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Abstract

Buffer overflow vulnerabilities are the result of programing errors that allow out-of-boundswrites to arrays.

Verifying the safety of array writes is thus vital to ensuring program security. However, existing software

model checkers based on abstraction-refinement perform poorly at this task, resulting in analyses which

often depend on array size.

We observe that many of these analyses can be made efficient by providing proof templates, which

specify a modular proof strategy with predicates and assumptions to use and then discharge. Our proof tem-

plates, which are associated with common programming idioms, guide the model checker towards proofs

that are independent of array size.

We have integrated this technique into our software model checker, PTYASM, and have evaluated our

approach on a set of testcases derived from the Verisec suite, demonstrating that our technique enables

verification of the safety of array accesses independently of array size.



1 Introduction

Software model checking based on predicate abstraction and counterexample-guided abstraction refinement

(CEGAR) has been shown to be effective for checking correctness of highly non-trivial programs [2] and

is now part of commercial tools such as SDV [25]. The paradigm is very powerful since the abstraction –

a set of predicates – is improved dynamically, based on identification of infeasible counterexamples. The

process continues until the abstraction is sufficiently precise to prove the property of interest. In practice,

the power of CEGAR software model checkers (henceforth referred to as SMCs) is limited by their ability

to choose predicates well. Perfectly selecting predicates is impossible due to the undecidability of software

verification, so this process always relies on heuristics.

1 vo id example ( ) {
2 char s r c [ SRC SZ ] , d e s t [ DEST SZ ] ;

3 char ch ; i n t i =0 , j =0 ;

4

5 s r c [ SRC SZ−1] = ’\0 ’ ;
6 i f ( s r c [ i ] == ’∗ ’ ) i ++;

7

8 whi l e ( 1 ) {
9 ch = s r c [ i ] ;

10 i f ( ch == ’\0 ’ | | ch == ’ , ’ ) break ;

11 i f ( ch != ’&’ ) {
12 a s s e r t ( j < DEST SZ ) ;

13 d e s t [ j ] = ch ;

14 j ++;

15 }
16 i ++; } }

Figure 1: An array bounds checking example based on code from Sendmail.

We aim to apply SMCs to verifying the absence of buffer overflows, which are a major threat to the

security of C programs. Buffer overflows occur when it is possible to write to out-of-bounds array indices,

thus allowing attackers to overwrite program control data. Current runtime defenses either offer incomplete

protection [31], or add high performance overhead [29], whereas the ability to verify the absence of buffer

overflows statically, if made practical, offers complete protection without any runtime overhead.

Figure 1 shows a string processing routine, simplified from a function in Sendmail which was patched

after a buffer overflow was found in it1. The loop traverses the null-terminated array src[] using i, and
selectively copies characters into the array dest[] using j. Current SMCs do poorly on verifying this example

and others like it, finding abstractions with a number of predicates dependent on the size of the array src[].
The goal of this paper is to improve the common-case performance of SMCs for verifying the absence of

buffer overflows. Specifically, we aim to create abstractions which are independent of the sizes of the arrays

being checked. Our solution is to define proof templates designed to work when a program uses common

idioms to traverse an array, and attempt to guide an SMC towards these proofs automatically. The templates

are modular, separating the proof of what must be true before a loop is entered from the analysis of the

loop’s body. We have implemented an algorithm to heuristically map 〈loop, variable〉 pairs in a program

to proof templates. When the algorithm detects that a template may apply, it guides our SMC towards the

template proof by supplying it with a set of predicates and assumptions. If the SMC is able to prove the

original property using these predicates and assumptions, it then proceeds to discharge the assumptions

(prove them true). If any stage of the analysis fails, the SMC backtracks to an earlier stage, making the

overall process sound, despite the unsoundness of our algorithm for suggesting proof templates.

The contributions of this paper are as follows:

1. We describe proof templates corresponding to common array traversal idioms and an algorithm to

heuristically identify when these templates may apply.

2. We describe an implementation of this technique, PTYASM, which is an enhanced version of the

YASM SMC [16].

3. We evaluate our technique on a set of testcases derived from the Verisec suite [24], comparing our

implementation with other state-of-the-art SMCs.

1From CVE-2003-0681 [12].
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vo id example ( ) {
1 : i n t i = 0 ;

i n t sz = 1024 ;

i n t M = sz−1;

2 : whi l e ( i != M) {
3 : i f ( ! ( i <1024))

4 : ERROR : ;

5 : i ++;

} }

vo id example ( ) {
1 : { i == M} = F ;

{ i<1024} = T ;

2 : whi l e ({ i == M} == F ) {
3 : i f ({ i <1024} == F )

4 : ERROR : ;

5 : { i == M} = ? ;

{ i<1024} = ? ;

} }

vo id example ( ) {
1 : i n t i = 0 , sz = 1024 , M = sz−1;

assume ( i <= M) ;

assume (M <= 1024 ) ;

2 : whi l e ( i != M) {
3 : i f ( ! ( i <1024))

4 : ERROR : ;

5 : i ++;

} }

(a) (b) (c) (d)

Figure 2: (a) An example program; (b) its control-flow graph; (c) its predicate abstraction; (d) assumptions

added to its internal representation.

The rest of this paper is organized as follows. After giving the necessary background on SMCs and

describing the architecture of our solution in Section 2, we introduce our proof templates for array traversals

in Section 3 and report on the evaluation of our technique’s effectiveness in Section 4. We conclude the paper

with a comparison with related work (Section 5), and an outline of future research directions (Section 6).

2 Overview

In this section, we describe the CEGAR algorithm used by existing SMCs (Algorithm 1), and our extension,

CEGAR+PT, which incorporates the use of proof templates (Algorithm 2).

2.1 CEGAR Software Model Checking

Algorithm 1 CEGAR Software Model Checking

1: procedure CEGAR(P , ψ) ⊲ Program, Property

2: E ← ∅ ⊲ Predicates

3: loop

4: M← ABSTRACT (P, ψ,E) ⊲M = model

5: τ ← MODELCHECK (M, ψ)

6: if τ = ǫ then ⊲ No path to ERROR

7: return SAFE

8: else

9: if SPURIOUS(τ, P ) then ⊲ Refine abstraction

10: E ← E ∪ REFINE (τ )

11: else

12: return UNSAFE

CEGAR (Algorithm 1) gives a high-level description of the process used by SMCs. The algorithm checks

a property ψ on a program P , where ψ is the reachability of a given line of P , labelled “ERROR”. CEGAR

can be used to check assertions by transforming a statement assert(p) into a conditional, such as the one on

lines 3–4 of Figure 2(a), and checking whether the assertion’s failure branch is unreachable. In that case,

the assertion is considered to be safe. To verify the absence of buffer overflows using an SMC, one needs to

instrument a program with assertions at each array access (which can be done automatically by an external

tool [29]), and individually verify the safety of each assertion.

The ABSTRACT phase creates a finite modelM which conservatively approximates P , by modelling

the data state at each location in P ’s control flow graph using a set E of atomic predicates [3], such as

“x ≤ y” and “x + 1 ≤ A[z]”. Since the initial set of predicates is empty (line 2 of CEGAR), the initial

abstraction is P ’s control flow graph. The MODELCHECK phase uses efficient search algorithms [9] to

find a path to ERROR inM. This phase returns a counterexample τ , or the special value ǫ if ERROR is

unreachable inM. If there is no counterexample, ψ holds on P , and the program is declared to be SAFE.

Otherwise, if τ represents a possible execution of P , the program is declared to be UNSAFE. Finally, if τ is

spurious, the set of predicates is augmented by a refinement phase which attempts to rule out τ by building

2



a more precise model of P . The process continues iteratively until the either of the definite answers (SAFE

or UNSAFE) are obtained, or the analysis procedure runs out of resources.

We illustrate CEGAR on the example program in Figure 2(a), which implements a simple array traversal.

Model-checking the control-flow graph of this program (shown in Figure 2(b)) yields the counterexample

path τ1 = 〈1, 2, 3, 4〉, on which ERROR is reached on the first loop iteration. Since τ1 is spurious, the

REFINE phase searches for some set of predicates which, if added to E, would eliminate τ1 from the

abstract model. Predicate generation schemes are heuristic, and differ between tools [4, 7, 18], but typically

return only the predicates needed to eliminate the one spurious path found. Thus, a typical implementation

may return the predicates i = M and i < 1024. Abstracting the program using these predicates yields the

abstraction in Figure 2(c). Note that these predicates are not expressive enough to represent the effect of

the statement i++ on line 5 of Figure 2(a); thus, their values are unknown at the end of the first iteration

of the loop beginning on line 2 (denoted by “?” on line 5 of Figure 2(c)). The next run of MODELCHECK

thus finds the path τ2 = 〈1, 2, 3, 5, 2, 3, 4〉: with τ1 eliminated, the SMC now suggests that ERROR may

be reached in two iterations of the loop, rather than one. REFINE eliminates τ2 by returning the predicates

i + 1 = M and i + 1 < 1024. CEGAR continues eliminating paths containing increasing numbers of

iterations through the loop, finally proving ERROR unreachable after 1024 iterations. This phenomenon,

termed loop unrolling, results in an analysis which depends on the size of the array a loop traverses. For

large arrays, this leads to state explosion, making the analysis infeasible.

2.2 CEGAR with Proof Templates

Iteratively removing paths of increasing length from loops like the one in Figure 2(a) is an inefficient and

unnatural way to prove safety. The example can be proved more naturally by showing inductively that

i ≤M always holds at line 2:

1. Initially, i ≤M holds trivially at line 2.

2. If i ≤M at line 2 and the loop is entered, then i ≤M ∧ i 6= M , so i < M at line 3, and i ≤M after

the i++ on line 5.

3. Thus, i ≤M at line 2 and i < M at line 3.

4. Combining the fact that i < M at line 3 with the fact that M ≤ 1024, we have that ERROR is

unreachable.

CEGAR+PT (Algorithm 2) attempts to guide an SMC towards proofs like the one above by introducing

proof templates, which provide outlines of correctness proofs. The call to BUILDDB on line 2 builds a

database which maps 〈loop, variable〉 pairs in the program to proof templates, by examining the structure

of the loop. We describe BUILDDB and our proof templates in Section 3, concentrating for now on how the

templates are used. When a loop is being unrolled, USETEMPLATE (line 20) queries the database built by

BUILDDB to see if a template may be useful. However, BUILDDB may suggest inappropriate templates.

The calls to BACKTRACK on lines 17 and 27 ensure that proof templates which do not prove helpful are

eventually abandoned.

We illustrate CEGAR+PT on the example program in Figure 2(a), but stress that CEGAR+PT also works

on more complicated programs like the one in Figure 1. BUILDDB records that i appears to be bounded

by M in the loop on lines 2–5 of the program in Figure 2(a), and guesses that this bound can be used to

prove the safety of the assertion. CEGAR+PT then runs as CEGAR, until it realizes that the loop is being

unrolled2. Then, it invokes USETEMPLATE, which identifies and applies a corresponding proof template.

USETEMPLATE adds predicates to E based on the structure of the loop; however, this alone is insufficient,

as some of these predicates must be true before the loop is entered. Often proving that these predicates are

in fact true on loop entry requires the discovery of additional “support” predicates. In our experiments with

an earlier system, in which USETEMPLATE only added predicates toE, we found that the SMC would often

focus its refinement efforts on the loop body, rather than discovering the support predicates, rendering our

proof templates ineffective.

The proof templates must ensure that these support predicates are discovered. Thus, USETEMPLATE

also adds explicit assumptions to P , in order to communicate the structure of the proof to the SMC, making

2Detecting loop unrolling can be done algorithmically, e.g., [23]; our current implementation uses a heuristic.
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Algorithm 2 CEGAR+PT — CEGAR with proof templates.

1: procedure CEGAR+PT(P , ψ) ⊲ Program, Property

2: DB ← BUILDDB (P ) ⊲ Template occurances

3: E ← ∅ ⊲ Predicates

4: ψ0 ← ψ ⊲ Initial property

5: S ← empty stack ⊲ Backtracking stack

6: loop

7: M← ABSTRACT (P , ψ, E) ⊲M = model

8: τ ← MODELCHECK (M, ψ)

9: if τ = ǫ then ⊲ No path to ERROR

10: if NOASSUMPTIONSLEFT(S) then
11: return SAFE

12: else ⊲ Discharge assumptions

13: (P,E, ψ)← DISCHARGENEXT(S)

14: else

15: if SPURIOUS(τ, P ) then ⊲ Refine abstraction

16: if TIMEOUT (S) then ⊲ Template not helping

17: (P,E, ψ)←BACKTRACK (S)

18: else

19: if ∃ℓ · UNROLLING(ℓ) ∧ HAVETEMPLATE(ℓ,DB,ψ, S) then
20: (P,E, S)←USETEMPLATE(L,DB,ψ, S)

21: else

22: E ← E ∪ REFINE (τ )

23: else

24: if ψ = ψ0 then

25: return UNSAFE

26: else ⊲ An assumption did not hold

27: (P,E, ψ)←BACKTRACK (S)

the proof template much more effective. The assumptions also modularize the analysis, which can make it

much more efficient. An assume(p) statement at a line l of P tells the SMC to assume that p holds at l.

Since BUILDDB may suggest proof templates whose assumptions do not hold, CEGAR+PT must dis-

charge all assumptions used (line 13), and backtrack if any assumption does not hold (line 27). This is

facilitated by a backtracking stack S. Whenever USETEMPLATE supplies a template on line 20, it adds

a stack frame to S. The stack frame contains (1) the current iteration of the loop beginning on line 6 of

CEGAR+PT (to enable the TIMEOUT check on line 16), (2) the current values of P , E, and ψ (so that the

calls to BACKTRACK on lines 17 and 27 can restore the state before the template was applied), and (3) the

assumptions associated with the template (so that the SMC can discharge them, as indicated on line 13 of

the algorithm). S also keeps track of the number of times a template has been applied to 〈ℓ, i〉, to make sure

that each candidate template can be applied in turn. We implement TIMEOUT by keeping a count of the

current iteration of the loop beginning on line 6 of CEGAR+PT, and backtracking if the difference between

the current count and the saved count on the template’s stack frame exceeds a preset threshold, currently set

at 20 iterations.

In the example program in Figure 2(a), USETEMPLATE adds to E the predicates i ≤ M , M ≤ i, and

M ≤ 1024 and the assumptions shown in Figure 2(d). These predicates and assumptions are part of the

definition of the template, and are instantiated using the parameters i,M , and 1024, which come from the

program. With these, the SMC can prove ERROR unreachable using the inductive argument described at the

beginning of this section. In particular, i < M can be represented as ¬(M ≤ i), so the SMC can precisely

model the effect of incrementing i within the loop, and can use the assumption that i ≤M initially to infer

that i is bounded on each iteration of the loop. CEGAR+PT can then prove the assertion safe by using the

assumption thatM ≤ 1024, and then discharging all assumptions made.

Line 19 of the algorithm checks whether a template can be used for the pair 〈ℓ, i〉. In our implementation,

templates can be used iff (1) ψ = ψ0, (2) there is a proof template for 〈ℓ, i〉, and (3) no template for 〈ℓ, i〉
is already in use. The first condition is needed since, in this paper, we focus only on using templates for
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Original Problem Solve Under Assumptions Discharge Assumptions

P : { . . .}

whi l e ( i <= M) {
Q: { . . .}
a s s e r t ( i <= N) ;

R : { . . .}
}

P : { . . .}
assume (M+c <= N) ;

whi l e ( i <= M) {
Q: { . . .}
a s s e r t ( (M+c <= N) && ( i <= M+c ) ) ;

R : { . . .}
}

P : { . . .}
a s s e r t (M+c <= N) ;

whi l e ( i <= M) {
Q: { . . .}

R: { . . .}
}

Predicates: i ≤M,M ≤ i, i ≤M + c,M + c ≤ N .

Figure 3: Structure of single-variable explicit template.

a single loop, leaving the extension to multiple dependent loops as future work. The results reported in

Section 4 lead us to believe that proof templates are a promising foundation for enhancing SMCs.

3 Proof Templates for Array Traversals

In this section, we describe four proof templates for array traversals. Each template decomposes a proof of

safety into two phases: proving the original property under additional assumptions, and discharging these

assumptions. We also describe how we guide an SMC towards these proofs.

Each template is parameterized by a set of expressions, which come from the text of the program. For

simplicity, we present each template using loops with a single loop condition at the head of the loop, in

which obtaining most template parameters is trivial. We describe how our implementation handles more

general loops, and obtains template parameters for them, in Section 3.5. Furthermore, while we describe

our templates using explicit array indexing rather than pointers, our templates can be extended to handle

pointers represented as 〈base,offset〉 pairs.
The heuristics for choosing among our four templates are based on combinations of two conditions:

whether the iterator (defined below) in the loop condition is the same as the iterator in the assertion being

checked, and whether the loop condition is an arithmetic comparison on an iterator or a test on an array cell.

We have found that this information is often sufficient to choose the correct template.

3.1 Preliminaries

We define our templates using the notion of a loop iterator. Informally, an iterator is a variable whose value

in one loop iteration influences its value in the next. We make this definition precise using data dependence

and dominators [27].

A statement s is a definition of a variable v (or s defines v) if s contains an assignment to v. If s reads

the value of v, we say that s uses v. For any loop ℓ, constants and variables which are used but not defined

in ℓ are called loop constants.

Let s1 and s2 be statements. We say that s1 is dependent on s2, written s1 δ s2, if there exists a variable

v such that s1 uses v, s2 defines it, and the definition reaches s1. We write s1 δ
⋆ s2 if there exists a set of

statements s′
1
, . . . s′

n
, such that s1 δ s

′

1
δ · · · δs′

n
δ s2.

Given a loop ℓ, a variable i is an iterator of ℓ iff there exists a statement s such that

• s is a definition of i within ℓ;

• s δ⋆ s; and

• s is not dominated by any other definition s′ in ℓ such that s′ assigns a loop constant to i.

While iterators are similar to loop counters or induction variables [27], they are more general, since they

need not change by a fixed amount on every loop iteration.

Finally, we describe our templates using Hoare triples [19]. In this notation, {p} S {q} means that p

and q are logical expressions, S is a program fragment, and that if p holds initially, then q holds after S

executes.
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3.2 Single-Variable Explicit Template

We use the single-variable explicit template when a loop iterator i appears in a bounds check within a loop,

and the loop condition is a comparison between i and some loop constant M , e.g., as in the program in

Figure 2(a). We call the template “explicit” because an iterator is being explicitly compared to a bound in

the loop conditional (as opposed to a check involving an array cell).

Figure 3 shows how the template is communicated to an SMC. We describe the template assuming that

the loop condition is i ≤ M , but the details are similar if the loop condition is i < M or i 6= M . The

symbols P , Q, and R in Figure 3 denote regions of the program. The template’s parameters are i,M,N ,

and c; roughly, c represents (a guess at) the maximum amount by which i can be increased in Q. The loop

condition i ≤M is true at the start of each iteration, and our goal is to prove the safety of the assert(i ≤ N )

within the loop. The template breaks the proof of safety down as follows:

1. {true} P {M + c ≤ N},

2. {M + c ≤ N} Q;R {M + c ≤ N}, and

3. {i ≤M ∧M + c ≤ N} Q {i ≤M + c ∧M + c ≤ N}.

The first two points ensure thatM + c ≤ N is true at the beginning of each iteration of the loop. The third

point ensures that ifM + c ≤ N and the loop condition hold at the beginning of the loop, then the assertion

is safe. Note the template’s modularity: the first point requires no analysis of the loop, while the latter two

points focus on the analysis of the loop’s body.

The second column of Figure 3 shows the effect of the changes that USETEMPLATE makes to the

program’s internal representation in order to guide the SMC towards this proof. It adds an assume(M+c ≤
N ) before the loop, and supplies the SMC with the predicates i ≤ M , M + c ≤ N , and i ≤ M + c,

since these predicates appear in the proof template. It also supplies the SMC with the predicate M ≤ i,

which we have often found to be useful: together with i ≤ M , it allows us to describe any comparison

(<, 6=, . . .) between i and M . If the SMC is able to prove the safety of the original assertion, lines 13–

14 of CEGAR+PT tell the SMC to discharge the assumption {true} P {M + c ≤ N}, effectively by

changing the assume(M + c ≤ N ) statement into an assertion, as shown in the last column of Figure 3.

Finally, in cases where the loop condition is i 6= M , such as in our example in Figure 2(a), USETEMPLATE

also inserts an assume(i ≤ M ) statement before the loop, and the SMC must additionally prove that

{i < M}Q;R {i ≤M} holds, so that i is bounded on each iteration.

3.3 Two-Variable Explicit Template

Loops over arrays often involve two iterators — for example, iterators i and j may index into two different

buffers, as in the example in Figure 1; this is especially common when copying data using pointers. We

use the two-variable explicit template when the loop condition is a test on one iterator (the leader), but the

bounds check is on another. The main idea is to try to prove that the change in the second iterator on any

iteration of the loop is bounded by the change in the leader.

Figure 4 shows the structure of the template. The parameters are i, j,M,N , and c. Assume that the loop

condition is i ≤M , and that the bounds check is assert(j ≤ N ); the details are similar if the loop condition

is i 6= M or i < M . We introduce the variables is and js to denote the values of i and j before the loop is

entered; these variables allow us to represent the notion of change in i and j. Let P ′ be the composition of

statements (P ; is = i; js = j), and let Φ = (M + c− is ≤ N − js) and Ψ = (j − js ≤ i− is). Then, the
template breaks the proof of safety down as follows:

1. {Ψ} Q;R {Ψ},

2. {true} P ′ {Φ},

3. {Φ} Q;R {Φ}, and

4. {i ≤M ∧ Φ ∧Ψ} Q {i ≤M + c ∧Φ ∧Ψ}.

The first step guarantees that j− js ≤ i− is on every loop iteration; this holds trivially on the first iteration.
The next two steps do the same forM+c−is ≤ N−js. The intuitive meaning of this expression is that the

maximum amount which may be copied into the buffer accessed by j cannot exceed the room remaining in

6



Original Problem Solve Under Assumptions Discharge Assumptions

P : { . . .}

whi l e ( i <= M) {
Q: { . . .}
a s s e r t ( j <= N) ;

R: { . . .}
}

P : { . . .}
i s = i ;

j s = j ;

assume (M + c − i s + j s <= N) ;

whi l e ( i <= M) {
Q: { . . .}
a s s e r t ( ( i <= M + c ) &&

( j − j s <= i − i s ) &&

(M + c − i s + j s <= N) ) ;

R: { . . .}
}

P : { . . .}
i s = i ;

j s = j ;

a s s e r t (M + c − i s + j s <= N) ;

whi l e ( i <= M) {
Q: { . . .}

R: { . . .}
}

Predicates: i ≤M ,M ≤ i, i ≤M + c, j − js ≤ i− is,M + c− is + js ≤ N .

Figure 4: Structure of two-variable explicit template.

Original Problem Solve Under Assumptions Discharge Assumptions

P : { . . .}

whi l e (A[ i ] != ’\0 ’ ) {
Q: { . . .}
a s s e r t ( i <= N) ;

R : { . . .}
}

P : { . . .}
assume ( s t r l e n (A) <= N) ;

assume ( i <= s t r l e n (A ) ) ;

whi l e (A[ i ] != ’\0 ’ ) {
Q: { . . .}
a s s e r t ( ( s t r l e n (A) <= N) && ( i <= s t r l e n (A ) ) ;

R : { . . .}
}

P : { . . .}
a s s e r t ( s t r l e n (A) <= N) ;

a s s e r t ( i <= s t r l e n (A ) ) ;

whi l e (A[ i ] != ’\0 ’ ) {
Q: { . . .}

R: { . . .}
}

Predicates: i ≤ strlen(A), strlen(A) ≤ i, strlen(A) ≤ N , A[i] = ‘\0’.

Figure 5: Structure of single-variable string template.

it at loop entry. The last step says that if, at the beginning of every iteration, (i ≤M)∧ (M + c+ js− is ≤
N) ∧ (j − js ≤ i− is), then the assertion is safe, by the following argument:

j ≤ i+ js − is rewrite j − js ≤ i− is
≤ i+ (N − (M + c)) sinceM + c− is ≤ N − js
= N + (i− (M + c))
≤ N since i ≤M + c

As with the single-variable case, this template is modular.

We have presented the template assuming that the leader increases on each loop iteration. The template

is similar if the leader decreases instead, e.g., if the leader is a count of the amount of space left in an array.

In this case, the expressions j − js ≤ i− is andM + c− is ≤ N − js are replaced by j − js ≤ is − i and
is −M − c ≤ N − js, respectively.

3.4 Handling Strings

We define strings to be null-terminated character arrays. Thus, when a loop traverses a string A using an

iterator i, it will likely have a loop condition A[i] 6= ‘\0’ (or one that implies it, such as A[i] = ‘ ’), rather

than an explicit arithmetic comparison on i. For such loops, we use the proof template shown in Figure 5.

For conciseness, let sl = strlen(A), where

strlen(A)
def
= min{x ≥ 0 | A[x] = ‘\0’}

The template’s parameters are i, A, andN . The template breaks the proof of safety down into five steps:

1. {true} P {sl ≤ N},

2. {sl ≤ N} Q;R {sl ≤ N},

3. {true} P {i ≤ sl},

4. {i < sl} Q;R {i ≤ sl}, and

5. {i < sl ∧ sl ≤ N} Q {i ≤ sl ∧ sl ≤ N}.
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Program Statement Instrumentation

A[i] = e

i f ( ( e == 0) && ( i >= 0 ) ) {
A nu l l p o s = NONDET;

assume ( A nu l l p o s <= i ) ;

} e l s e i f ( i == A nu l l p o s ) {
A nu l l p o s = NONDET;

assume ( A nu l l p o s > i ) ;

}

if (A[i] == e)
i f ( e == 0) {

assume ( A nu l l p o s <= i ) ;

}

Figure 6: Program instrumentation for string reads and writes; NONDET means non–deterministic assign-

ment.

Original Problem Solve Under Assumptions Discharge Assumptions

P : { . . .}

whi l e (A[ i ] != ’\0 ’ ) {
Q: { . . .}
a s s e r t ( j <= N) ;

R: { . . .}
}

P : { . . .}
i s = i ;

j s = j ;

assume ( s t r l e n (A) − i s + j s <= N) ;

whi l e (A[ i ] != ’\0 ’ ) {
Q: { . . .}
a s s e r t ( ( i <= s t r l e n (A) ) &&

( j − j s <= i − i s ) &&

( s t r l e n (A) − i s + j s <= N ) ) ;

R: { . . .}
}

P : { . . .}
i s = i ;

j s = j ;

a s s e r t ( s t r l e n (A) − i s + j s <= N) ;

whi l e (A[ i ] != ’\0 ’ ) {
Q: { . . .}

R: { . . .}
}

Predicates: i ≤ strlen(A), strlen(A) ≤ i, j − js ≤ i− is, strlen(A)− is + js ≤ N , A[i] = ‘\0’.

Figure 7: Structure of two-variable string template.

The first two ensure that sl ≤ N at the start of every loop iteration. The second two ensure that i < sl at the

start of every loop iteration; they take advantage of the fact that if i ≤ sl holds before the loop is entered,

then i < sl on loop entry, since A[i] 6= ‘\0’∧A[sl] = ‘\0’ implies that i 6= sl. The last step ensures that if

i < sl and sl ≤ N at the beginning of each loop iteration, the assertion is safe.

Our treatment of strings extends naturally to two-variable traversals; see Figure 7 for details.

In order to represent predicates containing the strlen function as atomic predicates, we conservatively

approximate strlen using program instrumentation. Specifically, we associate with each array A a variable

A nullpos, and add the instrumentation shown in Figure 6 to make A nullpos a safe approximation of

strlen(A). NONDET stands for non-deterministic assignment. From the definition of strlen,A nullpos ≥ 0
and A[A nullpos] = ‘\0’, so SMCs can assume them as invariants throughout the program.

3.5 Applying Templates in Practice

Earlier in this section, we described a heuristic for choosing among our proof templates for structured loops:

if the loop condition is an arithmetic test on an iterator, we choose an explicit template; otherwise, if the

loop condition is a test on an array cell, we choose a string template. If the iterator in the loop condition

is the same as the iterator in the assertion being checked, we choose a single-variable template; otherwise,

we choose a two-variable template. We now generalize this test to more general loops, and describe how

we obtain template parameters in this context. The generalized algorithm comprises BUILDDB, which is

implemented as an extension to CIL [28].

Exit branches. More general loops may have exit branches at their heads or within their bodies. An

exit branch is a branch statement upon which a loop exit is control-dependent [15], e.g., the branches on

line 10 of Figure 1, and lines 5, 8, and 9 of the program in Figure 8. Our implementation chooses templates

by examining exit branches. We have found that our proof templates work equally well for common less

structured loops such as those in Figures 1 and 8. Since a loop may have multiple exit branches (e.g.,

strncpy), our implementation can suggest multiple proof templates for the same 〈loop,iterator〉 pair.
Deriving parameters. So far, we have assumed that iterators appear directly in exit branch conditions

and assertions (making it trivial to obtain template parameters), and that the assertions appear within the

loop’s body. We relax both conditions by searching for expressions derived from iterators, where an expres-
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1 vo id example ( ) {
2 char buf [BUF SZ ] , c ; i n t l e n =BUF SZ−1, i =0 , tmp ;

3 whi l e ( 1 ) {
4 c = NONDET;

5 i f ( i == l e n ) re turn ;

6 i f ( c == ’\\ ’ ) {
7 i ++;

8 i f ( i == l e n ) re turn ; }
9 e l s e i f ( c == ’ . ’ ) break ;

10 i ++; }
11 tmp = i +1 ;

12 a s s e r t ( tmp < BUF SZ ) ; }

Figure 8: A loop with multiple exit branches, based on code from Apache.

sion is derived from an iterator if it is semantically equivalent to a linear expression over the iterator and

loop constants. These are found using reaching definitions [27]. Since we restrict derived expressions to be

linear, we can invert them in order to obtain template parameters from exit branches and assertions.

We can use proof templates to check an assertion outside of a loop, provided that the loop dominates the

assertion. In this case, we restrict the loop constants in derived expressions to those which are not defined

on any path from the loop to the dominated assertion. In Figure 8, the assertion on line 12 is dominated by

the loop on lines 3–10, and tmp is derived from i.

For strings, we search for expressions whose values are derived from array cells whose indices are, in

turn, derived from iterators; for example, in the program in Figure 1, ch is derived from src[i].
Derived expressions allow us to obtain the template parameters i, j, M , N , and A. We compute a

candidate value for the remaining parameter, c, through a simple symbolic execution [21] which follows

CFG predecessors from an assertion to the nearest exit branch used in the template, computing the sum of

all updates to an iterator.

4 Evaluation

In this section, we compare the performance of an SMC augmented with proof templates (PTYASM) against

three other SMCs: YASM [16] (without proof templates), BLAST [17, 18], and SATABS [10]. We ran

the tools on testcases derived from the Verisec suite [24], a benchmark designed to compare verification

techniques. The suite consists of 149 small C programs (containing at most 538 LOC) derived from 22

buffer overflow vulnerabilities reported in CVE [12], a public database of security vulnerabilities. Each

testcase in the suite includes not only a vulnerable version but also its safe counterpart in which the buffer

overflows have been fixed by applying the official patch. Buffer size declarations are parameterized by a

macro which can be set by the experimenter.

We selected 26 patched testcases from 18 vulnerabilities by excluding those cases which either did not

contain buffer-dependent loops or which contained loop structures already represented in the set. Since our

current implementation of proof templates only supports programs with a single loop and a single assertion,

we constructed, by hand, single-loop testcases isolating each array bounds assertion in each of the selected

programs. Overall, 59 testcases were constructed for the evaluation.

The SMCs used in the experiments are briefly described below. YASM [16] generates multi-valued ab-

stractions and uses weakest preconditions for refinement. BLAST [17,18] uses a “lazy” abstraction strategy

and Craig interpolation for refinement. SatAbs [10] uses a SAT-solver for predicate abstraction and refine-

ment. We ran the tools with the recommended options: YASM with --refiner cbj-i-s; BLAST, re-

lease 2.4, with -craig -predH 7; and SATABS, release 1.8, with --iterations 0, which disables

the CEGAR iteration limit, and --no-bounds-check, which disables the built-in bounds-checking, as

it can interfere with our manually-inserted bounds check assertions.

The test platform was a dual quad-core Intel E5355 2.66GHz system with 16GB RAM running Ubuntu

6.06.2. To pass each testcase, a tool had to prove the safety of the array bounds assertion within the timeout

period, set at 600s; the timeout is necessary because SMCs may run for an unbounded amount of time rather

than returning incorrect results. The buffer size was chosen to be 1024, in order to be realistically large and

to prevent the tools from successfully passing a testcase by loop unrolling. If a tool timed out, crashed, or

incorrectly reported that an assertion was violated, we counted this as a failure.
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Class #Cases PTYASM YASM BLAST SATABS

None 13 9 9 9 9

1ex 25 25 8 10 13

1str 11 8 0 0 0

2ex 7 4 0 0 0

2str 3 3 0 0 0

Total 59 49 17 19 22

Table 1: Evaluation results: number of testcases solved at buffer size 1024 with a timeout of 600s.

1 whi l e (A [ i ] != 0 ) {
2 s k i p p i n g = ( j >= M) ;

3 i f ( ! s k i p p i n g ) {
4 a s s e r t ( j < N) ;

5 j ++; }
6 i ++; }

1 whi l e (A[ i ] != 0 ) {
2

3 i f (A[ i ] == ’ ? ’ ) {
4 a s s e r t ( i < N) ;

5 A[ i ] = 0 ; }
6 i ++; }

(a) (b)

Figure 9: Programs where (a) exit branches do not yield the correct template and (b) the current template is

insufficiently general.

The results of the experiments are summarized in Table 1. Initially, we manually classified the testcases

into classes associated with templates, where a program belongs to a template’s class if (1) the template, or

a minor generalization of it, can be used to prove safety, and (2) the template can be inferred by examining

exit branches. Classes are indicated in the first column of the table: “None” denotes no template, and “1ex”,

“1str”, “2ex”, and “2str” denote the single-variable explicit, single-variable string, two-variable explicit, and

two-variable string templates, respectively. Each row of the table shows the results for one class of testcases.

For example, the second row shows that there were 25 “1ex” testcases in total, that PTYASM passed 25

of these, and that YASM, BLAST, and SATABS passed 8, 10, and 13 of the “1ex” cases, respectively.

Overall, PTYASM achieved a success rate of 83%, a significant improvement over the previous best of 37%

(SATABS). In the 46 cases outside of the “None” class, PTYASM achieved a success rate of 87% whereas

the previous best was 28% (SATABS). The complete experimental data and test materials are available

online at http://www.cs.toronto.edu/˜kelvin/ase08.

Overall, PTYASM failed to check ten testcases within the timeout period. In one of these testcases, the

correct template was supplied to PTYASM, but it was unable to converge within the timeout period; this is

one of the failing “1str” testcases. The remaining nine failures fall into two groups. In both groups, PTYASM

backtracked to the standard refinement strategy (loop unrolling) and eventually timed out. The first group

consists of the four failing testcases in the “None” class, for which BUILDDB did not suggest a correct

template, either because no appropriate template exists, or because a correct template exists, but cannot

be inferred from exit branches. Figure 9(a) illustrates a loop structure which occurs in a testcase derived

from Sendmail CVE-2002-1337 for which BUILDDB suggests the two-variable string template, but the

exit branch condition A[i] 6= 0 does not guarantee safety if the precondition strlen(A) − is ≤ N − js
fails to hold. Instead, the use of the flag variable skipping prevents the iterator j from increasing past M .

The correctness argument actually depends on the preconditionM ≤ N , and the single-variable explicit

proof template would be sufficient to allow the model-checker to solve this testcase without unrolling. It

is straightforward to extend BUILDDB to recognize this loop structure: (1) apply expression propagation,

replacing the use of skipping on line 3 with its unique reaching definition from line 2, namely the expression

j ≥ M ; and (2) in addition to examining exit branches, suggest proof templates based on bounds checks

on iterators, such as the check that ¬(j >= M) on line 3 of Figure 9(a), when these checks dominate

assertions.

The second group consists of five testcases in which the exit branches indicate the proper correctness

argument, but our current template is insufficiently general. These account for two failing “1str” testcases,

which come from a loop in Apache (from CVE-2006-3747), and three failing “2ex” testcases, which come

from a loop in Sendmail (from CVE-1999-0206). Figure 9(b) shows a simplified version of the loop from

Apache. Here, BUILDDB suggests the single-variable string template, and the exit branch conditionA[i] 6=
0 guarantees safety since i < strlens(A) ≤ N is a loop invariant, where strlens(A) is the initial string

length of A. However, the loop body may write a null character into A, thereby decreasing strlen(A) and
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violating the proof step {i < strlen(A)} Q;R {i ≤ strlen(A)}. To handle such loops, the string templates

can be extended with instrumentation and predicates to track strlens(A).
Overall, the results show that proof templates are an effective strategy for verifying bounds checks on

large buffers. In many cases where a template applied, using proof templates enabled YASM+PT to converge

whereas the existing strategies failed.

5 Related Work

To our knowledge, we are the first to propose augmenting SMCs with proof templates designed to capture

common programming patterns, and to explicitly use assumptions to enable the analysis of loops for which

predicates must be true on entry. However, others have proposed extensions to CEGAR to help it analyze

programs with loops.

Beyer et al. [6] integrate invariant synthesis [5] with CEGAR for analyzing loops, but do not address

strings or provide a mechanism to ensure that needed predicates are true on loop entry. The user must

specify an invariant template, which requires intuition about the structure of the loop and the property

being checked. It may be possible to combine our approach with theirs, by using our algorithm to suggest

proof templates, casting them as invariant templates, and using their invariant synthesis to customize them.

ACSAR [30] uses transfinite refinement to better abstract loops, and has been applied to the verification

of small loops. ACSAR is able to determine that updates of two variables are paired, as in our two-variable

cases, but does not analyze strings or address the problem of predicates which must be true on loop entry.

Jhala and McMillan’s split prover [20] constrains the predicates which REFINE may return in order to

ensure that CEGAR eventually converges if a proof of safety exists within difference logic (i.e., predicates

of the form x − y ≤ c, where c is a constant). The split prover can prevent loop unrolling in some

circumstances, but since it has no knowledge of programming patterns, it does not attempt to guide an

SMC towards an efficient proof. Furthermore, this approach may drastically increase the overall number of

predicates if the proof of safety requires a predicate with a large numeric constant as a difference bound.

Chaki and Hissam [8] use an SMC to verify the absence of buffer overflows in functions from the C

standard library (i.e., strcpy, etc.) by introducing stubs for these functions, but make no attempt to analyze

custom loops. Other projects have augmented SMCs to better prove the presence of buffer overflows, either

using looping counterexamples [23, 35], or concrete execution [22]; these efforts are orthogonal to ours,

since they seek to prove the presence of errors, rather than their absence.

The EUREKA SMC changes the CEGAR paradigm by using linear programs in the model checking

phase instead of boolean programs. This enables some problems involving array traversal to be solved

efficiently, but makes the SMC’s model checking phase incomplete [1].

Several tools [14,33,34] use abstract interpretation [11] to verify the safety of array bounds checks. The

key difference between these tools and SMCs is that they rely on fixed abstractions which are powerful,

but cannot be refined at analysis time and therefore require careful construction and customization to the

software being checked. Since the abstract domains are fixed, these tools can either keep track of too much

information, leading to long analysis times [36], or of too little information, leading to false alarms. We

note that many tools based on abstract interpretation explicitly keep track of string length [14]; this approach

inspired our string instrumentation.

Other tools use Hoare-style deductive verification to verify the absence of buffer overflows. These tools

typically require an inference procedure to provide loop invariants [26]. Denney and Fischer [13] have

applied a pattern-based approach which is similar in spirit to ours to deductive verification, but not for the

problem of array bounds checking, and their scope is restricted to automatically-generated programs.

6 Conclusions and Future Work

In this paper, we have described an architecture for augmenting SMCs with proof templates, a set of proof

templates designed to prove the safety of common array traversals, and an algorithm to heuristically choose

among these templates. Our experiments show that proof templates enable SMCs to prove the safety of

array bounds checks much more effectively. We note two areas for future work.

Extending to multiple loops. We have addressed the abstraction of a single loop using proof templates,

but plan to generalize this framework to analyze inter-dependent loops; in particular, we would like to use
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proof templates while discharging assumptions. The main difficulty of this problem is that the assumptions

do not have the same form as the original assertions, and may require bounding multiple variables.

Extending to other problem domains. We are interested in generalizing our methodology to problem

domains other than array bounds verification by taking advantage of other analyses of program structure

with which we can associate templates. Existing techniques for automatically finding instances of design

patterns [32] lead us to believe that such generalizations hold promise.
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