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Abstract

Backbone variables have the same assignment in all solutions to a given constraint
satisfaction problem; more generally, bias represents the proportion of solutions that
assign a variable a particular value. Intuitively such constructs would seem important
to efficient search, but their study to date has assumed a mostly conceptual perspec-
tive, in terms of indicating problem hardness or motivating and interpreting heuris-
tics. In this work, we first measure the ability of both existing and novel probabilistic
message-passing techniques to directly estimate bias (and identify backbones) for the
specific problem of Boolean Satisfiability (SAT). We confirm that methods like Belief
Propagation and Survey Propagation–plus Expectation Maximization-based variants–
do produce good estimates with distinctive properties. We demonstrate the use of bias
estimation within a modern SAT solver, and exhibit a correlation between accurate,
stable, estimates and successful backtracking search. The same process also yields a
family of search heuristics that can dramatically improve search efficiency for the hard
random problems considered in this study.



1 Introduction
Probabilistic message-passing algorithms like Survey Propagation (SP) and Belief Prop-
agation (BP), plus variants based on Expectation Maximization (EM), are state-of-the-
art for solving large random SAT problems near the critically-constrained phase tran-
sition in problem hardness [2, 4, 11, 8]. (While the focus of this work is SAT, such
techniques have also been applied to CSP in general [10].) This success would appear
to result from the ability to implicitly sample from the space of solutions and thus es-
timate variable bias: the percentages of solutions that have a given variable set true or
false. However, this bias estimation ability has never been measured directly, and its
usefulness to heuristic search has also escaped systematic study–most of the techniques
have never been implemented within a modern backtracking search system.

Similarly, backbones, or variables that must be set a certain way in any solution
to a given problem, have also drawn a good deal of recent interest [18, 20, 13]. Such
variables typically serve as theoretical constructs for analyzing problem complexity
[21, 22] or for motivating search heuristics [6, 25, 17], but they have not been directly
targeted for discovery within arbitrary problems. (Even bounded approximation of a
backbone set is intractable unless P = NP [13]). However, since backbones must have
100% positive or negative bias, bias determination generalizes the task of backbone
identification. Thus any bias estimator can be used to identify backbones, though in
the absence of bounds on approximation error, a method’s accuracy could turn out to
be arbitrarily bad.

Isolating the performance of probabilistic techniques as bias estimators will im-
prove our understanding of both the estimators and of bias itself, ultimately directing
the implementation of a complete problem-solving system. Thus the first stage of our
study compares the basic accuracy of six message-passing techniques and two control
methods when applied to hard, random, satisfiable SAT problems as stand-alone bias
estimators. An ancilliary contribution is that four of the probabilistic techniques are
novel variations based on the EM method of maximum-likelihood parameter estima-
tion.

For the second stage of study, we assess how such comparisons translate when
we move the algorithms into the realm of full-featured search, by embedding them as
variable/value ordering heuristics within the MiniSat solver [7]. While it is intuitive
that bias should relate to how we set variables during search, it is not obvious that
bias should be a key to efficiency in the presence of modern features like restarts,
clause learning, and the like. Similarly, the best way to employ bias estimates is also
non-obvious beyond some basic intuitions. Thus our focus extends beyond the basic
accuracy of the different techniques, to the question of how they are best employed
according to their unique characteristics. The resulting contribution is a deeper insight
into the effective design and use of propagation algorithms, as realized by a practical
solver that can drastically improve MiniSat’s speed in solving hard random problems.

The following section provides more background on propagation algorithms and
how they can be applied to SAT. Next, Section 3 defines useful terminology and nota-
tion for understanding how they work. Sections 4 and 5 present the actual bias estima-
tion methods and explain how they will be compared. With all of this background in
hand, Section 6 finally presents our experimental comparison, and interprets the results.
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Lastly, Section 7 extracts overall conclusions and discusses future work.

2 Background
Message-passing algorithms (a.k.a. “propagation techniques”) like BP, SP, and EM-
based variants have been applied to a growing variety of discrete reasoning problems [2,
12, 10, 14], augmenting their traditional roles in probabilistic inference [19, 15, 5]. The
methods all operate by propagating messages between a problem’s variables, causing
them to iteratively adjust their own values from some initial randomized settings.

The techniques produce “surveys”, representing, informally, the probability that
each variable should be set a certain way if we were to assemble a satisfying assign-
ment. That is, the survey reports a “bias” for each variable; in the case of SAT this
tells us the probability that we would find a variable set to true or false if we were to
somehow draw a sample from the set of solutions.

Importantly, then, a propagation algorithm does not output an outright solution to
a SAT problem. Rather, applying a probabilistic method to SAT-solving requires two
interrelated design decisions: a means of calculating surveys, and a means of using the
surveys to fix the next variable within an arbitrary search framework. A reasonable
strategy for the second step is to pick the variable with the most extreme bias, and set
it in the direction of that bias, i.e. “succeed-first” search. But by better understanding
the characteristics of various survey techniques, we can explore more sophisticated
approaches to variable and value ordering. Thus we will begin by studying survey
techniques in isolation, and then examine their behavior within search by integrating
with MiniSat.

Note also that integrating with a solver means computing a new survey each time
we fix a single variable, a standard practice for addressing correlations between vari-
ables [11]. A single survey might report that v1 is usually true within the space of
solutions, and that v2 is usually false, even though the two events happen simultane-
ously with relative infrequency. Instead of attempting to fix multiple variables at once,
then, we will fix a single first and simplify the resulting problem. In subsequent surveys
the other variables’ biases would thus be conditioned on this first assignment.

With this background in hand, it is now possible to precisely define our study of
how well probabilistic methods estimate variable bias, and ultimately how they behave
within a complete backtracking search system.

3 Definitions
Definition 1 (SAT instance) A (CNF) SAT instance is a set C of m clauses, con-
straining a set V of n Boolean variables. Each clause c ∈ C is a disjunction of literals
built from the variables in V . An assignment X ∈ {0, 1}n to the variables satisfies
the instance if it makes at least one literal true in each clause. The sets V +

c and V −
c

comprise the variables appearing positively and negatively in a clause c, respectively.
The sets C+

v and C−
v comprise the clauses that contain positive and negative literals
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for variable v, respectively. Cv = C+
v ∪ C−

v comprises all clauses that contain v as a
whole.

Definition 2 (Bias, Profile) For a satisfiable SAT instanceF , the bias distribution φv

of a variable v represents the fraction of solutions to F wherein v appears positively
or negatively. Thus it consists of a positive bias φ+

v and a negative bias φ−v , where
φ+

v , φ−v ∈ [0, 1] and φ+
v +φ−v = 1. A vector of bias distributions, one for each variable

in a theory, will be called a bias profile, denoted Φ(F).

Equivalently, it can be useful to think of a variable’s bias as the probability of
finding the variable set positively or negatively when choosing a solution uniformly at
random from the space of satisfying assignments.

Definition 3 (Backbone Variable) A backbone variable for a given SAT instance is
one whose bias is concentrated entirely on one polarity: φ+

v = 1 or φ−v = 1

Definition 4 (Survey) Given a SAT instance F , a bias estimation algorithm outputs a
survey Θ(F) trying to match the true bias profile Φ(F). Accordingly, Θ will contain
an estimated bias distribution θv , representing θ+

v and θ−v , for each variable v in F .

Less formally, it is useful to describe a variable as “positively biased” with respect
to a true or estimated bias distribution. This means that under the given distribution, its
positive bias exceeds its negative bias. Similarly the “strength” of a bias distribution
indicates how much it favors one value over the other, as defined by the maximum
difference between its positive or negative bias and 0.5.

4 Probabilistic Methods for Estimating Bias
In this section we present six distinct propagation methods for measuring variable bias:
Belief Propagation (BP), EM Belief Propagation-Local/Global (EMBP-L and EMBP-
G), Survey Propagation (SP), and EM Survey Propagation-Local/Global (EMSP-L and
EMSP-G). These methods represent the space of algorithms defined by choosing be-
tween BP and SP and then employing one of them either in original form, or by apply-
ing a local- or global-consistency transformation based on the Expectation Maximiza-
tion framework. The EM-based rules represent a secondary contribution of this work;
implementations and complete derivations are available online [9].

On receiving a SAT instance F , any of the propagation methods begins by for-
mulating an initial survey at random. For instance, the positive bias can be randomly
generated, and the negative bias can be set to its complement: ∀v, θ+

v ∼ U [0, 1]; θ−v ←
1 − θ+

v . Each algorithm proceeds to successively refine its estimates, over multiple
iterations. An iteration consists of a single pass through all variables, where the bias
for each variable is updated with respect to the other variables’ biases, according to the
characteristic rule for a method. If no variable’s bias has changed between two succes-
sive iterations, the process ends with convergence; otherwise an algorithm terminates
by timeout or some other parameter. EM-type methods are “convergent”, or guaranteed
to converge naturally, while regular BP and SP are not [11].
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σ(v, c) ,
∏

i∈V +
c \{v}

θ−i
∏

j∈V −
c \{v}

θ+
j

(a) σ(v, c): v is the sole support of c.

θ+
v
′ ← ω+

v

ω+
v + ω−v

θ−v
′ ← ω−v

ω+
v + ω−v

(b) Bias normalization for BP methods.

θ+
v
′ ← ω+

v

ω+
v + ω−v + ω∗v

θ−v
′ ← ω−v

ω+
v + ω−v + ω∗v

θ∗v
′ ← ω∗v

ω+
v + ω−v + ω∗v

(c) Bias normalization for SP methods.

Figure 1: Formula for “sole-support”; normalizing rules for BP and SP families of bias
estimators.

The six propagation methods are discussed elsewhere in greater theoretical detail
than space permits here [11, 2]. But for a practical understanding, they can be viewed as
update rules that assign weights (ω+

v and ω−
v ) toward a variable’s positive and negative

biases–plus a third weight (ω∗
v) for the “joker bias” (explained below) in the case of

SP-based methods. The rules will make extensive use of the formula σ(v, c) in Figure
1(a). In doing so they express the probability that variable v is the “sole-support” of
clause c in an implicitly sampled configuration of all the variables: every other variable
that appears in the clause is set unsatisfyingly. From a generative statistical perspective,
the probability of this event is the product of the negative biases of all other variables
that appear in the clause as positive literals, and the positive biases of all variables that
are supposed to be negative.

The six sets of update rules weight each variable’s biases according to the current
biases of its surrounding variables. The weights are normalized into proper probabili-
ties as depicted in Figures 1(b) and 1(c), depending on whether we are dealing with the
two states characteristic of BP-based methods, or with the three states of an SP-based
method. This creates a new bias distribution for each variable, completing a single
iteration of the algorithm. The update rules are presented below in Figures 2 and 3.

BP can be viewed at first as generating the probability that v should be positive
according to the odds that one of its positive clauses is completely dependent on v for
support. That is, v appears as a positive literal in some c ∈ C+

v for which every other
positive literal i turns out negative (with probability θ−i ), and for which every negative
literal ¬j turns out positive (with probability θ+

j ). This combination of unsatisfying
events would be represented by the expression σ(v, c). However, a defining charac-
teristic of BP is its assumption that every v is the sole support of at least one clause.
(Further, v cannot simultaneously support both a positive and a negative clause since
we are sampling from the space of satisfying assignments.) Thus, we should view Fig-
ure 2(a) as weighing the probability that no negative clause needs v (implying that v
is positive by assumption), versus the probability that no positive clause needs v for
support.

EMBP-L is the first of a set of update rules derived using the EM method for
maximum-likelihood parameter estimation. This statistical technique features guar-
anteed convergence, but requires a bit of invention to be used as a bias estimator for
constraint satisfaction problems [5, 10]. Resulting rules like EMBP-L are variations on
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ω+
v =

∏
c∈C−v

(1− σ(v, c))

ω−
v =

∏
c∈C+

v

(1− σ(v, c))

(a) Regular BP update rule.

ω+
v = |Cv| −

∑
c∈C−v

σ(v, c)

ω−
v = |Cv| −

∑
c∈C+

v

σ(v, c)

(b) EMBP-L update rule.

ω+
v = |C−

v |

[ ∏
c∈C−v

(1− σ(v, c))

]
+ |C+

v |

ω−
v = |C+

v |

[ ∏
c∈C+

v

(1− σ(v, c))

]
+ |C−

v |

(c) EMBP-G update rule.

Figure 2: Update rules for the Belief Propagation (BP) family of bias estimators.

BP that calculate a milder, arithmetic average by using summation, in contrast to the
harsher geometric average realized by products. This is one reflection of an EM-based
method’s convergence versus the non-convergence of regular BP and SP. All propa-
gation methods can be viewed as energy minimization techniques whose successive
updates form paths to local optima in the landscape of survey likelihood [11]. By tak-
ing smaller, arithmetic steps, EMBP-L (and EMBP-G) is guaranteed to proceed from
its initial estimate to the nearest optimum; BP and SP take larger, geometric steps, and
can therefore overshoot optima. This explains why BP and SP can explore a larger
area of the space of surveys, even when initialized from the same point as EMBP-L,
but it also leads to their non-convergence. Empirically, EMBP-L and EMBP-G usually
converge in three or four iterations for the examined SAT instances, whereas BP and
SP typically require at least ten or so, if they converge at all.

Intuitively, the equation in Figure 2(b) (additively) reduces the weight on a vari-
able’s positive bias according to the chances that it is needed by negative clauses, and
vice-versa. Such reductions are taken from a smoothing constant representing the num-
ber of clauses a variable appears in overall; highly connected variables have less ex-
treme biases than those with fewer constraints.

EMBP-G is also based on smoother, arithmetic averages, but employs a broader
view than EMBP-L. While the latter is based on “local” inference, namely generalized
arc-consistency, the derivation of EMBP-G uses global consistency across all variables.
In the final result, this is partly reflected by the way that Figure 3(c) weights a variable’s
positive bias by going through each negative clause (in multiplying by |C−

v |) and uni-
formly adding the chance that all negative clauses are satisfied without v. In contrast,
when EMBP-L iterates through the negative clauses, it considers their satisfaction on
an individual basis, without regard to how the clauses’ means of satisfaction might in-
teract with one another. So local consistency is more sensitive to individual clauses in
that it will subtract a different value for each clause from the total weight, instead of
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ω+
v =

∏
c∈C−v

(1− σ(v, c)) · ρ

[
1−

∏
c∈C+

v

(1− σ(v, c))

]

ω−
v =

∏
c∈C+

v

(1− σ(v, c)) · ρ

[
1−

∏
c∈C−v

(1− σ(v, c))

]

ω∗
v =

∏
c∈Cv

(1− σ(v, c))

(a) Regular SP update rule.

ω+
v = |Cv| −

∑
c∈C−v

σ(v, c)

ω−
v = |Cv| −

∑
c∈C+

v

σ(v, c)

ω∗
v = |Cv| −

∑
c∈Cv

σ(v, c)

(b) EMSP-L update rule.

ω+
v = |C−

v |
∏

c∈C−v

(1− σ(v, c)) + |C+
v |

[
1−

∏
c∈C+

v

(1− σ(v, c))

]

ω−
v = |C+

v |
∏

c∈C+
v

(1− σ(v, c)) + |C−
v |

[
1−

∏
c∈C−v

(1− σ(v, c))

]

ω∗
v = |Cv|

∏
c∈Cv

(1− σ(v, c))

(c) EMSP-G update rule.

Figure 3: Update rules for the Survey Propagation (SP) family of bias estimators.

using the same value uniformly. At the same time, the uniform value that global con-
sistency does apply for each constraint reflects the satisfaction of all clauses at once.

SP can be seen as a more sophisticated version of BP, specialized for the SAT
problem. To eliminate the assumption that every variable is the sole support of some
clause, it introduces the possibility that a variable is not constrained at all in a given
satisfying assignment. Thus, it uses the three-weight normalization equations in Figure
1(c) to calculate a three-part bias distribution for each variable: θ+

v , θ−v , and θ∗v , where
‘*’ indicates the unconstrained “joker” state. Thus, in examining the weight on the
positive bias in Figure 3(a), it is no longer sufficient to represent the probability that no
negative clause needs v. Rather, we explicitly factor in the condition that some positive
clause needs v, by complementing the probability that no positive clause needs it. This
acknowledges the possibility that no negative clause needs v, but no positive clause
needs it either. As seen in the equation for ω∗

v , such mass goes toward the joker state.
(The parameter ρ = 0.95 is an optional smoothing constant explained in [16].)

For the purposes of estimating bias and finding backbones, any probability mass
for θ∗v is evenly distributed between θ+

v and θ−v when the final survey is compiled. This
reflects how the event of finding a solution with v labeled as unconstrained indicates
that there exists one otherwise identical solution with v set to true, and another with
it set to false. So while the “joker” state plays a role between iterations in setting
a variable’s bias, the final result omits it for the purposes of bias estimation. (One
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point of future interest is to examine the prevalence of lower “joker” bias in backdoor
variables [23].)

EMSP-L and EMSP-G are analogous to their BP counterparts, extended to weight
the third ’*’ state where a variable may be unconstrained. So similarly, they can be
understood as convergent versions of SP that take a locally or globally consistent view
of finding a solution, respectively.

4.1 Experimental Control Methods for Estimating Bias
For experimental comparison, we additionally created two simple control methods.

LC (“Literal Count”) simplifies a heuristic that was not explicitly designed to rigor-
ously infer bias, but still comprises the core of a highly successful system for refuting
unsatisfiable SAT instances [6]. The heuristic measures the effect of setting a vari-
able v to be positive or negative by directly counting the degrees of freedom for the
remaining literals in v’s clauses. As such, information propagates between intercon-
nected variables much as update messages travel through the probabilistic methods. If
repeated recursively to no end, the heuristic simply solves the problem directly; instead
LC performs a single iteration of analysis for use as an experimental control.

CC (“Clause Count”) is an even simpler baseline method that just counts the num-
ber of clauses containing a given variable as a positive literal, and the number wherein
it appears negatively. The ratio of these two counts serves to estimate the variable’s
bias distribution: θ+

v ← |C+
v |/|Cv| and θ−v ← |C−

v |/|Cv|.

5 Experimental Methods
This section details the test regimes that were used to evaluate the eight bias estimators
on their own and as heuristics within backtracking search. In general, the selected
problems are small enough to allow the exact calculation of true bias profiles, or to
allow repeated experiments in a reasonable amount of time. Further, they are randomly
generated so as to isolate the approaches’ average-case behavior. Finally, the problems
are drawn from near the phase transition, with α , m

n set to 4.11, in order to exclude
trivially easy instances from study.

While the results presented in the next section are limited to this fixed window of
problem types, we have observed consistent behavior when scaling the problems and
backbones to larger sizes, and when increasing α beyond 4.11 within the space of sat-
isfiable problems. For structured problems, though, we have only anecdotal reports of
success, and leave the systematic study of such less-regular domains to future research.

5.1 First Phase: Stand-Alone Bias Estimation Ability
To study each approach’s ability to estimate bias in isolation, we used an existing li-
brary of 100-variable satisfiable instances with controlled backbone size [21]. By al-
ternately fixing each variable to one value then the other, and passing the resulting
problems to a model-counter, we were able to exhaustively calculate the true bias dis-
tribution φv for every variable in each problem. To guard against variance, each of the
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bias estimators was run on 100 instances each of problems with backbones of size 10,
30, 50, 70, and 90. Section 6 will compare the resulting bias estimates with the known
true biases.

5.2 Second Phase: Using Bias Estimates within Backtracking Search
For the final phase, we embedded each algorithm as a variable and value ordering
heuristic within MiniSat. MiniSat is a modern solver that integrates efficient con-
straint propagation, clause learning, and restarts with built-in variable ordering based
on VSIDS [7]. Here we used larger problems (n = 250) because the original ones
were too small to challenge any of the resulting approaches. The results presented
in the next section generalize even more dramatically to still larger problems, but the
chosen n allowed for a larger number of repeated trials within a reasonable amount of
time.

Directed by the results of the first phase, we tested several branching strategies for
using surveys as variable- and value-ordering heuristics. In addition to the “conflict-
avoiding” strategy of setting the most strongly biased variable to its stronger value,
we also tried to fail first or streamline a problem via the “conflict-seeking” strategy of
setting the strongest variable to its weaker value [1]. Additional approaches involved
different ways of blending the two. While there are many more sophisticated strategies
to try in the future, so far all heuristics performed best when using the original (and
presumably most intuitive) conflict-avoiding approach.

A final complication when integrating with a conventional solver is that any of
the eight methods can be governed by a “threshold” parameter expressed in terms of
the most strongly biased variable in a survey. For instance, if this parameter is set
to 0.6, then we only persist in using surveys so long as their most strongly biased
variables have a gap of size 0.6 between their positive and negative bias. As soon as
we receive a survey where the strongest bias for a variable does not exceed this gap,
then we deactivate the bias estimation process and revert to using MiniSat’s default
variable and value ordering heuristic until the solver triggers a restart. (Note that setting
this parameter to 0.0 is the same as directing the solver to never deactivate the bias
estimator.) The underlying motivation is that problems should contain a few important
variables that are more constrained than the rest, and that the rest of the variables should
be easy to set once these few have been assigned correctly. For various theoretical
reasons this thought to be of special relevance within the phase-transition region in
problem hardness [3].

We conclude our experiments by systematically determining the best value of the
threshold parameter for running each technique on the entire test set as a whole. By
determining the overall utility of each technique within backtracking search, we can
confirm a relationship between the quality of bias estimates and the efficiency of search.

6 Experimental Results
The experiments produced many interesting results, the bulk of which are posted online
[9]. Here we summarize the results most relevant to the overall goals of measuring bias
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Figure 4: RMS error of all bias estimates over 500 instances of increasing backbone
size.

estimation ability in isolation, and assessing its usefulness in backtracking search.

6.1 First Phase: Stand-Alone Accuracy of Bias Estimation
Figure 4 shows root-mean-squared error for bias estimates on all variables in all runs
described in Section 5:

qP
i(θ

+
i − φ+

i )2/n. Aside from BP, which is discussed in
Section 6.2, the remaining methods are grouped into two bands of linearly increasing
error.

The best band in terms of average accuracy contains the two global methods,
EMBP-G and EMSP-G, along with the two control methods, LC and CC, and BP.
SP and the local EM methods comprise the less accurate band. Prior study indicates
that problems with larger backbones are more constrained and usually harder to solve.
Here it appears that their biases are harder to estimate as well. However, the flat lines
in Figure 5 demonstrate that the methods are bound to make predictions of constant av-
erage strength regardless of problem constrainedness. That is, the problems in the two
figures contain increasingly strong biases; the increase in error in the first figure can
be at least partially explained by the methods’ inability to make stronger predictions in
turn.

Recall that the strength of a variable’s bias is the distance between its positive (or
negative) bias and 0.5; backbones have strength 0.5, and evenly split variables have
strength 0. So the plot averages the formula

P
v(max(θ+

v , θ−v )−0.5)/n across runs, and
again we see the same groupings of algorithms in terms of strength. BP is the most
wildly inaccurate, and also makes the strongest predictions by far. Again the global
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Figure 5: Average strength of estimated bias, over same 500 instances.

and control methods form one group, of moderate estimators, and SP joins the local
methods in making the most conservative estimates.

Figure 6 considers the special case of backbone identification. Because the estima-
tors are not prone to offer many predictions of 100% bias strength, we instead measure
whether they correctly predict the polarity of known backbone variables. Looking
ahead to the context of search, it is not critical to set backbones early, but it is cer-
tainly critical to set them correctly (during conflict-avoidance search). Here the same
groupings of bias estimators are compressed into a more mixed band of linearly de-
creasing success rates; when there are more backbones (up to 90 out of 100 variables)
it becomes harder to get the same percentage of them correct.

The uncharacteristically poor performance of CC provides an extra insight into the
difficulty of predicting backbones. Because it always biases a variable according to the
proportion of its positive and negative clause counts, all of CC’s incorrect predictions
and at least some of its correct ones involve variables that appear in the theory more
often than not with the opposite sign from the one they are constrained to hold! So
for instance, in a problem that contains 50% backbone variables, at least 30% of those
appear more often as literals with the wrong polarity than with the right one.

A final quantity of interest when looking ahead to search is the strength rank of
the first wrong bias. If we are fixing the most strongly biased variable to its stronger
value, then a survey’s accuracy on the other, weaker variables is irrelevant. Further,
when we fix a variable to some polarity, we can never eliminate all solutions unless
its true bias is 100% in the direction of the opposite polarity. In this light, Figure 7
averages the results of ranking the variables in a survey by strength, and reading down
from the top to find the most highly ranked variable that was actually set in the wrong
direction. Here BP exhibits excellent average performance; for backbones of size 10,
for instance, its 30 strongest estimates typically turn out to predict the correct sign,
before the 31st is biased the wrong way. As we will see, outside of BP and SP, the
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Figure 8: Adjusting the threshold parameter: average runtime for various settings.

remaining ordering between methods closely follows their overall effectiveness when
embedded within MiniSat.

6.2 Second Phase: Full-Featured Search Using Bias Estimates
At last, these insights allow us to embed the bias estimators within a real solver. As
mentioned in Section 5, it turned out to be better to pick the most strongly-biased
variables first, and to assign them to their stronger values. Figure 8 summarizes the
process of tuning the threshold parameter for each survey method. (Recall that MiniSat
only consults the various bias estimators so long as they return surveys whose strongest
variables exceed this value; otherwise the estimators are deactivated and the regular
solver takes over until the next restart.) The dashed level line represents the fixed
running time of the default MiniSat heuristic without any bias estimation. Each line
in the graph represents changes in average runtime when a given heuristic is run with
different threshold values. Lines that are discontinuous to the left represent problems
that could not solve some problem in less than three minutes if the the threshold was
set too low. (BP timed out on some problem at every threshold setting, and thus does
not appear on the graph.)

EMBP-L, EMSP-L, and SP make mild estimates and thus are not sensitive to the
threshold parameter within the range covered by the graph. As the parameter increases,
the remaining approaches first reach feasibility when they deactivate themselves early
enough to prevent wrong decisions that cause timeouts. Their lines then dip to some
optimal setting before rising somewhat as MiniSat increasingly ignores them when it
shouldn’t. Also observe that most of the methods are still below the default line when
the threshold is set to 1.0–if we only follow the bias estimators when they claim to have
found a backbone variable, then search performance still improves slightly.

Finally, Figure 9 compiles the lowest points from Figure 8 to compare the aver-
age runtimes of the various heuristics when using their best settings. Additionally, the
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Figure 9: Total/Survey runtimes averaged over 100 random problems, n = 250 and
α = 4.11.

bars are broken down to show the proportion of runtime that was devoted to computing
surveys. The bar labels also indicate the average number of surveys that each method
wound up producing at its optimal threshold setting. The most important general obser-
vation about the relative performance of these methods is that it roughly corresponds to
their accuracy as bias estimators. This supports our hypothesis of a correlation between
bias and efficient search: better bias estimators tended to produce better SAT-Solvers
when employed as variable and value ordering heuristics. Besides average accuracy,
the results concerning rank seemed to suggest the next-strongest criterion for a good
heuristic, as CC’s poor performance might explain why it is barely better than the de-
fault when it actually had pretty good average accuracy. However, good rankings are
not enough, as BP timed out so frequently as to be omitted from the figures.

The erratic behavior of BP, and its subsequent failure as a search heuristic suggest
future investigation into variance and entropy across surveys: a quick check of our
data showed that it suffered much greater variance than the other approaches in almost
every assessment of accuracy; this is consistent with its non-convergence (observed on
about 5% of runs), and the strong biases engendered by its strong assumption that every
variable is a sole-support to some clause.

At this point, though, the experiments indicate that accurate, temperate, bias esti-
mators that are right about their strongest beliefs make for the best search heuristics.
Overall they confirm the importance of bias in efficient search.

6.3 An Improved SAT-Solving System
The experiments summarized above comprise an iterative process of assessing bias es-
timators’ properties, determining which properties are most useful to search when used
appropriately, and repeating from the beginning. Though this was not a fundamental
goal, the cycle also yields a recommended “best-performing” SAT-solving combina-
tion, at least for random satisfiable 3-SAT with α near 4.11. In particular, by using
EMSP-G as the variable and value ordering heuristic for MiniSat, and employing the
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conflict-avoiding strategy with a deactivation threshold of 0.6, we more than halve
MiniSat’s runtime when n = 250. Cursory trials show that if problem size doubles to
500 and we remain focused on satisfiable instances, then this configuration of EMSP-G
within MiniSat typically finds a solution in about one minute, while regular MiniSat
will either take about thirty minutes, or timeout by failing to find a solution within two
hours.

7 Conclusions and Future Work
The main findings of these experiments indicate that probabilistic message-passing
techniques are comparatively successful at estimating variable bias, and that successful
bias estimation has a positive effect on heuristic search efficiency within a modern
solver. Secondary contributions include a novel family of EM-based bias estimators,
and a series of design insights culminating in a fast solver for hard random problems.

However, many important issues remain. For instance, “real-world” and unsatisfi-
able instances have not yet been considered by this bias estimation framework. This
may require a finer-grained analysis of estimate quality that considers variance across
multiple runs with various random seeds. Further, the best way to use surveys for vari-
able ordering cannot be settled conclusively by the limited span of branching strategies
that have been studied to date. For instance, we waste some of the SP framework’s
power when we split the probability mass for the joker ‘*’ state between positive and
negative bias; future branching strategies might favor variables with low joker proba-
bilities.

There are interesting abstract similarities with other problem-solving methodolo-
gies for constraint satisfaction. Bias measures the probability of a variable setting given
satisfiability, while many local search methods maximize the probability of satisfiabil-
ity given a certain variable setting [25]. Thus, the two targets are directly proportional
via Bayes’ Rule and techniques for one can be applied to the other. Another line of
similar research calculates exact solution counts for individual constraints as a means
of ordering variables and values [24]. Fundamentally, such an approach represents an
exact and localized version of the approximate and interlinked techniques studied here.

Future applications of bias estimation include query answering and model counting.
In the case of model counting, one detail omitted from discussion is that the normal-
ization value ω+

v + ω−
v in Figure 1(b) (in fact, the log-partition function of a specific

Markov Random Field) is proportional to the number of solutions for a given problem.
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[7] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. of 6th Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT ’03),
Portofino, Italy, 2003.

[8] C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. Journal of Automated Reasoning,
24(1-2):67–100, 2000.

[9] E. Hsu. http://www.cs.toronto.edu/∼eihsu/VARSAT/.

[10] E. Hsu, M. Kitching, F. Bacchus, and S. McIlraith. Using EM to find likely
assignments for solving CSP’s. In Proc. of 22nd National Conference on Artificial
Intelligence (AAAI ’07), Vancouver, Canada, 2007.

[11] E. Hsu and S. McIlraith. Characterizing propagation methods for boolean satis-
fiability. In Proc. of 9th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’06), Seattle, WA, 2006.

[12] K. Kask, R. Dechter, and V. Gogate. Counting-based look-ahead schemes for
constraint satisfaction. In Proc. of 10th International Conference on Constraint
Programming (CP ’04), Toronto, Canada, 2004.
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