
Multi-objective shape segmentation
Technical report CSRG-575, Dynamic Graphics Project, Department of Computer Science, University of Toronto, c©June 2008

Patricio Simari and Karan Singh

Abstract

The users of shape segmentation algorithms possess a wealth of knowledge about the objects they wish to segment.
Current automatic segmentation approaches, however, apply a fixed objective uniformly to all parts and limit their
input to the number of segments desired and a small set of parameter values. In this paper, we propose the concept
of multi-objective shape segmentation. This model allows for the incorporation of domain specific knowledge by
means of competing objectives that can selectively refer to one or more segmentation labels or to the segmentation
as a whole. The segmentation problem is thus cast as the optimization of an aggregate objective function which
is a combination of these heterogeneous competing objectives. We introduce the use of multiplicatively weighted
Voronoi partitioning as a means to parameterize segmentations and present algorithms for coarse center place-
ment, segmentation labeling as a function of objectives, and center refinement. We then show how our approach
can accommodate symmetry constraints, which ensure desired segmentation properties and effectively reduce the
dimensionality of the optimization domain when prior knowledge of the shape is available. Finally, we show how
even shapes under complicated articulation can be handled by our approach by using multi-dimensional scaling.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: [I.3.5 Computational
Geometry and Object Modeling]: Geometric algorithms, languages, and systems. Hierarchy and geometric trans-
formations.

1. Introduction

Digital representations of 3D models, such as meshes and
point clouds, are rarely appropriate in their raw format for
the range of applications that benefit from their use, includ-
ing computer graphics, computer animation, engineering de-
sign, and medical diagnostics, to name a few. Such applica-
tions often require the preprocessing of this raw data into
simpler constituting parts. This is commonly referred to as
shape segmentation, and its automation remains a challeng-
ing area within computer science.

The users of segmentation algorithms, such as biologists,
doctors, mechanical engineers or digital character modelers
and animators, possess a wealth of knowledge about the ob-
jects they are analyzing and working with. However, current
algorithms for shape processing do not allow for the incorpo-
ration of detailed domain knowledge and usually limit their
input to the number of segments desired and a handful of
threshold values. If a user wishes to automate the segmenta-
tion of models according to his domain-specific knowledge,
the current approach is to implement a new segmentation al-
gorithm from scratch. This is often out of the realm of most

users. Even when it is not, such a ground-up implementation
requires a considerable investment of time and resources.

In the following, we will present a framework for shape
segmentation that allows for the incorporation of domain-
specific knowledge through heterogenous objectives each of
which refers to one or more segmentation labels. These ob-
jectives can be unary, asserting properties of an individual
part associated with a given label (e.g. that it should be nar-
row, compact, flat, symmetric) or they can by n-ary, referring
to part interrelations, (e.g. a set of parts should be parallel to
each other, or have the same proportions, or two parts should
be perpendicular to each other.) We thus cast the segmenta-
tion problem as an optimization minimizing an aggregate ob-
jective function which combines all objectives as a weighted
sum. We summarize our contributions as follows.

Contributions: We introduce the notion of multi-objective
shape segmentation and the application of weighted Voronoi
space partitioning as an approach to segmentation parame-
terization. We propose seeding approaches to initialize the
Voronoi centers, including a novel general-purpose evolu-
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Figure 1: Influence of multiple objectives. On the left we
see the result of optimizing for minimum squared difference
of convex hull volume to mesh volume. In the center is the
result of optimizing only for the narrowness of the handle.
On the right, we see the result of optimizing a combination
of these two objectives and perpendicularity between head
and handle. (See Section 10 for details.)

tionary approach. We present strategies for segmentation la-
beling to maximize objectives, including an efficient optimal
solution for unary objectives. We show how our approach
can accommodate symmetry constraints which effectively
reduce the dimensionality of the optimization domain when
prior knowledge of the shape is available. Finally, we show
how even shapes under complicated articulation can be han-
dled by our approach by using multi-dimensional scaling.

2. Related work

Shape segmentation refers to a partitioning of the set of sur-
face elements (such as mesh faces or point cloud points), the
partition being determined by a labeling of these faces that
optimizes some objective function. Historically, shape seg-
mentation algorithms can be broadly classified according to
the nature of this function and optimization strategy into the
following broad groups.

Affinity: In affinity-based approaches, it is assumed that for
every pair of mesh faces one can assign a confidence to their
being in the same segment, or conversely, a dissimilarity
metric that determines how likely they are to be in differ-
ent segments. In such approaches the goal is to maximize
intra-segment similarity and inter-segment dissimilarity. Ex-
amples include graph cut [KT03, KLT05, LZ07] and water-
shed approaches [MW99, ZTS02].

Model fitting: In model fitting approaches, it is assumed that
every segment of the mesh was independently generated by
a different parameterized model. In such a scenario, given
a mesh segmentation, it is possible to determine the model
types (if more than one is available) and associated param-
eters that best fit the observations. Conversely, given an ar-
rangement of models, it is possible to classify the mesh faces
accordingly and thus determine a segmentation. Within this
type of segmentation, known approaches for optimizing the
overall segmentation include region growing [LMM], varia-
tional [SS05, JKS05] and hierarchical [AFS06] approaches.

Property-based: This category includes segmentations
based on some surface property of interest held to some
degree locally by the segments but not by the overall sur-
face. This property is often not possible to indicatively mea-
sure at the atomic level of faces, thus precluding affinity-

Multi-objective Sub-resolution Liu and Zhang
segmentation partition Spectral Embedding

Figure 2: Left: Multi-objective segmentation of
quadrupeds. Unary objectives are symmetric head and
body, ellipsoidal body, and narrow legs. We also have the
n-ary objective asserting similar leg proportions and overall
objective favoring convex parts. Bulldog model also incor-
porates symmetry constraints. (See Section 10 and Figure 9
for details.) Center: Given the nature of our approach, we
are able to clip boundaries below mesh resolution. Right:
Compare our results with those obtained using Liu and
Zhang’s spectral embedding approach [LZ07] using the
same amount of segments.

based approaches, and difficult or impossible to capture by a
generative model approach. Such properties include symme-
try [SKS06, MGP06, PSG∗06, TW05], convexity [CDST97,
LA05, KS06, KJS07], tubular shape [MPS∗04] and texture
[LMLR06, LMLR07].

The methods presented thus far have natural intrinsic limi-
tations corresponding to their category. Affinity based meth-
ods require that it be possible to evaluate the function in
question at the face level for pairs of faces. This may not
be possible for functions that require a larger context to sen-
sibly evaluate, such as developability, tubularity, etc. More-
over, this approach is not amenable to optimizing multiple
segment-dependant functions (e.g. if one part should be con-
vex and another should not). Approaches based on gener-
ative models have the advantage of a continuous domain of
optimization and possibility of gradient computation. Unfor-
tunately they are also not applicable to some intuitive seg-
mentation objectives that do not lend themselves to genera-
tive model formulations, such as convexity, symmetry, etc.
Finally, the optimization approaches that address property-
based segmentations are naturally tailored for, and tied to,
the specific property they are segmenting with regards to.
Furthermore this property is uniformly attributed to all parts
in the segmentation.

3. Multi-objective shape segmentation

The users of segmentation algorithms possess a wealth of
knowledge about the objects they are analyzing and working
with. However, the implementation of an especially tailored
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Figure 3: Comparison of a standard Voronoi partition in 2D
with randomly generated points (left) to a multiplicatively
weighted Voronoi partition using the same centers and ran-
domly generated weights. Notice how the weighted partition
is able to generate circular boundaries.

optimization algorithm is out of the realm of most users. To
this end, we propose the decoupling of the objective function
from the segmentation algorithm that optimizes it.

Additionally, we would like to accommodate for the use
of heterogenous objectives. This is to say, each part of a seg-
mentation is uniquely identified by a label and we would
like to be able to assign varying objectives to different labels
or groups of labels. Typical objectives a user might wish to
attach to a label include that the associated part be narrow,
flat, symmetric (reflective, n-fold rotational, axial), convex,
compact, etc. Notice also however, that objectives need not
be limited to referring to single labels, but can also refer to
groups of labels and describe characteristics that the associ-
ated parts have with respect to each other. Intuitive examples
include parallel, perpendicular, coaxial, similar (in propor-
tions, for instance), etc..

As an example, consider a hammer. This object is de-
fined by Merriam-Webster as “a hand tool consisting of a
solid head set crosswise on a handle and used for pounding.”
This naturally suggests two segmentation labels: handle and
head. Moreover, it suggests the segmentation objective that
the part labeled head be perpendicular to the part labeled
handle. Our knowledge might further suggest that the parts
should be approximately convex and that the part labeled
handle should be narrow. The effects of incorporating multi-
ple objectives into the segmentation of a hammer shape can
be seen in Figure 1.

We thus cast the segmentation problem as an optimization
minimizing an aggregate objective function which combines
all given heterogenous objectives for the the segments of the
shape at hand, specifically in our case, as a weighted sum.
By formulating the problem in this manner, we address the
previously mentioned motivations:

• By allowing different labels to be assigned different ob-
jective functions, we avoid the drawback of standard seg-
mentation approaches which assume a uniform segmenta-
tion criterion for all parts.

• Since we assume the objective functions will be evaluated
on a fully instantiated segmentation, we do not require
that it be necessarily sensible to evaluate objectives on sin-
gle face pairs as is the case in affinity-based approaches.

Algorithm 1 Connected partitioning
1: Let C be the given set of weighted Voronoi centers.
2: for all f ∈ surface, i ∈ [1,n] do
3: D[ f , i]← weighted Voronoi distance from f to C[i]
4: Initialize an empty queue Q
5: Initialize segmentation indices Seg to 0
6: for i = 1 to n do
7: f ← argmin

f
D[ f , i]

8: Q.push( f ,priority = D[ f , i],centerid = i)
9: while ¬Q.isempty() do

10: ( f , priority, i)← Q.pop()
11: if Seg[ f ] 6= 0 then
12: Seg[ f ]← i
13: for all f ′ adjacent to f do
14: Q.push( f ′,priority = D[ f ′, i],centerid = i)
15: return Seg

• As long as objective function evaluation is possible, a gen-
erative model is not strictly necessary (though certainly
possible.)

• By means of n-ary objectives, the framework easily allows
for assertions not just about parts but of inter-part relations
as well.

• Objective functions can be reused. A non-expert user
wishing to automate a segmentation can select from a set
of already implemented, common functions (see Section
10 for examples.) Conversely, expert users who imple-
ment new objective functions can then make them avail-
able for reuse.

4. Parameterizing segmentations

In order to optimize a segmentation with respect to an ag-
gregate objective function as described above, we need to
be able to describe segmentations by means of some set of
parameters. To this effect, we propose the use of a Voronoi
space partition which is naturally parameterized by the spa-
tial coordinates of a set of points, each of which corresponds
to a segmentation label. This spatial partition naturally in-
duces a segmentation on the shape by classifying each sur-
face element according to the region of the partition that it
occupies. Dealing with polygonal faces, we choose to clas-
sify them by their centroid. This scheme is simple and works
well in practice but other alternatives are certainly possible.

A natural limitation of this approach would be that it is
only capable of describing planar boundaries. It becomes
possible, however, to describe curved boundaries (circular
arcs in 2D) and non-convex regions by augmenting the cen-
ters with a distance scaling weight. Formally, a point p’s dis-
tance to a center c with weight w is given by ||p−c||/w. The
result is known as a multiplicatively weighted Voronoi parti-
tioning [OBSC00]. Figure 3 compares the standard Voronoi
partition induced by a random set of points and the mul-
tiplicatively weighted Voronoi partition induced by points
with the same locations but varying associated weights.
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Figure 4: Segmentation resulting from simultaneously op-
timizing for flatness of wings and tail, narrowness of body
and compactness of tail, while incorporating the constraint
information that the body and tail lie on the plane of sym-
metry and that the wings are symmetric to each other. (See
Section 10 and Figure 9 for details.) Left: Result of k-means
approach to initialization with optimal labeling. Right: Op-
timized result.

Ensuring segment connectedness: This parameterized
spatial partitioning can easily induce segmentations on
shapes represented as point clouds, polygon soups, or
any other representation whose elements’ Voronoi partition
membership can be evaluated. When shapes are represented
using manifold meshes, voxels, or adjacency information is
otherwise given, it may be desirable to ensure that the in-
duced segments are connected. To achieve this we use a pri-
ority queue flooding scheme as introduced by Cohen-Steiner
et al. [CSAD04] and successfully used in at least one other
segmentation approach [SS05]. This process is detailed in
Algorithm 1.

5. Initial center placement

The first step in our framework is to automatically find a
coarse initial placement of partition centers which will serve
as the initial guess for the optimization. In this section, we
describe two such initialization approaches. Note that during
initialization we assume Voronoi weights of 1 and optimize
these weights in the later stage.

5.1. K-means center initialization

This approach has the advantages of simplicity and the fact
that it produces a Voronoi partition by construction, given
that it is based on distance to cluster centers. It also naturally
produces compact, similarly sized segments.

The centers are initialized using furthers point initializa-
tion: choose the farthest pair of surface points and then,
while centers remain to be chosen, select the point with max-
imum closest distance to the points chosen thus far. Then,
surface elements are classified according to the closest cen-
ter. Centers are now updated with the centroid of each seg-
ment and the process iterates till convergence.

The procedure is detailed in Algorithm 2. If adjacency in-

Algorithm 2 K-means center initialization
1: // Choose n centers using furthest point initialization
2: C[1 : 2]← two farthest surface points as initial centers
3: for i = 3 to n do
4: C[i]← argmax

x∈surface
min

i
||x−C[i]||2

5: repeat
6: // Classify surface elements
7: for all f ∈ surface do
8: S[ f ]← argmin

i
|| f −C[i]||2

9: // Update partition centers
10: for i = 1 to n do
11: C[i]← centroid({ f : S[ f ] == i})
12: until no change in classification occurs
13: return C

formation is available and connectivity of segments is de-
sired, replace lines 7 and 8 with the queue approach de-
scribed in Algorithm 1 for classification. Should a segment
become empty, we select as its new center the surface ele-
ment furthest from the current non-empty centers. Results
of this approach are illustrated in Figures 4 (left), 5 (left),
and 7 (center.)

5.2. Evolutionary center initialization

There may be cases for which the k-means alternative is not
suitable but automation is still desired. Figure 5 (left), for
example, shows such a case. To address this, we propose an
evolutionary approach to initial center placement.

The space of all possible center locations in 3D seems
prohibitively large, so our approach will choose initial cen-
ter locations from among the set of surface elements. (Note
that during this initialization, we will not optimize center
weights.)

An individual in our population is naturally represented as
an integer set x of size n where i ∈ x means surface point i is
chosen as a center location.

Fitness of an individual will be determined by the the user-
specified aggregate objective function. Given the heteroge-
nous nature of the objectives however, the centers must be
assigned labels prior to evaluation. In particular, we use a
labeling procedure which is optimal with respect to unary
objectives. This method is described in the next section.

As our selection strategy, we use tournament selection
[Mic98], in which a small random subset of the previous
population is considered and the individual with highest fit-
ness is selected.

An individual can be mutated by randomly selecting one
of its elements and replacing it by a new random center index
which was not already present.

Finally, given two individuals x1 and x2, we can produce
a crossover child y as follows. We first align the elements of
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Figure 5: There are cases in which a k-means approach to
initialization (left) proves unsatisfactory. For such cases, we
provide an evolutionary algorithm to choose initial center
locations (right).

these two sets to minimize the square distance of the corre-
sponding centers. This can be done by computing all pairs
distances between the centers from the first individual to
those of the second individual and then efficiently solving
for the optimal matching (for example, using the Hungar-
ian algorithm [Kuh55, Mun57].) Once aligned, we apply a
uniform crossover [Mic98]. In particular, we generate a uni-
formly random bit vector b and let y(i) := x1(i) if b(i) = 0
and y(i) := x2(i) if b(i) = 1.

This evolutionary seeding approach is specified in algo-
rithm 3. In particular we use a population size of 50, a
crossover fraction of 80%, a tournament size of 4, and al-
low for 20 iterations. Figure 5 shows the result of using this
initialization strategy as compared to k-means and Figure 6
(top) shows the evolution of the aggregate objective function
value during the run of the algorithm on this model.

6. Assigning labels to segments

A set of partition centers induces a shape segmentation, but
due to the heterogenous nature of the objectives, labels must
be assigned to each center prior to objective evaluation, as
different labelings would produce different objective func-
tion values. This labeling step must be carried out after k-
means initialization or at each step of the evolutionary ap-
proach to initialization prior to determining fitness (see Al-
gorithm 3, line 7.)

When there are relatively few labels and the objective is
not computationally expensive, an exhaustive approach of all
permutations is feasible. As the number of segments grows,
this approach quickly becomes intractable.

An alternative is to use a greedy approach. For some or-
dering of labels (which can be indicated by the user) we iter-
ate over the label set and assign the current label to the seg-
ment which minimizes the increase in the aggregate objec-
tive function when evaluated on all labeled segments. While
this is certainly an efficient and scalable alternative, there are
no optimality guarantees.

If, however, for the purposes of addressing this assign-
ment problem, we consider only the set of unary objectives

Algorithm 3 Evolutionary center initialization
1: // Initialize population P
2: for i = 1 to populationsize do
3: P[i]← random subset of n indices into surface elements
4: loop
5: // Evaluate fitness
6: for i = 1 to populationsize do
7: Optimal label assignment of P[i] based on unary ob-

jectives // See Section 6
8: F[i]← aggregate objective function value based on

all objectives
9: Remember best fitness and individual so far

10: i← 1
11: // Generate crossover individuals
12: while i≤ crossoverfraction∗populationsize do
13: x1← tournamentselection(P,F)
14: x2← tournamentselection(P,F)
15: (x1,x2)← align(x1,x2)
16: P′[i ++]← uniformcrossover(x1,x2)
17: // Generate mutation individuals
18: while i≤ populationsize do
19: x← tournamentselection(P,F)
20: P′[i ++]← mutate(x)
21: P← P′
22: return individual with best fitness observed

for each segment, it is possible, to efficiently find an optimal
matching.

Efficient optimal unary objective labeling

Assume that for each label j we have a set of k unary objec-
tive functions µ j,1,µ j,2, . . . ,µ j,k. We can now build an n× n
cost matrix C such that

Ci, j = ∑
k

µ j,k(i)

which represents the cost of assigning label j to part associ-
ated with center i for all i, j pairs.

Given this cost matrix, we can now cast part labeling as an
assignment problem which can be optimally solved in O(n3)
by the Hungarian algorithm [Kuh55, Mun57]. Given C the
algorithm will return an assignment vector a such that ai = j
indicates the part associated with segment i should receive
label j to minimize the sum cost.

It should be noted that while only the unary objectives
are used to solve the assignment problem in this approach,
once the assignment is obtained, all objectives are evaluated
to determine fitness during the evolutionary approach initial-
ization (see Algorithm 3 line 8) as well as during the opti-
mization described below.

7. Optimization

Now that we have addressed the matters of center initial-
ization and label assignment we now focus on segmentation
optimization.
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Figure 6: Top: Mean (blue) and best (black) aggregate ob-
jective function value in population per iteration during evo-
lutionary seeding of horse model. Bottom: Function value
per iteration during pattern search optimization.

If we wish to obtain a segmentation consisting of n seg-
ments, as previously described, we can consider the segmen-
tation parameterized by a real vector x of dimensionality
m = 4n of the form

x = (x1,y1,z1,w1,x2,y2,z2,w2, . . . ,xn,yn,zn,wn)

where (xi,yi,zi) are the 3D coordinates of the i-th Voronoi
center and wi is its associated weight. The task is now to
search for a value of x that minimizes the aggregate objective
function when evaluated on the segmentation induced by x.

Gradient-descent type approaches are not suitable given
the discrete nature of the representation: a center must be al-
tered sufficiently to induce a change in the labeling of at least
one surface primitive. We instead choose generalized pat-
tern search (GPS), which is a derivative-free, direct search
method [Tor97, AJ03].

Given a pattern size ∆, the method works by, at each iter-
ation, evaluating the aggregate objective function at all 2m
neighbors formed by adding and subtracting ∆ to each co-
ordinate of the current x. If any such neighbor produces a
lower objective value, the iteration is considered successful,
x is updated and ∆ is multiplied by an expansion factor. Oth-
erwise, the iteration is considered unsuccessful, no update of
x occurs, and ∆ is multiplied by a contraction factor. The al-
gorithm terminates when ∆ falls below a given threshold. In
particular, we use an initial ∆ of .2 times the shape’s bound-
ing box diagonal, an expansion factor of 2, a contraction fac-
tor of .5 and a ∆ threshold of 10−6 times the bounding box
diagonal. Figure 6 (bottom) shows the evolution of the ag-
gregate objective function value during the run of the algo-
rithm, for the final horse model segmentation of Figure 2.

8. Symmetry constraints

Recent methods allow for the robust automatic detection of
symmetries in 3D shape [TW05, SKS06, MGP06, PSG∗06]

Initial seg. Optimized seg. Corresponding seg.
in MDS in MDS in initial shape

Figure 7: Our approach can deal with shapes with con-
voluted articulations through the use of multi-dimensional
scaling. The segmentation induced by the partition in MDS
space is then easily mapped through correspondence with
the original shape. Here we simultaneously optimize for nar-
row arms with similar proportions and an ellipsoidal head.
See Section 10 and Figure 9 for details.

and, whenever possible, shape processing algorithms should
leverage this redundancy.

An advantageous property of our framework for parame-
terizing mesh segmentations is that it is easy to apply sym-
metry constraints to optimization parameters. For instance,
if one segment is known to be symmetric to another, then
the latter’s Voronoi center position and weight can be gener-
ated by symmetry from the first. If a segment is known to lie
on a plane of global symmetry, then its Voronoi center can
be constrained to lie on said plane.

The advantages of exploiting this known redundancy are
two-fold: Firstly, if a shape is known to have a certain global
symmetry, then the segmentation is assured to have the same
symmetry by construction. And secondly, the dimensionality
of the optimization domain is reduced by removing parame-
ters which can effectively be generated from others.

The user need only provide a constraint function which
takes in the non-redundant parameters and produces the oth-
ers from known symmetry.

Figure 2 illustrates this in our result on the bulldog model
by constraining each pair of legs to be symmetric to each
other, and constraining the body and head centers to lie on
the plane of global symmetry. Similarly in Figure 4 we can
constrain one wing to be symmetric to the other and the body
and tail to lie on the plane of global symmetry.

9. Handling shapes under articulation

Finally, as a possible concern, one might point to the poten-
tial difficulty a space partitioning scheme might face when
attempting to segment a highly articulated shape.

To address this concern we allow for the application of
multi-dimensional scaling (MDS) as a pre-processing step
which has proven useful in other segmentation approaches
[KLT05, LZ07]. This approach pre-computes all pairs of
geodesic distance between surface points and then finds a
3D embedding that approximately maps these geodesic dis-
tances to Euclidean ones. The result is an unfolding of ar-
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Figure 8: Our approach can easily be used to segment by
multiple objectives hierarchically. Here we first segment to
maximize planar symmetry of parts, then by convex compo-
nents, and then integrate the result.

ticulation. One may now find a weighted Voronoi partition
in the MDS space and optionally evaluate properties in this
space or the original undistorted one as is most convenient
on a case by case basis. The resulting segmentation is triv-
ially mapped by mesh correspondence to the original mesh.
Figure 7 illustrates this approach by cleanly segmenting a
highly articulated octopus model.

10. Objective function definitions and results

In this section we define the objective functions used in our
examples.

Given a segmented surface, let P be the surface segment
associated with a given label. Define P.scalei, i ∈ [1,3] as
the part’s scales resulting from PCA, i.e. as the square root
of the eigenvalues of the surface’s 3× 3 covariance matrix,
sorted in descending magnitude. We may define the follow-
ing unary objectives named with the adjective to which they
intuitively correspond

narrow(P) :=
(P.scale1 + P.scale2)

2 ·P.scale3

flat(P) :=
P.scale3

2 ·P.scale1
+

P.scale3

2 ·P.scale2

compact(P) := 1−narrow(P)

Let us further define P.c as part P’s centroid and P.axisi,
i ∈ [1,3] as the part P’s i-th eigenvector also resulting from
PCA. We may then define the objectives

planarsymmetric(P) := min
i

surfdist(P, reflect(P,P.c,P.axisi))

ellipsoidal(p) := surfdist(P,covarellipsoid(P))

We define surfdist(S1,S2) as the sum area-weighted squared
distance of points from S1 to S2 normalized by total area
of S1 and by its squared bounding box diagonal length. In
turn reflect(S, p,~n) represents the planar reflection of sur-
face S about the plane determined by point p and normal
~n. This is similar to the symmetry metric used by Simari
et al. [SKS06] but is non-iterative. Naturally, we define the
covarellipsoid(P) as the covariance ellipsoid of part P deter-
mined by its centroid, and PCA scales and axes.

Let us also define the following n-ary objectives that refer
to label interrelations. Specifically

perpendicular(P1,P2) := |P1.axis1 ·P2.axis1|

similarproportions(P1,P2, . . . ,Pk) :=
1
d2 ∑

i
||Pi.scale− ŝ||2

where d is the global surface’s bounding box diagonal,
Pi.scale refers to the part’s entire 3× 1 scale vector and
ŝ = 1

k ∑i Pi.scale.

Finally we define the global objective

convexparts(Seg) :=
1

V 2 (( ∑
P∈Seg

H(P))−V )2

where Seg refers to the segmentation, H(P) is part P’s con-
vex hull volume and V is the volume enclosed by the total
original surface.

The table in figure 9 describes the specific objectives and
constraints (where applicable) used in each of the results of
Figures 1, 2, 4, 5 and 7. Figure 8 illustrates how, in addition
to simultaneous objectives, our approach also easily allows
for the optimization of hierarchical ones.

Our prototype was implemented in Matlab. Initializations
vary from ~30 sec. for the k-means approach to ~10 min. for
our evolutionary approach. Pattern search optimization time
is an additional ~10 min. on average, but of course this will
depend on the objective functions used and the efficiency of
their implementation. All experiments were run on a Pen-
tium M 2.13Ghz processor with 2Gb RAM.

11. Conclusions and future work

We have introduced the notion of multi-objective shape seg-
mentation and the use of multiplicatively weighted Voronoi
space partitioning as an approach to segmentation parame-
terization. We proposed seeding approaches to initialize the
Voronoi centers, including a novel general-purpose evolu-
tionary approach. We then presented strategies for automat-
ically matching segments to their corresponding labels, in-
cluding an efficient solution optimal for unary objectives.
We showed how our approach can accommodate symmetry
constraints which effectively reduce the dimensionality of
the optimization domain when prior knowledge of the shape
is available. Finally, we showed how even shapes under com-
plicated articulation can be handled by our approach by us-
ing multi-dimensional scaling.

Specialized and effective segmentation algorithms tai-
lored to specific objective functions will always have their
place. However, we believe the area of general purpose seg-
mentation algorithms which make minimal assumptions on
the objectives is highly worthy of study. We hope this work
will generate interesting research possibilities as there are
several directions open to explore, including alternative seg-
mentation parameterization schemes, as well as initialization
and optimization approaches.
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Model Labels Aggregate objective function

Hammer handle,head 3∗narrow(handle)+ perpendicular(handle,head)+ convexparts(Seg)
Horse head, body, leg1, leg2, leg3, leg4 planarsymmetric(head)+ planarsymmetric(body)+ ellipsoidal(body)+ . . .

10∗∑i narrow(legi)+ similarproportions(leg1, leg2, leg3, leg4)+ convexparts(Seg)
Bulldog As above As above plus compact(head)

Constraints that head and body centers lie on plane of global symmetry and parameters
for leg2 and leg4 are reflected from those of leg1 and leg3 respectively.

Dove body, wing1, wing2, tail narrow(body)+ 10∗∑i (flat(wingi)+ narrow(wingi))+ 10∗flat(tail)+ . . .
compact(tail)+ convexparts(Seg)
Constraint that body and tail lie on plane of global symmetry and parameters for wing2
are reflected from wing1.

Octopus head,arm1, . . . ,arm8 ellipsoidal(head)+ ∑i narrow(armi)+ similarproportions(arm1, . . . ,arm8)+ . . .
convexparts(Seg) (Objectives evaluated in MDS space.)

Figure 9: Aggregate objective functions used to obtain segmentations of each model.
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