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Abstract

ConGolog is a logical programming language for agents that is de-
fined in the situation calculus. ConGolog agent control programs were
originally proposed as an alternative to planning, but have also more re-
cently been proposed as a means of providing domain control knowledge
for planning. In this paper, we present a compiler that takes a ConGolog
program and produces a new basic action theory of the situation calculus
whose executable situations are all and only those that are permitted by
the program. The size of the resulting theory is quadratic in the size of
the original program – even in the face of unbounded loops, recursion, and
concurrency. The compilation is of both theoretical and practical interest.
From a theoretical perspective, proving properties of ConGolog programs
is simplified because reification of programs is no longer required, and the
compiled theory contains fewer second-order axioms. Further, in some
cases, properties can be proven by regressing the program to the initial
situation, eliminating the need for a higher order theorem prover. From a
practical perspective, the compilation provides the mathematical founda-
tion for compiling ConGolog programs into classical planning problems,
including, with minor restrictions, into the Plan Domain Definition Lan-
guage (PDDL), which is used as the input language for most state-of-the-
art planners. Moreover, Hierarchical Task Networks (HTNs), a popular
planning paradigm for industrial applications can be represented as Con-
Golog programs and can thus now also be compiled to a classical planning
problem. Such compilations are significant because they allow the best
state-of-the-art planners to exploit ConGolog and HTN search control,
without the need for special-purpose machinery.
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1 Introduction

ConGolog [De Giacomo et al., 2000] is a logical programming language for spec-
ifying high-level agent control, that is defined in the situation calculus. It ex-
tends the agent programming language Golog [Levesque et al., 1997] by con-
current program execution. Golog’s Algol-inspired programming constructs al-
low a user to program an agent’s behavior while leaving parts of the program
under-constrained, or “open”, through the use of non-deterministic constructs.
These under-constrained regions of the program are later filled in by a planner.
Such integration of planning and programming has proved useful in a vari-
ety of diverse applications including soccer playing robots [Ferrein et al., 2004],
museum tour-guide robots [Burgard et al., 1999], and Web service composition
[McIlraith and Son, 2002].

By way of illustration, consider a simple delivery problem in which we have
an (infinite capacity) truck and the task is to deliver packages from point A
to point B. A classical planning problem would simply specify the initial state
and the goal state. Using ConGolog, we can provide the following program
that constrains the space of possible plans, while still leaving some work to the
planner:

If not at point A, drive the truck to point A; while there are packages
at point A, pick a package and load it onto the truck; drive to point
B; while there are packages on the truck, pick a package and unload
it from the truck.

A basic action theory of the situation calculus induces a tree of possible ac-
tion sequences or situations. A ConGolog program further constrains the tree
to those that adhere to the program. However, in order to reason about the sat-
isfaction of these constraints, a system requires special-purpose machinery – it
needs to interpret the ConGolog program. This for instance applies to planning,
but also to other problems that involve reasoning about feasible trajectories, in-
cluding the problem of monitoring the continued validity of an executing plan
(see, e.g., [Fritz and McIlraith, 2007]).

1.1 Contributions

We propose an algorithm for compiling ConGolog programs into basic action
theories of the situation calculus whose tree of executable situations corresponds
exactly to the one described by the program. We prove the correctness of the
compilation and show that its output is of size as most quadratic in the size of
the original program.

The compiled theory allows us to reason about the executions of programs
using regression. Given an action sequence, we can “regress a program” over
this sequence, producing a necessary and sufficient condition for the sequence
to be a legal execution of the program.

The compilation is significant for a number of practical and theoretical rea-
sons. From a practical perspective, the compilation provides the mathematical
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foundation for compiling ConGolog control knowledge into the Planning Domain
Definition Language (PDDL) [McDermott, 1998], a de facto standard planning
problem specification language. This in turn enables state-of-the-art planners to
exploit powerful control knowledge without the need for special-purpose machin-
ery within their planners. We have recently shown how this can be done for a
subset of the language without concurrency and procedures [Baier et al., 2007].
The experimental results showed that state-of-the-art planners can gain signif-
icant speed-ups from that. The current compilation of ConGolog (including
concurrency and procedures) can be seen as an extension of this work – though
some restrictions apply when compiling into PDDL.

ConGolog has been used for a variety of purposes, all of which can now bene-
fit from this newly built connection to modern planners. For instance, Hierarchi-
cal Task Networks (HTN) have been translated to ConGolog [Gabaldon, 2002].
In combination, this translation and our compiler provide the means for com-
piling HTN control knowledge into a classical planning problem. We anticipate
this contribution to be of significant interest to the planning community.

From a theoretical perspective, the compilation eliminates the need for Con-
Golog’s tedious reification of programs, as well as the second-order axioms ne-
cessitated by its transition semantics. This facilitates proving properties of
programs (e.g., reachability, invariants, termination). Further, since programs
themselves can now be regressed, some proofs can be reduced to first-order
theorem proving through the use of regression.

In this chapter we focus on the high-level idea of the compilation. The actual
pseudo-code can be found in Appendix 6, and experimental evidence in support
of our basic approach can be found in [Baier et al., 2007].

2 Background

2.1 The Situation Calculus

The situation calculus is a family of many-sorted logical languages for specifying
and reasoning about dynamical systems. It was first proposed by McCarthy [1963]

and later significantly extended by Reiter [2001], most importantly by provid-
ing a solution to the frame problem (see below). In this thesis we use Reiter’s
situation calculus.

Its basic elements are situations, primitive actions (sort A), and fluents
(sort F). A situation is a history of the primitive actions performed from a
distinguished initial situation S0. The function do(a, s) denotes the situation
resulting from performing action a in situation s, inducing a tree of situations
rooted in S0. Fluents are relations and functions that take a situation as their
last argument (e.g., F (~x, s)), and are used to define the state of the world.

For readability, action and fluent arguments are generally suppressed. Also,
do(an, do(an−1, . . . do(a1, s))) is abbreviated to do([a1, . . . , an], s) or do(~a, s) and

we define: do([ ], s)
def
= s.
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2.1.1 Basic Action Theories

A basic action theory in the situation calculus, D, is comprised of the following
sets of axioms [Levesque et al., 1998]:

• Σ the set of domain independent foundational axioms of the situation
calculus, including one second-order induction axiom required to properly
define the tree of situations. These axioms are as follows:

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2,

(∀P ).P (S0) ∧ (∀a, s)[P (s) ⊃ P (do(a, s))] ⊃ (∀s)P (s),

¬s ⊏ S0,

s ⊏ do(a, s′) ≡ s ⊑ s′.

Here the relation ⊏ provides an ordering on situations, and s ⊑ s′ abbre-
viates s = s′ ∨ s ⊏ s′.

• Dss, successor state axioms, provide a parsimonious representation of
frame and effect axioms under an assumption of the completeness of the
axiomatization. There is one successor state axiom for each fluent, F ∈ F ,
of the form F (~x, do(a, s)) ≡ ΦF (~x, a, s), where ΦF (~x, a, s) is a formula with
free variables among ~x, a, s. ΦF (~x, a, s) characterizes the truth value of the
fluent F (~x) in the situation do(a, s) in terms of what is true in situation
s. These axioms can be automatically generated from effect axioms, as
described below.

• Dap, action precondition axioms, first-order axioms that specify the condi-
tions under which actions are possible. There is one axiom for each action
a ∈ A of the form Poss(a(~x), s) ≡ Πa(~x, s) where Πa(~x, s) is a formula
with free variables among ~x, s.

• Duna, a set of unique name axioms for actions;

• DS0
a set of sentences relativized to situation S0, specifying what is true

in the initial state.

Although any situation calculus action theory is second-order, many rea-
soning tasks can be reduced to first-order theorem proving by using regression
[Reiter, 2001]. Properties that hold in all executable situations can be shown
by induction over situations [Reiter, 1993].

2.1.2 The Frame Problem and A Solution for Deterministic Actions

To the user, specifying the effects of actions can be more natural when using
effect axioms. For a relational fluent F (~x, s), for example, positive and negative
effect axioms can define the conditions under which the fluent becomes true
(φ+(~x, s)), respectively false (φ−(~x, s)), after performing action a:

φ+(~x, s) ⊃ F (~x, do(a, s)),

φ−(~x, s) ⊃ ¬F (~x, do(a, s)).
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These axioms describe the effects on the considered fluents, but they do not
describe the non-effects on all other fluents. Axioms describing the latter are
called frame axioms. The frame problem states the impossibility of stating
and reasoning with all frame axioms explicitly, due to their cardinality: Even
apparently nonsensical assertions, like “drinking water does not change one’s
hair color” would have to be captured by a frame axiom:

haircolor(do(drinkwater, s)) = y ← haircolor(s) = y.

Ray Reiter [Reiter, 1991] proposed a solution to the frame problem based on
a completeness assumption, namely that the provided effect axioms specify all
possible ways by which a fluent may change. In Reiter’s solution, the set of all
effect axioms, is hence syntactically transformed into the set of successors state
axioms (one for each fluent).

In the following we describe how Reiter’s solution applies to functional flu-
ents, for relational fluents the computations are similar and can be found in
[Reiter, 1991]. The effect axiom for a functional fluent f and action α has the
form:

φf (~t, y, s) ⊃ f(~t, do(α, s)) = y

where ~t are terms not mentioning situation terms. Note that, unlike relation
fluents, for functional fluents there are no positive and negative effect axioms
but only one axiom explicitly stating the new value (y) of the fluent. Above
formula can be rewritten to:

a = α ∧ ~x = ~t ∧ φf (~x, y, s)
︸ ︷︷ ︸

Φf

⊃ f(~x, do(a, s)) = y

and this can be done for all n effect axioms for fluent f . These axioms can then
be merged into a single normal form for this fluent:

Φ
(1)
f ∨ · · · ∨ Φ

(n)
f ⊃ f(~x, do(a, s)) = y, or

γf (~x, y, a, s) ⊃ f(~x, do(a, s)) = y (1)

The completeness assumption expresses that if fluent f changes its value from
situation s to situation do(a, s), then φf (~x, y, a, s) must be true:

f(~x, s) = y′ ∧ f(~x, do(a, s)) = y ∧ y 6= y′ ⊃ γf (~x, y, a, s) (2)

Together with the assumption

¬(∃~x, y, y′, a, s).γf (~x, y, a, s) ∧ γf (~x, y′, a, s) ∧ y 6= y′

Reiter shows that (1) and (2) are logically equivalent to:

f(~x, do(a, s)) = y ≡ γf (~x, y, a, s) ∨ (3)

f(~x, s) = y ∧ (6 ∃y′).γf (~x, y′, a, s) ∧ y 6= y′

which is the successor state axiom for functional fluent f .
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2.1.3 Notation and Definitions

Lower case letters denote variables in the theory of the situation calculus, upper
case letters denote constants. We use α to denote arbitrary but explicit actions
and S to denote arbitrary but explicit situations, that is S = do(~α, S0) for some
explicit action sequence ~α. Variables that appear free are implicitly universally
quantified unless stated otherwise. By ψ[x/y] we denote the formula resulting
from substituting all occurrences of x in ψ with y. Further, ~a · a denotes the
result of appending action a to the sequence ~a.

For two situations s, s′, such that s ⊑ s′, we say that s is a sub-history of s′,
or s′ is a continuation of s.

We say that a situation s is executable, denoted as executable(s), if all actions
in the history of s have their preconditions satisfied in the situation where they
are performed, formally:

executable(s)
def
= (∀a, s′).do(a, s′) ⊑ s ⊃ Poss(a, s′).

2.2 Golog and ConGolog

2.2.1 Golog

Golog is a programming language defined in the situation calculus. It allows
a user to specify programs whose set of legal executions specifies a sub-tree of
the tree of situations of a basic action theory. From a planning point of view, it
can be used to provide an effective way of pruning the search by specifying the
skeleton of a plan. Golog has an Algol-inspired syntax extended with flexible
non-deterministic constructs. Its constructs are shown below.

a primitive action
φ? test condition φ
(δ1; δ2) sequence
if φ then δ1 else δ2 conditional
while φ do δ′ loops
(δ1|δ2) non-deterministic choice
πv.δ non-deterministic choice of argument
δ∗ non-deterministic iteration
{P1(~t1, δ1); . . . ;Pn(~tn, δn); δ} procedures

The semantics of a Golog program δ is defined in terms of macro expansion
into formulae of the situation calculus. Do(δ, s, s′) is understood to denote a
formula expressing that executing δ in situation s is possible and may result
in a situation s′. This is defined inductively over the program constructs. For

instance for a primitive action a: Do(a, s, s′)
def
= Poss(a[s], s) ∧ s′ = do(a[s], s),

where a[s] denotes the action a with all its arguments instantiated in situa-

tion s, and for non-determinism: Do(δ1|δ2, s, s
′)

def
= Do(δ1, s, s

′) ∨Do(δ2, s, s
′).

While deterministic constructs enforce the occurrence of particular actions, non-
deterministic constructs define “open parts” that are completed using planning.
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In particular, the non-deterministic choice of argument πv.δ introduces a pro-
gram variable v that may occur in δ. In this chapter, we restrict program
variables to only appear as action parameters or in the place of objects in con-
ditions. For instance while (∃b).OnTable(b) do πv. OnTable(v)?;Remove(v) could
be a program that removes all blocks, one-by-one from a table.

2.2.2 ConGolog

ConGolog adds concurrency to Golog, allowing the following additional con-
structs:

(δ1 ‖ δ2) concurrent execution
(δ1 〉〉 δ2) prioritized concurrency
δ‖ concurrent iteration

Concurrency is defined as action interleaving. For example, the program (a ‖
(b; c)) admits three executions: abc, bac, and bca.

ConGolog introduced a so-called transition semantics for programs. The
semantics of a program δ is given through two predicates Trans(δ, s, δ′, s′) and
Final(δ, s). The former states that in situation s program δ can perform a step,
resulting in a remaining program δ′ and new situation s′. The latter states that
the program δ can legally terminate in s. De Giacomo et al. [2000] provide the
complete axioms for the semantics; we show some of them below.

For a primitive action we have

Trans(a, s, δ′, s′) ≡ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s)

and Final(a, s) ≡ false. One important role of Final is with sequences:

Trans(δ1; δ2, s, δ
′, s′) ≡

(∃γ).δ′ = (γ; δ2) ∧ Trans(δ1, s, γ, s
′)

∨ Final(δ1, s) ∧ Trans(δ2, s, δ
′, s′).

For concurrency constructs we have:

Trans(δ1 ‖δ2, s, δ
′, s′) ≡

(∃γ).δ′ = (γ ‖δ2) ∧ Trans(δ1, s, γ, s
′)

∨ δ′ = (δ1 ‖γ) ∧ Trans(δ2, s, γ, s
′)

Trans(δ1 〉〉 δ2, s, δ
′, s′) ≡

(∃γ).δ′ = (γ 〉〉 δ2) ∧ Trans(δ1, s, γ, s
′) ∨ δ′ = (δ1 〉〉 γ)

∧ Trans(δ2, s, γ, s
′) ∧ (6 ∃ζ, s′′).Trans(δ1, s, ζ, s

′′)

Trans(δ‖, s, δ′, s′) ≡

(∃γ).δ′ = (γ ‖ δ‖) ∧ Trans(δ, s, γ, s′)

The first two programs are only “final” when both subprograms are, while the
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third can be terminated at will:

Final(δ1 ‖δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Final(δ1 〉〉 δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Final(δ‖, s) ≡ true

A transition semantics facilitates the interleaving of program interpretation
(planning) and execution, and reasoning about sensing actions. The downside
of this semantics is its requirement to reify programs: programs are represented
as terms, in order to quantify over them. The other shortcoming is the require-
ment of an additional second-order axiom for defining the transitive closure of
Trans, denoted Trans∗. This axiom is needed to define a new Do2 predicate
that defines the situations that result from executing a (ConGolog) program:

Do2(δ, s, s
′)

def
= (∃δ′).Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′).

We refer to the axioms defining the transition semantics as ΣConGolog. This
includes the mentioned second-order axioms and axioms required for reification
of programs.

3 Compiling ConGolog into Basic Action Theo-

ries

In this section we describe an algorithm for compiling a given ConGolog program
and a given basic action theory into a new basic action theory. For readability,
we focus our description on the intuitions behind the algorithm. The actual
pseudo code of the algorithm can be found in Appendix 6.

Our algorithm accepts as input a basic action theory D and a ConGolog
program P = {P1(~t1, δP1

); . . . ;Pn(~tn, δPn
)}; δmain containing n procedure defi-

nitions with formal arguments ~ti and procedure body δPi
, and a main program

δmain. It outputs a new basic action theory DP whose tree of executable situa-
tions corresponds to the sub-tree of situations in D that are executions of P in
D.

The intuition behind our compilation is to model the dynamics of a ConGolog
program as a Petri net with an infinite stack, and then represent this Petri
net and the stack as a basic action theory in the situation calculus. Roughly,
a Petri net is a finite state automaton that can be in more than one state
at the same time. To reflect that, in Petri net terminology, states are called
places and active places are marked by tokens which move from place to place
using transitions. The total number of tokens can change during execution, for
instance to model concurrency. To model the dynamics of ConGolog programs,
we use a so-called colored Petri net, where tokens have unique identifiers. We
do not define the Petri net induced by a program formally, but only use it for
illustration. Intuitively, places in the Petri net represent the current position in
the execution of the program (i.e., a sort of program counter), while (labeled)
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transitions specify which actions are legal at each stage during the execution.
Each token represents one of possibly several concurrently executing threads.
Given a program P, our algorithm generates the axioms required to model
the underlying Petri net as a basic action theory. To this end, we create (1)
special bookkeeping predicates, to represent the Petri net and the stack, and
(2) additional actions, to represent some of the transitions in the Petri net.

It is important to note that our algorithm operates only syntactically on the
given inputs. In particular, it does not perform any type of reasoning within the
provided basic action theory, which makes it easy to show that our algorithm
has modest complexity (see below).

The compilation proceeds in six steps.

Step 1

For each procedure Pj(tj1 , . . . , tjkj
, δPj

) in P we compute

(axj , ij) = comp(δPj
, 0, {tj1 , . . . , tjkj

}, Pj)

where {tj1 , . . . , tjkj
} are the formal parameters of the procedure, and δPj

is the

body of Pj .
1 The function comp, defined in Appendix A, takes as input a

ConGolog program, an integer used as a program counter, a set of program
variables, and a procedure name, used to distinguish different contexts. It out-
puts a set of sentences ax, and an integer i, intuitively denoting the value of
the program counter after the program terminates. The set of sentences is later
processed further to generate the axioms of DP , but before we get to this, we
first consider the function comp in more detail.

comp is defined recursively over the structure of programs. Starting from
an initial place labeled (0,main), comp incrementally constructs the Petri net,
generating new network places as it recurses over the structure of the program.
Assume comp is currently at a place labeled with (i, p), where i is the program
counter and p a procedure name, and that it encounters a primitive action α in
the program. Then, it adds a new place to the Petri net labeled with (i+ 1, p)
and a transition from the current place to this new place, labeled with α. comp
generates and returns several sentences which will later be included as axioms
of DP . First, it generates a sentence about the preconditions of α. In the
described case it generates Poss(α(th), s) ← Thread(th, s) ∧ state(th, s) = (i, p)
which states that we can execute α in thread th if th denotes an active thread
and its token is in (i, p). (Note that we give an extra argument to each action,
denoting the thread it is being performed in.) It further generates an appropriate
effect, stating that when α is performed in (i, p), the token moves to (i+ 1, p).
The sentence generated in this case is state(th, do(α(th), s)) = (i + 1, p) ←
state(th, s) = (i, p).

Example 1. Consider the program of Figure 1(a), where special test actions
are used to transition to a sub-net conditioned on a formula, and noop allows

1For simplicity of presentation we assume that procedures do not contain additional pro-
cedure definitions.
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1 2

3 4

5 6

7 8noop

noop

test〈ψ〉

test〈¬ψ〉

test〈φ〉

test〈¬φ〉

a

b

c

if

while
sequence

(a) Petri net for while φ do (if ψ then a else b); c.

1

2 3

4 5

6
δ1

δ2

spawn join

(b) Petri net for δ1 ‖ δ2

Figure 1: Two example Petri nets.

unconditional transitions.2 To keep the presentation simple, we only show the
sentences produced by the algorithm for the transitions from state 1 → 2 and
7→ 8.

For transition 1→ 2, if φ does not mention program variables, the algorithm
generates the following sentences:

Poss(test(th, 1, 2,main), s)← (Thread(th, s) ∧ φ(s)∧

state(th, s) = (1,main)),
(4)

state(th, do(test(th, 1, 2,main), s)) = (2,main). (5)

And for the transition 7→ 8 we get:

Poss(c(th), s)← (Thread(th, s) ∧ state(th, s) = (7,main)), (6)

state(th, do(c(th), s)) = (8,main)← state(th, s) = (7,main). (7)

In the remaining steps of the compilation (see below), the successor state axiom
for the state fluent is formed and precondition axioms are put into normal form.
If in D the precondition axiom for c was Poss(c, s) ≡ Πc(s), then the new
precondition axiom in DP is Poss(c(th), s) ≡ Πc(s)∧ϕ, where ϕ stands for the
right-hand side of Equation 6. §

So far, the Petri net is equivalent to a simple automaton, since we have only
been concerned with a single token. This changes when one considers concur-
rency. Concurrency is modeled using threads, where each thread is represented
by an identifiable token in the net. For instance, the basic concurrency construct
δ1 ‖ δ2 puts the current token in the initial state of the sub-Petri net recursively
generated for δ1, and creates a new token which it puts into the initial state of

2Names used for test actions in this example are simplified for clarity. Refer to the pseudo-
code for more details.
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δ2. These tokens are joined back together when both programs have finished
executing (Figure 1(b)).

The greatest challenges we faced while devising comp, were caused by the
interaction of various advanced programming constructs, in particular program
variables, procedures, and iterative concurrency. We elaborate briefly on some
of these challenges.

Procedure calls are realized using two new actions call and return. The for-
mer moves the token of the current thread to the initial place of the called
procedure, while return returns it to the next state of the current pro-
gram, once the token has reached the final state of that procedure. Since
the compilation of the procedures themselves needs to be independent
from the context from which they are called, we do not know the return
state during compile time, but need to store it during run-time instead.
Since procedures can be recursive, we require a stack, containing all (re-
cursive) return states. The stack is realized using two functional fluents
stack(th, v, s) and sp(th, s), where the former denotes the content of the
stack entries, and the latter is a stack-pointer, always pointing to the next
free position on top of the stack.

Concurrency is realized by using explicit thread names. Each action is given
an additional parameter th, denoting the thread it is executed in. This is
necessary since there may be situations where two threads intend to exe-
cute the same action next. Once that action executes, we need the thread
name to disambiguate which thread actually proceeded. Thread names
are also required for other purposes, like program variables, described be-
low. The active threads are denoted by the relative fluent Thread(th, s),
and initially only one thread, [0], is active. A new thread is created by
the spawn action, which also sets up some new data structures (fluents)
for the new thread, for instance its own procedure call stack. Two threads
are joined back by the action join.

For thread names, we use lists of numbers. The main thread is [0], and
its direct children are called [N, 0] where N is the number of the child.
The k-th child of the n-th child of the main thread is called [k, n, 0]. This
is more complicated than increasing a single thread counter, which would
have been an alternative, but has the advantage that thread names can be
reused after threads terminate. With numbers, for instance, an infinitely
running program with concurrency would require infinite numbers. This
would also more severely limit the ability to compile into PDDL.

Prioritized concurrency is governed by a new fluent Prio(th1, th2, s) which
indicates that thread th1 has priority over thread th2. A thread can only
proceed when no prioritized thread can perform an action.

Program variables as created by π constructs, are realized using the func-
tional fluent map(x, s), to denote their value. The parameter x is a tuple
(th, y, v) where th denotes the thread this variable was created in, y the
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stack position, and v is the name as mentioned in the program (e.g., π v.δ).
Thread names are required to disambiguate in cases like (π v.δ)‖ where in
each thread a new variable of the same name is created. Similarly stack
positions are required when program variables are used in recursive pro-
cedures.

To compile the main procedure we call

(axmain, imain) = comp(δmain, 0, ∅,main),

which yields the final program counter imain, which corresponds to a particular
“final” place of the Petri net. This will be used as a goal: if there is a token in
(imain,main), the program has executed successfully. This roughly corresponds
to the Final predicate in ConGolog.

Step 2

Thus far we have generated program-specific sentences, describing the dynamics
of the Petri net. There is also a number of program-independent sentences
that we require, which intuitively state the default dynamics of the involved
bookkeeping actions (see Appendix B for details). We denote these as axcommon

and define the set AX as axmain ∪
⋃

j axj ∪ axcommon .

The remaining steps of the compilation aggregate the sentences in AX to produce
DP , producing all the precondition axioms, successor state axioms, initial state
axioms, and unique names axioms.

Step 3

Recall that procedure calls require two new actions call and return. The effect
axioms for both are domain independent and thus in axcommon, and the precon-
dition axioms for call are generated by comp. In Step 3 we need to create the
precondition axioms for return, which is possible in all final states, i.e., for each
procedure Pj compiled in Step 1, we enable return when state(th, s) = (ij , Pj).

Step 4

For each place of each Petri net, all conditions under which any action can
execute in this place and context are recorded. We generate axioms for a new
fluent CanTrans(th, s), which indicates whether in situation s a given thread
th can perform an action. This definition is only required in conjunction with
concurrency, and can be skipped if this language feature is not used.

Step 5

For each primitive action α (including bookkeeping actions), Step 5 removes all
sentences Poss(α, s) ← φ from AX and combines them into a new precondition
axiom for α, by:
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1. disjoining all φ’s,

2. conjoining the resulting formula with any preexisting preconditions for α,
and

3. conjoining the result with the following additional condition that governs
priority among threads and allows forced execution of a selected thread:

(6 ∃t).Thread(t)∧t 6= th∧(Forced(t)∧¬Parent(t, th)∨Prio(t, th)∧CanTrans(t))

where the new relational fluent Parent(th1, th2) expresses that thread th2

was spawn from thread th1, directly or indirectly.

The latter is used to enable prioritized concurrency, explicitly prohibiting threads
from executing for which there is a thread with higher priority that can execute
its next action. This condition is also used to ensure so-called synchronized
while’s and if’s. Roughly, the latter means that testing the conditions of these
constructs is not a transition by itself, but needs to be immediately followed by
a transition on its body, or otherwise one needs to backtrack to a place before
the test.

Step 6

Since all the Poss sentences have been removed, AX now only contains sentences
describing effects of actions. On these, Step 6 applies Reiter’s solution to the
frame problem, to produce successor state axioms (see Section 2.1.2).

The result is a set of precondition and successor state axioms, describing the
dynamics of all procedures’ Petri nets. We also add the axiom state([0], S0) =
(0,main), stating that initially the main thread, denoted [0], is in the initial
place of the Petri net of the main procedure.

While our compilation makes several second-order axioms, specific to Con-
Golog’s transition semantics, unnecessary, it does require second-order to define
natural numbers and lists. The former is used to address the elements of the
stack, the later to give names to threads. We assume standard definitions for
these. These can be avoided when both recursion, and the number of concur-
rent threads is bound by a constant. This restriction is also required for further
compilation to PDDL (see below).

Let DP be the new basic action theory resulting from compiling P into the
given action theory D. We can show the following theorems which state that
the compilation is both correct and succinct. All the proofs can be found in
Appendix 6.

Theorem 1. Let S′ be any ground situation term of D. Then there is a ground
situation term S′

P in DP such that S′ = filter(S′
P ,D) and

DP |= executable(S′
P) ∧ state([0], S′

P) = (imain,main)

iff D |= Do2(P, S0, S
′).
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Here filter(S′
P ,D) is a function that removes from the situation term S′

P any
actions not defined in D, and also removes the additional thread argument from
the remaining actions. This removes all bookkeeping actions from S′

P , in order
to compare the sequence of contained domain actions with S′.

For the next theorem we define the size of a program as the number of
program constructs it contains plus the number of logical connectives mentioned
in conditions. Similarly, the size of an axiom is measured by the number of
logical connectives it contains.

Theorem 2. If the size of P is n and D contains m axioms each of size ≤ k,
then DP contains O(n) +m axioms each of size O(k + n).

Theorem 3. If the size of P is n, then the time required to compute the
compilation is O(n2).

Intuitively, recursive procedure calls, while–loops, concurrency and other
seemingly problematic constructs do not incur a significant increase in the size
of the output, because of the syntactic nature of the compilation and the careful
use of bookkeeping fluents and actions to model the desired behaviors. Similarly,
the requirement for second-order logic to define loops is cast into the induction
axiom included in the foundational axioms of the situation calculus, through
the use of bookkeeping fluents and actions.

4 Analysis

4.1 Theoretical Merits

To prove properties of a ConGolog program P, we now have two alternatives.
We can reason using the original transition semantics of ConGolog, represented
as a fixed set of axioms ΣConGolog, or we can use the new basic action theory
DP resulting from applying our compilation, extended with natural numbers
and lists. At first glance, using ΣConGolog may look simpler since the axioms in
ΣConGolog are independent of the program. However, we argue that reasoning
itself is actually simplified when using DP .

One advantage of DP is that it defines the dynamics of a program in terms of
fluents. For example, any executable situation S for which DP |= state([0], S) =
(imain,main), with imain as defined above, is a legal execution of the program.
Regressing the condition state([0], S) = (imain,main) over the actions compris-
ing S, together with all involved action preconditions, results in a formula over
the initial situation S0. Following Theorem 1 and Reiter’s Regression Theorem,
this formula is equivalent to the question of whether the actions comprising S
are a legal execution of the program. More generally, using regression we can
determine sufficient conditions under which a given sequence of actions (whose
parameters do not need to be ground) will satisfy a given formula while execut-
ing the program. These queries could not be answered using regression in the
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transition semantics since neither the semantics of Golog nor ConGolog were in
terms of regressable formulae3.

Another advantage of reasoning in DP is that the compilation eliminates
the need for ConGolog’s tedious (second-order) reification of programs, as well
as the second-order axioms found in ΣConGolog for defining the Trans and the
Trans∗ predicates. As such, proving properties of programs in DP is not much
different from proving properties in the standard situation calculus. In some
cases (e.g., when proving a property of a particular execution trace) we can
apply regression. In more general cases (e.g., when proving invariants), we can
simply use induction over situations [Reiter, 1993]. In fact, we have proved
properties of simple Golog programs by representing DP in the higher-order
theorem prover PVS [Owre et al., 1992]. In PVS, situations, natural numbers,
and lists, can be easily defined as recursive data-types. We found the lack
of reification in DP together with the limited number of second-order axioms
made theorem proving less laborious and more intuitive than previous attempts
to prove properties of Golog programs in PVS [Shapiro et al., 2002].

In our translated domain it is particularly simple to prove a property about
a specific point during the program’s execution. The main reason for this is that
in our compiled theories we can refer to points in the program’s execution by
referring to the states of the Petri net that represent those points. For example,
proving a property about the situations that result from executing the program
to termination reduces to proving that a certain formula is true for every situ-
ation in which we are at the Petri net place that corresponds to the end of the
program. When proving these types of properties using the second-order axioms
of the original ConGolog semantics, as was done by [Shapiro et al., 2002], one
is forced to effectively simulate an execution of the program by incrementally
evaluating the transitive closure of the Trans predicate. On the other hand, in
case we want to prove a property that holds during the whole execution of a
program using our compiled theory, we have to resort to induction over situa-
tions. The course of the proof in this case is very similar to the one that would
be obtained in the framework of [Shapiro et al., 2002].

To demonstrate the feasibility of proving properties of programs using auto-
mated theorem provers, we modeled one of the Golog example programs in the
blocks world used by [Liu, 2002]. This program consists of a while loop that
non-deterministically moves blocks until there is only one block on the table.
The task is to prove that there is a single tower in the final situation. This
could be proved automatically by PVS in fractions of a second. [Liu, 2002] also
obtained a very simple proof but appealing to a Hoare-style proof system on
top of ConGolog’s semantics.

4.2 Practical Merits

ConGolog to PDDL
A practical consequence of the compilation is the possibility of further com-

3[Reiter, 2001, p. 62] defines regressable formulae.
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Figure 2: Run-time comparison of a heuristic search based planner solving in-
stances of the storage domain of the International Planning Competition, with
and without Golog search controlled compiled into the PDDL domain definition
[Baier et al., 2007].

piling the resulting action theory into other action languages, like PDDL. The
advantage of this approach is the possibility of using the fastest state-of-the-art
planners to accomplish the planning needed while interpreting ConGolog pro-
grams. This is not only of interest to the agent programming community but
also for the planning community, since ConGolog can be used to express domain
control knowledge.

In previous work we have shown that it is possible to compile Golog programs
without procedures into PDDL [Baier et al., 2007], and shown that Golog do-
main control knowledge can speed up search of standard planning benchmarks.
Figure 2 shows an example of the obtainable speed-up for the storage domain
of the International Planning Competition.

In the compilation proposed in this paper we are considering the richer vari-
ant ConGolog, which allows programs with various forms of concurrency, and we
also enabled the use of possibly recursive procedures. Unfortunately, these ad-
ditions all together cannot be compiled directly into current versions of PDDL.
The main reason is that PDDL does not provide the functionality for defining
unbounded data structures, which we need, for example, for representing the
stack for procedure calls.

Recent versions of PDDL support natural numbers, but these cannot be
used as arguments to predicates, since numbers are not considered objects of
the domain. The pragmatic reason for this restriction is to avoid the possibil-
ity of infinite branching factors [Fox and Long, 2003, p. 68] since actions could
take numerical arguments. Since our compilation does not introduce infinite
branching factors, we believe that PDDL could be extended accordingly to al-
low the full expressiveness of ConGolog and HTNs. We hope that our work
may convince the planning community that such an extension would lead to a
significant increase in the expressiveness of PDDL.

It is still possible to translate ConGolog into PDDL if we are willing to either
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disallow recursion and iterative concurrency or limit the depth of recursion and
the number of concurrently executing threads. The second option is probably
the most interesting one, since in practical applications in which finite plans are
needed, we will not require the power of infinite recursion. The main challenge
in this case, is to generate a theory in which the stack and the lists which are
used to represent thread names are bounded. The following are the main aspects
that are needed to translate to PDDL.

1. All fluents that represent counters (e.g., the stack pointer fluent) are now
represented by relational fluents, an argument of which corresponds to
the value of the counter. The value of the counter is represented by a
PDDL object. We generate finitely many objects for counters, and a static
predicate to indicate the successor for each counter object.

2. All other functional fluents (e.g., map and state) are represented in PDDL
as relational fluents. In particular, the relational fluent for state contains
one argument for each element of the (i, c) pair.

3. Threads, which in our basic action theories are represented as lists, and
which are employed as arguments to actions are represented in PDDL as
(bounded) lists of size equal to a parameter k. Moreover, actions, instead
of having a single thread parameter, are now represented as having k
additional parameters, where the i-th parameter of the action corresponds
to the i-th parameter of the thread list. We emulate lists with fewer than
k elements by using a special constant nao (not-an-object) to represent
a position of the list that is not occupied by any object. Finally, effects
of the actions spawn, and join, which modify the current thread, can be
straightforwardly modified to use this new representation.

4. The precondition of the call and spawn actions are modified such that they
will not be possible if the capacity of the stack/thread list is already at
its maximum.

Our PDDL translation is defined for ConGolog programs, that are assumed
to operate over a preexisting PDDL domain and problem specification. Thus, we
assume that, instead of receiving a basic action theory as input, the algorithm
receives a PDDL domain and problem definition describing preconditions and
effects of actions, and the initial and goal state of the planning problem. The
steps of the compilation procedure that integrate the basic action theory with
the output of the program compilation are trivially modified for the PDDL case.
Thus, new bookkeeping actions are added, and existing domain actions receive
additional parameters, preconditions and effects as necessary. More details on
the general setup of this compilation can be found in [Baier et al., 2007].

HTN to PDDL
Hierarchical Task Networks (HTNs) [Erol et al., 1994; Ghallab et al., 2004] are
a popular planning formalism used to provide domain control knowledge to
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a planner by representing planning solutions in a hierarchical fashion. They
have broad applications, including classical planning [Nau et al., 2003] and web
service composition [Kuter et al., 2004]. The HTN formalism has been in a
sense divorced from classical planning since state-of-the-art planners do not
handle HTNs. Our approach enables the compilation of HTNs into basic action
theories and – when bounding recursion – to PDDL. Compiling HTNs to PDDL
is beneficial, as it provides the means of combining their expressiveness with
modern planning techniques.

Several HTN variants have been proposed in the literature, and one partic-
ular one has been previously translated to ConGolog [Gabaldon, 2002]. Here
we consider the HTN formalism described by [Ghallab et al., 2004], using a
compelling subset of the language for constraints allowed by the SHOP2 plan-
ner [Nau et al., 2003], which obtained a second place in the 2002 International
Planning Competition. The translation of this flavor of HTN to ConGolog is
almost trivial.

In the variant of HTN planning that we consider, we distinguish three en-
tities, which are specified by the user: tasks, operators, and methods. Tasks
represent parametrized activities to perform. They can be primitive or com-
pound. Primitive tasks are realized by operators, actions that can be physically
executed in the domain. Compound tasks need to be decomposed using one
of possibly several applicable methods. A method m is of the form (:method

head(m) p1(~v) t1(~v) . . . pn(~v) tn(~v)) where the head specifies the task with for-
mal arguments ~v to which this method is applicable, pi(~v) are preconditions and
each ti(~v) is a list of sub-tasks. As in SHOP2, we give an if–then–else semantics
to methods: if p1(~v) holds, then the task is decomposed into the sub-tasks t1(~v).
Otherwise, p2(~v) is tested and so on. For a method to be applicable to a given
task instance, the task’s actual parameters have to unify with the method’s for-
mal parameters, and at least one pi has to be satisfied. Each list of sub-tasks
ti(~v) can be a nesting of :ordered and :unordered lists, stating restrictions on
the order in which these tasks can be carried out.

A detailed description of the formal algorithm for translating these HTNs
to ConGolog is beyond the scope of this chapter, but roughly the construction
proceeds as follows: For each method m, we create a new procedure

m
(
~v, if p1(~v) then δ1 else if . . . else (pn(~v)?; δn)

)

where δi is the following program representing sub-task ti: Recursively, if ti is
an :ordered set of tasks, then δi is simply the sequence of these tasks. Oth-
erwise, if ti is an :unordered set, then δi is the concurrent execution of all
of these. For instance, (:unordered a (:ordered b1 b2) (:ordered c1 c2
c2)), would be translated to: (a ‖ (b1; b2) ‖ (c1; c2; c3)). Since there may be
more than one method applicable to a given task, we translate each task into a
non-deterministic choice over all of its applicable procedures: (m1|m2| . . . |mn).

An HTN represented in such a way as a ConGolog program can thus be
compiled into a basic action theory just as easily, and by limiting the recursion
depth of methods, we can again compile the resulting theory further into PDDL.
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Execution Monitoring

A third practical merit of our compilation is that it allows us to lift existing
execution monitoring techniques used in planning for monitoring the execution
of ConGolog programs.

Monitoring the execution of a plan amounts to tracking the state of the
world, recognizing discrepancies between the expected state of the world ac-
cording to the model assumptions made during planning and the actual state
of the world, and determining whether a recognized discrepancy warrants plan
modification. One promising strategy is to annotate the plan in each step with
a sufficient and necessary condition for its validity with respect to reaching the
goal. Implicitly or explicitly, many execution monitoring approaches in the lit-
erature apply this technique and derive these conditions by regressing the goal
over the remaining actions of the plan. We have shown that this can be gener-
alized to the case where not only the validity of a plan, but also its optimality
must be monitored [Fritz and McIlraith, 2007].

When an agent is controlled by a Golog or ConGolog program, we need to
monitor more than just the stated final state goal. Also, the constraints on
the agent’s course of action imposed by the program must be satisfied. Those
tasks can be accomplished using regression on our compiled theory. Hence, we
can adapt existing regression-based techniques to the problem of monitoring the
execution of ConGolog programs without any extra machinery.

5 Related Work

There are several pieces of related work. In previous work we provided a com-
pilation of Golog programs without procedures into PDDL [Baier et al., 2007],
showing that notable speed-ups can be obtained in planning benchmarks. Our
current work significantly extends the aforementioned compilation by showing
how ConGolog programs (with procedures and extended with useful features
like concurrency) can also be translated into classical planning, under certain
restrictions. While our previous work exploited automata in the translation,
the added expressivity of ConGolog necessitated the use of Petri nets.

Funge [1998] provided a compilation of Golog programs into Prolog, to make
program interpretation more efficient. His approach is similar to ours in the
sense that the output can be viewed as representing a finite-state automaton.
However, the output is not a logical theory, the approach cannot handle con-
currency, and there are no immediate applications like planning.

There is also related work on the compilation of HTNs into ConGolog
and PDDL. As previously noted, Gabaldon [2002] presented a means of trans-
lating the general HTN formalism of Erol et al. [1994] into ConGolog. We
showed how the HTN formalism [Ghallab et al., 2004] with the popular SHOP2
[Nau et al., 2003] language for constraints could be translated into ConGolog
and in turn compiled into PDDL. We limited ourselves to SHOP2 constraints
because of its practical interest; this syntax also eliminated the need for addi-
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tional predicates. Nevertheless, we could have just as easily used Gabaldon’s
more involved translation to ConGolog to compile general HTNs with bounded
recursion into PDDL. Of further note, recently Lekavý and Návrat [2007] pro-
vided a linear translation of a restricted acyclic subset of HTN into STRIPS.
Their translation generates a Turing machine with a finite tape represented in
STRIPS.

Finally, there is related work on proving properties of Golog/ConGolog pro-
grams. Shapiro et al. [2002] used PVS to prove properties of ConGolog pro-
grams appealing to a direct representation of the Trans∗ second-order axiom,
and by reifying programs. As a result it is possible to use induction to prove
properties that hold during the execution of programs, but it is not straightfor-
ward to prove properties that hold at particular points in the execution (e.g.,
at the end of the program). As we have demonstrated, in our case proving
any of these properties is done as with any property of the situation calcu-
lus. Also of note, Liu [2002] introduced a Hoare-style proof system for proving
properties of Golog programs (without concurrency). The motivation for this
approach was similar to ours: to minimize second-order reasoning. As a con-
sequence, proving properties is facilitated in this formalism, too. Recently,
Claßen and Lakemeyer [2008] proposed an interesting algorithm for proving
properties of non-terminating Golog programs expressed in a logic that resem-
bles CTL∗. To prove such properties, they construct a characteristic graph,
which resembles our Petri nets. With our compiled domains and by using known
translations of LTL into planning goals (e.g., [Baier and McIlraith, 2006]) we
could prove similar properties, but restricted to only finite executions.

6 Discussion

We proposed an algorithm for compiling arbitrary ConGolog programs into ba-
sic action theories in the situation calculus. The size of the resulting theory
is quadratic in the size of the compiled program, and contains a simpler set of
axioms, in the sense that it avoids the need for program reification and reduces
the number of second-order axioms. The compilation presents a significant
contribution for at least two reasons. First, it provides the mathematical foun-
dations for compiling powerful ConGolog and HTN search control into basic
action theories of the situation calculus. These can in turn be translated into
other action formalisms including, with minor restrictions, PDDL. Such a trans-
lation enables most state-of-the-art planners to exploit powerful domain control
knowledge without the need to construct special-purpose machinery within their
planner. Second, in eliminating the need for reification, the translated theory
facilitates automated proof of program properties in systems such as PVS as well
as, in some cases, enabling properties to be proved by regression of ConGolog
programs followed by (first-order) theorem proving in the initial situation.
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A Definition of comp

We here provide the pseudo-code for the comp function of Step 1 of our com-
pilation. It takes four inputs: a program δ, an integer i used as a program
counter, a set e of program variables (introduced using the π-construct, see be-
low), and the name of the procedure this program belongs to, c. It outputs a set
of first-order sentences and a new integer. We will further process the sentences
in the subsequent steps of the compilation, eventually producing the axioms of
the new theory. The integer represents the value of the program counter at
the end of the program. The definition of comp is given on pages 25 and 26.
The following glossary is to provide some intuition about the used bookkeeping
fluents and actions. For parsimony we omit situation arguments:
Fluents:

Thread(th): Thread th exists/is active.

state(th) = y: Thread th is in state y, where y = (i, c) for some integer i (pro-
gram counter), and some procedure name c (“context”).

stack(th, p) = y: A stack for storing procedure call return addresses: p is the
stack positions, and y the content.

sp(th) = y: The stack pointer for thread th, pointing to the top of the stack.

map(th, p, v) = y: The program variable v has value y in thread th on stack
position p. Note that thread names and stack positions are required, since
the same program variable name (v) may be used simultaneous in different
threads, and in recursive procedures.
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childp(th) = y: For modeling concurrency: the number of children thread th
has.

Parent(th1, th2): Thread th1 is an ancestor of thread th2.

Forced(th): Thread th and its descendants, have exclusive execution rights.

Prio(th1, th2): Thread th1 has priority over thread th2. Note that it may still
temporarily be the case that Forced(th2) is true, in which case th2 is still
forced to execute before th1.

final(th): Thread th has executed completely.

blockeds(th, p, i, c): Thread th on stack position p may not move to state (i, c),
for instance, because that branch has been tried before and a backtrack
action (see below) has been executed.

blocked(th, p, i, c, x): Similarly, a π construct that transitions into (i, c) in thread
th on stack position p may not chose value x.

backtp = y: A pointer to positions in a backtracking stack. The stack itself
contains so-called “shadowed” versions of all relevant bookkeeping fluents
X, named s X, see below.

Actions:

test(th, i, c, i′): Under a certain condition, compiled into the preconditions of
this action, thread th may move from state i to i′, in context c.

rtest(th, i, c, i′): The same as above, but corresponding to an actual transition
in the program. Used for the φ? constructs only.

noop(th, i, c, i′): Just like test, but unconditional.

rnoop(th, i, c, i′): An unconditional transition, just like the previous, but only
for cases where no backtracking information needs to be recorded.

spawn(th, c, i′, i1, i2): Creates two new threads (tokens in the Petri net) and
sets the first thread to state i1, the second to i2, and the current thread
to i′.

join(th, c, i): Joins the child threads back into their parent.

π(th, v, x, c, i): Chose object x for program variable v.

call(th, p, c, i): Call procedure p.

return(th): Return from a procedure call: look up return address on the stack,
and move to the stated program position.

backtrack(th): Backtrack to the last backtracking point.
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Function comp(δ, i, e, c) – Part 1 of 2

Output: a tuple (ax, i′) with ax a set of sentences, i′ an integer
switch δ do1

case nil2

return (∅, i)3

case A(t1, . . . , tn) (where A(x1, . . . , xn) is an action)4

ax = {Poss(A(th, x1, . . . , xn), s)← Thread(th, s) ∧ state(th, s) = (i, c)∧5
V

j s.t. tj 6∈e
xj = tj ∧

V

j s.t. tj∈e
map(th, sp(th, s), tj, s) = xi,6

state(th, do(A(th, ~x), s)) = (i+1, c)← state(th) = (i, c)};7

return (ax, i+1)8

case (φ?)9

return (rtest(φ, i, i+1, e, c), i+1)10

case (δ1; δ2)11

(ax1, i1) = comp(δ1, i, e, c);12

(ax2, i2) = comp(δ2, i1, e, c);13

return (ax1 ∪ ax2, i2)14

case (δ1|δ2)15

(ax1, i1) = comp(δ1, i+1, e, c);16

(ax2, i2) = comp(δ2, i1+1, e, c);17

ax =18

{ noop(i, i+1, c),noop(i, i1+1, c),noop(i1, i2+1, c),noop(i2, i2+1, c)};
return (ax ∪ ax1 ∪ ax2, i2+1)19

case (if φ then δ1 else δ2)20

(ax1, i1) = comp(δ1, i+1, e, c);21

(ax2, i2) = comp(δ2, i1+1, e, c);22

ax = {test(φ, i, i+1, e, c), test(¬φ, i, i1+1, e, c),noop(i1, i2, c)};23

return (ax1 ∪ ax2 ∪ ax, i2)24

case (while φ do δ′)25

(ax, i1) = comp(δ′, i+2, e, c);26

return ({test(¬φ ∨ blockeds(th, sp(th), i+2, c), i+1, i1+1, e, c),27

rnoop(i, i+1, c), test(φ, i+1, i+2, e, c), rnoop(i1, i+1, c)} ∪28

ax, i1+1)

case (δ′∗)29

(ax, i1) = comp(δ′, i+1, e, c);30

return31

(ax ∪ {noop(i, i+1, c),noop(i+1, i1+1, c),noop(i1, i+1, c)}, i1+1)

case (π(v, δ))32

(ax1, i1) = comp(δ, i+1, e ∪ {v}, c);33

ax = {Poss(pi(th, v, x, c, i+1), s)← Thread(th, s) ∧ state(th, s) = (i, c)};34

return (ax ∪ ax1, i1)35

case P (t1, . . . , tn) (where P (x1, . . . , xn) is a procedure)36

ax = {Poss(call(th, P, i+1, c), s)← Thread(th, s) ∧ state(th, s) = (i, c)}37

∪ bindProc(e, [t1, . . . , tn], [x1, . . . , xn], call(th, P, i+1, c));38

return (ax, i+1)39

otherwise see Part 2 on next page40
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Function comp(δ, i, e, c) – Part 2 of 2

switch δ do1

case (δ1 ‖ δ2)2

(ax1, i1) = comp(δ1, i+1, e, c);3

(ax2, i2) = comp(δ2, i1+1, e, c);4

ax = {Poss(spawn(th, c, i2+1, i+1, i1+1), s)←5

Thread(th, s) ∧ state(th, s) = (i, c),6

Poss(join(th, c, i2+1), s)← Thread(th, s) ∧ state(th, s) =7

(i2+1, c)∧
final([childp(th, s)–1|th], s) ∧ final([childp(th, s)–2|th], s),8

state(th, do(join(th, c, i2+1), s)) = (i2+2, c),9

Poss(finalize(th), s)← Thread(th) ∧ ¬final(th)∧10

state(th, s) = (i1, c) ∨ state(th, s) = (i2, c)};11

return (ax1 ∪ ax2 ∪ ax, i2+2)12

case (δ‖)13

(ax1, i1) = comp(δ, i+1, e, c);14

ax = {noop(i, i1+1, c),15

Poss(spawn(th, c, i1+1, i, i+1), s)←16

Thread(th, s) ∧ state(th, s) = (i, c),
Poss(join(th, c, i1+1), s)← Thread(th, s) ∧ state(th, s) =17

(i1+1, c)∧
final([childp(th, s)–1|th], s) ∧ final([childp(th, s)–2|th], s),18

state(th, do(join(th, c, i2+1), s)) = (i2+2, c),19

Poss(finalize(th), s)← Thread(th) ∧ ¬final(th)∧20

state(th, s) = (i1, c) ∨ state(th, s) = (i2, c)};21

return (ax1 ∪ ax, i1+2)22

case (δ1 〉〉 δ2)23

(ax1, i1) = comp(δ1, i+1, e, c);24

(ax2, i2) = comp(δ2, i1+1, e, c);25

ax = {Poss(spawn(th, c, i2+1, i+1, i1+1), s)←26

Thread(th, s) ∧ state(th, s) = (i, c),27

Poss(join(th, c, i2+1), s)← Thread(th, s) ∧ state(th, s) =28

(i2+1, c)∧
final([childp(th, s)–1|th], s) ∧ final([childp(th, s)–2|th], s),29

state(th, do(join(th, c, i2+1), s)) = (i2+2, c),30

Prio(th1, th2, do(spawn(th, c, i2+1, i+1, i1+1), s))←31

th1 = [childp(th, s) + 1|th] ∧ th2 = [childp(th, s) + 2|th],32

¬Prio(th1, th2, do(join(th, c, i2+1), s))←33

th1 = [childp(th, s) + 1|th] ∧ th2 = [childp(th, s) + 2|th],34

Poss(finalize(th), s)← Thread(th) ∧ ¬final(th)∧35

state(th, s) = (i1, c) ∨ state(th, s) = (i2, c)};36

return (ax1 ∪ ax2 ∪ ax, i2+2)37
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finalize(th): Mark thread th as final.

In the algorithm we use the auxiliary functions test, rtest,noop, rnoop to
create additional transitions in the generated Petri net, which may be condi-
tional (test) or unconditional (noop). In these algorithms φ(s)|V denotes the
formula resulting from substituting each occurrence of v by xv for every pair
(v, xv) ∈ V.

Function test(φ, i1, i2, e, c)

V = {(v, xv) | v ∈ e ∧ φ mentions v} ; // xv a new var.1

return {Forced(th, do(test(th, i1, i2, c), s)),2

¬Forced(th′, do(test(th, i1, i2, c), s))← Thread(th′, s) ∧ th′ 6= th,3

state(th, do(test(th, i1, i2, c), s)) = (i2, c),4

Poss(test(th, i1, i2, c), s)← Thread(th, s) ∧ state(th, s) = (i1, c)∧5

(
V

(v,xv)∈V
map(th, sp(th, s), v, s) = xv) ∧ φ(s)|V6

∧¬blockeds(th, sp(th, s), i2, c)} ∪7

shadow(test(th, i1, i2, c),¬Forced(Th, s))8

Function rtest(φ, i1, i2, e, c)

V = {(v, xv) | v ∈ e ∧ φ mentions v} ; // xv a new var.1

return {¬Forced(th′, do(rtest(th, i1, i2, c), s))← Thread(th′, s),2

state(th, do(rtest(th, i1, i2, c), s)) = (i2, c),3

Poss(rtest(th, i1, i2, c), s)← Thread(th, s) ∧ state(th, s) = (i1, c)∧4

(
V

(v,xv)∈V
map(th, sp(th, s), v, s) = xv) ∧ φ(s)|V}5

Function noop(i1, i2, c)

return {Poss(noop(th, i1, i2, c), s)←1

Thread(th, s) ∧ state(th, s) = (i1, c) ∧ ¬blockeds(th, sp(th, s), i1, c),2

Forced(th, do(noop(th, i1, i2, c), s)),3

state(th, do(noop(th, i1, i2, c), s)) = (i2, c)}4

∪ shadow(noop(th, i1, i2, c), true)5

The following condition, bindProc, is required for handling program vari-
ables in the positions of procedure calls. The variables ti serve as actual pa-
rameters and xi as formal parameters. Also note that we apply call-by-value by
evaluating all actual parameters which are not program variables before passing
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Function rnoop(i1, i2, c)

return {Poss(rnoop(th, i1, i2, c), s)← Thread(th, s) ∧ state(th, s) = (i1, c),1

state(th, do(rnoop(th, i1, i2, c), s)) = (i2, c)}2

them to the procedure.

bindProc(e, [t1, . . . , tn], [x1, . . . , xn], a)
def
=

[

j s.t. tj∈e

{map(th, sp(th, s)+1, xj, do(a, s)) = map(th, sp(th, s), tj, s)}

∪
[

j s.t. tj 6∈e

{map(th, sp(th, s)+1, xj, do(a, s)) = tj(s)}

The following function (shadow) creates axioms which are required for a lim-
ited form of backtracking. This is occasionally required to realize synchronized
while’s and if’s. Consider the program (if φ then a else b) ‖ c, and imagine
that initially φ is false, but that c makes it true. Then still, the sequence [c, a]
is not permitted: testing φ and executing the next action has to be atomic and
may not be interrupted by other threads. In our compilation we realize this
through the use of a particular Forced(th, s) fluent, stating that only thread th
may execute next. Usually this fluent is false, but bookkeeping-actions make
it true. This way, after performing the test action for φ, only a may execute
next. However, imagine a is not executable. We need to lift the force, and allow
other threads to execute, but in order to implement synchronized if’s correctly,
we need to backtrack the thread to a state before the test first. In the example
above, this is because after executing c, the else-case of the conditional must
be executed. Backtracking is realized by keeping a stack of previous configura-
tions of bookkeeping fluents, to which the system can revert to when necessary.
The following axioms implement the pushing of backtracking information onto
the stack. The backtrack(th) action, see below, implements the restoration, i.e.
popping from the stack.

shadow(a, ψ)
def
= {

S Thread(b, x, do(a, s))← b = backtp(s) ∧ Thread(x, s) ∧ ψ,

¬S Thread(b, x, do(a, s))← b = backtp(s) ∧ ¬Thread(x, s) ∧ ψ,

s state(b, x, do(a, s)) = v ← b = backtp(s) ∧ state(x, s) = v ∧ ψ,

s stack(b, x, y, do(a, s)) = v ← b = backtp(s) ∧ stack(x, y, s) = v ∧ ψ,

s sp(b, x, do(a, s)) = v ← b = backtp(s) ∧ sp(x, s) = v ∧ ψ,

s map(b, t, p, x, do(a, s)) = v ← b=backtp(s) ∧map(t, p, x, s)=v ∧ ψ,

s childp(b, x, do(a, s)) = v ← b = backtp(s) ∧ childp(x, s) = v ∧ ψ,

S Prio(b, x, y, do(a, s))← b = backtp(s) ∧ Prio(x, y, s) ∧ ψ,

¬S Prio(b, x, y, do(a, s))← b = backtp(s) ∧ ¬Prio(x, y, s) ∧ ψ,

S Forced(b, x, do(a, s))← b = backtp(s) ∧ Forced(x, s) ∧ ψ,

¬S Forced(b, x, do(a, s))← b = backtp(s) ∧ ¬Forced(x, s) ∧ ψ,

S blockeds(b, x, p, y, c, do(a, s))← b = backtp(s) ∧ blockeds(x, p, y, c, s) ∧ ψ,

S blocked(b, x, p, y, c, x, do(a, s))← b = backtp(s) ∧ blocked(x, p, y, c, x, s) ∧ ψ,
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backtp(do(a, s)) = v ← v = backtp(s) + 1 ∧ ψ }

B Program-Independent Axioms

The default dynamics of the involved bookkeeping actions, which are program
independent, are described by the following axioms (cf. Step 2 of the compilation
described in Section 3).
For procedure calls:

axprocs
def
= { sp(th, do(call(th, x1, x2, x3), s)) = y ← y = sp(th, s)+1,

state(th, do(call(th, P, x1, x2), s)) = y ← y = (0, P ),

stack(th, v, do(call(th, x1, i, c), s))=y ← y=(i, c) ∧ v = sp(th, s)+1,

Forced(th, do(call(th, x1, x2, x3), s)) = y ← true,

state(th, do(return(th), s) = y ← y = stack(th, sp(th, s), s),

sp(th, do(return(th), s)) = y ← y = sp(th, s)–1 }

For concurrency:

axconc
def
= {

Thread(th′, do(spawn(th, c, x1, x2, x3), s))←

th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s)+1|th],

childp(th, do(spawn(th, c, x1, x2, x3), s))=y←y=childp(th, s)+2,

sp(th′, do(spawn(th, c, x1, x2, x3), s)) = y ←

y = 0 ∧ (th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]),

childp(th′, do(spawn(th, c, x1, x2, x3), s)) = y ←

y = 0 ∧ (th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]),

Parent(t̄h, th′, do(spawn(th, c, x1, x2, x3), s))←

(th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]) ∧ (t̄h = th ∨ Parent(t̄h, th)),

state(th, do(spawn(th, c, i, x1, x2), s)) = y ← y = (i, c),

state(th′, do(spawn(th, c, x1, i, x2), s)) = y ← y = (i, c) ∧ th′ = [childp(th, s)|th],

state(th′, do(spawn(th, c, x1, x2, i), s)) = y ← y = (i, c) ∧ th′ = [childp(th, s) + 1|th],

map(th′, p, v, do(spawn(th, c, x1, x2, i), s)) = x←

map(th, p, v, do(spawn(th, c, x1, x2, i), s)) = x ∧ th′ = [childp(th, s)|th],

Prio(th′, x, do(spawn(th, c, x1, x2, x3), s))←

Prio(th, x) ∧ (th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]),

Prio(x, th′, do(spawn(th, c, x1, x2, x3), s))←

Prio(x, th) ∧ (th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]),

backtp(th′, do(spawn(th, c, x1, x2, x3), s)) = 0←

(th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]),

¬final(th′, do(spawn(th, c, x, y, z), s))←

(th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s)+1|th]),

¬Thread(th′, do(join(th, x1, x2), s))←

childp(th, s) > 1 ∧ (th′ = [childp(th, s)–1|th] ∨ th′ = [childp(th, s)–2|th]),

childp(th, do(join(th, x1, x2), s)) = y ← childp(th, s) > 1 ∧ y = childp(th, s)–2,
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Forced(th, do(join(th, x1, x2), s))← Forced([childp(th, s)|th],

final(th, do(finalize(th), s))← true}
For program variables:

axπ
def
= { state(th, do(pi(th, v, x, c, i), s)) = y ← y = (i, c),

Forced(th, do(pi(th, v, x, c, i), s)) = y ← true,

map(th, p, v, do(pi(th, v, x, c, i), s)) = x← p = sp(th, s) }

The following axioms realize the backtracking described earlier, i.e. the restora-
tion of an earlier configuration of the bookkeeping fluents. This is only required
when concurrency is used.

axbacktrack

def
= {

¬Thread(x, do(backtrack(th), s))← ¬S Thread(backtp–1, x, s),

Thread(x, do(backtrack(th), s))← S Thread(backtp–1, x, s),

state(x, do(backtrack(th), s)) = v ← s state(backtp–1, x, s) = v,

stack(x, y, do(backtrack(th), s)) = v ← s stack(backtp–1, x, y, s) = v,

sp(x, do(backtrack(th), s)) = v ← s sp(backtp–1, x, s) = v,

map(t, p, x, do(backtrack(th), s)) = v ← s map(backtp–1, t, p, x, s) = v,

childp(x, do(backtrack(th), s)) = v ← s childp(backtp–1, x) = v,

Prio(x, y, do(backtrack(th), s))← S Prio(backtp–1, x, y, s),

¬Prio(x, y, do(backtrack(th), s))← ¬S Prio(backtp–1, x, y, s),

Forced(x, do(backtrack(th), s))← S Forced(backtp–1, x, s),

¬Forced(x, do(backtrack(th), s))← ¬S Forced(backtp–1, x, s),

blockeds(th, p, i, c, do(backtrack(th), s))← S blockeds(backtp–1, th, p, i, c, s),

¬blockeds(th, p, i, c, do(backtrack(th), s))← ¬S blockeds(backtp–1, th, p, i, c, s),

blocked(th, p, i, c, x, do(backtrack(th), s))← S blocked(backtp–1, th, p, i, c, x, s),

¬blocked(th, p, i, c, x, do(backtrack(th), s))← ¬S blocked(backtp–1, th, p, i, c, x, s),

backtp(do(backtrack(th), s) = v ← v = backtp–1,

blockeds(th, p, i, c, do(noop(th, c, i), s))← p = sp(th, s),

S blockeds(b, th, p, i, c, do(noop(th, c, i), s))← p = sp(th, s) ∧ b = backtp,

blockeds(th, p, i, c, do(test(th, i′, c, i), s))← p = sp(th, s),

S blockeds(b, th, p, i, c, do(test(th, i′, c, i), s))← p = sp(th, s) ∧ b = backtp,

blocked(th, p, i, c, x, do(pi(th, i′, x, c, i), s))← p = sp(th, s),

S blocked(b, th, p, i, c, x, do(pi(th, i′, x, c, i), s))← p = sp(th, s) ∧ b = backtp,

blockeds(th, p, i, c, do(join(th, c, i), s))← p = sp(th, s),

S blockeds(b, th, p, i, c, do(join(th, c, i), s))← p = sp(th, s) ∧ b = backtp,

blockeds(th, p, i, c, do(call(th, i′, c, i), s))← p = sp(th, s),

S blockeds(b, th, p, i, c, do(call(th, i′, c, i), s))← p = sp(th, s) ∧ b = backtp}

∪ shadow(do(call(th, i′, c, i), s),¬Forced(th))

∪ shadow(do(join(th, c, i), s),¬Forced(th))

∪ shadow(do(π(th, i′, x, c, i), true)

∪ {Poss(backtrack(th), s)← backtp(s) > 0 ∧ Thread(th) ∧

Forced(th)∧¬CanTrans(th)∧(6 ∃t).Parent(th, t)∧Thread(t)∧CanTrans(t)}

Intuitively, above blocking effects ensure that after backtracking not the same
pseudo actions are performed, and thus creating a cycle. The unblocking effects

30



of real actions (see below), imply that a bookkeeping action can be repeated
after a real action has taken place – and thus, the state of the world may have
changed. Backtracking is only possible, when a forced thread cannot execute
any other action, and none of its descendant threads can either (cf. Step 4).

The following axioms describe some of the values of above used bookkeeping
fluents in the initial situation S0:

axS0

def
= { Thread([0], S0)← true,

state([0], S0) = (0, ’main’)← true,

sp([0], S0) = 0← true,

stack([0], 0, S0) = ’final’← true,

childp([0], S0) = 0← true }

We further have the following additional bookkeeping effects for real actions,
where A denotes the set of all domain actions, i.e. primitive actions of the
original theory D :

axreal
def
= { ¬blockeds(th, p, i, c, do(α, s)),

¬blocked(th, p, i, c, x, do(α, s)),

¬final(th, do(α, s)),

¬Forced(th, do(α, s)) }α∈A∪{rtest}

The union of these sets forms the set of common, program independent
axioms:

axcommon
def
= axprocs ∪ axconc ∪ axπ ∪ axbacktrack ∪ axS0

∪ axreal
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C Proof of Theorem 1

C.1 Definitions

We use the following auxiliary definitions for the proofs.

• If D is a basic action theory, then we denote by Dδ,i,e,c,i′ the basic action
theory resulting from computing (ax, i′) = comp(δ, i, e, c) and perform-
ing steps 2 to 6 of the compilation on ax. When i is omitted, we mean
i = 0. Similarly, if e is omitted, we assume e = ∅.

• As mentioned earlier, in action theories resulting from a compilation, all
actions take a thread name as their first argument, i.e. domain actions
(defined in the original theory D) receive an additional argument in the
compiled theories. In the proof below we sometimes refer to situation
terms in compiled theories containing action terms without this additional
thread argument. We interpret these – in the context of a compiled theory
– as macros, expanding into action terms with a dummy thread [−1] as
their first argument (e.g. A(t1, . . . , tn) becomes A([−1], t1, . . . , tn)). Even
though the implied situation term is not executable in the respective the-
ory (since that dummy thread is never active), it serves our purposes, as
the action still has its intended effects on the state of the world, i.e. on
all non-bookkeeping fluents. This convention ensures that all situation
terms of the original theory D are also situation terms in any new theory,
resulting from the compilation of some program, and represent the same
state of the world.

• For two situation terms S and S′ = do(~a, S), we refer to the action se-
quence ~a by S′−S. We denote the concatenation of two action sequences
~a,~b by ~a ·~b.

• We call a situation S′ a continuation of another situation S, if S ⊑ S′.
We call a continuation proper if σ = S′ − S is non-empty. We say that a
continuation is in thread th to express that all actions in σ are executed
in thread th, i.e. their first argument is th.

• For two situations s, s′ with s ⊏ s′, we write exec(s, s′) to state that the
part of s′ that extends s is executable, formally:

exec(s, s′)
def
= (∀a, s∗).s ⊏ do(a, s∗) ⊑ s′ ⊃ Poss(a, s∗).

Similarly, execth(s, s
′) denotes that all actions in the part of s′ that extends

s that are in thread th or any of its descendants, are executable. Formally:

execth(s, s
′)

def
=

(∀a, th′, ~x, s∗).s ⊏ do(a(th′, ~x), s∗) ⊑ s′ ∧ Suffix(th, th′) ⊃ Poss(a(th′, ~x), s∗).

where Suffix(L1, L2) holds if L1 and L2 are lists and the former is a suffix
of the latter.
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• We call domain actions and rtest actions real actions, and call all other
bookkeeping actions pseudo actions.

We define a new predicate, T̂rans, which is just like Trans but allows the
execution of arbitrary actions at any point during program execution. These
actions are marked, so that later it can be distinguished whether they are the
result of executing program steps or whether they were injected. This is to
formalize the notion of executability of a program, conditioned on the execution
of other actions in concurrently executing threads.

Definition 1. Let D be any basic action theory whose set of actions is A. Then
D̂ is just like D, except that the set of actions is A∪ Â where Â = {â | a ∈ A},
and the effects and preconditions of â are equal to those of a.

We define:

T̂rans(δ, s, δ′, s′)
def
= Trans(δ, s, δ′, s′) ∨ (δ′ = δ ∧ (∃â).s′ = do(â, s)).

and define T̂rans
∗

just like Trans∗ but for T̂rans instead of Trans. Further,
pure(s) denotes the situation obtained by replacing any marked action in s by
its unmarked counterpart.

In order to compare two situation terms Ŝ in D̂ and Sδ in a compiled theory
Dδ, we define Sδ =̂th Ŝ as follows:

do(a(th′, ~x), s) =̂th do(a(~x), s
′) if s =̂th s

′ and a ∈ A

and (th′ = th or Suffix(th, th′))

do(a(th′, ~x), s) =̂th do(â(~x), s
′) if s =̂th s

′ and a ∈ A

and th′ 6= th and ¬Suffix(th, th′)

do(a(th′, ~x), s) =̂th s
′ if s =̂th s

′ and a 6∈ A

s =̂th s

That is, the actions are matched in order, where each domain action executed
in th or its descendants matches an action in D, each domain action executed
in any other thread matches an inserted action, and all non-domain actions are
ignored.

C.2 Lemmata

We use the following auxiliary lemma.

Lemma 1. All precondition axioms inDδ,i,c,i′ are conjunctions where one of the
conjuncts is either of the form state(th, s) = (i1, c1)∨· · ·∨state(th, s) = (in, cn),
or false, and i ≤ ij < i′ for all 1 ≤ j ≤ n, and another conjunct is Thread(th, s).
Further, let s be any situation in Dδ,i,c,i′ such that Dδ,i,c,i′ |= Thread(th, s) ∧
state(th, s) = (i, c). Then there is no continuation s′ of s and an integer i′′ > i′

such that Dδ,i,c,i′ |= execth(s, s
′) ∧ state(th, s′) = (i′′, c).

Proof: The theorem follows by construction of the compilation. �
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Intuitively, the first part of the lemma states that all action preconditions
in the compiled theory explicitly enumerate all state’s in which the action can
execute, these states are within the parameters input and output by the com-
pilation algorithm, and that only active threads can execute. The second part
says that executable actions do not result in states whose number is beyond
the final state, defined by the compilation. As a consequence of this lemma we
have that if in a situation s a thread th is in a state i∗ of some context c (i.e.
state(th, s) = (i∗, c)), then the only actions that might be executable in s in th
are those listed in ax of (ax, i′) = comp(δ, i, ∅, c) for some i ≤ i∗ and some
i′ > i∗.

The following is going to be our main lemma. The theorem is going to follow
as a special case of it. The lemma indeed states something stronger than the
actual theorem, namely, intuitively, that the compiled theory and the original
semantics admit the same set of future situations, irrespective of whether these
situations denote complete program execution or can be extended into one. This
is needed in order to make the induction work.

Lemma 2. Let δ be any ConGolog program, and S any ground situation term
in D. Then:

“⇒” 1. for any thread name th, integer i, and situation Sδ in Dδ,i,c,i′ such
that filter(Sδ,D) = S and Dδ,i,c,i′ |= Thread(th, Sδ) ∧ state(th, Sδ) =
(i, c), if there exists a continuation S′

δ of Sδ such that Dδ,i,c,i′ |=

execth(Sδ, S
′
δ) then there is a program δ′ and a continuation Ŝ′ of S

in D̂ such that S′
δ =̂th Ŝ

′ and D̂ |= T̂rans
∗
(δ, S, δ′, Ŝ′); and

2. if furtherDδ,i,c,i′ |= state(th, S′
δ) = (i′, c), then also D̂ |= Final(δ′, Ŝ′).

“⇐” 1. if there is a program δ′ and a continuation Ŝ′ of S in D̂ such that

D̂ |= T̂rans
∗
(δ, S, δ′, Ŝ′) then, for any thread name th, integer i, and

situation Sδ in Dδ,i,c,i′ such that filter(Sδ,D) = S and Dδ,i,c,i′ |=
Thread(th, Sδ) ∧ state(th, Sδ) = (i, c), there exists a continuation S′

δ

of Sδ such that S′
δ =̂th Ŝ

′ and Dδ,i,c,i′ |= execth(Sδ, S
′
δ); and

2. if further D̂ |= Final(δ′, Ŝ′), then also Dδ,i,c,i′ |= state(th, S′
δ) =

(i′, c).

Note that as a special case of this, if Ŝ′ does not mention any marked actions,
then also S′

δ does not mention any actions not in thread th or its descendants,
and vice versa.

Proof of Lemma 2 for programs without the π construct:
The proof proceeds by induction over the structure of program δ. We refer to
the definition of Trans and Final of [De Giacomo et al., 2000].

The induction has several base cases:
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δ = nil :

⇒:

By definition of comp, we have that comp(δ, i, ∅, c) = (∅, i). Since ax

is empty, so is the disjunction of φ’s (preconditions) in Step 5 of the
compilation (cf. Lemma 1). Since an empty disjunction is equivalent to
false, no action is ever possible. Hence, the new action theory Dδ,i,c,i′ has
no executable situations which are proper continuations of Sδ and which
mention domain actions in th. Since D |= (∀s)Final(nil , s), the second
implication trivially holds for S = filter(Sδ).

⇐:

By definition, D |= (∀s 6 ∃δ′, s′)Trans(nil , s, δ′, s′). Hence, Ŝ′ cannot con-

tain any unmarked actions. Any situation S′
δ such that S′

δ =̂th Ŝ
′, hence

does not contain any actions in th. Since by construction the only domain
actions that can change the state of thread th are those in th itself, we get
that any such S′

δ satisfies:

Dδ,i,c,i′ |= execth(Sδ, S
′
δ) ∧ state(th, S

′
δ) = (i, c)

and hence the thesis for this case.

δ = A(t1, . . . , tn) where A is a primitive domain action:

⇒:

By construction of comp for this case and due to Lemma 1, the only po-
tentially executable action in Sδ inDδ,i,c,i′ in thread th is A(th, x1, . . . , xn),
where, by definition of comp, xi = ti(Sδ) (recall that e = ∅). It is possi-
ble, only if A’s original preconditions are satisfied as well. By definition of
comp this action causes state(th, do(A(th, x1, . . . , xn), Sδ)) = (i′, c), and
hence does not admit any further actions in thread th, due to Lemma 1. By
definition of Trans it follows that
D |= Trans(A(t1, . . . , tn), S,nil , do(A(t1(S), . . . , tn(S)), S)), and obviously
do(A(th, x1, . . . , xn), Sδ) =̂th do(A(t1(S), . . . , tn(S)), S) from the above, and
the assumption that filter(Sδ,D) = S.

Further, by definition, D |= Final(nil , do(A(t1(S), . . . , tn(S)), S)), hence

the thesis for this case (Ŝ′ = do(A(t1(S), . . . , tn(S)), S)).

⇐:

By definition of Trans, Ŝ′ = do(A(t1(S), . . . , tn(S)), S) is the only continu-
ation of S such that there exists a program δ′ such that
D |= Trans(A(t1, . . . , tn), S, δ′, Ŝ′), and hence the only continuation in D̂
mentioning only unmarked actions such that

D̂ |= T̂rans(A(t1, . . . , tn), S, δ′, Ŝ′). Hence, any continuation S′
δ such that

S′
δ =̂th Ŝ

′ containing A(th, t1(S), . . . , tn(S)) as its only action in th and not
containing any pseudo-actions, satisfies the condition. It hence follows, as
before:

Dδ,i,c,i′ |= execth(Sδ, S
′
δ) ∧ state(th, S

′
δ) = (i′, c).
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δ = φ?:

⇒:

By definition of comp and due to Lemma 1, the only potentially possible
action in situation Sδ in thread th, is rtest(th, i, i′, c), and after that no
more actions are possible in th. Also note that i′ = i + 1. Hence, we
can assume that S′

δ only contains this action in th. Let σ, σ′ be such that
S′

δ = do(σ′, do(rtest(th, i, i′, c), do(σ, Sδ))), i.e. the sequences of actions
(in other threads) before and after this action. The action is, by con-
struction, only possible if Dδ,i,c,i′ |= φ(do(σ, Sδ)) (recall, e = ∅). Since
φ cannot mention any of the bookkeeping fluents introduced by the com-
pilation, we have Dδ,i,c,i′ |= φ(do(σ, Sδ)) iff D |= φ(filter(do(σ, Sδ),D)).

Let Ŝ′ be any continuation of S such that S′
δ =̂th Ŝ

′. By definition of

=̂th we have that there is a situation Ŝ′′ such that S ⊏ Ŝ′′ ⊏ Ŝ′ and
which satisfies do(σ, S) =̂th Ŝ

′′. It follows by definition of Trans that

D̂ |= T̂rans(φ, Ŝ′′,nil , Ŝ′′), and hence D̂ |= T̂rans
∗
(φ, S,nil , Ŝ′)

As before, D |= (∀s).Final(nil , s) and hence the thesis.

⇐:

By definition of Trans, Ŝ′ = S is the only (improper) continuation of S

such that there exists a program δ′ such that D |= Trans(φ, S, δ′, Ŝ′), and

hence the only continuation in D̂ mentioning only unmarked actions such

that D̂ |= T̂rans
∗
(φ, S, δ′, Ŝ′). Hence, any situation S′

δ such that S′
δ =̂th Ŝ

′

containing no actions in th and not containing any pseudo-actions, satisfies
the condition. It hence follows, as before:

Dδ,i,c,i′ |= execth(Sδ, S
′
δ) ∧ state(th, S

′
δ) = (i′, c)

The induction steps regard all other programming constructs and are as follows:

(δ1; δ2):

⇒:

There are two cases to distinguish: (a) S′
δ is such that the integer i∗ such

that Dδ,i,c,i′ |= state(th, S′
δ) = (i∗, c) is ≤ i1, where i1 is as defined

by comp for this case, or (b) i∗ ≥ i1. In case (a) the thesis follows
immediately by induction hypothesis. We hence only need to consider
case (b).

By Lemma 1 and definition of comp there is a prefix σ1 of S′
δ − Sδ, such

that

Dδ,i,c,i′ |= execth(Sδ, do(σ1, Sδ)) ∧ state(th, do(σ1, Sδ)) = (i1, c)

where i1 is the integer defined in comp for this case. By induction hy-
pothesis, there hence is a continuation Ŝ′

1 of S in D̂ and a program δ′ such

that D̂ |= T̂rans
∗
(δ1, S, δ

′, Ŝ′
1) ∧ Final(δ′, Ŝ′

1).
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Furthermore, since Dδ,i,c,i′ |= state(th, do(σ1, Sδ)) = (i1, c), induction
hypothesis also applies to do(σ1, Sδ) and δ2: Since S′

δ is a continua-
tion of do(σ1, Sδ) which, by the initial assumption, satisfies Dδ,i,c,i′ |=
execth(do(σ, Sδ), S

′
δ) it follows that there also exists a ground continua-

tion Ŝ′
2 of filter(do(σ1, Sδ),D) in D̂ such that there is δ′ such that D̂ |=

T̂rans
∗
(δ2,filter(do(σ1, Sδ),D), δ′, Ŝ′

2). Hence

Ŝ′ = do(S′
2 − filter(do(σ1, Sδ),D), do(Ŝ′

1 − S, S)) satisfies, by definition

of Trans for sequences: D̂ |= T̂rans
∗
(δ, S, δ′, Ŝ′).

Further by induction hypothesis, if Dδ,i,c,i′ |= state(th, S′
δ) = (i′, c) then

also D̂ |= Final(δ′, Ŝ′). Hence the thesis.

⇐:

In analogy to above, we can again distinguish the two cases: (a) there is no

situation Ŝ′′ in D̂ such that S ⊏ Ŝ′′ ⊏ Ŝ′ and D̂ |= T̂rans
∗
(δ, S,nil ; δ2, Ŝ

′′),
or (b) there is. In case (a) the thesis again follows immediately by induc-
tion hypothesis. In the following we show case (b).

By definition of T̂rans
∗

there is a prefix σ of Ŝ′ − S such that D̂ |=

T̂rans
∗
(δ1; δ2, S,nil ; δ2, do(σ, S)). Hence, by induction hypothesis, there

is a continuation S′
δ1

for any Sδ, where the latter is as described in the
lemma, such that S′

δ1
=̂th do(σ, S) and

Dδ1,i,c,i1 |= execth(Sδ, S
′
δ1

) ∧ state(th, S′
δ1

) = (i1, c)

for i1 as defined by comp.

We can once again apply induction hypothesis on the second sub-program,
using the situation S′

δ1
, since it satisfies the constraints. The situation Ŝ′ is

a continuation of pure(do(σ, S)) in D̂ that satisfies

D̂ |= T̂rans
∗
(δ2, pure(do(σ, S)), δ′, Ŝ′). Hence, there exists a continuation

S′
δ of S′

δ1
such that S′

δ =̂th Ŝ
′ and Dδ2,i1,c,i′ |= execth(S

′
δ1
, S′

δ). It follows
by definition of execth that also Dδ,i,c,i′ |= execth(Sδ, S

′
δ).

Further by this second application of induction hypothesis, we get that if
D̂ |= Final(δ′, Ŝ′), then also Dδ,i,c,i′ |= state(th, S′

δ) = (i′, c).

(δ1 ‖ δ2):

⇒:

By definition of comp and Lemma 1, the first action in σ = S′
δ − Sδ

in thread th can only be spawn(th, c, i + 1, i1 + 1) where i1 is an in-
teger defined in the compilation. By axcommon the reached situation
S1 = do(spawn(th, c, i2 +1, i+1, i1 +1), Sδ) is such that two new threads
exist which we here denote th1, th2, one in state i+1 and another in i1 +1
of the same context.

We consider both cases of the lemma separately.
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1. By definition of execth and Lemma 1 it follows that S′
δ satisfies both

Dδ1,i,c,i1 |= execth1
(S1, S

′
δ) and Dδ2,i1+1,c,i2 |= execth2

(S1, S
′
δ), and

also filter(S1,D) = S. Hence, by induction hypothesis, there are

programs δ′1, δ
′
2 and respective continuations Ŝ′

1 and Ŝ′
2 of S in D̂

such that S′
δ =̂th1

Ŝ′
1, S

′
δ =̂th2

Ŝ′
2, D̂ |= T̂rans

∗
(δ1, S, δ

′
1, Ŝ

′
1), and D̂ |=

T̂rans
∗
(δ2, S, δ

′
2, Ŝ

′
2).

It is easy to show from the definition of =̂th that all unmarked actions
of Ŝ′

1 then also appear marked in Ŝ′
2 in the same order, and vice versa,

and that all other marked actions are shared. Hence, pure(Ŝ′
1) =

pure(Ŝ′
2). Construct Ŝ′ as follows: take Ŝ′

1 and unmark all actions

that appear unmarked in Ŝ′
2. It is easy to see from the definition of

=̂th that S′
δ =̂th Ŝ

′. Similarly, from the definition of T̂rans it follows

that D̂ |= T̂rans
∗
(δ1 ‖ δ2, S, δ

′
1 ‖ δ

′
2, Ŝ

′).

2. If further Dδ,i,c,i′ |= state(th, S′
δ) = (i′, c), then by definition of

comp the last action of S′
δ in thread th can only be join(th, c, i2 +

2), which in turn can only occur after executing finalize(th1) and
finalize(th2). These actions are only possible in a situation s where
Dδ1,i,c,i1 |= state(th1, s) = (i1, c) and Dδ2,i1+1,c,i2 |= state(th2, s) =
(i2, c) respectively. Hence, by induction hypothesis also

D̂ |= Final(δ′1, Ŝ
′
1) and D̂ |= Final(δ′1, Ŝ

′
1). Hence, by definition of

Trans, D̂ |= Final(δ′1 ‖ δ
′
2, Ŝ

′).

⇐:

We again consider the two parts:

1. By the definition of T̂rans
∗

the situation Ŝ′ can be transformed into

two situations Ŝ′
1 and Ŝ′

2 such that D̂ |= T̂rans
∗
(δ1, S, δ

′
1, Ŝ

′
1) and

D̂ |= T̂rans
∗
(δ2, S, δ

′
2, Ŝ

′
2) for some δ′1, δ

′
2, by marking the actions

executed in the respectively other sub-program.

We hence get by induction hypothesis that for any situation S∗
δ which

satisfies filter(S∗
δ ,D) = S andDδ1,i,c,i1 |= Thread(th1)∧state(th1, S

∗
δ ) =

(i + 1, c) and Dδ2,i1+1,c,i2 |= Thread(th2) ∧ state(th2, S
∗
δ ) = (i1 +

1, c), for any i, i1, that there exist continuations S′
δ1
, S′

δ2
of S∗

δ such

that S′
δ1

=̂th Ŝ
′
1 and S′

δ2
=̂th Ŝ

′
2, and Dδ1,i,c,i1 |= execth1

(S∗
δ , S

′
δ1

) and
Dδ2,i1+1,c,i2 |= execth2

(S∗
δ , S

′
δ2

).

It is easy to show that S1 = do(spawn(th, c, i2 + 1, i+ 1, i1 + 1), Sδ)
satisfies the above conditions for any Sδ satisfying the conditions in
the lemma. By definition of comp, the action spawn(th, c, i2 +1, i+
1, i1 + 1) is executable in Sδ in Dδ,i,c,i′ , following the assumptions
about this situation.

Construct a new situation S′′
δ as follows: Iterate concurrently through

S′
1 and S′

2 (remember they are essentially the same, ignoring the
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marking): if the next unmarked action is in S′
1 then move all ac-

tions S′
δ1

up to and including this action to S′′
δ . Otherwise, do the

same using S′
δ2

. Since the domain actions are the same and have
not changed compared to S′

δ1
and S′

δ2
it follows that S′

δ = do(S′′
δ −

Sδ, do(spawn(th, c, i2 + 1, i + 1, i1 + 1), Sδ)) satisfies: Dδ,i,c,i′ |=
execth1

(Sδ, S
′
δ) and Dδ,i,c,i′ |= execth2

(Sδ, S
′
δ), and hence, by defini-

tion of execth also Dδ,i,c,i′ |= execth(Sδ, S
′
δ). Further, by construction,

S′
δ =̂th Ŝ

′ (note that spawn is not in A).

2. If further D̂ |= Final(δ′, Ŝ′), then, by definition of Final for concur-

rency, also D̂ |= Final(δ′1, Ŝ
′
1) and D̂ |= Final(δ′2, Ŝ

′
2). It hence follows

by induction hypothesis that also Dδ1,i,c,i1 |= state(th, S′
δ1

) = (i1, c)
and Dδ2,i1+1,c,i2 |= state(th, S′

δ2
) = (i2, c), with i1, i2 as defined in

the compilation.

Let S′′
δ be as constructed above, but if after iterating over S′

1/S
′
2 a

sequence of (pseudo-)actions σ1 remains in S′
δ1

in th1 and/or σ2 in
S′

δ2
in th2, then create S′′′

δ = do(σ1 · [finalize(th1), backtrack(th1)] ·
σ2 · [finalize(th2), join(th, c, i2 + 2)], S′′

δ ). This situation is such that
Dδ,i,c,i′ |= execth(Sδ, S

′′′
δ ) by the above, definition of comp for con-

currency, and axbacktrack, and it satisfies: Dδ,i,c,i′ |= state(th, S′′′
δ ) =

(i′, c).

(δ1|δ2):

⇒:

By Lemma 1 and definition of comp, the first action in thread th in
σ = S′

δ − Sδ is either noop(th, i, i+ 1, c) or noop(th, i, i1 + 1, c). We here
only show the thesis for the first case, as the second follows analogously.
The resulting situation S1 satisfies Dδ1,i,c,i1 |= state(th, S1) = (i + 1, c).

1. First consider the case where Dδ,i,c,i′ 6|= state(th, S′
δ) = (i′, c). Then

by Lemma 1 and definition of comp, S′
δ is a continuation of S1 such

that Dδ,i,c,i′ |= execth(S1, S
′
δ) and hence, by induction hypothesis,

then there is a program δ′1 and a continuation Ŝ′ of S in D̂ such that

S′
δ =̂th Ŝ

′ and D̂ |= T̂rans
∗
(δ1, S, δ

′
1, Ŝ

′). Hence, by definition of Trans

also D̂ |= T̂rans
∗
(δ1|δ2, S, δ

′
1, Ŝ

′).

2. Otherwise, if Dδ,i,c,i′ |= state(th, S′
δ) = (i′, c), then the last action

in thread th in S′
δ can only be noop(th, i1, i2 + 1, c), by definition

of comp and Lemma 1. This action is only possible if for S′
δ1

such
that S′

δ = do(noop(th, i1, i2 + 1, c), S′
δ1

) we have that Dδ1,i,c,i1 |=
state(th, S′

δ1
) = (i1, c). Hence, by induction hypothesis and definition

of =̂th , D̂ |= Final(δ′1, Ŝ
′).

⇐:

39



1. By definition of Trans either D̂ |= T̂rans
∗
(δ1, S, δ

′, Ŝ′) or

D̂ |= T̂rans
∗
(δ2, S, δ

′, Ŝ′). Without loss of generality we here assume
the first case.

Then, by induction hypothesis, for any Sδ1
such that filter(Sδ1

,D) =
S and Dδ1,i+1,c,i1 |= Thread(th, Sδ1

) ∧ state(th, Sδ1
) = (i + 1, c)

there is a continuation S′
δ1

such that S′
δ1

=̂th Ŝ
′ and Dδ1,i+1,c,i1 |=

execth(Sδ1
, S′

δ1
). Let σ = S′

δ1
− Sδ1

.

The situation S∗
δ1

= do(noop(th, i, i+1, c), Sδ) satisfies above condi-
tions for any situation Sδ which is as described in the lemma. Since
noop(th, i, i+1, c) is executable in Sδ, by definition of comp we get:
Dδ,i,c,i′ |= execth(Sδ, do(σ, S

∗
δ )).

2. if D̂ |= Final(δ′, Ŝ′), then, by induction hypothesis, Dδ1,i+1,c,i1 |=
state(th, S′

δ1
) = (i1, c). Hence, S′

δ = do(noop(th, i1, i2+1, c), do(σ, S∗
δ ))

is such that bothDδ,i,c,i′ |= execth(Sδ, S
′
δ) andDδ,i,c,i′ |= state(th, S′

δ) =

(i′, c), and obviously still S′
δ =̂th Ŝ

′.

(while φ do δ1):

⇒:

By Lemma 1 and definition of comp the first action of σ = S′
δ − Sδ in

thread th can only be noop(th, i, i + 1, c). Thereafter, if (a) Dδ,i,c,i′ 6|=
φ(do(noop(th, i + 1, i + 2, c), Sδ)) or Dδ,i,c,i′ |= blockeds(th, sp(th, Sδ), i +
2, c, Sδ) then the next action in th is test(th, i + 1, i1 + 1, c). Otherwise,
(b) it is test(th, i + 1, i + 2, c).

We show the thesis for this case by induction over the cycles of the loop
(we refer to this as the inner induction). There are two base cases: case
(a) above, and case (b) with zero cycles – intuitively the situation “ends
in δ1”. For the inner induction step we assume (b) and that one cycle less
remains. Such in induction is possible, since we assume finite situation
terms.

(a) In this case we immediately get that D |= ¬φ(S) and hence D |=

Final(while φ do δ1, Ŝ
′) for any Ŝ′ not mentioning any unmarked

actions (this also implies, trivially D̂ |= T̂rans
∗
(δ, S, δ, Ŝ′)). Since,

Dδ,i,c,i′ does not admit any further actions in th and the above are

not domain actions, we have S′
δ =̂th Ŝ

′ for any such situation.

(b) zero cycles left: Let S∗
δ = do(test(th, i+1, i+2, c), do(noop(th, i, i+

1, c), Sδ)). Then filter(S∗
δ ,D) = S, since test and noop are not do-

main actions, and, by construction, Dδ1,i+2,c,i1 |= Thread(th, S∗
δ ) ∧

state(th, S∗
δ ) = (i + 2, c). Let σ′ = S′

δ − S∗
δ . Then, S′

δ is a con-
tinuation of S∗

δ such that Dδ1,i+2,c,i1 |= execth(S
∗
δ , S

′
δ). Hence, by

induction hypothesis, there is a program δ′1 and a continuation Ŝ′
1

of S in D̂ such that S′
δ =̂th Ŝ

′
1 and D̂ |= T̂rans

∗
(δ, S, δ′1, Ŝ

′
1). Hence,
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by definition of Trans and the above assumption that D |= φ(S), it

follows that D̂ |= T̂rans
∗
(while φ do δ1, S, δ

′
1;while φ do δ1, Ŝ

′
1).

By assumption, Dδ,i,c,i′ 6|= state(th, S′
δ) = (i′, c), hence, the second

implication holds trivially in this case.

(b) induction step: In the inner induction case, there is a prefix σ1 of
S′

δ − do(test(th, i+ 1, i+ 2, c), do(noop(th, i, i+ 1, c), Sδ)) such that
for S′

δ1
= do(σ1, do(test(th, i+1, i+2, c), do(noop(th, i, i+1, c), Sδ)))

we have Dδ1,i+2,c,i1 |= state(th, S′
δ1

) = (i1, c). Hence, by outer

induction hypothesis there is a program δ′1 and a continuation Ŝ′
1

of S in D̂ such that S′
δ1

=̂th Ŝ
′
1 and D̂ |= T̂rans

∗
(δ1, S, δ

′
1, Ŝ

′
1) and

D̂ |= Final(δ′1, Ŝ
′
1).

Hence, we get by definition of T̂rans that

D̂ |= T̂rans
∗
(while φ do δ1, S, δ

′
1;while φ do δ1, S

′
1)

and since D̂ |= Final(δ′1, Ŝ
′
1) further

D |= T̂rans
∗
(while φ do δ1, S, δ

′
1;while φ do δ1, S

′
1) ≡

T̂rans
∗
(while φ do δ1, S,while φ do δ1, S

′
1).

Applying inner induction hypothesis we get that there is also a pro-
gram δ′ and a continuation Ŝ′ of S in D̂ such that S′

δ =̂th Ŝ
′ and

D̂ |= T̂rans
∗
(δ, S, δ′, Ŝ′). Further, again from inner induction hypoth-

esis (in particular if case (a) was used to terminate the induction) if

Dδ,i,c,i′ |= state(th, S′
δ) = (i′, c), then also D̂ |= Final(δ′, Ŝ′).

⇐:

By definition of T̂rans, there is either Ŝ′ and δ′ such that

D̂ |= T̂rans
∗
(while φ do δ1, S, δ

′
1;while φ do δ1, Ŝ

′)

or D̂ |= Final(while φ do δ1, S).

In the second case, by definitionD |= ¬φ(S) and hence, as above, Dδ,i,c,i′ |=
execth(Sδ, do([noop(th, i, i+1, c), test(th, i+1, i1+1, c)], Sδ)), and by defi-
nition of comp (and test in particular), Dδ,i,c,i′ |= state(th, do([noop(th, i, i+
1, c), test(th, i + 1, i1 + 1, c)], Sδ)) = (i′, c), since i′ = i1 + 1.

The first case is again shown by induction over the cycles of the loop. We
will again refer to this induction as the inner induction.

1. In the base case, D̂ |= T̂rans
∗
(while φ do δ1, S, δ

′
1;while φ do δ1, Ŝ

′)

implies that D̂ |= T̂rans
∗
(δ1, S, δ

′
1, Ŝ

′). Hence, by outer induction hy-
pothesis we get that for any thread name th, integer i+2, and situa-
tion Sδ1

in Dδ1,i+2,c,i1 such that filter(Sδ1
,D) = S and Dδ1,i+2,c,i1 |=

41



Thread(th, Sδ1
)∧state(th, Sδ1

) = (i+2, c), there exists a continuation

S′
δ1

of Sδ1
such that S′

δ1
=̂th Ŝ

′ and Dδ1,i+2,c,i1 |= execth(Sδ1
, S′

δ1
) and

if D̂ |= Final(δ′1, Ŝ
′), then also Dδ1,i+2,c,i1 |= state(th, S′

δ1
) = (i1, c).

For any Sδ as described in the lemma, we can hence choose S′
δ =

do(S′
δ1
− Sδ1

, do([noop(th, i, i + 1, c), test(th, i + 1, i + 2, c)], Sδ)).

If D̂ |= Final(δ′, Ŝ′), which is the case when D̂ |= Final(δ′, Ŝ′) and

D̂ |= ¬φ(Ŝ′), then we extend S′
δ by the action sequence [noop(th, i1, i+

1, c), test(th, i + 1, i1 + 1, c)], which is executable in any situation s
for which Dδ,i,c,i′ |= state(th, s) = (i1, c) ∧ ¬φ(s). The former is
provided by the above application of (outer) induction hypothesis,

and the latter is true, since S′
δ =̂th Ŝ

′, which in particular means that
these two situations contain the same domain actions (in the same
order, ignoring marking), since pseudo-actions by construction do not
affect domain fluents, and since φ cannot mention any bookkeeping
fluents.

2. In the inner induction case, there is a shortest prefix σ of Ŝ′−S such

that D̂ |= T̂rans
∗
(δ1, S, δ

′′
1 , do(σ, S)) and D̂ |= Final(δ′′1 , do(σ, S)).

Then, by outer induction hypothesis, as above, for any thread name
th, integer i+2, and situation Sδ1

inDδ1,i+2,c,i1 such that filter(Sδ1
,D) =

S and Dδ1,i+2,c,i1 |= Thread(th, Sδ1
)∧state(th, Sδ1

) = (i+2, c), there

exists a continuation S′
δ1

of Sδ1
such that S′

δ1
=̂th Ŝ

′ andDδ1,i+2,c,i1 |=
execth(Sδ1

, S′
δ1

)∧state(th, S′
δ1

) = (i1, c). Consider the situation S′′
δ =

do(noop(th, i1, i+1, c), do(S′
δ1
−Sδ1

, do([noop(th, i, i+1, c), test(th, i+
1, i + 2, c)], Sδ)). This situation is executable in Dδ,i,c,i′ as argued
above regarding the ’Final’ case, and it is such that Dδ,i,c,i′ |=
state(th, S′′

δ ) = (i + 1, c). Hence, by inner induction hypothesis

there is a continuation S′
δ of this situation such that S′

δ =̂th Ŝ
′ and

Dδ,i,c,i′ |= execth(Sδ, S
′
δ). And if D̂ |= Final(δ′1;while φ do δ1, Ŝ

′)
then also Dδ,i,c,i′ |= state(th, S′

δ) = (i′, c). Hence the thesis.

P (t1, . . . , tn) where P (x1, . . . , xn) is a procedure:

Following the steps of the compilation, we assume that any procedure
P ′(x1, . . . , xn) has been compiled into Dδ,i,c,i′ and the returned integer
was iP ′ . Note also that we do not consider nested procedure definitions.
4

The treatment of actual procedure parameters is done the same as for
program variables. Effectively, when a procedure is called, the parame-
ters are evaluated and stored in the map fluent. Each time an action or

4While it would be more descriptive to refer to the resulting theory, here and above, as
D{P1( ~x1,δP1

);...;Pn( ~xn,δPn
)};δ,i,c,i′ , we choose to still refer to it as Dδ,i,c,i′ for parsimony and

readability, and understand that all referred procedures have been compiled as well. Note
that this is not a problem, since the compilation is purely syntactic and in particular, the
order of compiling the procedures does not depend on their semantic dependencies.
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condition refers to the formal parameters, reference is made to this map
instead (more details can be found in the proof for programs with program
variables below).

⇒:

The thesis is shown by induction over the recursions of P (we call this
induction again the inner induction, to distinguish it from the outer in-
duction over the structure of programs).

In the base case, the currently executing procedure does not actually call
other procedures nor itself. This case follows immediately by (outer) in-
duction hypothesis (it is just a regular program without procedures).

In the induction case, we are assuming that the property holds for sit-
uation terms that contain n procedure calls, and show it for n + 1. By
Lemma 1 the only action possible in Dδ,i,c,i′ in th in Sδ is call(th, P, i +
1, c). By definition of axcommon, this action stores the return address
on the stack and establishes the state (0, P ). Hence, S′

δ is such that
DδP ,0,P,iP

|= execth(do(call(th, P, i + 1, c), Sδ), S
′
δ). Hence, by inner in-

duction hypothesis there is a program δ′ and a continuation Ŝ′ of S in D̂

such that S′
δ =̂th Ŝ

′ and D̂ |= T̂rans
∗
(δP (t1,...,tn), S, δ

′, Ŝ′). By definition

of Trans we then also get D̂ |= T̂rans
∗
(P (t1, . . . , tn), S, δ′, Ŝ′). Further, if

Dδ,i,c,i′ |= state(th, S′
δ) = (i′, c) then the last action in thread th in S′

δ

can only be return(th), due to the definition of comp. This action, is only
possible in situations s where Dδ,i,c,i′ |= state(th, s) = (iP , c) (cf. Step 3
of the compilation). Since then also DδP ,0,P,iP

|= state(th, S′
δ) = (iP , P )

we get again by inner induction hypothesis that also D̂ |= Final(δ′, Ŝ′).

⇐:

We again show this, by induction over the number of recursive procedure
calls. The base case, where the currently executing program does not
actually mention procedure calls, is again trivially given by outer induction
hypothesis.

In the induction step we assume that there is a program δ′ and a continu-

ation Ŝ′ of S in D̂ such that D̂ |= T̂rans
∗
(P (t1, . . . , tn), S, δ′, Ŝ′). By defi-

nition of Trans it is hence the case that D̂ |= T̂rans
∗
(δP (t1,...,tn), S, δ

′, Ŝ′).
Since there hence remain one less procedure call in the trail of configura-
tions from 〈δP (t1,...,tn), S〉 to 〈δ′, Ŝ′〉, we get by inner induction hypothesis
that for any thread name th, integer i, and situation SδP

in DδP ,0,P,iP
such

that filter(SδP
,D) = S and DδP ,0,P,iP

|= Thread(th, SδP
)∧state(th, SδP

) =

(0, P ), there exists a continuation S′
δP

of SδP
such that S′

δP
=̂th Ŝ

′ and
DδP ,0,P,iP

|= execth(SδP
, S′

δP
).

The situation do(call(th, P, i+ 1, c), Sδ) satisfies this condition for any Sδ

as described in the lemma, and by definition of comp call(th, P, i + 1, c)
is possible in any such Sδ. Hence, S′

δ = do(S′
δP
− SδP

, do(call(th, P, i +

1, c), Sδ)) is such that S′
δ =̂th Ŝ

′ and Dδ,i,c,i′ |= execth(Sδ, S
′
δ).

43



Further, also by inner induction hypothesis, if D̂ |= Final(δ′, Ŝ′), then
the mentioned situation S′

δP
is such that DδP ,0,P,iP

|= state(th, S′
δP

) =
(iP , c). In that case, we can append the action return(th) to it, which is
executable in that situation in Dδ,i,c,i′ , due to Step 3 of the compilation,
and which has the effect of establishing the state denoted by the highest
stack position. Following the definition of axprocs, the action call(th, P, i+
1, c) had the effect of establishing the value (i + 1, c) for this. Hence,
Dδ,i,c,i′ |= state(th, do(return(th), S′

δ)) = (i + 1, c), i.e. the thesis, since
i′ = i + 1.

We only outline the remaining cases, since they are all quite similar to one of
the above.

(δ′∗):

This case follows in close analogy to the case of while–loops, just replacing
the test actions by noop actions.

(if φ then δ1 else δ2):

This case follows in close analogy to the case of non-deterministic choice of
sub-programs (a|b), but replacing the initial noop actions with test actions.

(δ‖):

This case follows by induction over the number of concurrent iterations,
where the base case is that of not actually executing δ even once, and
the induction step is provided by the (outer) induction step for normal
concurrency.

(δ1 〉〉 δ2):

⇒:

This case follows in analogy to the normal concurrency case (δ1 ‖ δ2). If
δ1 is executed until completion before any actions are executed in δ2, the
case is just like for ‖. On the other hand, if actions are performed in th2

before then, then by definition of comp and Step 4 of the compilation, no
actions were possible in that situation in th1. From the latter, by induction
hypothesis for the ⇐ direction, it follows that also there don’t exist δ′1, Ŝ

′

such that Ŝ′−S contains unmarked actions and D̂ |= T̂rans
∗
(δ1, S, δ

′
1, Ŝ

′).

Hence, by definition of Trans, there is a program δ′2, Ŝ
′ such that D̂ |=

T̂rans
∗
(δ1 〉〉 δ2, S, δ1 〉〉 δ

′
2, Ŝ

′).

The remainder is again analogous to the ‖ case.

⇐:

Again, the case where the first transition is over δ1 is analogous to the ‖
case. If δ2 executes, then D |= (6 ∃δ′1, S

′).Trans(δ1, S, δ
′
1, S

′), by definition
of Trans. Hence, again by induction hypothesis of the ⇒ direction, there
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is no executable continuation whose first domain action is in th1, hence
allowing actions in th2 to execute (either directly, or after executing a
number of pseudo-actions first, followed by the backtrack(th) action). The
remaining reasoning is as in the ‖ case.

�

Proof of Lemma 2 for programs with the π construct:
Our solution for treating programs with the π construct and hence program
variables is similar to Skolemization. In ConGolog, π(v, δ) is interpreted as
the execution of the program δ where all occurrences of the constant v are
substituted by a new existentially quantified variables. This method is not
possible in our compilation, since π can appear in loops, whose body we only
want to consider once during compilation. Instead, we replace these existentially
quantified variables with functional fluents. Similar to Skolemization, these
functions need to be relative to the context the variable appears in, namely
the stack position (for πs in recursive procedures) and the thread (for πs inside
of the δ‖ construct, or inside a procedure which is called in two concurrent
threads).

By definition of comp, a π construct causes the execution of the pi(th, v, x, c, i)
action, whose effect due to axπ is that map(th, p, v) = x, where p is the current
value of the stack pointer. Note that x is a free parameter – not mentioned in
the preconditions. It can hence be any object. Since the π action is the only
action affecting the map fluent, this value in map pertains until the same con-
struct is visited again. Note that we disallow redefinitions of program variables,
i.e. for instance π(v,A(v);π(v,B(v))) is not allowed in the original program.
This is not a restriction, since any such program could be transformed to be
free of such redefinitions, by simply renaming the program variables.

The thesis then follows by inspection and induction over the nesting depth
of program variables. Recall that program variables can only occur in places of
action parameters and in conditions. In both, as provided by comp for primitive
actions and procedure calls and by the test and rtest functions for conditions,
these occurrences are forced to be equal to the values stored in map.

The base case of the induction is for the case of a program without program
variables and is immediately provided by the above proof for such programs.

For the induction step, let δ be a program with n program variables. Then
by above considerations, induction hypothesis, and the fact that pi is a pseudo-
action and hence filtered out by filter: for any ground situation term S, for
program π(v, δ), there is an object O, a situation Ŝ′, and a program δ′ such

that D̂ |= T̂rans
∗
(δ|v/o, S, δ

′, Ŝ′) if and only if there is a sequence of ground
action terms σ in Dδ,i,c,i′ such that S′

δ = do(σ, do(pi([0], v, O,main, 1), Sδ))

such that Dδ,i,c,i′ |= execth(Sδ, S
′
δ) and S′

δ =̂th Ŝ
′ for any situation term Sδ as

described in the lemma. And further, if D̂ |= Final(δ′, Ŝ′) then also Dδ,i,c,i′ |=
state(th, S′

δ) = (i′, c). Hence the thesis holds for programs with n+ 1 program
variables and hence, by induction, for any program with any number of program
variables. �
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C.3 Proof of the Theorem

The theorem follows from Lemma 2 for the special case of S = S0, th = [0],
i = 0, and c = main: Since S′

P cannot mention any actions not in [0] or
its descendants, we have that execth(S0, S

′
P) implies executable(S′

P). Further,

by definition of =̂th also Ŝ′ cannot mention any marked actions, and hence,
following Lemma 2

DP |= executable(S′
P) ∧ state([0], S′

P) = (imain,main)

iff there exists a program δ′ such that for S′ = filter(S′
P ,D) we have that

D |= Trans∗(P, S0, δ
′, S′) ∧ Final(δ′, S′)

which by definition is equivalent to D |= Do2(P, S0, S
′). �

D Proofs of Theorems 2 and 3

These two theorems both rely on the fact that the compilation visits each pro-
gram construct and logical connective mentioned in a condition exactly once,
and that each time a constantly bounded number of additional axioms are in-
troduced, each of size at most n. This is shown in the following lemma.

Lemma 3. Let δ be any ConGolog program of size n, whose set of free program
variables e has size k, and let i be any integer, and c any procedure name. Let
further be l the maximal cardinality of formal parameters of all the procedures
that are called in the program. The invocation of comp(δ, i, e, c) makes at
most n − 1 recursive calls to comp, and each invocation adds at most a con-
stant number of sentences to the set of returned sentences, each of size at most
O(max(k, l)).

Proof: By inspection. It is easy to see from the definition of comp that the sum
of the sizes of all sub-programs appearing as parameters in the recursive invo-
cations is less or equal to n− 1. Further, the cardinality of the set of sentences
added to the eventually returned set ax is bound by a constant in all cases, since
all auxiliary functions return only a constant number of sentences. The size of
each such sentence is in O(max(k, l)), since the only parametrized connective
appearing in the definitions is

∧
Ψ, where Ψ is a set of cardinality ≤ max(l, k).

�

Proof of Theorems 2 and 3: Let as before be P = {P1(~t1, δP1
); . . . ;Pn(~tn, δPn

); δmain},
and let m be the size of P. Then the sum of the number of occurrences of π
constructs k, and the maximal cardinality of formal procedure parameters l
must be < m. Hence, by Lemma 3, the set AX (see Step 2, p. 12) is of size
O(m2). Since both the time and the space complexity of each remaining step
of the compilation is linear in the size of AX, we get the thesis. �
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