROM Participates

In this case, Σvp will include the dependency

Σvp :V1(n, d) → Participates(n, d, p)

7

Using a single constant c in the instance of V1 will not allow
satisfying the constraint P.DeptName<>Q.DeptName in the query.
However, by using two constants c1 and c2 such that c1 6= c2 we
can create an instance of V1 that consists of the two tuples (c1, c1)
and (c1, c2). A chase over this instance produces a universal solu-
tion with the tuples (c1, c1,⊥1) and (c1, c2,⊥2) in Participates.
Now, evaluating Qs over this solution provides the certain answer
(c1), hence, the setting is deemed not private.

As another example, suppose we have the same secret query Qs

and a view V2 that reveals pairs of employees from two different
departments

V2 CREATE VIEW V2 AS
SELECT DISTINCT P.Name, Q.Name
FROM Participates P, Participates Q
WHERE P.DeptName<>Q.DeptName

In this case, when we apply a chase over an instance of V2 that
has a single tuple (n, n), we receive a universal solution that con-
tains two tuples (n,⊥d,⊥p) and (n,⊥d′ ,⊥p′) with the piece of
information that ⊥d 6= ⊥d′ . The inequality ⊥d 6= ⊥d′ can be
used to satisfy the inequality constraint in Qs, thus, the evaluation
of Qs over this solution produces the certain answer (n), showing
that the setting is not private .

3.3.2 Constraints on the Proprietary Schema
In general, the proprietary database is a full schema, potentially

with constraints Σp representing key constraints and foreign-key
constraints. Our algorithms for open settings make use of the chase
to compute a universal solutions for IC . In the presence of con-
straints on the proprietary schema, we can still use the chase to
compute a solutions Dc for (Γ, Σvp, Σp), given IC , providing that
the dependencies Σp are weakly-acyclic [?]. Furthermore, this
computation is still efficient. We claim that our privacy test for
open settings is still a sufficient test for a setting to be private, but it
may no longer be necessary. In other words, if the test determines a
setting is private, then the setting is private. But the test may falsely
determine a setting to not be private even when it is private. This
may happen because our test is for all I , not just all I that could be
produced by some proprietary instance D |= Σp.

EXAMPLE 3.18. Consider the following simple setting where
the proprietary schema has a single relation R(x, y) with key X →
Y . Assume there is a single dependency V (x, y) → R(x, y), R(c, c)
and the secret query is Qs(y) ` R(c, y), y 6= c, where c is some
constant. If we ignore the key constraint X → Y , then our al-
gorithm will use an instance of V containing a tuple R(c, c′) for
some c′ 6= c and will assert that (c′) is a certain answer. However,
chasing the instance by the dependency on V produces two tuples
R(c, c′) and R(c, c) that violate the key constraint. Having the key
constraint, for each tuple of R either x 6= c or y = c, so the body
of Qs cannot be satisfied and the setting is private.

Extending our algorithms, for open settings, to deal with con-
straints Σp on the proprietary schema requires adding a step of
chasing the generated proprietary instance by Σp—after the chase
by Σvp and before evaluating Qs.

4. DESIGNING PRIVATE SETTINGS
In this section, we introduce some basic edits to help convert a

non-private data-publishing setting into a private setting. In gen-
eral, there are two approaches to modify a setting for making it
private. The first approach that may only be applied to closed set-
tings is to publish only part of the data and refer to these settings
as open. Example 1.2 illustrated that. The second approach is to

modify the view definition. This has been shown in Example 1.3.
We consider a setting that does not provide privacy due to a set of
tuples created by chasing a view instance I , where this set of tuples
satisfies the secret query Qs, as having a Type II form of privacy vi-
olation. Notice that such a setting is not private whether it is closed
or open. Another form of privacy violation arises due explicitly to
the setting being closed. A setting may not be private if it is closed
and the dependencies Σpv lead us to replace nulls in chased solu-
tions with constants using a homomorphism application (in a form
of solution-aware-chase required in closed settings). We say this
latter type of setting has a Type I privacy violation. Such settings
could be made private if we make them open (and if they have no
Type II violations), but we consider less alternative ways of editing
the setting. We introduce two types of edits to modify settings that
exhibit these two types of privacy violations respectively.

4.1 Type I Edits
During our privacy testing for closed settings Γ, for each pub-

lished instance I , we can construct a directed graph where a node
represents a tuple created or modified during the testing and where
an edge from node t̄1 to node t̄2 with a set of labels {L1, L2, . . .}
means that for each of its labels Lj , (1) if Lj is of the form Si :
di1 , di2 , . . ., then t̄1 is required to generate t̄2 in the chase step Si

by the set of dependencies {di1 , di2 , . . .}; (2) if Lj is of the form
Si : di1 : ⊥j1 = ck1 , di2 : ⊥j2 = ck2 , . . ., then in the chase
step Si, t̄1 has its labeled nulls ⊥j1 ,⊥j2 , . . . replaced by constants
ck1 , ck2 , . . . because of some homomorphism application (see Sec-
tion 3.2 for details) related to the dependencies di1 , di2 , . . ., re-
spectively; moreover, these labeled nulls appear in t̄2 and need to
replaced by their corresponding constants as well. If a labeled null
appears in t̄1 only and it is replaced by a constant using a homo-
morphism application, then we use a loop on t̄1 to represent it, i.e.,
t̄2 = t̄1. We call such a graph GΓ,I the tuple-generation graph for
Γ given a published instance I .1

Suppose a given closed setting Γ is not private. Then, Qs(Dc)
contains a constant tuple t̄, where Dc is the universal solution cre-
ated in our Algorithm 3.6. Note that in Dc, some tuples may have
at least one of their labeled nulls replaced by a constant by some
homomorphism and if all of these homomorphisms were not done,
then Qs(Dc) does not contain t̄ anymore. Next, we are going
to show how to find these homomorphism applications using the
tuple-generation graph GΓ,I . Let T be the set of tuples in the body
of Qs during the evaluation of Qs that creates t̄. We can trace the
creation of the tuples in T on GΓ,I . Denote Tc the set of tuples
generated during the creation. Note that Tc contains T and may
contain many other tuples. We can identify the subset Tb of tuples
in Tc, where each tuple in Tb is generated by chasing the target-to-
source dependencies Σpv and has one of its labeled nulls replaced
by a constant because of a homomorphism application with some
tuple t̄′, where t̄′ is the valuation of the variables x̄ ∩ ȳ of some
source-to-target dependency d : QV(x̄) → QP(ȳ) in Σvp over the
published instance I in our algorithms. We call Tb the set of inverse
chasing tuples w.r.t. t̄. Note that Tb is contained in Ib

Dc
in our Al-

gorithm 3.6. We say a subset Te of the tuples in Tb is critical w.r.t.
t̄ if the following happens: (1) if every element in Te fails at least
one of its corresponding homomorphism in the creation, then t̄ is
not an answer to Qs. (2) if a critical set of tuples can be identified
from Tb by undoing the homomorphism application, continuing the
chase, and evaluating Qs on the new solution created by the chase
to see if t̄ is an answer. Note that such homomorphism applications
for Te are called the critical for Γ w.r.t. t̄. The reduced critical set

1Note that this graph is closely related to the route notion of [?].

8

of tuples w.r.t. t̄ is a critical set of tuples w.r.t. t̄ which will become
non-critical if any tuple in the set is deleted. Their corresponding
set of homomorphisms is called the reduced critical set of homo-
morphisms w.r.t. t̄. Hence, for each constant answer t̄ to Qs, we
need to make sure that for the reduced critical sets of tuples Te in
Tb w.r.t. t̄, the published instances of the modified setting contain
enough diversified tuples to avoid homomorphism application. We
further describe our intuition through an example.

EXAMPLE 4.1. Recall that Example 1.2 show that many non-
private closed settings become private when the setting is modified
to be an open one. For these closed settings, each constant tuple t̄
of Qs(Dc) has at least one non-empty critical set of tuples. When
the setting is considered as open, no homomorphism application
will happen; thus, the critical sets of tuples do not exist; hence,
Qs(Dc) contains no constant tuples and the setting becomes pri-
vate. Furthermore, these settings do not leak information for most
instances and only reveal secure information for a few instances
that are either too small or contain data with little variance in at-
tribute values.

To see whether the setting in Example 1.1 requires modifications
to make it private, we first test the privacy of the setting. With-
out loss of generality, we test the privacy of the setting using the
following instance I(V1) = {(c, c, c), (m, c, c)} and I(V2) =
{(c, c, c), (m, c, c)} (recall that we add a second constant m 6= c
due to the inequality in the definition of V1). Using V1 we cre-
ate in Dc tuples (c, c,⊥1), (⊥2, c, c), (m, c,⊥3), (⊥4, c, c) in
relation Participates. Using V2 we create tuples (c, c,⊥5)
and (m, c,⊥6) in Participates, along with (c, c) in relation
Department. The next step is to apply the tgds backwards for
generating Ib

Dc
. In Ib

Dc
, relation V1 contains tuples (c, c, c), (c, c,⊥3),

(⊥3, c, c), (⊥4, c,⊥1), (⊥4, c,⊥3), (m, c, c), (m, c,⊥1), (m, c,⊥1),
(⊥2, c, c), (⊥2, c,⊥3), and (⊥2, c,⊥1); relation V2 contains tu-
ples (c, c, c), (m, c, c), (⊥2, c, c), (⊥4, c, c). We next replace the
label nulls by constants as ⊥4 = c, ⊥2 = m, ⊥1 = c and ⊥3 = c.
After the replacement, in Dc there exist Participates(c,c,c)
and Participates(m,c,c). Hence, (c, c, c) and (m, c, c) are the
certain answers to Qs given IC . Now, we first consider the certain
answer (c, c, c). We trace back and find that the evaluation of the
query body contains a tuple Participates(c, c, c), which can
be created by three types of critical homomorphisms. One type is
on the possible values of V1.Name in the tuple V1(⊥2, c, c) for
some labeled null ⊥2, the second type is on the possible values
of V1.ProjName in the tuple V1(c, c,⊥1) for some labeled null
⊥1, and the third type is on the possible values of V1.Name and
V1.ProjName in the tuple V1(⊥4, c,⊥3) for some labeled nulls
⊥4 and⊥3. Moreover, the labeled nulls⊥2 and⊥4 must satisfy the
inequality condition S1.Name <> S2.Name, since S1.Name
is evaluated to be ⊥1 or ⊥3 in the two kinds of homomorphisms.
Therefore, the published instance of V1 should contain at least one
more distinct value of V1.Name and one more distinct value of
V1.ProjName. In particular, the value of V1.Name is different
from both values c and m in IC . Hence, for each tuple in the pub-
lished instance of V1, there should be two tuples with unique dis-
tinct values of V1.Name and one of the two has one distinct value
of V1.ProjName. Similarly, we analyze the other certain answer
(m, c, c) and reach the same conclusion. Our intuition motivates
the following algorithm.

ALGORITHM 4.2. An algorithm to modify a non-private closed
setting (Γ, Qs) so that critical sets of homomorphism applications
will not occur.

• Test the privacy of (Γ, Qs) and construct the tuple-generation
graph GΓ,I for Γ w.r.t. each tested published instance I .

• If (Γ, Qs) is not private, for each of the certain answers {t̄} to
Qs generated in Step 1, do the following.

• Let T be the set of tuples in the body of Qs during the
evaluation of Qs that creates t̄. Let I be the published
instance during the test s.t. t̄ ∈ certain(Qs, I).

• Trace the creation of the tuples in T in GΓ,I . Denote Tc

the set of tuples generated during the creation. Identify
the Tb of backward chasing tuples in Tc.

• Identify the critical subsets {Te} of tuples within Tb and
record their corresponding critical homomorphisms in the
form of Si : dl1 : ni1 = ck1 : dl2 : ni2 = ck2 : · · · , Sj :
dl′1

: ni′1
= ck′

1
: dl′2

: ni′2
= ck′

2
: · · · , . . . (i < j), i.e.,

with the same semantic meaning as edge labels.
• Find the reduced critical subset Te of tuples w.r.t. t̄, for

each critical homomorphisms for Te, and for each expres-
sion in the form of dl1 : ni1 = ck1 , do the following.
• Suppose dl1 is represented as QV(x̄) → QP(ȳ).
• Add to the side of dl1 that is defined over P (i.e.,

the right-hand-side) a duplicated QP(ȳ′) with dis-
tinct new variables ȳ′.

• For the variables in ȳ that are evaluated to ni1 in the
chase step Si (note that these variables also appear
in x̄), add inequalities between them and their cor-
responding variables in ȳ′. Furthermore, if any of
these variables yi in ȳ appears in an inequality term
in QP(ȳ), say yi 6= y0, add a copy of the term where
yi is replaced by y′i, i.e., the corresponding variable
of yi in ȳ′.

• For other variables in both x̄ and ȳ, add equalities
between each of them and its corresponding variable
in ȳ′.

• Update QP(ȳ) → QV(x̄) accordingly.

• Rewrite and simplify the modified dependencies.

Let us revisit Example 1.1 and run the above algorithm to get a
private setting.

EXAMPLE 4.3. For the sake of clean and clear explanation, we
only consider one kind of homomorphism for the tuple V1(⊥3, c,⊥4)
since it covers the other two homomorphism. We first duplicate the
view body with distinct variables and add it to V1. Then, since
V1.Name is evaluated to be a labeled null, which is replaced by a
constant later, we add an inequality term so that the newly added
variable S3.Name for the attribute Name of the relation Partici-
pates is different from S1.Name. Similarly, we add one in-
equality term so that the newly added variable S3.ProjName
for the attribute ProjName of the relation Participates is
different from S1. ProjName. Moreover, since S1.Name <>
S2.Name exists in V1, we need to add S3.Name <> S2.Name.
Finally, we add an equality term so that the newly added vari-
able S3.DeptName for the attribute DeptName of the relation
Participates is the same as S1.DeptName as this is the
variable that is evaluated to c in the homomorphism. The following
is the modified view of V1.

CREATE VIEW V1 as
SELECT DISTINCT S1.Name, S1.DeptName

S2.ProjName
FROM Participates S1, Participates S2,

Participates S3
WHERE S1.DeptName = S2.DeptName and

S1.DeptName = S3.DeptName and
S1.Name <> S2.Name and
S1.Name <> S3.Name and

9

S2.Name <> S3.Name and
S1.ProjName <> S3.ProjName

Note that, in our testing algorithm, all constant tuples in Qs(Dc)
have a non-empty critical set of tuples; hence, the modified setting
prevents the creation of these critical set of tuples and the modified
setting becomes private.

THEOREM 4.4. Given a non-private closed setting Γ, Algorithm 4.2
generates a setting Γ′ s.t. for any proprietary instance D, the pub-
lished instance I w.r.t. Γ contains the published instance I ′c w.r.t.
Γ′. Moreover, let D′

c be a universal solution for Γ w.r.t. I ′c, there is
no critical set of tuples for any tuple in Qs(D

′
c).

4.2 Type II Edits
Note that Type I edits apply when a data-publishing setting is

not private only when it is considered as a closed setting. When
the data-publishing setting is not private whether it is considered as
an open setting or a closed setting, there exists a constant tuple t̄
of Qs(Dc) s.t. the set of critical tuples in Dc w.r.t. t̄ is empty. In
other words, the non-private closed setting is still not private when
the setting is modified to be an open one. In this case, we introduce
two basic edits to turn a non-private data-publishing setting private:
(1) the addition of projections, denoted as P+, is a random dele-
tion of a free variable in a dependency; (2) the deletion of equality
terms, denoted as E−, is a random replacement of a repeated vari-
able by a distinct new variable in a dependency. While the intuition
for P+ is clear, the intuition behind E− is illustrated as follows.

EXAMPLE 4.5. Consider a data-publishing setting Γ where Qs(x) `
∃ y, z P (x, z), P (z, y) where Σvp is V (x, y) → P (x, z), P (z, y).
Clearly, Γ is not private. However, if we delete the equality term in
V (i.e., by replacing one of the two appearances of z by z′), then
the modified Γ is private. Note that the equality term in Qs can not
be satisfied on the universal solution produced by our privacy test.

Between the two edits, we prefer E− since the resulting view
instance will contain the original view instance; however, the con-
nection between information as specified by the deleted equality
terms is hidden. Next, we will propose a Type II heuristic to apply
these two basic edits and gradually find an optimal solution (i.e., a
private setting). In Section 5, we will show that our Type II heuris-
tic is feasible in practice as the number of required edits to achieve
privacy is considerably low.

Before providing the details of our Type II heuristic, we first in-
troduce some notations. Given a dependency λ ∈ Σvp, let E(λ) =
{E−

0 (λ), . . . , E−
m(λ)} and P (λ) = {P+

0 (λ), . . . , P+
k (λ)} be

the set of all permitted “deletions of equality terms” and “addi-
tions of projections” over λ, respectively. Let M(λ) = {s|s ∈
2E(λ) ∪ 2P (λ)} be the set of possible combinations of edits over
the given dependency λ. Let iE−(λ) = {s ∈ 2E(λ)| |s| = i} de-
note the set of all possible subsets of E(λ), which contains i E−s.
Let iP+(λ) = {s ∈ M(λ)| |s| = i} denote the set of all possi-
ble subsets of P (λ), which contains i P+s. When it is clear in the
context, we simply denote iE−(λ) and iP+(λ) as iE− and iP+,
respectively. Since we strictly prefer E− to P+ as previously men-
tioned, we define a partial order <M over M(λ) as follows. With-
out loss of generality, suppose that given A(λ), B(λ) in M(λ), if
A(λ) ∈ 2E(λ) and B(λ) ∈ 2P (λ), then A(λ) <M B(λ). Fur-
thermore, suppose both of A(λ) and B(λ) are either in 2P (λ) or
2E(λ), then we say A(λ) <M B(λ) if |A(λ)| < |B(λ)| and A(λ)
≥M B(λ) otherwise. (This implies that our Type II heuristic is
going to first apply all possible subsets of E(λ) over λ before ap-
plying any P+.) Unless specified, we assume that for any subset of

M(λ), there is always a partial order <M . Therefore, when a Type
II heuristic wants to decide which subset of edits to apply next, it
will pick the smallest one according to <M .

Our Type II heuristic is based on an exhaustive solution search
over the space of all possible combinations of edits, i.e., M(λ).
We start our search with the initial data-publishing setting and the
search is halted when it has found a private data-publishing setting.
Therefore, in the worst case it requires 2|E(λ)|+2|P (λ)| operations.
While its cost looks expensive, we show later, by our experiments,
that the performance of our Type II heuristic is acceptable in prac-
tice. formal description of our Type II heuristic as follows. Finally,
we would like to point out that our design tool will tell users where
in the dependencies, the edits should be applied. Sometimes, mul-
tiple choices will be provided so that the users could pick the one
that best suites their preferred semantics.
Summary We summarize our approach to modify a non-private
setting to become a private one. We first test the setting using both
the algorithms for open and closed settings, respectively. If the set-
ting is not private under the algorithm for closed settings and is
private under the algorithm for open settings, then we use Algo-
rithm 4.2 to edit it. Otherwise, we use our Type II heuristics to edit
the setting.

5. EXPERIMENTS
In this section, we present the results of our experiments. We first

provide details about our experimental setup: we implemented our
basic algorithms (both open and closed cases) from Section 3 and
the Type II heuristic from Section 4 in PERL. We chose Perl DBI
as the interface to the underlying database management system and
MySQL was the choice for our DB system. All the experiments
were run on a Linux-based PC desktop with a 2.13 GHZ processor
and 224 MB RAM.

5.1 Run-Time Test
The purpose of this experiment is to test the run-time of our algo-

rithms as the complexity of a given data-publishing setting grows
with a fixed secret query. For the experiment, our query generator
produces views in the form of

V (x0, y1, . . . , ym, xk+1) → P (x0, x1), . . . , P (xk, xk+1)

where each yi is randomly chosen from {x1, . . . , xk}. A se-
quence of data-publishing settings are constructed as follows: the
secret query is fixed as Qs(x, y) = {P (x, y)} and a new Σvp

is created from the previous Σvp by adding a view from our query
generator with k and m incremented by one each time. The process
starts with k = m = 1 and stops when k = m = 60. The number
60 was chosen as the upper-bound on k and m since the maximum
number of joins allowed in MySQL is 61. Our algorithms are tested
over this sequence of open and closed data-publishing settings. In
Figure 2, we summarize the results of our experiments: our al-
gorithms achieve a run-time that is linear in the size of the open
settings and a run-time that is exponential in the size of the closed
settings. This is predicted by the complexity results in Section 3.
Furthermore, note that the graph clearly indicates the efficiency of
our privacy tests as it takes less than a second to perform each test
even over a setting consisting of 60 complex views.

Figure 2: Run-Time of our privacy tests for open/closed settings

5.2 Type II Test
In this set of experiments, we evaluate the performance of our

Type II heuristic (from Section 3) in two different types of settings:

10

(1) a set of chain views with subgoals over multiple binary rela-
tions, (2) a set of chain views with subgoals over a single binary
relation. Note that in (1), the views are generated in a similar fash-
ion to those in our run-time test except that the relations are also
randomly generated now. Denote s the number of generated rela-
tions. We generated 50000 views with s = 10, k = 9, and m = 9,
and 50000 secret queries with s = 10, k = 4, and m = 4. Type
II heuristic is tested over each pair of the 50000 views and secret
queries. Out of them, around 1% are not private, on which our Type
II heuristic is performed. We plot the results of our experiments in
Figure 3, where the X-axis represents the type of edits (either P+

or E−). Below each operator (inside parenthesis), we indicate the
number of Type II heuristic steps required to apply the correspond-
ing operator so that the modified setting become private. The Y-axis
represents the frequency at which privacy is achieved after the cor-
responding operator is applied. Furthermore, in Table 1, we report
the average running time of our Type II heuristic before finding a
private setting.

Figure 3: Type II Heuristic experiment on chain views over
multiple relations

Search Stopped when it Average Run-Time (secs)
had applied the following edits

1E- 0.253
2E- 0.393
3E- 0.649
4E- 0.952
1P+ 2.986
2P+ 3.064
3P+ 2.905

Table 1: Average run-time of Type II Heuristic operations on
chain views over multiple binary relations

Figure 4: Type II Heuristic experiments on chain views over
one single binary relation

For the second type of settings, 2000 views were generated with
k = 9 and m = 4, and 2000 secret queries with k = 9 and m = 2.
Type II heuristic is tested over each pair of the 2000 views and
secret queries. We report, in Figure 4, the results of our experiments
and, in Table 2, the average running of our Type II heuristic before
finding a private setting.

In all the experiments, high appearances of E−s of small sizes
are observed. Intuitively, there are important joins in the chain that
cause the leak of secret information. The performance is appealing
since it does not take long for the Type II heuristic to identify such
important joins. For the second type of settings, high appearances
of P+s are also observed. This is because when the views and
secret queries are defined over a single relation, in some cases it
might not be enough to perform join relaxations (i.e., deletions).
Instead, our Type II heuristic has to rely on projections to obscure
the secret information. Finally, our experiments show that the rum-
time cost of our Type II heuristic is acceptable in practice.

6. RELATED WORK
In data publishing, one popular way of measuring privacy dis-

closure is by using the notion of k-anonymity [?]. Yao et al. [?]
consider a data-publishing setting consisting of a single relational
table (which has an identifier attribute and a private attribute), and
a set of select-project views to publish data. In their setting, k-
anonymity is violated when the value of the identifier attribute in a

Stopped when it Average Run-Time (secs)
has applied

1E- 0.377
2E- 0.487
1P+ 4.095

Table 2: Average run-time of Type II Heuristic operations on
chain views over one single relation

tuple of the table can be determined to be among less than k pos-
sibilities based on the materialized (published) views together with
the schema information of the table. Their privacy notion is data-
dependent and can be applied to a limited class of data-publishing
settings: (1) the secret query is a projection query (no selections or
joins) and it returns a binary relation; (2) the proprietary instance
only contains one single table; (3) all published views are defined
by select-project queries.

There have been some other probability-based privacy notions.
The privacy notion proposed by Miklau and Suciu [?] considers
a set of exact views to reveal private information if the probabil-
ity distribution of the answers to the secret query is changed for
some view materializations [?, ?, ?]. Their results show that this
is too strict of a notion as most any setting will reveal some infor-
mation about the distribution of answers. In information-theory
terminology, their privacy requires perfect secrecy [?], which is
often too restrictive for practical purposes. Dalvi et al. [?] pro-
pose five types of privacy for boolean queries differentiated by the
asymptotic value of the probability of information disclosure as the
domain size grows to infinity. Although this approach could be ap-
plied to non-boolean queries, it has to consider all possible answers
to the query, which could be of exponential size in the domain and
the query. The problem of testing relative privacy [?, ?] is to check
whether adding new views in addition to the existing ones would
change the probability distribution of the answers to a secret query.
In addition to the privacy guarantee we discussed in the introduc-
tion, Nash and Deutsch [?] also define two relative privacy guaran-
tees.

7. CONCLUSION
We presented a privacy notion for data-publishing settings where

the secrets are defined by a conjunctive query and the published
data is described by a set of constraints over the published schema
and the proprietary schema. We proposed algorithms to verify that
no certain answers can be inferred from the published data for dif-
ferent types of settings. Our tests are data-independent, meaning
that a private setting will not reveal secret data for any possible
database instance. Our tests guarantee that secret information in-
deed cannot be inferred with certainty from any published data. We
also considered the problem helping a user to design private data-
publishing settings. Given a setting that is not private, we provide
constructive ways of changing the setting minimally to produce a
private setting. Our experiments show that both our algorithms and
design heuristic run efficiently in practice.

In this paper, we considered a privacy guarantee that ensures a
user cannot deduce with certainty any answer to a secret query. A
complementary notion of privacy to the one we have discussed is
to require that a user not learn anything about possible answers to
the secret query Qs. Let t be in the possible answer to Qs, that is,
there exists some database D such that t ∈ Qs(D). Then, given
I , a user should not be able to determine (again with certainty)
that t is not an answer to Qs over the current (secret) proprietary
database. Under this notion of privacy, the published data should
not decrease the set of possible answers to Qs. We are currently

11

investigating how to test this form of privacy for data-publishing
settings.

12

